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Abstract

Prompt optimization aims to systematically re-
fine prompts to enhance a language model’s
performance on specific tasks. Fairness de-
tection in Terms of Service (ToS) clauses is a
challenging legal NLP task that demands care-
fully crafted prompts to ensure reliable results.
However, existing prompt optimization meth-
ods are often computationally expensive due to
inefficient search strategies and costly prompt
candidate scoring. In this paper, we propose
a framework that combines Monte Carlo Tree
Search (MCTS) with a proxy prompt evaluator
to more effectively explore the prompt space
while reducing evaluation costs. Experiments
demonstrate that our approach achieves higher
classification accuracy and efficiency than base-
line methods under a constrained computation
budget.

1 Introduction

Terms of Service (ToS) agreements are lengthy,
complex documents that define the legal relation-
ship between companies and consumers. While
these documents are critical for protecting con-
sumer rights and regulating corporate practices,
clauses in ToS agreements are often written in
highly complex language, making them difficult for
the users to understand. As a result, unfair or poten-
tially exploitative ToS clauses, may go unnoticed.
Detecting such unfair clauses is therefore essential
for promoting transparency, consumer protection,
and regulatory compliance.

Manual review of such documents is however ex-
tremely time-consuming and requires legal knowl-
edge. Large language models (LLMs) therefore
offer a promising alternative by automatically clas-
sifying unfair ToS clauses at scale. Nevertheless,
the performance of LLMs is highly sensitive to the
prompt design. Prior work has shown that even
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minor variation in prompt wording and formatting
can substantially affect accuracy and consistency
(Salinas and Morstatter, 2024; He et al., 2024).

Recently, there is growing research interest in
prompt optimization, which is the process of sys-
tematically refining prompts to improve a language
model’s performance on a specific task (Prasad
et al., 2023; Pryzant et al., 2023; Yang et al., 2024;
Ma et al., 2024; Choi et al., 2025; Xiang et al.,
2025). Prompt optimization is typically framed
as an iterative search process that involves mod-
ules such as generating revised candidate prompts,
evaluating prompt performance, and searching for
the best-performing candidates to guide subsequent
refinements.

Despite recent advances, most optimization
methods still struggle with inefficient exploration
of candidate prompts space. For example, beam
search, a widely used search strategy in prior work
(Pryzant et al., 2023), often produces repetitive
and untargeted edits, relying on costly determin-
istic forward-only search. In this work, we adopt
Monte Carlo Tree Search (MCTS) (Coulom, 2006),
inspired by PromptAgent (Wang et al., 2023) to
improve the exploration efficiency of the candidate
prompts space. MCTS strategically models the
search space as a tree and updates future reward
estimates through backpropagation.

Another major bottleneck in current prompt op-
timization methods is the high computational cost
of evaluating candidate prompts. Each evaluation
typically requires costly inference on LLLMs and
is repeated across a large pool of candidates. To
reduce computation, most methods assess prompt
performance using a small score set, a subset sam-
pled from the full validation set. While this ap-
proach is faster and cheaper, the small size of the
subset can cause performance estimates to fluctuate
depending on which samples are included. More-
over, prompts optimized on a small score set may
fail to generalize well to the full dataset.
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To mitigate this, we augment our framework
with a proxy prompt evaluator based on a correct-
ness classifier, inspired by PromptEval (Polo et al.,
2024). This proxy scorer efficiently evaluates the
performance of prompt candidates by predicting
their correctness on the target task, reducing the
need for repeatedly calling costly LLM and there-
fore enabling evaluation of the prompts across the
full validation set.

Our prompt optimization framework enables
efficient exploration of the prompt search space
and streamlines evaluation. Our results show that
the MCTS approach discovers better-performing
prompts than existing optimization frameworks
and, when combined with a proxy prompt evaluator,
achieves similar binary classification performance
with reduced computational cost.

