Translating Tax Law to Code with LLMs: A Benchmark
and Evaluation Framework

Gabriele Lorenzo

Aldo Pietromatera

Nils Holzenberger*

Télécom Paris
first.last@telecom-paris.fr

Abstract

Catala is a domain-specific programming lan-
guage for tax law, meant to facilitate the transla-
tion of legal text into executable computer code,
thanks to a syntax close to that of legal lan-
guage and reasoning. Legal statutes paired with
their Catala translation have been published
online periodically, but manual translation re-
mains labor-intensive. In this work, we develop
a benchmark for the evaluation of Catala code
generation from legal text, including a training
set to fine-tune Large Language Models. To
assess the quality of the generated code, we
introduce an evaluation framework extending
current metrics for code generation. Our ex-
periments with few-shot learning, as well as
fine-tuned models, suggest the feasibility of au-
tomating legal code generation, and contrast
with prior attempts to translate legal language
into a formal representation.’

1 Introduction

Many tax agencies across the world have a legal
duty to compute income tax owed, on the basis
of the statements provided by taxpayers (Lawsky,
2020). In other jurisdictions, the burden of this
complex task is on the taxpayer. Since the 1990s,
the French tax administration has maintained an
expert system to calculate taxes and social bene-
fits. This expert system must be periodically up-
dated to follow the evolution of tax law, a process
hampered by the limitations of the current program-
ming paradigm. The Catala programming language
(Merigoux et al., 2021) was designed to address
these limitations: first, by providing a domain-
specific language better aligned with the syntax
of legal language and reasoning, and second, by en-
couraging collaboration between lawyers and com-
puter scientists using pair programming. A consid-

*Corresponding author
!The dataset and code are available at https://github.
com/GLorenzo679/translating-tax-1law

{
"input”: "4 A compter du ler janvier 2022,
pour 1'application du 5 de 1'article D.
823-17 (...) pas celui des AL.",

"metadata”: "declaration champ d'application
CalculAidePersonnaliseelogementlLocatif:
entree loyer_principal contenu argent
(...) -- Mayotte”,

"output”: "champ d'application
CalculAidePersonnaliseelLogementLocatif
sous condition date_courante >=
12023-01-01| et date_courante <
|2023-10-01|: exception metropole (...) 8
181 EUR",

"generated_output”: "champ d'application
CalculAidePersonnaliseelogementLocatif
sous condition date_courante >=
12023-01-01| et date_courante <=
|2023-12-31]: exception metropole (...) 8
181 EUR"

31

Figure 1: Extracts of one sample from our dataset, with
its input, metadata and reference output. We also show
an output generated by Qwen2.5-Coder-32B-Instruct. A
translation into English can be found in Figure 5.

erable amount of Catala code has already been writ-
ten and published on GitHub (Merigoux, 2023).

How to translate legal language into executable
computer code is an open research question (Ser-
vantez et al., 2023; Garzo and Palumbo, 2025; Zi-
touni et al., 2024), which can be traced back to
initial efforts at representing parts of legislation
with tools from expert systems (McCarty, 1976;
Sergot et al., 1986). It is also of practical signifi-
cance for tax agencies and taxpayers, as mentioned
above. A significant challenge is the substantial
human effort required for translation: each section
of tax law takes hours to convert into code, the vol-
ume of existing laws is immense — e.g. the French
tax code spans approximately 3,500 pages — and
frequent amendments necessitate continuous up-

Proceedings of the Natural Legal Language Processing Workshop 2025, pages 31-47
November 8, 2025 ©2025 Association for Computational Linguistics

https://github.com/GLorenzo679/translating-tax-law
https://github.com/GLorenzo679/translating-tax-law

dates and translations. In addition, the structure of
laws is not strictly linear. For instance, some sec-
tions modify or override provisions stated in earlier
parts. This requires careful management of depen-
dencies between provisions to ensure a consistent
and faithful implementation of the legal text.

This law-to-code translation task is related to
that of semantic parsing of legal language (Pertierra
et al., 2017; Morgenstern, 2014; Sinh and Nguyen,
2018). So far, results have been mostly negative,
for two main reasons. There is a stark contrast
between the language semantic parsers are made
for, and legal language. Further, there is no large
collection of legal text annotated for semantic pars-
ing. Catala code forces the programmer to commit
to one interpretation, which prohibits alternative
interpretations of the same legal text, a feature that
would be necessary for a general semantic repre-
sentation of legal language. But it trades the ability
to represent multiple interpretations for the ability
to thoroughly represent one interpretation, catching
inconsistencies and gaps (Merigoux et al., 2021),
and enabling automated legal reasoning. We report
results on par with code generation for other pro-
gramming languages, making this a positive result
in semantic parsing for legal language.

Our main contributions are:

* Starting from the existing Catala code corpus,
we created a new dataset suited for the fine-
tuning of Large Language Models (LLMs).

* We adapted existing evaluation metrics to as-
sess the accuracy of the outputs produced by
our fine-tuned models.

¢ We benchmark state-of-the-art LL.Ms, with
few-shot learning and fine-tuning.

2 Related work

Meaning representations Semantic parsing
aims at faithfully representing the meaning of lan-
guage and is a long-standing NLP task — see for
example Blackburn and Bos (2005) for a compre-
hensive review. First-order logic is sufficient to
model legal reasoning, as long as humans provide
values for ambiguous or vague predicates, as was
done in Sergot et al. (1986). But formalisms for
semantic parsing generally aim for close syntac-
tic alignment between input and output, as can
be found in Abstract Meaning Representation (Ba-
narescu et al., 2013) and Universal Decomposi-
tional Semantics (White et al., 2020). Semantic

32

parsing of legal language has been shown to be
a major challenge (Morgenstern, 2014; Pertierra
et al., 2017; Sinh and Nguyen, 2018). In particu-
lar, sentence length and logical connectives are a
problem (Allen and Engholm, 1977). Alignment
between legal language and formal representation
1s hard to achieve, even if some formalisms achieve
moderate correspondence.

Legal expert systems While first-order-logic-
based frameworks such as Prolog are sufficient to
represent the logic of laws and regulations, legal
language has a specific way of expressing logic,
for instance through defeasible logic (Nute, 1988).
This has prompted the creation of semantic for-
malisms to represent legal rules. Proleg (Satoh,
2023) is an extension of Prolog designed to repre-
sent Japanese law. In particular, it has been aug-
mented with a feature to visualize reasoning traces,
to identify bugs in the formalization or issues in
a legal text (Fungwacharakorn and Satoh, 2022).
There have been attempts to generate Proleg from
legal language, with promising results on narrow
scopes (Zin et al., 2023, 2024). OpenFisca is a
software package aimed at representing financial
law. So far, it has been developed and published
open-source,” and has been used to model specific
aspects of law in scientific publications (Pratten
and Mathieson, 2024). Logical English (Kowal-
ski and Datoo, 2022) is a simplified version of the
English language, which may be easily mapped to
first-order logic. In that respect, it is close to a con-
trolled natural language (Kaji, 1999; Fuchs, 2021).

Code generation Existing models can generate
code in a variety of programming languages, and at
varying levels of granularity (Chen et al., 2021).
In particular, GitHub repositories are a source
of data to train LLMs on code. Codex (Chen
et al., 2021) is a GPT-3 model fine-tuned on code
from GitHub. Similarly, Deepseek-Coder-V2 was
fine-tuned from Deepseek-V2 (DeepSeek-Al et al.,
2024), and CodeLlama from Llama 2 (Roziere
et al., 2023). In contrast, StarCoder models were
trained on code only (Lozhkov et al., 2024). LLMs
trained on code are generally proficient on widely-
used languages such as Python. Catala is a low-
ressource language. To the best of our knowledge,
the only existing ressource is the GitHub repos-
itory we used in this paper. Querying the tool

2https: //openfisca.org/

https://openfisca.org/

“Am I in the Stack?”® for “CatalaLang” showed
that Stack v2.0.1 and v1.2 (Lozhkov et al., 2024)
contain the repositories Catalalang/catala and
Catalalang/catala-website. The former holds
the compiler for Catala, in OCaml. The latter is
the source code for http://catala-lang.paris.
inria.fr/. This means StarCoder models have
seen a trace amount of Catala code, in the form
of snippets written on the Catala website. Code
generation with LLMs may leverage controlled
languages and constrained decoding (Shin et al.,
2021). As a first step, we turn to efficient meth-
ods for fine-tuning LLMs: low-rank parameter
adaptation (Hu et al., 2022) and its quantized
versions (Dettmers et al., 2023).

