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Abstract

One of the first steps in the judicial process
is finding the applicable statutes/laws based
on the facts of the current situation. Manu-
ally searching through multiple legislation and
laws to find the relevant statutes can be time-
consuming, making the Legal Statute Identi-
fication (LSI) task important for reducing the
workload, helping improve the efficiency of
the judicial system. To address this gap, we
present a novel knowledge graph-enhanced ap-
proach for Legal Statute Identification (LSI) in
Indian legal documents using Large Language
Models, incorporating structural relationships
from the Indian Penal Code (IPC) the main leg-
islation codifying criminal laws in India. On
the IL-TUR benchmark, explicit KG inference
significantly enhances recall without sacrific-
ing competitive precision. Augmenting LLM
prompts with KG context, though, merely en-
hances coverage at the expense of precision,
underscoring the importance of good rerank-
ing techniques. This research provides the first
complete IPC knowledge graph and shows that
organized legal relations richly augment statute
retrieval, subject to being integrated into lan-
guage models in a judicious way. Our code and
data are publicly available at Github.

1 Introduction

In India, there are about 44 million pending cases in
multiple courts at various levels (district, state, fed-
eral) accreting to the National Judicial Data Grid.
Such a massive backlog of cases goes against the
fundamental human right of fair access to justice.
Automating parts of the legal workflow, such as
identifying relevant statutory provisions from legal
documents, can help reduce this burden by aiding
judges, lawyers, and legal researchers in retrieving
the right laws more efficiently.

Legal statute identification (LSI)—the task of
mapping text (e.g., facts or case descriptions) to
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relevant statutory provisions—is a foundational
subtask in law and legal NLP. Indian law poses
unique challenges: statutes are long, sections cite
each other, and datasets for Indian legal NLP are
only recently becoming available. The IL-TUR
benchmark Joshi et al., 2024 (Joshi et al., 2024),
(IL-TUR: Benchmark for Indian Legal Text Under-
standing and Reasoning) has recently provided a
standardized testbed for a number of Indian legal
tasks, including LSI; we adopt its LSI split for eval-
uation which comprises of 100 target statutes from
the Indian Penal Code (IPC), the main legislation
codifying criminal laws in India.

Large Language Models (LLMs) that are solely
trained on text, however, frequently lack explicit
structural knowledge of the law, which results in
predictions that are either ungrounded or incom-
plete. We fill this gap by creating a domain-specific
Knowledge Graph (KG) of the Indian Penal Code
(IPC) that encodes cross-references between sec-
tions sourced from the National Crime Records Bu-
reau as well as relationships between chapters, sec-
tions, and their titles and descriptions from IPC. We
incorporate this KG, an external, verifiable source
of legal knowledge, into LLMs to enhance their ac-
curacy, interpretability, and statutory identification
foundation.

2 Related Work

Over the past few years, Legal NLP has been a
fertile area for research. Researchers have explored
different aspects of the legal domain via various
tasks. Legal Statute Identification (LSI) is one of
the first steps in the judicial process is finding the
applicable statutes/laws based on the facts of the
current situation.

Current research has started to integrate graph
structures into the analysis of legal documents.
Paul et al. (2022) (Paul et al., 2022a) proposed
LeSICiN, a graph-based heterogeneous model for
Legal Statute Identification (LSI) that represents
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Figure 1: NyayGraph Workflow Diagram

citation networks between case documents and
IPC sections. Their method integrates textual fea-
tures with structural graph information utilizing
metapath-based aggregation for inductive link pre-
diction. Though LeSICiN reflects advancement
in comparison to text-only approaches, it is only
applicable to criminal law codes. It also requires
pre-existing citation networks, and hence not vi-
able for statutory examination in the absence of
established case law precedents.

Likewise, Wendlinger et al. (2025) (Wendlinger
et al., 2025) suggest mutual citation heterogeneous
graph enrichment-based prediction, but with case-
by-case citation instead of statutory connections.