2 Related Work
2.1 Unfair ToS Clause Detection

The detection of unfair clauses in ToS documents
has been an active line of research in legal natural
language processing. A prominent benchmark in
this area is the CLAUDETTE dataset, which con-
tains annotated clauses from consumer contracts
labeled as fair or unfair. Lippi et al. (2019) first
introduced this dataset and developed methods for
unfairness detection using machine learning tech-
niques to support consumer protection. Subsequent
work by Ruggeri et al. (2022) extended this line of
research, refining both the dataset and the detection
methods to improve robustness and applicability
using memory-augmented neural networks. Nev-
ertheless, later work on adversarial attacks have
exposed a significant weakness: these classifica-
tion systems are highly sensitive to perturbations in
input phrasing (Xu et al., 2022), questioning their
practical reliability. These findings highlighted the
sensitivity of legal text classification models and
motivated further research into methods for improv-
ing robustness.

2.2 Prompt Optimization

The general process of prompt optimization can
be split into the following key modules: prompt
update, search strategy and prompt evaluation.

2.2.1 Prompt Update

The prompt updating methods used in prior work
primarily fall into three categories: resampling-
based, explicit reflection-based, and implicit
reflection-based (Ma et al., 2024).

Resampling-based approaches apply random
edit operations (e.g. deletion, swap, paraphrase,
addition) to the base prompt without directional
feedback. For example, GrIPS (Prasad et al., 2023)
repeatedly generates candidate prompts via such
edits, evaluates them on a held-out set, and selects
the best-performing one. However, the lack of
guidance often leads to ineffective edits and poor
performance.

Implicit reflection-based approaches, such as
OPRO (Yang et al., 2024), generate new prompts
based on the history of candidate prompts and their
performance scores. However, these methods do
not require the prompt optimizer to explicitly re-
flect on the errors of previous prompts. While this
approach is more guided than simple resampling
strategies, it still lacks direct feedback mechanisms
that consider the nature of past mistakes.

Explicit reflection-based approaches incorpo-
rate natural language feedback as textual gradients
to guide edits. ProTeGi (Pryzant et al., 2023) ex-
emplifies this idea by using an LLM to identify
weaknesses in a prompt and propose semantic edits
in the opposite direction. While more effective,
recent work indicates that such methods produce
repetitive feedback and often struggle to align im-
provements in prompt text with downstream model
behavior (Ma et al., 2024).

2.2.2 Search Strategy

The search strategy decides which prompt candi-
dates are selected, filtered and further expanded.
Common strategies include the following:

Greedy search is the simplest approach, where
only the highest-scoring prompt from the current
iteration is selected for expansion in the next step,
for example used by OPRO (Yang et al., 2024).
While computationally efficient, it risks premature
convergence because potentially better prompts in
the search space are not reached.

Beam search maintains a beam, consisting of
top-performing prompts at each iteration, expand-
ing all of them in parallel, such as ProTeGi (Pryzant
et al., 2023) and GrIPS (Prasad et al., 2023). This
allows it to explore multiple promising paths simul-
taneously, reducing the chance of missing promis-
ing prompts. However, the beam width is an im-
portant parameter, as a narrow beam can still miss
high-performing prompts, while a wide beam in-
creases computational cost.
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Figure 1: Our framework with scoring on the score set or alternative scoring with the trained PromptEval-based

correctness classifier.

Tree-based search strategies, such as Monte
Carlo Tree Search (MCTS) (Wang et al., 2023),
explicitly represent the space of prompt candidates
as a tree. The prior approaches often use a deter-
ministic forward-only search strategy for choosing
the next prompt candidate, which limits their ability
to revisit and select the most promising prompts in
the search space. In contrast, MCTS is a search al-
gorithm that balances exploration and exploitation
and revisits earlier prompts. This allows MCTS
to identify better prompts on alternative tree paths
and potentially outperform the current prompt can-
didate.

2.2.3 Prompt Evaluation

A major source of cost in prompt optimization
arises from repeatedly querying an LLM on a
evaluation set at every optimization step to assess
prompt performance. The challenge of high com-
putation cost due to repeatedly calling the LLM is
not unique to prompt optimization. Recently an
increasing amount of research has been done on
predicting performance without running the full
inference (Beyer et al., 2025; Berrada et al., 2025;
Zhong et al., 2025).