Evaluation metrics Benchmarks for code gen-
eration generally pair natural-language instruc-
tions with reference, expected code output. This
makes it possible to evaluate code generation as
a machine-translation task. Borrowing from the
BLEU score (Papineni et al., 2002), Ren et al.
(2020) introduce CodeBLEU, a combination of
4 metrics meant to measure different aspects of
the generated code. How to appropriately as-
sess the quality of code is an active field of re-
search (Paul et al., 2024; Evtikhiev et al., 2023),
and we use all relevant metrics to measure model
performance. Some benchmarks additionally have
unit tests for the generated code, allowing to mea-
sure metrics based on functional correctness, such
as Pass@k (Chen et al., 2021). While we do have
access to some unit tests for Catala code, they are
scarce and operate at the level of an entire Catala
program, so that we leave to future research how to
best leverage them for code evaluation.

3 Dataset

The publicly available Catala code repository on
GitHub* contains examples of legal texts translated
into Catala by computer scientists and lawyers.
Topics include housing benefits (aides logement),
family allowances (allocations familiales), the
monthly basis for family benefits (base mensuelle
allocations familiales), inheritance law (droit suc-
cessions), and income tax (impot sur le revenu).
We extracted and structured the data into JSON
format. Each sample in our dataset corresponds to

3https://huggingface.co/spaces/bigcode/
in-the-stack

4https://github.com/CatalaLang/
catala-examples

33

a single provision in a legal statute, structured as
follows (see Figure 1):

* Input: The text of the original legal provision
in French. This text describes rules, condi-
tions, and regulations that need to be trans-
lated into Catala code.

Metadata: Catala code describing legal con-
cepts and data types involved in the imple-
mentation. This includes definitions of enu-
merations, structures, and dependencies, used
directly in the Catala translation of the input.

* Qutput: The translation of the Input in Catala.

The dataset was randomly split into 70% train-
ing, 15% validation and 15% test. Since samples
come from diverse legal contexts and are shuffled
before splitting, the training, validation and test
sets share similar statistical properties. The dataset
has 416 training, 86 validation and 89 test sam-
ples, with varying input and metadata lengths. This
can be challenging, as our 4096-token context win-
dow may not capture all information. Using the
tokenizer of our best-performing model (Qwen-
2.5-Coder-32B-Instruct), and concatenating input,
output and metadata, this 4096-token window cov-
ers 97% of train, 95% of validation, and 93% of
test. For comparability across models, we do not
exclude samples in our experiments, instead trun-
cating the input as needed.

The size of the resulting dataset is comparable
to other specialized code generation datasets (Ling
et al., 2016; Yin et al., 2018). Figure 2 shows more
details about the length of inputs and outputs.

4 Metrics

We use multiple metrics, each analyzing the code
from a different perspective. Our approach con-
siders lexical similarity, syntactic correctness, and
structural validity. The evaluation framework
includes 5 metrics: (1) ChrF, character-based
similarity between reference and generated code,
(2) BERTScore: semantic similarity using text em-
bedding models, (3) Tree Edit Distance (TED):
structural similarity of syntax trees, (4) Valid Syn-
tax (VS): checks if the generated code is syntacti-
cally correct, and (5) CodeBLEU (Ren et al., 2020).

4.1 ChrF

Character n-gram F-score (ChrF) (Popovi¢, 2015)
is often used in translation tasks because it captures

http://catala-lang.paris.inria.fr/
http://catala-lang.paris.inria.fr/
https://huggingface.co/spaces/bigcode/in-the-stack
https://huggingface.co/spaces/bigcode/in-the-stack
https://github.com/CatalaLang/catala-examples
https://github.com/CatalaLang/catala-examples

1e—3 Input 1e—3 Metadata le—3 Output

€. 1203.1 12 24014 41 716.3

=% o0 Z'Jh

F o0 0.0 R M1 ol ol gt oy

g le—3 le—3 le—3

s 1128.5 1.2 2599.6 4 626.5

1.0 .

T 0.5 0.6 1 2

E 0.0 . 0.0 . . 0 . . .
le—-3 le—3 le—3

1658.3 i 2847.7 4 487.0
B 1.0 1.2
@ 051 0.6 1 2
0.0 ‘ ‘ . 0.0 . . ; ; 0 . : :

0 2000 4000 6000 0 2000 4000 6000 8000 0 500 1000 1500

Length in characters

Figure 2: Distribution of string length, measured in number of characters. Mean of distribution added as a vertical
line. The longest 5% of strings were removed from each split before plotting, but after computing the mean.

small differences that word-based metrics might
miss. In our evaluation, we use the python evalu-
ate’ library by Hugging Face to compute this score.
According to Evtikhiev et al. (2023), ChrF aligns
best with human assessment among other code gen-
eration metrics.

4.2 BERTScore

BERTScore (Zhang et al., 2020) uses an encoder-
only transformer model to compare the meaning of
two pieces of text by computing the similarity be-
tween their embeddings. Unlike token-based meth-
ods, it evaluates similarity based on context and text
embeddings. This is useful because different pieces
of code can have different syntax but still perform
the same task. We use the BERTScore implemen-
tation from the evaluate® library. BERTScore —
together with ChrF — is the closest metric to hu-
man assessment (Evtikhiev et al., 2023).

4.3 Tree Edit Distance

TED quantifies the differences between two Ab-
stract Syntax Trees (ASTs) by computing the mini-
mum number of operations required to transform
one tree into another. The allowed operations are
node insertion, deletion, and modification, each as-
signed a cost of 1. This metric considers the global
syntactic structure of the code.

To compute the TED, we first generate the Ab-
stract Syntax Tree for both the generated and ref-
erence code using the tree-sitter’ parser generator
tool. In order to do this, we exploit the Catala

5https://huggingface.co/spaces/
evaluate-metric/chrf

®https://huggingface.co/spaces/
evaluate-metric/bertscore

"https://tree-sitter.github.io/tree-sitter/

34

grammar for tree-sitter. Once the ASTs are ob-
tained, we convert them into a format compatible
with the zss library” for tree edit distance computa-
tion. Specifically, we traverse the tree-sitter AST
and transform it into a zss tree. After constructing
the zss tree representations, we compute the zss
distance using the tree edit distance algorithm as
described by Zhang and Shasha (1989).

One important aspect of using TED for evalu-
ation is normalization. Since AST sizes can vary
significantly, raw TED values alone are not always
informative. To ensure a fair comparison, we nor-
malize TED by dividing it by the number of nodes
in the larger tree, excluding certain common nodes
that do not add meaningful differences. The nor-
malized TED is given by:

TED, s
max(n,,n,) — ex. nodes

TED, =

where TED ., is the computed edit distance,
n, and n, are the number of nodes in the reference
and generated ASTs respectively, and ex. nodes
is the number of excluded common nodes — 4 in

our case. 10

A lower TED value means fewer transformations
are needed to make the syntax trees identical, in-
dicating a high structural similarity between the
generated and reference code. Conversely, a higher
TED value suggests significant structural differ-
ences. See Appendix D for an example.

8https://github.com/CatalalLang/
tree-sitter-catala

*https://pythonhosted.org/zss

Osource _file, code_block, BEGIN_CODE, END_CODE

https://huggingface.co/spaces/evaluate-metric/chrf
https://huggingface.co/spaces/evaluate-metric/chrf
https://huggingface.co/spaces/evaluate-metric/bertscore
https://huggingface.co/spaces/evaluate-metric/bertscore
https://tree-sitter.github.io/tree-sitter/
https://github.com/CatalaLang/tree-sitter-catala
https://github.com/CatalaLang/tree-sitter-catala
https://pythonhosted.org/zss

champ d'application CalculAidePersonnalisee
sous condition date_courante >= |2023-01-01]:

scope CalculationPersonalizedBenefits
under condition current_date >= |2023-01-01]:

Figure 3: Example of generated Catala code and trans-
lation into English.

champ d'application CalculAidePersonnalisee
sous condition date_courante >= |2023-01-01|
et date_courante < |2023-10-01]|:

exception metropole

scope CalculationPersonalizedBenefits

under condition current_date >= |2023-01-01 |
and current_date < |2023-10-01]|:

exception mainland

Figure 4: Example of reference Catala code and transla-
tion into English.