Early methods of constructing legal knowledge
graphs primarily focused on information extrac-
tion from court rulings and case files. Jain et al.
(2022) (Jain et al., 2022) proposed a rule-based
approach to constructing knowledge graphs from
Indian Supreme Court rulings. Although Jain et
al.’s work provides valuable insights into legal en-
tity extraction, it suffers from a number of impor-
tant limitations that prevent the use of the work to
conduct in-depth legal analysis. Their case-focused
approach identifies metadata from court decisions
but does not focus on identifying the underlying
statutory design or inter-section relation among le-
gal codes.

Recent efforts have looked into various ways to
model semantic relationships in legal texts. Bhard-
waj et al. (2022) (Bhardwaj et al., 2022) created
thematic similarity measures for Indian legal doc-
uments using knowledge graphs, focusing on cap-
turing conceptual relationships between legal con-
cepts rather than statutory structure.

The issue of multi-semantic relationships in legal
knowledge graphs has been tackled using different
embedding methods. Zhou et al.’s multi-task model
incorporating translational embedding shows the
importance of capturing complex semantic relation-
ships beyond simple citation patterns (Zhou et al.,
2024).

Although the majority of the current work has
concentrated on case documents, scant literature
has examined holistic statutory structure modeling.

Conventional methods have depended greatly on
citation networks and case precedents, restricting
their use to full legal frameworks. Paul et al. (2022)
(Paul et al., 2022a) presented LeSICiN, employing
citation inter-relations between case documents and
IPC sections via heterogeneous graph modeling but
was limited by citation dependency.

Existing methods need either large case docu-
ment sets (Dong et al., 2021; Zhou et al., 2024) or
pre-existing citation networks (Paul et al., 2022a),
thus limiting applicability to new or developing le-
gal systems. Existing methods only address highly
cited provisions or certain case types, and not over-
all statutory analysis. Existing methods are based
on citation or co-occurrence relationships alone,
lacking sophisticated statutory relationships like hi-
erarchical dependencies, crime classification group-
ings, amendment histories etc. Existing knowledge
graphs cannot be updated with the evolving legal
framework and amendments, as updates need to be
made by reconstructing them entirely.

In contrast to citation-based techniques or case-
document centric methods, our research builds
knowledge graphs from official crime statistics and
statutory structure directly. By combining NCRB
crime classification statistics with IPC hierarchical
structure, we establish factual statistical relation-
ships embodying actual legal practice patterns from
real life. Our method overcomes important limita-
tions of previous efforts through the ability to per-
form total statutory framework analysis without the
need for precedential established cases, providing
automated construction without legal domain ex-
pertise, utilizing a multiplicity of relationship types
founded on legal structure and empirical crime
evidence, and incorporating a hierarchy-agnostic
framework applicable to any hierarchically struc-
tured statutory system.

3 Dataset

We compare our approach on the Legal Statute
Identification (LSI) sub-task of the IL-TUR bench-
mark (Joshi et al., 2024), the largest and most
recently available dataset for this task in the In-
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Dataset Characteristic Value

Dataset ILSI
# Documents 66,090
# Labels 100

Train/Dev/Test Split

Train 42,835
Dev 10,200
Test 13,039

Avg. Document Size (in #words) 2406
Avg. no. of citations (#labels per doc) 3.78

Table 2: Summary of the ILSI Dataset Statistics.

dian legal domain. It was constructed from 66,000
Supreme Court and High Court judgments, each
of which cited one or more statute from a target
list of 100 most frequently occurring sections of
the Indian Penal Code (IPC), the primary codifica-
tion law of criminal law in India. The dataset is an
extension of the previous ILSI corpus released by
Paul et al. (2022) (Paul et al., 2022a), with entities
anonymized (e.g., PERSON, ORGANIZATION) to min-
imize bias, as is best practice in Indian legal NLP
(Malik et al., 2021).

A full dataset statistics breakdown, including
size, label distribution, and splits, is shown in Ta-
ble 2.

We selected this IL-TUR LSI due to the fol-
lowing reasons. It possesses: (1) real-world cov-
erage of Indian legal statutes, (2) realistic multi-
label nature of data, (3) dataset size sufficient for
deep learning algorithms, (4) coverage of case facts
and statute descriptions, and (5) standard prepro-
cessing and quality control. These properties are
best suited for evaluating the impact of our knowl-

edge graph-assisted approach on legal statute iden-
tification performance. The multilabel nature of
the dataset—mean of 3.78 statutory citations per
case—is best served by our knowledge graph de-
sign, in which interstatute relationships are explic-
itly modeled.