PromptEval (Polo et al., 2024) addresses this is-
sue by introducing a lightweight model to predict
the performance of a given prompt on a specific
task. In this work, we train a prompt performance
prediction model and use it as a proxy prompt eval-
uation module, which enables fast and efficient
prompt performance evaluations without requiring
costly LLM inference on the whole evaluation set.

3 Dataset

We conduct our prompt optimization experiments
on the CLAUDETTE dataset (Lippi et al., 2019),
which contains 20,417 clauses extracted from 50

Document Clause Label

Grammarly if the value of the relief sought is
$75,000 or less, at your request,
grammarly will pay all arbitration
fees.

fair/0

Yelp your purchase and use of products
or services offered by third parties
through the site is at your own

discretion and risk.

fair/0

TikTok you may cancel your account at unfair/1
any time, and bytedance may
terminate your account in

accordance with the terms.

Microsoft by downloading or using the
application, or attempting to do
any of these, you accept these

terms.

unfair/1

Figure 2: Examples from the CLAUDETTE dataset.

ToS contracts of global online platforms. Each
clause was manually labeled by legal experts as
fair or unfair.” A clause is labeled unfair if it
somehow introduces an unacceptable imbalance
in the parties’ rights and obligations, i.e., harms
the user’s rights or minimizes the online service’s
obligations. In addition, each unfair clause is anno-
tated with one or more of nine unfairness categories
(e.g., arbitration, content removal, jurisdiction) de-
pending on the source of the unfairness. Figure 2
exhibits example ToS clauses for CLAUDETTE.
Notably, the label ratio in CLAUDETTE is ex-
tremely imbalanced, with a distribution of roughly
9:1 (fair:unfair), as displayed in Table 1.

“In the original CLAUDETTE dataset from Lippi et al.
2019, the ToS clauses are annotated in three labels: 1 standing
for clearly fair, 2 for potentially unfair, and 3 for clearly
unfair. In our work, we merged the label of potentially unfair
and clearly unfair to unfair.
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Split  # of clauses % fair % unfair Current Prompt p;

Train 8,354 89.5% 10.5% [Is this clause fair (0) or unfair (1) to the consumer? ]
Val 8,279 89.1% 10.9% LLM with Meta-Prompt Q

Test 3,784 89.3% 10.7% Context: {c} A clause is unfair if: it is stipulating that ...

Table 1: CLAUDETTE statistics.

4 Methodology

We investigate the performance of our prompt op-
timization framework for the task of unfair ToS
clause detection. We begin with a simple initial
prompt "Is this clause fair (0) or unfair (1) to the
consumer?". The key modules of our prompt opti-
mization process is illustrated in Figure 1. Specifi-
cally, we update the prompt and generate various
prompt candidates using fextual gradients (Pryzant
et al., 2023) (§4.1). To efficiently search among
candidate prompts, we employ Monte Carlo Tree
Search (MCTYS) following Wang et al. 2023 (§4.2).
A major bottleneck of this approach is the high
computational cost when evaluating among candi-
date prompts. To mitigate this, we propose train-
ing an external prompt grader model (PromptEval
(Polo et al., 2024)) as a proxy selection module

(§4.3).

4.1 Prompt Update with Textual Gradient

We updated the prompts using textual gradients
(Pryzant et al., 2023). The term "textual gradient"
refers to a natural language-based feedback mech-
anism that require an LLM as prompt optimizer,
to critique the current prompt’s performance and
suggests improvements. This feedback meachnism
is analogous to how numerical gradients guide op-
timization in machine learning.

At each iteration ¢, we queried Llama-3-8B-
Instruct (Al@Meta, 2024) through DeeplInfra’s API
(version dated 2024-04-18) to evaluate the current
prompt p; on a minibatch mf of dataset samples
(hereafter referred to as the gradient set) using the
meta-prompt €2 (shown in Figure 3). This meta-
prompt included a description of different types of
unfair clauses mentioned in Lippi et al. (2019). To
ensure structured outputs, it explicitly requested
numerical responses, making the results easier to
parse. The false predictions on the gradient set
(hereafter referred to as error examples ef) were
then passed to another meta-prompt V, which pro-
duced a natural language summary of the weak-
nesses in p; along with improvement suggestions.
This feedback served as the fextual gradient gf.