4.4 Valid Syntax

Even if a generated code snippet appears similar
to a reference implementation, it may still contain
syntax errors that prevent it from compiling. We
measure whether a snippet of generated code is
syntactically valid using its AST (see Appendix D).
This metric effectively assesses how often a model
produces functional code.

4.5 CodeBLEU

The CodeBLEU metric (Ren et al., 2020) is de-
signed to evaluate the similarity between generated
and reference code while taking into considera-
tion syntactic structure and semantics. The eval-
uation consists of four components: (1) BLEU
Score, (2) Weighted N-gram Match, (3) Syntax
Tree Match, and (4) Semantic Data Flow Match.
Each of these components contributes to the final
score through a weighted sum, as described later in
this section.

BLEU Score The first component of CodeBLEU
is the standard BLEU score, measuring n-gram
overlap between the generated and reference code.
We use the default space-based tokenizer.

Weighted N-gram Match Keywords in the pro-
gramming language play a crucial role in defining
the logic and structure of a program, while variable
names and literals can often be modified without
affecting the overall functionality. To address this,
CodeBLEU incorporates a weighted n-gram match

35

component, where keywords are given higher im-
portance compared to variable names. We achieve
this by using a specialized tokenizer that splits the
code based on a predefined list of Catala-specific
keywords (see Appendix B). Each token is then as-
signed a weight (1 for the keywords and 0.2 for the
others), ensuring that incorrect predictions of key-
words impact the final score more than incorrect
predictions of variable names.

Syntax Tree Match To incorporate syntax aware-
ness, CodeBLEU includes a syntax tree match com-
ponent, which evaluates the similarity between the
ASTs of the generated and reference code. Here,
we compare both trees by counting the number of
matching subtrees, making this a different metric
from TED. The more subtrees that match between
the generated and reference ASTs, the higher the
score. To measure similarity, we compute the num-
ber of common subtrees and normalize it using the
longest subtree list. This helps reduce the impact
of overly long ASTs. We extract all subtrees from
both ASTs while preserving duplicates. The inter-
section gives the count of common subtrees, and
normalization is based on the length of the longest
subtree list rather than set cardinality. The similar-
ity score is defined as

(A1) N T(49)
max(len(T(A1)),len(T(As)))

S(A1,Az) =

where T'(A1) and T'(Ag) are the lists of subtrees for
ASTs A; and Ag, respectively. |T'(A1) N T'(A2)|
represents the number of common subtrees. The
denominator ensures that if an AST prediction con-
tains excessive erroneous substructures, the simi-
larity score is penalized.

Semantic Data Flow Match The meaning and
functionality of code depends on how variables are
related. To capture this, CodeBLEU includes a
semantic matching method based on data-flow. A
data-flow graph (Guo et al., 2021) represents how
values move between variables in a program. Even
if two code snippets have similar syntax or struc-
ture, their behavior can be different. For example,
two functions might be identical, up to the final re-
turn statement, one returning the variable x and the
other the variable y. Other metrics may still assign
a high score, but the semantics of both functions
are quite different.

To measure the semantic similarity using data-
flow, we follow three steps, following Guo et al.

(2021): (1) Construct data-flow graphs for both
candidate and reference code. These graphs are
built based on the AST and show how values are
passed between variables. (2) Normalize the data-
flows. We ignore the original variable names and
rename them as var_@, var_1, etc., based on their
order of appearance. (3) Compute the semantic
data-flow match score as:

Count,tcp, (DFcand)

Matchys =
T = T Count(DFrey)

Here, Count(DF.y) is the total number of data-
flows in the reference, and Count,,q¢cn (D Frand)
is the number of data-flows in the candidate that
match the reference.

In this work, we focused on the most fundamen-
tal and commonly used operators in Catala: as-
signments and if-then-else constructs. Specifically,
for if-then-else statements, the DFG is computed
separately for the condition, then-branch, and else-
branch. Variable states from all branches are then
unified, while variables that appear only in the con-
dition are discarded, as they do not contribute to
the semantic data dependencies.

CodeBLEU Final Score Computation The final
CodeBLEU score is a weighted sum of the 4 met-
rics described above. By default, all weights are
equal to %. If no data-flows are extracted from the
reference code (Count(DF.. f) ==0), the data-flow
match score is set to 0. In this case, we ignore the
data-flow component and adjust the weights used in
the final CodeBLEU score to be % for the n-gram
match, weighted syntax match and AST match.
We adapted the implementation of the CodeBLEU
Python library'! to suit our specific use case.

5 Experiments

Our primary goal in this experimental evaluation
is to assess the effectiveness of different LLMs in
translating legal text into Catala code. Code gener-
ation can be approached as either an autoregressive
task or a translation task, with LLMs represent-
ing the current frontier in this domain. These two
interpretations correspond to different model ar-
chitectures: decoder-only models, which generate
code token-by-token in an autoregressive manner,
and encoder-decoder models, which process input
and output as a sequence-to-sequence task. We
focus on decoder-only models, as they are the most

Yhttps://pypi.org/project/codebleu/

36

common architecture used when working with text-
to-code generation.

5.1 Few-shot prompting with retrieval

As a starting point, we evaluate OpenAl’s GPT-
4.1 model (gpt-4.1-2025-04-14) using few-shot
prompting, without any fine-tuning. We set the
temperature to 0, for reproducibility. To retrieve
the most relevant few-shot examples for each test
input, we use BM25, a ranking algorithm com-
monly used in information retrieval (Trotman et al.,
2014). We use it to retrieve samples from the train-
ing set whose input is most similar to the input of
the current test sample. For each input, we create a
structured prompt that includes the legal text, a set
of few-shot examples in JSON format, and optional
metadata (see Table 5). The model then responds
with the generated Catala code.

We evaluate performance using the metrics de-
fined in Section 4. Table 1 reports our results. We
experimented with varying number of few-shot ex-
amples, finding that performance consistently and
markedly improves with more samples. This is
expected, as GPT-4.1 likely hasn’t seen any Catala
during its training. We note that even with 1 or 2
examples, results are on par with those typically
obtained on other benchmarks (Yang et al., 2025).

5.2 Fine-tuning with QLORA

Since Catala is an uncommon programming lan-
guage, we can reasonably expect to reach higher
performance by fine-tuning smaller models on our
training set. We selected and tested the smaller
variants of four families of models:

e Qwen 2.5 - base and coder version 7B, 14B,
32B (Hui et al., 2024; Yang et al., 2024)

e Llama 3 - 3.1-8B, 3.2-3B, 3.3-70B (Grattafiori
et al., 2024)

* Phi 4 (Abdin et al., 2024)

* DeepSeek-Coder-V2-Lite-Instruct
(DeepSeek-Al et al., 2024)

All of these models were previously fine-tuned
by their creators to produce the "Instruct” variants.
We opted for this version instead of the base one, as
the conversational style aligns better with typical
user interactions.

Each training sample was formatted using a
structured chat template to align with the conver-
sational style of instruction-tuned models (see Ta-
ble 4). The template includes:

https://pypi.org/project/codebleu/

n CodeBLEU BERTScore ChrF TED VS
0 23+£0.8 593+14 366+26 98.8+0.5 22426
1 39.7+6.1 749 4+30 645+46 613+69 46.1 1838
2 484+64 765+32 67.7£50 495+73 629+8.6
4 504+63 775+31 693+47 467+70 69.7+8.1
8 51.6+59 76.8 £3.1 694+47 458+6.6 83.1+6.6
16 522+6.0 78.6 3.1 703+47 432+65 888156

Table 1: Performance (in %) of GPT-4.1 with varying number of few-shot examples (n). We report the 90%
confidence intervals. Best value for each metric is in bold.