4 Methodology

4.1 Knowledge Graph Construction

We built a comprehensive domain-specific Knowl-
edge Graph (KG) of the Indian Penal Code (IPC)
through a systematic multi-source integration pro-
cess. Our approach combines the hierarchical or-
ganization of the IPC statute with empirical data
of crime class from actual government reports into
one semantic representation of Indian criminal law.

The construction process is based solely on offi-
cial government and authoritative legal publica-
tions to avoid subjective interpretation and pro-
vide accuracy. The main structural relationships of
Chapters, Sections, and their definitions were taken
directly from official IPC text published by the
Government of India.(Crime In India 2022, Statis-
tics Vol. I & Crime In India 2022, Statistics Vol.
II). This guarantees that there is no manual inter-
pretation or speculative legal linking in the KG and
that all relationships come from reliable legal or
government-published sources only.

The five node types of the KG architecture are
utilized to encode different facets of legal knowl-
edge representation. The schema is balanced be-
tween granularity and computational efficiency
with full coverage and no query performance degra-
dation. As illustrated in Table 1, the five node types
are: (1) Chapter nodes for the top 26 IPC divisions,
(2) Section nodes for the 571 legal provisions, (3)
SectionDescription nodes for the full textual con-
tent of provisions, (4) IPC_CRIMES_HEAD nodes
for the top 16 NCRB classification crime head cat-

Node Type Count Key Properties Description
Chapter 26 chapter (unique),

chapterTitle
Major divisions of the IPC.

Section 571 sectionNumber (unique),
sectionTitle

Legal sections under each chapter.

SectionDescription 571 id (unique),
sectionDescription,
embedding

Textual content of each section and vector
embedding for retrieval.

IPC_CRIMES_HEAD 16 name NCRB top-level crime categories.
IPC_CRIMES_SUBHEAD 41 name NCRB subcategories under each crime head.

Table 1: Node Types and Properties in the Knowledge Graph.
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egories, and (5) IPC_CRIMES_SUBHEAD nodes
for the 41 domain-specific crime sub-head cate-
gories. Each node type has some properties opti-
mized for various query patterns and downstream
applications.

Eight relationship types were systematically ex-
tracted from the source documents, each with
specific semantic roles in legal analysis (Ta-
ble 3). Hierarchical relationships (BELONGS_TO,
HAS) mirror directly the statutory organization
from the IPC structure. Crime classification re-
lationships (HAS_SECTION, COMES_UNDER,
HAS_SUB_HEAD) map the empirical NCRB tax-
onomy onto statutory provisions, enabling anal-
ysis of real crime patterns. Cross-reference re-
lationships (CITES, CITED_IN) were extracted
through systematic parsing of statutory text for
overt section references. Content relationships
(IS_STATED_IN) link sections to their descriptive
text for semantic processing. The overall graph has
1,225 nodes linked by 2,632 relationships (Table 4),
the most comprehensive structural representation
of the IPC to date.

The graph was built with Neo4j due to its
Cypher query language that is feature-rich and
graph-traversal-optimized performance. Data in-
gestion employed a manual-to-digital conversion
process: (1) systematic transcription of IPC hierar-
chical structure as explicitly organized in the offi-
cial statute, (2) direct mapping of NCRB crime cat-
egories to published categorization sections with-
out interpretation, (3) manual identification and
encoding of cross-references since they evidently

Metric Value
Total Nodes 1,225

Total Relationships 2,632

Node Types 5

Relationship Types 8

Graph Database Platform Neo4j

Table 4: Overall Knowledge Graph Summary.

appear in the statutory text, and (4) automatic em-
bedding generation of transcribed textual content
with the InLegalBERT model (Paul et al., 2022b).