Task: The following is a clause of a ToS document: {s}.
Classify the given clause with the following prompt: {p;}.
Answer with only the class label number: fair (0) or unfair (1).

v

Error Examples eX; on Gradient Set

= )
[—[_{Sample s: any use or access by ... Pred: unfair True: fair]

LLM with Meta-Prompt V

Context: {c} The current prompt is the following: {p;} This
prompt has been evaluated on a subset of data and failed to
predict the correct class on some clauses. The following are
some examples where the prompt failed to classify the clause
correctly. Each error example has the clause to be classified,
the prediction and the ground truth. Error examples: {ek;}
Task: Shortly summarize the errors in a few sentences and
suggest improvements to the prompt. Do not deviate from the
original classification task: fair (0) or unfair (1).

Textual Gradient g¥;

[The current prompt lacks from ... ]

LLM with Meta-Prompt é

Context: {c} The current prompt is the following: {p;} This
prompt has been evaluated on a subset of data and failed to
predict the correct class on some clauses. The following is an
error feedback including a summarization of those false
classifications and a suggestion of how to improve the
current prompt. {g;}

Task: Given the error feedback, give me a better prompt by
applying the improvement suggestions to the current prompt.
Answer with the improved prompt only and do not deviate
from the original classification task: fair (0) or unfair (1).

New Prompt pX;,;
[Is this clause likely to grant rights, benefits, ... ]

Figure 3: Prompt update with textual gradients. The
global context ¢ is "You are a prompt optimizer for legal
documents. The task is to classify clauses of Terms of
Service documents according to the given prompt.”.

We then applied the meta-prompt ¢ (detailed in
Figure 3), combining the current prompt p; and
the textual gradient gf to instruct the model to per-
form semantic edits that address the identified flaws.
This process yielded a set of improved prompt can-
didates p¥ ', 1, where k denotes the number of candi-
dates generated at each iteration (we used 4 candi-
dates per iteration).

For the gradient set, we randomly sampled 20
clauses from the training set, resampling at each
iteration to ensure diverse feedback. The label
distribution of fair and unfair was maintained at
55:45, with the unfair subset including 5% from
each of the nine multi-label unfairness categories.
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4.2 Prompt Search with MCTS

We followed the implementation of MCTS de-
scribed in Wang et al. (2023). MCTS is a search
algorithm that explores candidate prompts by build-
ing a search tree. Each node in the tree represents
a prompt with values such as visit counts and esti-
mated performance. The process consists of four
steps: selection (choosing a promising node), ex-
pansion (adding new nodes), simulation (running
rollouts to estimate outcomes), and backpropaga-
tion (updating node values). By repeating this loop,
MCTS balances exploring new possibilities with
exploiting known effective prompts.

For expansion and simulation, we used the
prompt update method with textual gradients and
the same meta-prompts to generate new prompts
(§4.1). Future performance of a prompt was esti-
mated with a Q-value, similar to a Markov Decision
Process. For Q-value estimation, we evaluated and
scored each node’s prompt on a separate fixed batch
of 200 random training samples (hereafter the score
set), which was drawn to match the distribution of
the gradient set. The LLM was queried with the
same meta-prompt € for scoring (see Figure 3).

MCTS was run for 12 iterations, with 4 prompt
candidate generations per iteration and a depth limit
of 8, starting from the initial prompt as the root
node at depth 0. An early stopping criterion with
a patience of 5 was applied after each backpropa-
gation step. For the performance evaluation on the
score set, three different scoring metrics were used:
macro F1, accuracy, and random scoring. We con-
ducted five independent runs for each metric. For
the model settings, we set the temperature to 0.0
when evaluating on the score set to reduce noise
and improve consistency. We set the temperature
to 1.0 during the generation of new prompts to
increase prompt diversity.

4.3 Proxy Prompt Evaluator

To reduce computational cost in evaluating prompt
performance for unfair ToS clause detection, we
train a lightweight model based on PromptEval
(Polo et al., 2024) to serve as a proxy evaluation
module. This proxy acts as a fast estimator that pre-
dicts whether the LLM would classify each clause
correctly under a given prompt.