* A system message providing high-level
instructions on translating legal text to
Catala code.

* A user query containing the legal paragraph
and metadata.

e An assistant response for the Catala
code output.

5.2.1 Quantization

To adapt the selected models to our task, we fine-
tuned them using QLoRA (Dettmers et al., 2023),
a variant of Low-Rank Adaptation (LoRA) (Hu
et al., 2022), which enables efficient fine-tuning
with reduced memory usage. The fine-tuning was
conducted using the Unsloth library (Daniel Han
and team, 2023).

First, to assess the impact of 4-bit quantization
on model performance, we compared the results
of the fine-tuned quantized models with their full-
precision counterparts. Fine-tuning was done for 3
epochs, with a maximum sequence length of 4096
tokens and a learning rate of 3 x 10~

Our evaluation, reported in Table 2, illustrates
the impact of different quantization levels on model
performance, comparing no quantization (none),
quantization at test time only (eval) and quanti-
zation at both train and test time (both). While
quantization enables efficiency in deployment, it
often comes at the cost of reduced precision in code
generation. Our experiments confirm this trade-
off, showing that models quantized only during
inference suffer from performance degradation —
an expected outcome since Quantization-Aware
Training methods were not used. However, we
found that models quantized during both finetun-
ing and inference perform similarly to their non-
quantized counterparts. Based on these results, we
chose 4-bit quantized models for the remainder of
our evaluation.

37

5.2.2 Hyperparameter search

We performed a grid search over LoRA-specific
hyperparameters to identify the combination yield-
ing the best results under our hardware constraints.
We decided to optimize rank (8, 16, 32, 64)'? and
dropout (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), as prelim-
inary experiments showed they had the most sig-
nificant impact on downstream performance, while
other LoRA parameters (such as alpha) and the
learning rate contributed minimal improvements.
The list of best hyperparameters used during train-
ing can be found in Appendix E.

6 Discussion

Table 3 presents a comprehensive comparison of
fine-tuned model performance across our evalua-
tion metrics. We note that the smallest model with
fine-tuning achieves performance comparable to
that of few-shot GPT-4.1. Other models further
improve on few-shot GPT-4.1, and reach perfor-
mance beyond that achieved on other code bench-
marks (Yang et al., 2025). As expected, larger
models tend to perform better.

Circling back to the challenges described in Sec-
tion 1, our results break away from previous find-
ings on semantic parsing of legal language, and
represent a qualitative jump. Based on the metrics
we report, LLMs frequently produce valid Catala
code, that could be used in production with mod-
erate edits. Some of that qualitative jump likely
stems from design choices in the Catala language,
whose syntax is meant to align with that of legal
language. Our findings partially confirm that this
design choice was implemented successfully. In-
deed, as compared to other code benchmarks (Ling
et al., 2016; Yin et al., 2018; Cassano et al., 2024),
the translation of legal language to Catala code
seems to have a higher sample efficiency, both for
few-shot learning and fine-tuning. We note that our
results are comparable to those in Table 4 of Yang

"2For Llama-70B, we did not try values of Rank beyond 8.

Setting CodeBLEU BERTScore ChrF TED VS
Phi-4:

none 42.6 £5.7 794+24 688+39 460+57 831+6.6
eval 37.0£5.5 781 +23 66.7+37 515+£56 820+638
both 445+58 802+23 702+38 451+60 79.8+7.1
Qwen2.5-14B-Instruct:

none 432 +58 787 +25 695+40 482+62 742+78
eval 33.5+4.7 7474+22 633+3.6 575+£52 719480
both 429+54 787+24 T705+37 468+56 854463

Table 2: Comparison between different quantization settings. Best for each quantization configuration is bolded.

Metrics in % with 90% confidence interval.

Model CodeBLEU BERTScore ChrF TED VS

LLaMA-3.1-8B-Instruct 46.6 £ 6.5 76.1 £3.5 629+59 492+73 742+78
LLaMA-3.2-3B-Instruct 449+ 64 750+34 615+57 526+73 719+8.0
LLaMA-3.3-70B-Instruct 48.5+55 81.1+24 738+38 423+55 875+59
Phi-4 56.5+5.2 81.5+26 71.8+42 39.8+6.1 92.1+48
Qwen2.5-7B-Instruct 46.6 4.6 763 +£25 651+40 524456 61.8+386
Qwen2.5-14B-Instruct 60.3 +5.1 825425 764 +41 375+59 933+44
Qwen2.5-32B-Instruct 59.1+£52 82.0+27 767+40 406+62 86.5+6.1
Qwen?2.5-Coder-7B-Instruct 473 +6.3 772+33 642+55 500+73 719+8.0
Qwen2.5-Coder-14B-Instruct 58.1+£5.2 82.1+£25 750 £39 41.6+6.1 888456
Qwen2.5-Coder-32B-Instruct 61.2 +5.1 829+25 77.3+37 397458 93.3+44
DeepSeek-Coder-V2-Lite-Instruct ~ 25.1 £+ 4.1 575+25 43.0+38 809+37 258+7.8

Table 3: Performance (in %) of instruction-tuned models across evaluation metrics with 90% confidence interval.
Best within each family is underlined, overall best is bolded and underlined.

et al. (2025) on the HearthStone dataset: number
of training samples and evaluation score are sim-
ilar. While the quality of the generated code is
often far from the quality required of an expert
system computing taxes at the scale of an entire
country, it may be good enough to help during the
pair-programming process intended in Catala trans-
lation (Huttner and Merigoux, 2022), and to reduce
the substantial burden of manual translation.

We complete our quantitative assessment with a
qualitative analysis of model outputs and errors.

Sample A — Appendix F.1 The
generated output is correct in struc-
ture. Interestingly, the model generates

date_courante <= |2023-04-30| instead of
the reference date_courante < |2023-05-01].
Although logically equivalent, this lowers scores
based on exact matches. The TED Score of
7.3% and Syntax Match Score of 89.0% indicate
minor structural discrepancies. Despite this, the
BERTScore (99.2%) and ChrF score (97.4%)
confirm high token-level similarity.

Sample B — Appendix F.2 This example shows
that the model can correctly extract the amount of

euros (8,70) from the input. However, the dates
are incorrect due to their absence from the input.

Sample C — Appendix F.3 The generated out-
put closely matches the reference and follows the
correct structure and logic. It correctly interprets
the input, especially the linear relationship at the
end of the input (323 EUR per additional depen-
dant). The start date (2022-07-01) is correct while
the end date, which is not present in the input text,
is hallucinated by the model.

Sample D — Appendix F.4 This example re-
veals some limitations and illustrates common er-
rors. First, the code is invalid and does not con-
form to the Catala grammar. Second, the meaning
is only partially captured. The input introduces
an exception rule with “sauf s’il s’agit...”/“except
in the case of...”, which is entirely missing in the
generated output. Instead, it attempts — unsuc-
cessfully — to express all logic in a single con-
dition. Additionally, it introduces a date check
date_courante >= |2023-04-05]|, which is not
present in the input text.

38

7 Conclusion

In this paper, we have introduced a benchmark
and metrics for translating legal text to computer-
executable code, starting from open-source Catala
code. We further experiment with LLMs in few-
shot learning and fine-tuning settings. The perfor-
mance we report is in line with comparable exper-
iments on low-resource programming languages
(Yang et al., 2025). Our results contrast with prior
attempts at semantic parsing of legal language, as
we reach non-trivial performance.

At present, the model takes as input the legal text
and its associated metadata, guiding the generation
of the corresponding Catala code. In future itera-
tions, we aim to (1) train and evaluate the model on
generating both output code and metadata directly
from legal text, (2) translate entire documents at
once, (3) include unit tests in the evaluation and
(4) estimate quantitatively how an automated trans-
lation system can assist pair programmers.