All relationship construction was done using ad-
hoc Cypher queries that encode the factual rela-
tionships directly from the source documents. For
instance, NCRB (Table 3) clearly states which
IPC sections come under each head of crime,
and these mappings were translated directly into
HAS_SECTION and COMES_UNDER relation-
ships without any legal analysis or interpretation.
The construction process is fully traceable to source
documents, where each relationship type is trace-
able to particular tables or sections in the quoted
government reports. This manual but objective
process delivers precision without the vagaries of
automated legal text parsing, which would be sub-
ject to advanced natural language processing and
possible legal interpretation.

5 Evaluations and Results

5.1 KG Inferencing

To enable semantic similarity calculations, section
descriptions were converted to dense vector repre-
sentations via the law-ai/InLegalBERT (Paul et al.,

Relationship From Node(s) To Node(s) Count Purpose
BELONGS_TO Section Chapter 572 Maps each section to its

chapter.
HAS Chapter Section 572 Hierarchical containment

from chapters to sections.
HAS_SECTION IPC_CRIMES_HEAD /

IPC_CRIMES_SUBHEAD
Section 228 Links crime categories to

sections.
HAS_SUB_HEAD IPC_CRIMES_HEAD IPC_CRIMES_SUBHEAD 41 Links NCRB crime head to

its subheads.
COMES_UNDER Section IPC_CRIMES_HEAD /

IPC_CRIMES_SUBHEAD
228 Maps sections to NCRB

crime categories.
CITES Section / Chapter Section / Chapter 210 Indicates statutory cross-

references.
CITED_IN Section / Chapter Section / Chapter 210 Reverse direction of CITES

relationship.
IS_STATED_IN Section SectionDescription 571 Links section to its descrip-

tive text.

Table 3: Relationship Types in the Knowledge Graph.
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2022b) model. The transformer model was selected
due to its established performance on Indian legal
texts with computational efficiency in the process-
ing of big data. The embeddings enable semantic
similarity calculations across legal provisions re-
gardless of structural connections, supporting intri-
cate query patterns such as concept-based section
retrieval and thematic clustering of similar legal
provisions.

We assess the value of our IPC knowledge
graph by performing a direct, graph-only inference
pipeline initially that identifies applicable statutes
for every case fact based on a mix of semantic sim-
ilarity and graph traversal. The experiments are
performed on the IL-TUR LSI test split.

We calculate 768-dimensional embeddings for
every case fact using the law-ai/InLegalBERT
model with mean pooling. We then in-
dex a query to the Neo4j vector index for
the SectionDescription.embedding property to
find the top-k most similar sections, where k ∈
{5, 8, 10}.

From the initially retrieved sections, we expand
predictions by traversing three relationship types
in the KG:

• Forward citations: Sections cited by the re-
trieved sections (CITES).

• Reverse citations: Sections that cite any of the
retrieved sections (CITED_IN).

• Crime-head adjacency: Sections sharing
the same NCRB crime head or subhead
(COMES_UNDER, HAS_SECTION).

Filtering and Aggregation. We normalize all
predicted section labels to canonical form (e.g.,
“294(b)” → “294B”) and filter against the 100 valid
IPC sections as per IL-TUR. The final prediction
set is the union of similarity and expansion candi-
dates, with a fallback to the top-3 similarity hits
when no candidates remain.

We evaluate retrieval performance in terms of a
set of ranking and multi-label metrics across the
IL-TUR test set. For a given test instance, we

match the ranked list of predicted sections with the
ground-truth set and calculate:

• Mean Reciprocal Rank (MRR) – The aver-
age reciprocal of the rank at which the first
correct section appears (Voorhees, 1998).

• Mean Average Precision (MAP) – The mean
of the average precision values over all test
cases (Manning et al., 2008).

• Precision@k (P@k) – The fraction of correct
sections within the top-k predictions.

P@k =
|{Relevant ∩Retrieved@k}|

k

• Recall@k (R@k) - The fraction of true sec-
tions retrieved in the top-k.

R@k =
|{Relevant ∩Retrieved@k}|

|{Relevant}|

(Manning et al., 2008).

• Normalized Discounted Cumulative
Gain@k (NDCG@k) – position-weighted
measure of ranking quality, normalized by the
ideal DCG (Järvelin and Kekäläinen, 2002).