Formally, given a ToS clause x;, a prompt p;,
and the gold fairness label y; € {0,1}, the LLM
ToS fairness classifier f produces a prediction:

Uij = f(pi, xj).

The correctness of this prediction is defined as:
cij = WHdij = i}

To approximate this correctness signal effi-
ciently, we train a proxy prompt evaluator ¢ as
correctness classifier. Each training instance is rep-
resented as:

zig = [e(pi) | e(zy) || (7)),

where e(-) is an embedding function and || de-
notes concatenation. The proxy prompt evaluator
¢ produces:

¢ij = P(2,5) € [0,1],

which estimates the probability that the LLM
classifier f correctly predicts the fairness of clause
x; under prompt p;.

The proxy prompt evaluator ¢ is trained using bi-
nary cross-entropy loss, where 6 are the parameters
of ¢:

ﬁ(@) = — Z [C@j log éi,j—l—(l—ci,j) 10g(1—é¢7j)] .

i’j

By using the proxy promt evaluator ¢, we can
evaluate candidate prompts over the entire vali-
dation set without repeated expensive calls to the
LLM. In our experiments, the score set increased
from 200 (as used in the original MCTS method),
to 8,279 samples, which is the full validation set
of CLAUDETTE. Thereby we managed to im-
prove search stability and reduce evaluation costs
while keeping the overall optimization procedure
unchanged. Moreover, the bigger size of the score
set may also lead to the better generalization of the
improved prompts. To further improve efficiency,
the system implements embedding caching: once a
prompt, sample, or label embedding is computed,
it is stored in memory and reused in future evalua-
tions. Since many prompts are evaluated repeatedly
across the search tree, this avoids redundant com-
putations and significantly reduces total runtime.

4.3.1 Constructing the Correctness Dataset

To train the proxy model, we required a dataset that
records when the LLM binary classifier succeeds or
fails at fairness prediction under different prompts.
This correctness dataset is built by pairing candi-
date prompts with clauses from the CLAUDETTE
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dataset, comparing the LLM’s deterministic pre-
dictions to the gold labels, and assigning a binary
correctness indicator.

Each entry consists of: (1) an embedding of the
prompt, (2) an embedding of the clause, (3) a one-
hot encoding of the gold fairness label, and (4) a
binary correctness label (1 if the LLM prediction
matches the gold label, O otherwise). These vectors
are concatenated and passed to the proxy classifier,
which is trained to predict correctness directly.

To collect the data, we ran standard MCTS (with-
out the proxy) and sampled 30 unique prompts
from different depths of the search tree to capture a
range from early, simple prompts to more complex
ones appearing later in the search. Each prompt
was paired with 500 clauses from the training split
of CLAUDETTE (see Table 1), with a balanced
50:50 distribution of fair and unfair clauses to en-
sure performance for the underrepresented unfair
class. For each (prompt, clause)-pair, we queried
the LLM deterministically and assigned a correct-
ness label based on the dataset’s gold label. We
also added the gold label as input to the correctness
dataset, yielding 15,000 (prompt, clause, label)-
triples for training. A validation set was built using
the same procedure with 200 unseen clauses, sam-
pled without enforcing label balance, intentionally
sampled without enforcing label balance to pre-
serve the natural distribution of LLM correctness
and enable realistic evaluation.

During search inference, the trained proxy evalu-
ates every (prompt, clause, label)-triple in the score
set. If the proxy predicts correct, we retain the
gold label. If it predicts incorrect, we flip it. The
resulting sequence of predictions is compared to
the gold labels, and the macro F1 score is used to
estimate the performance of the prompt within the
MCTS loop.

4.3.2 Model Structure of the Prompt Scorer

We tested two architectures for the proxy prompt
evaluator: (1) a logistic regression classifier as used
in Polo et al. (2024), and (2) a two-layer multilayer
perceptron (MLP), inspired by (Goodfellow et al.,
2016; Afzal et al., 2025). For the logistic regression
model we used the scikit-learn library implementa-
tion (Pedregosa et al., 2011). For the MLP classi-
fier, we use a compact feed-forward neural network
with three hidden layers of 512, 256, and 128 units,
each using ReLU activation (Agarap, 2019) and
dropout. The output layer is a single neuron with
a sigmoid function for binary classification. More

SB FLB

Train accuracy 0.94 0.94
Val accuracy  0.85 0.93
Train macro F1  0.94 0.94
Val macro F1 ~ 0.86 0.93

Table 2: Logistic regression performance using different
input embeddings

details of the model architectures can be found in
Appendix A.1.