Limitations

We experimented with a specific subset of legal
language, French tax law, and with a specific tar-
get language, Catala. While we report reasonably
good performance, this is not directly compara-
ble to prior work on semantic parsing of legal lan-
guage, due to a mismatch in evaluation data, input
language and domain, and target semantic repre-
sentation. Still, Catala is appropriate to model tax
law regardless of source language, and has been
used to model US and Polish tax law.

The metrics we report have been generally found
to correlate with human assessments of the quality
of the code. However, Catala code quality is held to
a particularly high standard, given the implications
of faulty code in an expert system deployed at a
large scale. We do not claim that code generated
by LLMs can be used as-is. In addition, we did
not include metadata generation, which would be
desirable for a practical application.

Finally, our experiments indicate a clear trend:
larger models generally achieve better performance
across all evaluation metrics. This suggests that
even larger-scale models could yield further im-
provements. However, due to hardware constraints,
we were unable to test models beyond a certain
size, limiting our exploration of this scaling effect.

39

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen,
Eric Price, Gustavo de Rosa, Olli Saarikivi, and
8 others. 2024. Phi-4 technical report. Preprint,
arXiv:2412.08905.

Layman E Allen and C Rudy Engholm. 1977. Normal-
ized legal drafting and the query method. J. Legal
Educ., 29:380.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, LAW-ID@ACL 2013, August 8-9, 2013,
Sofia, Bulgaria, pages 178—186. The Association for
Computer Linguistics.

Patrick Blackburn and Johan Bos. 2005. Representa-
tion and Inference for Natural Language - a First
Course in Computational Semantics. CSLI Studies
in Computational Linguistics. CSLI Publications.

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Anders Freeman, Carolyn Jane
Anderson, Molly Q. Feldman, Michael Greenberg,
Abhinav Jangda, and Arjun Guha. 2024. Knowledge
transfer from high-resource to low-resource program-
ming languages for code llms. Proc. ACM Program.
Lang., 8(OOPSLA2):677-708.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. CoRR, abs/2107.03374.

Michael Han Daniel Han and Unsloth team. 2023. Un-
sloth.

DeepSeek-Al, Qihao Zhu, Daya Guo, Zhihong Shao,
Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun
Li, Huazuo Gao, Shirong Ma, Wangding Zeng,
Xiao Bi, Zihui Gu, Hanwei Xu, Damai Dai, Kai
Dong, Liyue Zhang, Yishi Piao, and 21 others.
2024. Deepseek-coder-v2: Breaking the barrier of
closed-source models in code intelligence. Preprint,
arXiv:2406.11931.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

https://arxiv.org/abs/2412.08905
https://aclanthology.org/W13-2322/
https://aclanthology.org/W13-2322/
http://www.stanford.edu/group/cslipublications/cslipublications/site/1575864967.shtml
http://www.stanford.edu/group/cslipublications/cslipublications/site/1575864967.shtml
http://www.stanford.edu/group/cslipublications/cslipublications/site/1575864967.shtml
https://doi.org/10.1145/3689735
https://doi.org/10.1145/3689735
https://doi.org/10.1145/3689735
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2023. Out of the bleu: How
should we assess quality of the code generation mod-
els? Journal of Systems and Software, 203:111741.

Norbert E. Fuchs. 2021. The law of inertia and the
frame problem in attempto controlled English. In
Proceedings of the Seventh International Workshop
on Controlled Natural Language (CNL 2020/21),
Amsterdam, Netherlands. Special Interest Group on
Controlled Natural Language.

Wachara Fungwacharakorn and Ken Satoh. 2022. To-
ward a practical legal rule revision in legal debugging.
Comput. Law Secur. Rev., 46:105696.

Grazia Garzo and Alessandro Palumbo. 2025. Human-
in-the-Loop: Legal Knowledge Formalization in At-
tempto Controlled English. In ISDFS - 13th Interna-
tional Symposium on Digital Forensics and Security,
Boston, United States.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. 2021. Graph-
codebert: Pre-training code representations with data
flow. Preprint, arXiv:2009.08366.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, and 5 oth-
ers. 2024. Qwen?2.5-coder technical report. Preprint,
arXiv:2409.12186.

Liane Huttner and Denis Merigoux. 2022. Catala: mov-
ing towards the future of legal expert systems. Artifi-
cial intelligence and law, pages 1-24.

Hiroyuki Kaji. 1999. Controlled languages for machine
translation: state of the art. In Proceedings of Ma-
chine Translation Summit VII, MTSummit 1999, Sin-
gapore, September 13-17, 1999, pages 37-39.

Robert A. Kowalski and Akber Datoo. 2022. Logical
english meets legal english for swaps and derivatives.
Artif. Intell. Law, 30(2):163-197.

40

Sarah Lawsky. 2020. Form as formalization. Ohio St.
Tech. LJ, 16:114.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomas Kocisky, Fumin Wang,
and Andrew W. Senior. 2016. Latent predictor net-
works for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, and 38 others.
2024. Starcoder 2 and the stack v2: The next genera-
tion. CoRR, abs/2402.19173.

L Thorne McCarty. 1976. Reflections on taxman: An
experiment in artificial intelligence and legal reason-
ing. Harv. L. Rev., 90:837.

Denis Merigoux. 2023. Experience report: implement-
ing a real-world, medium-sized program derived
from a legislative specification. In Programming
Languages and the Law 2023 (affiliated with POPL).

Denis Merigoux, Nicolas Chataing, and Jonathan
Protzenko. 2021. Catala: a programming language
for the law. Proceedings of the ACM on Program-
ming Languages, S(ICFP):1-29.

Leora Morgenstern. 2014. Toward automated interna-
tional law compliance monitoring (tailcm). Technical
report, LEIDOS HOLDINGS INC RESTON VA.

Donald Nute. 1988. Defeasible reasoning and decision
support systems. Decis. Support Syst., 4(1):97-110.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311-318, USA.
Association for Computational Linguistics.

Debalina Ghosh Paul, Hong Zhu, and Ian Bayley. 2024.
Benchmarks and metrics for evaluations of code gen-
eration: A critical review. In IEEE International
Conference on Artificial Intelligence Testing, AlTest
2024, Shanghai, China, July 15-18, 2024, pages 87—
94. IEEE.

Marcos A. Pertierra, Sarah Lawsky, Erik Hemberg,
and Una-May O’Reilly. 2017. Towards formalizing
statute law as default logic through automatic seman-
tic parsing. In Proceedings of the Second Workshop
on Automated Semantic Analysis of Information in
Legal Texts co-located with the 16th International
Conference on Artificial Intelligence and Law (ICAIL
2017), London, UK, June 16, 2017, volume 2143 of
CEUR Workshop Proceedings. CEUR-WS.org.

https://doi.org/10.1016/j.jss.2023.111741
https://doi.org/10.1016/j.jss.2023.111741
https://doi.org/10.1016/j.jss.2023.111741
https://aclanthology.org/2021.cnl-1.7
https://aclanthology.org/2021.cnl-1.7
https://doi.org/10.1016/J.CLSR.2022.105696
https://doi.org/10.1016/J.CLSR.2022.105696
https://hal.science/hal-05021540
https://hal.science/hal-05021540
https://hal.science/hal-05021540
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2409.12186
https://aclanthology.org/1999.mtsummit-1.6
https://aclanthology.org/1999.mtsummit-1.6
https://doi.org/10.1007/S10506-021-09295-3
https://doi.org/10.1007/S10506-021-09295-3
https://doi.org/10.18653/V1/P16-1057
https://doi.org/10.18653/V1/P16-1057
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.1145/3473582
https://doi.org/10.1145/3473582
https://doi.org/10.1016/0167-9236(88)90100-5
https://doi.org/10.1016/0167-9236(88)90100-5
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/AITEST62860.2024.00019
https://doi.org/10.1109/AITEST62860.2024.00019
http://ceur-ws.org/Vol-2143/paper9.pdf
http://ceur-ws.org/Vol-2143/paper9.pdf
http://ceur-ws.org/Vol-2143/paper9.pdf

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

David Robert Pratten and Luke Mathieson. 2024. Rela-
tional expressions for data transformation and compu-
tation. In Databases Theory and Applications, pages
241-255, Cham. Springer Nature Switzerland.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. Preprint,
arXiv:2009.10297.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, and
6 others. 2023. Code llama: Open foundation models
for code. CoRR, abs/2308.12950.