4.3.3 Choice of Input Embeddings

We experimented with two different embeddings
to encode the input of the correctness dataset:

» Sentence-BERT (SB) (Reimers and Gurevych,
2019), using the all-MiniLM-L6-v2
model (Reimers, 2020) from the sentence-
transformers library. For Sentence-BERT, text
is tokenized and processed through the pre-
trained model to generate 384-dimensional
embeddings.

* Fine-tuned LEGAL-BERT (FLB). We also ex-
perimented with more domain-specific and
task-informed embedding. We fine-tune
LEGAL-BERT (Chalkidis et al., 2020) by
training it on the fairness prediction task on
the CLAUDETTE dataset. We take the [CLS]
token representation from the final layer, re-
sulting in 768-dimensional embeddings. More
details of the model architectures can be found
in Appendix A.2.

We first conducted a preliminary study on em-
bedding impact in Table 2. We compared the per-
formance of different embeddings when used with
a logistic regression correctness classifier. Across
both accuracy and macro F1, fine-tuned LEGAL-
BERT embeddings yield the strongest results, with
a validation accuracy of 0.93 and a macro F1 score
of 0.93, outperforming Sentence-BERT. General-
purpose embeddings like Sentence-BERT under-
perform against domain- and task-specific embed-
dings. The embedding choice therefore has a large
impact on proxy model performance.

LogReg MLP
SB 0.85 0.93
FLB 0.93 0.91

Table 3: Validation accuracy of different classifier archi-
tectures.
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Accuracy Macro F1

SVM w TD-IDF Vectorizer 0.90 0.78
Fine-tuned LEGAL-BERT 0.94 0.85
Zero-Shot 0.64 0.53
GrIPS 0.22 0.22
OPRO 0.53 0.46
MCTS w PromptEval-LogReg 0.90 0.69
MCTS w PromptEval-MLP 0.90 0.73

Table 4: Binary fairness classification performance of
prompt optimization approaches. SVM and BERT were
trained on the whole training set.

While Table 2 shows that fine-tuned LEGAL-
BERT is the strongest embedding for a linear proxy,
Table 3 shows that the combination of embedding
and architecture should also be considered. An
MLP paired with Sentence-BERT matches the vali-
dation accuracy of 0.93 set by logistic regression
with fine-tuned LEGAL-BERT. This result sug-
gests that a non-linear scorer can extract more sig-
nal even from a general-purpose embedding, but
gains less from the fine-tuned embeddings.

In the following experiments, we tested our
prompt optimization using the best two variants
of the proxy scorer module (see Table 3): (1) a
logistic regression model with fine-tuned LEGAL-
BERT embeddings, and (2) a MLP classifier with
Sentence-BERT embeddings.

5 Evaluation Results

In this section, we evaluate the effectiveness of our
approach, which integrates MCTS with a proxy
scorer, on the task of ToS fairness classification
on the test set. We benchmark our method against
three baselines categories: (1) traditional classifiers
finetuned on the whole train set (SVM, BERT),
(2) zero-shot LLLM performance, and (3) baseline
prompt optimization methods (OPRO, GRIPS). For
all prompt optimization methods, we report the
performance of the final highest-scoring prompts
identified by each method. We report both accu-
racy and macro F1, as the test set is heavily class-
imbalanced. In addition, we conduct an ablation
study to assess the contribution of the proxy scorer.
Finally, we complement the quantitative results
with a qualitative analysis to offer a concrete in-
sights of the improved prompts.