Ken Satoh. 2023. PROLEG: practical legal reason-
ing system. In David Scott Warren, Verénica Dahl,
Thomas Eiter, Manuel V. Hermenegildo, Robert A.
Kowalski, and Francesca Rossi, editors, Prolog: The
Next 50 Years, volume 13900 of Lecture Notes in
Computer Science, pages 277-283. Springer.

Marek J. Sergot, Fariba Sadri, Robert A. Kowalski,
Frank Kriwaczek, Peter Hammond, and H Terese
Cory. 1986. The british nationality act as a logic pro-
gram. Communications of the ACM, 29(5):370-386.

Sergio Servantez, Nedim Lipka, Alexa Siu, Milan Ag-
garwal, Balaji Krishnamurthy, Aparna Garimella,
Kristian Hammond, and Rajiv Jain. 2023. Com-
putable contracts by extracting obligation logic
graphs. In Proceedings of the Nineteenth Interna-
tional Conference on Artificial Intelligence and Law,
ICAIL °23, page 267-276, New York, NY, USA. As-
sociation for Computing Machinery.

Richard Shin, Christopher H. Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and
Benjamin Van Durme. 2021. Constrained language
models yield few-shot semantic parsers. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 7699-7715. Association for
Computational Linguistics.

Vu Trong Sinh and Le Minh Nguyen. 2018. An em-
pirical evaluation of AMR parsing for legal docu-
ments. In New Frontiers in Artificial Intelligence -
JSAI-isAI 2018 Workshops, JURISIN, Al-Biz, SKL,
LENLS, IDAA, Yokohama, Japan, November 12-14,
2018, Revised Selected Papers, volume 11717 of
Lecture Notes in Computer Science, pages 131-145.
Springer.

41

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to BM25 and language mod-
els examined. In Proceedings of the 2014 Aus-
tralasian Document Computing Symposium, ADCS
2014, Melbourne, VIC, Australia, November 27-28,
2014, page 58. ACM.

Aaron Steven White, Elias Stengel-Eskin, Siddharth
Vashishtha, Venkata Subrahmanyan Govindarajan,
Dee Ann Reisinger, Tim Vieira, Keisuke Sakaguchi,
Sheng Zhang, Francis Ferraro, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2020. The
universal decompositional semantics dataset and de-
comp toolkit. In Proceedings of The 12th Language
Resources and Evaluation Conference, LREC 2020,
Marseille, France, May 11-16, 2020, pages 5698—
5707. European Language Resources Association.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Ji-
axi Yang, Jingren Zhou, Junyang Lin, Kai Dang, and
22 others. 2024. Qwen2.5 technical report. CoRR,
abs/2412.15115.

Zezhou Yang, Sirong Chen, Cuiyun Gao, Zhenhao Li,
Xing Hu, Kui Liu, and Xin Xia. 2025. An empirical
study of retrieval-augmented code generation: Chal-
lenges and opportunities. ACM Trans. Softw. Eng.
Methodol. Just Accepted.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,
pages 476-486. ACM.

Kaizhong Zhang and Dennis Shasha. 1989. Simple
fast algorithms for the editing distance between trees
and related problems. SIAM Journal on Computing,
18(6):1245-1262.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

May Myo Zin, Ha-Thanh Nguyen, Ken Satoh, Saku
Sugawara, and Fumihito Nishino. 2023. Improv-
ing translation of case descriptions into logical fact
formulas using legalcasener. In Proceedings of the
Nineteenth International Conference on Artificial In-
telligence and Law, ICAIL 2023, Braga, Portugal,
June 19-23, 2023, pages 462—466. ACM.

May Myo Zin, Ken Satoh, and Georg Borges. 2024.
Leveraging LLM for identification and extraction of
normative statements. In Legal Knowledge and Infor-
mation Systems - JURIX 2024: The Thirty-seventh
Annual Conference, Brno, Czech Republic, 11-13 De-
cember 2024, volume 395 of Frontiers in Artificial
Intelligence and Applications, pages 215-225. 10S
Press.

https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.1007/978-3-031-35254-6_23
https://doi.org/10.1007/978-3-031-35254-6_23
https://doi.org/10.1145/3594536.3595162
https://doi.org/10.1145/3594536.3595162
https://doi.org/10.1145/3594536.3595162
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.608
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.608
https://doi.org/10.1007/978-3-030-31605-1_11
https://doi.org/10.1007/978-3-030-31605-1_11
https://doi.org/10.1007/978-3-030-31605-1_11
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
https://aclanthology.org/2020.lrec-1.699/
https://aclanthology.org/2020.lrec-1.699/
https://aclanthology.org/2020.lrec-1.699/
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.1145/3717061
https://doi.org/10.1145/3717061
https://doi.org/10.1145/3717061
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://doi.org/10.1145/3594536.3595141
https://doi.org/10.1145/3594536.3595141
https://doi.org/10.1145/3594536.3595141
https://doi.org/10.3233/FAIA241247
https://doi.org/10.3233/FAIA241247

Mounira Nihad Zitouni, Amal Ahmed Anda, Sahil Raj-
pal, Daniel Amyot, and John Mylopoulos. 2024. To-
wards the llm-based generation of formal specifica-
tions from natural-language contracts: Early experi-
ments with symboleo. CoRR, abs/2411.15898.

A Dataset sample

{
"input”: "4 From January 1st, 2022 onwards,
for the application of paragraph 5 of
article D. 823-17 (...) not that of the HB

”n
L)

"metadata”: "declaration scope
CalculationPersonalizedHousingBenefit:
input main_rent content money (...)--
Mayotte”,

"output”: "scope
CalculationPersonalizedHousingBenefit
under condition current_date >=
|2023-01-01| and current_date <
|2023-10-01|: exception mainland (...) 8
181 EUR",

"generated_output”: "scope
CalculationPersonalizedHousingBenefit
under condition current_date >=
|2023-01-01| and current_date <=
|2023-12-31|: exception mainland (...) 8
181 EUR"

Figure 5: Extracts of one sample from our dataset, with
its input, metadata and reference output. We also show
an output generated by Qwen2.5-Coder-32B-Instruct.
This is the translation into English of Figure 1.

B Catala Keywords for CodeBLEU

The following is the list of Catala-specific
French keywords used in our tokenizer. We
used keywords from the Catala tree-sitter gram-
mar: champ d’application, conséquence,
donnée, dépend de, déclaration, contexte,
décroissant, croissant, de, liste,
contient, énumération, entier, argent,
texte, décimal, date, durée, booléen,
somme, rempli, définition, état,
étiquette, exception, égal a, selon,
n’importe quel, sous forme, sous
condition, si, alors, sinon, condition,
contenu, structure, assertion, varie,
avec, pour, tout, on a, fixé, par, regle,
soit, existe, dans, parmi, tel, que,
et, ou, ou bien, non, maximum, minimum,
combinaison de, initialement, est,
vide, mais en remplacant, nombre, an,

42

mois, jour, vrai, faux, entrée, résultat,
interne, arrondi, accés_jour, accés_mois,
accés_année, premier_jour_du_mois,
dernier_jour_du_mois, Inclusion, Module,
Usage de, en tant que, externe

C Prompt

Tables 4 and 5 show the prompts used throughout
the experiments.

System You are an Al assistant helping a
user translate a law into code using
the Catala programming language.
You are provided with a law para-
graph and metadata, including use-
ful user-defined constructs. Your
task is to generate the code in the

Catala programming language.
HHHINPUTHH

{input_text}
H#H#HHMETADATA###
{metadata}

User

Assistant ‘ {output_text}

Table 4: Structured prompt used to fine-tune LLMs.

D Abstract Syntax Tree

In the case illustrated in Figure 6, the two ASTs
contain 16 and 26 nodes. The raw TED value is
equal to 10 (the number of white nodes in the Fig-
ure), and after normalization, the final T'E' D,, score
is 45.5%.

While generating the AST, the Tree-Sitter parser
introduces specific error-labeled nodes when en-
countering syntactic anomalies in the input code.
We check for the presence of these error nodes. If
such nodes exist, the generated code is marked as
syntactically invalid. The ERROR node in the right
tree indicates invalid syntax.

https://doi.org/10.48550/ARXIV.2411.15898
https://doi.org/10.48550/ARXIV.2411.15898
https://doi.org/10.48550/ARXIV.2411.15898
https://doi.org/10.48550/ARXIV.2411.15898
https://github.com/CatalaLang/tree-sitter-catala/blob/master/grammar.js
https://github.com/CatalaLang/tree-sitter-catala/blob/master/grammar.js

BEGIN_CODE

END_CODE

[[score |7 [[scope_name |

[unoer conomon | [expresson

[orearer_£aua | []

DATE_LITERAL

BEGIN_CODE

‘code_block

END_CODE

error |

EXCEPTION

[come | [oremencon | | wm] [Tz]

[|

=2

|

variable

‘ DATE_LITERAL ‘

‘ DATE_LITERALZ ‘

variable2 ‘

Figure 6: Comparison of ASTs from Figure 3 (left) and Figure 4 (right). Green nodes are shared by both ASTs,
while white nodes appear only in the right-hand tree. The labels of the nodes correspond to the elements defined in
the grammar, such as keywords and symbols.

Developer

You are an Al assistant help-
ing a user translate a law into
code using the Catala program-
ming language. You are provided
with a law paragraph (tagged with
###INPUT###) and some few-shot
examples (tagged with ###FEW-
SHOTS### and in json format).
Your task is to generate the cor-
respoding code for the input in
the Catala programming language.
You are authorized to use the meta-
data the user will provide you
(tagged with ##METADATA###).
Just give me the output code.

User

HHHINPUTHH#

{query}

##HFEW SHOT S###
{fewshots }
HHHMETADATA###
{metadata}

E Hyperparameters

Table 6 lists LoRA hyperparameters used to fine-

tune the models.

Model Rank Alpha Dropout
Llama-3.1-8B 64 64 0.2
Llama-3.2-3B 128 128 0.2
Llama-3.3-70B 8 16 0.0
phi-4 64 64 0.4
Qwen2.5-7B 64 64 0.6
Qwen2.5-14B 64 64 0.3
Qwen2.5-32B 64 64 0.0
Qwen2.5-Coder-7B 64 64 0.4
Qwen2.5-Coder-14B 64 64 0.1
Qwen2.5-Coder-32B 128 128 0.2
DeepSeek-Coder-V2 64 64 0.0

Table 6: LoRA hyperparameters used during fine-tuning

for each model

F Samples

All the generated outputs below are generated by
the best model according to our metrics: Qwen2.5-

Coder-32B-Instruct.

F.1 Sample A

Table 5: Prompt used with GPT-4.1 in few-shot learning.

champ d'application Smic :

definition brut_horaire sous condition

date_courante >= [2023-01-01]| et
date_courante < |2023-05-01| et (

(residence = Metropole) ou
(residence = Guadeloupe) ou
(residence = Guyane) ou
(residence = Martinique) ou
(residence = LaReunion) ou
(residence = SaintBarthelemy) ou
(residence = SaintMartin) ou
(residence = SaintPierreEtMiquelon)
)

consequence egal a 11.27 EUR

scope Smic:

definition gross_hourly_wage under condition
current_date >= |2023-01-01| and
current_date < |2023-05-01| and (

(residence = Metropole) or
(residence = Guadeloupe) or
(residence = Guyane) or

(residence = Martinique) or
(residence = LaReunion) or
(residence = SaintBarthelemy) or
(residence = SaintMartin) or
(residence = SaintPierreEtMiquelon)

)

consequence equals 11.27 EUR

Listing 1: Reference Output for sample A and
translation into English. SMIC is a minimum wage
in France.

champ d'application Smic :

definition brut_horaire sous condition
date_courante >= [2023-01-01| et
date_courante <= |2023-04-30| et (

(residence = Metropole) ou
(residence = Guadeloupe) ou
(residence = Guyane) ou

(residence = Martinique) ou
(residence = LaReunion) ou
(residence = SaintBarthelemy) ou
(residence = SaintMartin) ou
(residence = SaintPierreEtMiquelon)

)

consequence egal a 11.27 EUR

scope Smic :

definition gross_hourly_wage under condition
current_date >= |2023-01-01| and
current_date <= |2023-04-30| and (

(residence = Metropole) or
(residence = Guadeloupe) or
(residence = Guyane) or

(residence = Martinique) or
(residence = LaReunion) or
(residence = SaintBarthelemy) or
(residence = SaintMartin) or
(residence = SaintPierreEtMiquelon)

)

consequence equals 11.27 EUR

Listing 2: Generated Output for sample A and
translation into English. SMIC is a minimum wage
in France.

Metric Score
CodeBLEU 91.9
N-gram Match Score 93.3
Weighted N-gram Match Score ~ 93.3
Syntax Match Score 89.0
BERTScore F1 99.2
CHREF Score 974
TED Score 0.7
Validity True

Table 7: Evaluation scores (in %) for Sample A

Metric Score
CodeBLEU 71.9
N-gram Match Score 75.6
Weighted N-gram Match Score ~ 73.4
Syntax Match Score 66.7
BERTScore F1 95.1
CHREF Score 92.3
TED Score 22
Validity True

Table 8: Evaluation scores (in %) for Sample B

F.2 Sample B

A Mayotte, son montant est fixe a 8,70 euros
1'heure.

In Mayotte, the amount is set to 8.70 euros per
hour.

Listing 3: Input for Sample B and translation into
English.

champ d'application Smic :

definition brut_horaire sous condition
date_courante >= |2023-05-01| et
date_courante < |2024-01-01| et (
(residence = Mayotte)

)

consequence egal a 8,70 EUR

scope Smic :

definition gross_hourly_wage under condition
current_date >= |2023-05-01| and
current_date < [|2024-01-01| and (
(residence = Mayotte)

)

consequence equals 8.70 EUR

Listing 4: Reference Output for Sample B and
translation into English. SMIC is a minimum wage
in France.

champ d'application Smic :

definition brut_horaire sous condition
date_courante >= [2023-01-01]| et
date_courante <= [2023-04-30| et (
(residence = Mayotte)

)

consequence egal a 8,70 EUR

scope Smic :

definition gross_hourly_wage under condition
current_date >= |2023-01-01]| and
current_date <= |2023-04-30| and (
(residence = Mayotte)

)

consequence equals 8.70 EUR

44

Listing 5: Generated Output for Sample B and
translation into English. SMIC is a minimum wage
in France.

F.3 Sample C

NOTA :

Conformement a 1'article 3 de 1l'arrete du 16
aout 2022 (TREL2220744A), ces dispositions sont
applicables pour les prestations dues a compter
du ler juillet 2022.

Article 15 | LEGIARTIQ00046126962 [archive]

Pour 1'application du 5 degre de l'article
D. 823-17 du meme code, le forfait " RO " est
fixe selon le tableau suivant (en euros) :

Composition du foyer MONTANT (en euros)
Personne seule sans personne a charge 4 870
Couple sans personne a charge 6 977
Personne seule ou couple ayant :

-une personne a charge 8 322

-deux personnes a charge 8 509

-trois personnes a charge 8 834

-quatre personnes a charge 9 163

-cing personnes a charge 9 488

-six personnes a charge 9 816

-par personne a charge supplementaire 323

NOTE :

In accordance with Article 3 of the Decree of 16
August 2022 (TREL2220744A), these provisions
apply to services due as from July 1st, 2022.