5.1 Overall Results

Table 4 demonstrates our main results. Both ver-
sions of our approach outperformed the zero-shot,
OPRO, and GrIPS baselines in binary classifica-

tion, with the MLP-based variant reaching com-
parable performance to the SVM trained on the
full dataset. Although the proxy-based methods
did not surpass fine-tuned LEGAL-BERT models,
they demonstrate that competitive performance can
be achieved without large-scale training and with
substantially lower computational cost. However,
it is important to mention that the legal context pro-
vided to the LLM for scoring the refined prompts
in our framework was richer than that used for the
OPRO and GrIPS evaluations. This difference also
influenced performance, as even the zero-shot base-
line outperformed them.

5.2 Ablation Experiments

To ascertain the benefit of the proxy scorer, we iso-
late the contribution of the proxy scorer to overall
optimization quality and efficiency by comparing
MCTS variants that use full LLM-based scoring,
with our PromptEval-based proxy variants.

As shown in Table 4 and 5, MCTS with macro
F1 achieves the highest scores, and its binary per-
formance is comparable to the SVM trained on the
full training split. It also outperforms OPRO and
GrIPS, which lack error feedback, underscoring its
importance.

Accuracy Macro F1

MCTS w random scores 0.81 0.67
MCTS w PromptEval-LogReg 0.90 0.69
MCTS w accuracy scores 0.87 0.72
MCTS w PromptEval-MLP 0.90 0.73
MCTS w macro F1 scores 0.89 0.74

Table 5: Binary fairness classification performance of
MCTS with different scoring methods.

Although our MCTS implementation with the
PromptEval-based scoring modules could not beat
the best performing standard MCTS implementa-
tion, we still achieved an improvement over the
random MCTS baseline. In particular, the prompt
found by the MLP proxy model achieves compara-
ble performance to the best prompt found through
actual scoring. The reduction in sampling noise
yields more stable average rewards than the limited
score set in the standard MCTS approach. The ex-
ecution time was also greatly reduced by a factor
of 3. However, since we called the LLM via an
API and ran the predictor model locally, it is hard
to make universal claims about the speedup and
efficiency.
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5.3 Qualitative Analysis

The initial prompt, as shown in §4, assumes the
LLM inherently understands the legal concept of
fairness for the consumer in the context of ToS
agreements without any explicit guidance. The
prompts expanded by our approach (see Figure
4) give the LLM more context on what exactly
is meant by fairness. It was also observed that
the length of the final prompts depend on the tree
depth that it was found at, since prompts tend to
get longer with increasing depth.

MCTS with PromptEval LogReg

Is this clause clearly outlining the rights and
responsibilities of both parties, including the
consumer and the service provider, providing
adequate notice or transparency to the consumer,
and imposing no unfair or overly broad penalties or
restrictions on the consumer, while clearly explaining
the consequences of user actions, ensuring
adequate notice of changes to the agreement,
including those related to intellectual property,
liability caps, and contractual changes, providing a
fair and transparent dispute resolution process, and
not reasonably favoring the service provider over the
consumer, considering the interests of both parties
and explicitly addressing the transfer of intellectual
property rights, liability for damages, and notification
of changes to the agreement?

MCTS with PromptEval MLP

Does this clause potentially impose unilateral
changes, liabilities, or compromise personal
information, ultimately favoring one party over the
other?

Figure 4: Final prompts found with our approach.

Despite the stated advantages of using a proxy
model during scoring, there are also limitations to
consider. In particular, the computational burden
was shifted from the MCTS runs to the construction
of the dataset used to train our proxy model. If we
quantify the cost in terms of expensive LLLM calls
and disregard other comparatively small factors like
training, proxy model inference, and embedding
generation with caching, we calculate the break-
even point as follows.

The cost for creating the dataset is defined by
30 prompts combined with 500 samples, resulting
in 30 - 500 = 15,000 LLM calls. The cost of a
single expansion step in standard MCTS includes
20 calls for the gradient set, 2 calls to generate and
apply the gradient, and 200 calls for evaluation on
the score set. With 4 candidates per expansion,

this totals (20 + 2 + 200) - 4 = 888 calls. When
using the proxy, the evaluation on the score set is
replaced by proxy inference, reducing the total to
(20 + 2) - 4 = 88 calls (see Table 6).