Article 15 | LEGIARTIQ00046126962 [archive]

For the application of the fifth paragraph of
Article D. 823-17 of the same Code, the " RQ "
lump sum is set according to the following table
(in euros):

Household composition AMOUNT (in euros)
Single person without dependants 4,870
Couple without dependants 6,977

Single person or couple with:

- one dependant 8,322

- two dependants 8,509

- three dependants 8,834

- four dependants 9,163

- five dependants 9,488

- six dependants 9,816

- per additional dependant 323

Listing 6: Input for Sample C and translation into
English.

champ d'application
CalculAidePersonnaliseelogementLocatif

sous condition date_courante >= |2022-07-01| et
date_courante <= |2022-12-31]:

etiquette metropole
definition multiplicateur_majoration_r@ egal a
decimal de (nombre_personnes_a_charge - 6)

etiquette metropole

definition abattement_forfaitaire_d823_17 egal a
si nombre_personnes_a_charge = @ alors

selon situation_familiale_calcul_apl sous forme
-- PersonneSeule: 4 870 EUR

-- Couple: 6 977 EUR

sinon si nombre_personnes_a_charge

8 322 EUR

sinon si nombre_personnes_a_charge

8 509 EUR

sinon si nombre_personnes_a_charge

8 834 EUR

sinon si nombre_personnes_a_charge

9 163 EUR

sinon si nombre_personnes_a_charge

9 488 EUR

sinon si nombre_personnes_a_charge

9 816 EUR

sinon

9 816 EUR + 323 EUR *
multiplicateur_majoration_r@

alors
alors
alors
alors
alors

alors

scope PersonalizedHousingBenefitsCalculation
under condition current_date >= |2022-07-01|
current_date <= |2022-12-31]:

and

label mainland
definition uplift_multiplier_r@ equals
decimal of (number_dependents - 6)

label mainland

definition standard_deduction_d823_17 equals
if number_dependents = @ then

match marital_status_phb_calculation

with pattern

-- SinglePerson: 4,870 EUR

-- Couple: 6,977 EUR

else if number_dependents = 1 then 8,322 EUR
else if number_dependents = 2 then 8,509 EUR
else if number_dependents = 3 then 8,834 EUR
else if number_dependents = 4 then 9,163 EUR
else if number_dependents = 5 then 9,488 EUR
else if number_dependents = 6 then 9,816 EUR
else 9,816 EUR + 323 EUR * uplift_multiplier_ro

Listing 7: Reference Output for Sample C and
translation into English.

45

champ d'application
CalculAidePersonnaliseelogementLocatif

sous condition date_courante >= |2022-07-01| et
date_courante < |2023-10-01]:

etiquette metropole definition
multiplicateur_majoration_r@ egal a

decimal de (nombre_personnes_a_charge - 6)

etiquette metropole definition
abattement_forfaitaire_d823_17 egal a

si nombre_personnes_a_charge = @ alors

(selon situation_familiale_calcul_apl sous forme
-- PersonneSeule: 4 870 EUR

-- Couple: 6 977 EUR)

sinon si nombre_personnes_a_charge = 1 alors
8 322 EUR

sinon si nombre_personnes_a_charge = 2 alors
8 509 EUR

sinon si nombre_personnes_a_charge = 3 alors
8 834 EUR

sinon si nombre_personnes_a_charge = 4 alors
9 163 EUR

sinon si nombre_personnes_a_charge = 5 alors
9 488 EUR

sinon si nombre_personnes_a_charge = 6 alors
9 816 EUR

sinon

9 816 EUR + 323 EUR *
multiplicateur_majoration_ro

scope PersonalizedHousingBenefitsCalculation
under condition current_date >= |2022-07-01| and
current_date < |2023-10-01]:

label mainland definition

uplift_multiplier_r@ equals

decimal of (number_dependents - 6)

label mainland definition
standard_deduction_d823_17 equals

if number_dependents = @ then

(match marital_status_phb_calculatio
with pattern

-- SinglePerson: 4,870 EUR

-- Couple: 6,977 EUR)

else if number_dependents = 1 then 8,322 EUR
else if number_dependents = 2 then 8,509 EUR
else if number_dependents = 3 then 8,834 EUR
else if number_dependents = 4 then 9,163 EUR
else if number_dependents = 5 then 9,488 EUR
else if number_dependents = 6 then 9,816 EUR
else 9,816 EUR + 323 EUR % uplift_multiplier_ro@
Listing 8: Generated Output for Sample C and

translation into English.

Metric Score
CodeBLEU 95.0
N-gram Match Score 93.6
Weighted N-gram Match Score ~ 94.5
Syntax Match Score 91.8
BERTScore F1 98.0
CHREF Score 98.5
TED Score 0.6
Validity True

Table 9: Evaluation scores (in %) for Sample C

F.4 Sample D

#i#HHHH# Article L822-4 | LEGIARTIQ00049392199

Les aides personnelles au logement ne sont pas
dues si le local est loue ou sous-loue en partie
a des tiers, sauf s'il s'agit d'une personne
agee ou handicapee adulte qui a passe un contrat
conforme aux dispositions de 1' article L. 442-1
du code de 1l'action sociale et des familles ou
d'une personne de moins de trente ans.

#iH#H#H## Article L822-4 | LEGIARTIQ00049392199

Personal housing assistance is not payable if
the dwelling is rented or sublet in part to
third parties, except in the case of an elderly
or disabled adult who has entered into a
contract in accordance with the provisions of
Article L. 442-1 of the Code of Social Action
and Families, or a person under thirty years of
age.

Listing 9: Input for Sample D and translation into
English.

champ d'application
EligibiliteAidesPersonnellelLogement:

etiquette cas_base_1822_4 regle
condition_logement_location_tiers sous condition
menage. logement.loue_ou_sous_loue_a_des_tiers
sous forme LoueOuSousLoueADesTiers.Non
consequence non rempli

exception cas_base_1822_4 regle
condition_logement_location_tiers sous condition
selon

menage.logement. loue_ou_sous_loue_a_des_tiers
sous forme

—-- LoueOuSousLoueADesTiers.Non: vrai

-- LoueOuSousLoueADesTiers.Oui de personne:
(resultat de France.VerificationAgeSuperieurA
avec { -- date_naissance:
personne.date_naissance_personne_sous_location
-- date_courante: date_courante

-- annees: 30 an }).est_superieur

ou personne.conforme_article_1442_1
consequence rempli

scope PersonalizedHousingBenefitsEligibility:

label base_case_1822_4 rule

condition_third_party_rental under condition

household.dwelling.
rented_or_sublet_to_third_party

with pattern

RentedOrSubletToThirdParty.No

consequence not fulfilled

exception base_case_1822_4 rule

condition_third_party_rental under condition

match

household.dwelling.
rented_or_sublet_to_third_party

with pattern

-- RentedOrSubletToThirdParty.No: true

-- RentedOrSubletToThirdParty.Yes of person:

(output of France.VerificationAgeGreaterThan

with

{ -- birth_date:

person.birth_date_person_renting

-- current_date: current_date

-- years: 30 year }).is_greater

or person.pursuant_to_article_1442_1

consequence fulfilled

Listing 10: Reference Output for Sample D and
translation into English.

46

champ d'application
EligibiliteAidesPersonnellelogement:

regle condition_non_ouverture_1822_4

sous condition selon
menage.logement.loue_ou_sous_loue_a_des_tiers
sous forme

-- Qui de personne_sous_location:
date_courante >= |2023-04-05| et
((personne_sous_location.

date_naissance_personne_sous_location +
personne_sous_location.
conformement_article_1442_1 * 1 an <=
date_courante)

ou

(personne_sous_location.
date_naissance_personne_sous_location +

personne_sous_location.

conformement_article_1442_1 * 30 an <=
date_courante)

-- Non: faux

consequence rempli

scope PersonalizedHousingBenefitsEligibility:

rule condition_non_opening_1822_4

under condition

match

household.dwelling.
rented_or_sublet_to_third_party

with pattern

-- Yes of person_renting:

current_date >= |2023-04-05| and

((person_renting.birth_date_person_renting +
person_renting.pursuant_to_article_1442_1 x
1 year <= current_date)

or

(person_renting.birth_date_person_renting +
person_renting.pursuant_to_article_1442_1 x
30 year <= current_date)

-- No: false

consequence fulfilled

Listing 11: Generated Output for Sample D and
translation into English.

Metric Score
CodeBLEU 28.6
N-gram Match Score 15.6
Weighted N-gram Match Score 11.6
Syntax Match Score 37.0
BERTScore F1 66.8
CHREF Score 50.8
TED Score 80.8
Validity False

Table 10: Evaluation scores (in %) for Sample D

47