Method (Score Set Size) Train D?taset Expansion
Creation Step
Standard MCTS (200) - 888
Standard MCTS (8,279) - 33,204
Proxy MCTS (8,279) 15,000 88

Table 6: Comparison of LLM calls between standard
and proxy MCTS.

To reach the break-even point, we therefore need
to use at least 15,000 + (888 — 88) = 18.75 < 19
expansions. Our experiments show that the average
number of expansions per MCTS run is 35 due to
early stopping, indicating that the proxy approach
becomes cost-efficient within a single run. The
efficiency is further increased by the reusability
of the proxy across MCTS runs and the ability to
extend the score set without additional LLM calls.

Furthermore, the model is vulnerable to outliers,
as it might fail to generalize, given the small num-
ber of prompts in the training data and the large
potential search space of prompts. If the model
vastly overestimates the performance of a certain
prompt, this prompt is likely to be chosen as the fi-
nal prompt, if we replace all scoring with our proxy.
Since our chosen proxy variants exhibit black box
characteristics, it becomes hard to detect biases
during the fast scoring method.

6 Conclusion

In this paper, we propose augmenting a prompt
optimization framework with a proxy prompt
scorer. Our experimental results show that using
a lightweight correctness prediction model as a
proxy enables existing prompt optimization tech-
niques to avoid repeatedly querying an LL.M over
the validation set, which is computationally expen-
sive. In particular, the MLP-based proxy evaluator
achieves performance close to the best-performing
standard implementation that relies, while signifi-
cantly reducing computation time and cost, which
highlighting the effectiveness of our methodology.

For future work, several promising directions
can be explored. First, experimenting alternative
proxy model architectures, including Transformers
or Bayesian Models to better capture the interaction
between prompt and task performance. Another
promising direction is to optimize the score set us-

288



ing active or curriculum learning strategies. By
selectively including the most informative or rep-
resentative clauses, active learning can reduce the
number of evaluations required while maintaining
reliable performance estimates. Similarly, curricu-
lum learning can improve the proxy model’s stabil-
ity by starting with easier examples and progres-
sively incorporating harder ones. These approaches
would allow for more efficient and effective prompt
evaluation, reducing computational cost while im-
proving generalization to the full dataset.

7 Limitations

Our work was conducted on a small LLM with
limited capabilities, making it heavily dependent
on the legal context provided and sensitive to the
precise wording of that context. The effectiveness
of the proxy model is likewise tied to the LLM it
was trained on and the error patterns specific to that
model. Further research is needed to determine
whether our findings generalize to larger models.

Additionally, due to budget constraints, our
MCTS framework and PromptEval-based classi-
fier relied only on a small subset of the training and
validation data to train and to generate the search
space. Using larger subsets may introduce more
diversity and potentially improve performance.

Another limitation is the multi-label classifica-
tion task of unfairness categories. Our quick scor-
ing via proxy PromptEval-based models were only
conducted on the binary classification task. Pre-
dicting correctness on multi-label classification is
more difficult and it is left to see whether the proxy
could sufficiently predict correctness to draw useful
conclusions about the performance of a multi-label
prompt.
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A Appendix

A.1 Hyperparameters of Proxy Prompt
Evaluator

For our logistic regression classifier, we used the
standard LBFGS solver that the Logistic Regres-
sion class from scikit-learn uses by default. We set
the maximum number of optimization iterations to
1000 and the L2-regularization parameter C to 1.0,
which is the default as well.

For our different MLP architectures, including
the medium size one, we used an Adam optimizer
with a learning rate of 0.001, dropout rate of 0.3 and
batch size of 32. We trained with early stopping
with a patience of 10 and a weight decay of le-4.

A.2 Hyperparameters of finetuing
LegalBERT

To get more domain-specific and task-informed
embeddings, we finetune a LegalBERT (Chalkidis
et al., 2020) by training it on the fairness prediction
task on the CLAUDETTE dataset. We trained the
base architecture with a classification head on the
task of binary fairness prediction for all training
and validation clauses with cross-entropy loss. We
used AdamW with a learning rate of 2e-5 and de-
cay of 0.01. The model was trained for 3 epochs.
To generate embeddings, we remove the classi-
fier head and proceed the same way as with base
LEGAL-BERT.
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