• Hit@k (H@k) - The percentage of cases with
at least one true section in the top-k predic-
tions (Manning et al., 2008).

The figure in Table 5 illustrates the effectiveness
of our knowledge graph-augmented method for
Legal Statute Identification at different retrieval
depths. Some surprising insights can be deduced
from this comparison:

Scaling of Performance with k: All the perfor-
mance metrics improve steadily as k scales from
5 to 10. MRR improves by 43.3% (0.0826 →
0.1184), i.e., more relevant sections get ranked
higher in larger result lists. Similarly, MAP im-
proves by 42.3% (0.0286 → 0.0407), i.e., precision
on all relevant items is improved. This scaling
trend indicates that the graph traversal effectively

Run (k) MRR MAP H@k P@k R@k NDCG@k

top_k = 5 0.0826 0.0286 0.1073 0.0237 0.0380 0.0424
top_k = 8 0.1038 0.0359 0.1901 0.0278 0.0672 0.0586
top_k = 10 0.1184 0.0407 0.2538 0.0309 0.0899 0.0709

Table 5: KG inference performance on the IL-TUR test set for different top_k values.
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retrieves more relevant sections beyond the initial
similarity-based retrieval.

Enhancement in Recall through Graph
Traversal: Most significant enhancements are in
recall metrics. R@10 is 0.0899, which is a 136.8%
enhancement over R@5 (0.0380). notable recall en-
hancement supports our hypothesis that structural
relationships in the IPC knowledge graph capture
relevant connections between statutes not apparent
through text similarity. The crime-head adjacency
and citation relationships correctly identify relevant
provisions with shared legal contexts.

Hit Rate and Coverage: Hit@k improves dra-
matically to 25.38% at k=10, It is a 136.5% im-
provement on Hit@5 (10.73%), which means that
graph expansion greatly improves the chances of
returning relevant statutes for all cases.

Precision-Recall Trade-off: Precision sees only
slight improvements (P@5: 0.0237 → P@10:
0.0309), whereas the dramatic recall improvements
confirm that our approach does expand the rele-
vant candidate set without too much spuriousness.
The NDCG@k improvements (0.0424 → 0.0709)
confirm that the additional retrieved segments also
have good ranking quality.

Challenges in Legal Domain: The multi-label
aspect of the task, with an average of 3.78 labels
per case in IL-TUR, means that even modest gains
in each measure have significant practical utility in
legal scholarship and case analysis.

These experiments show that our IPC knowledge
graph is highly effective for statute identification,
with the graph traversal component having sub-
stantial recall and coverage enhancements while
maintaining competitive precision. The steady en-
hancement of all the measures as k grows larger
shows that practitioners can adjust the depth of
retrieval to their specific precision-recall needs.

5.2 LLM Inference

We built and evaluated a retrieval-augmented LLM
pipeline that improves a Large Language Model
with structured context from the IPC Knowledge
Graph (KG). The setup uses a Neo4j vector in-
dex for semantic retrieval and an Ollama-hosted
Llama3.1 8B model (Grattafiori et al., 2024) for
scoring and generation. Detailed configurations of
the inference pipeline is listed in Table 6. The com-
pleted scripts are available in the supplementary
repository.

5.2.1 Pipeline
Given case facts, the LLM pipeline executes the
following steps:

1. Semantic retrieval: Encode the input using a
legal-domain Bert based Transformer model
(law-ai/InLegalBERT, mean-pooling, 512-
token truncation) and query the Neo4j vec-
tor index section_desc_embedding_index
to retrieve the top-k section description nodes
(default k = 3). InLegalBERT is a legal-
domain PLM shown to improve performance
on Indian legal tasks. (Paul et al., 2022b)

2. KG expansion: For each retrieved section the
system retrieves (i) outbound cited sections
(CITES), (ii) inbound citations (CITED_IN),
and (iii) other sections under the same
NCRB crime head/subhead (COMES_UNDER,
HAS_SECTION). These Cypher queries are ex-
ecuted in the retriever class and returned in a
structured context object.

3. Prompt construction: The KG-formatted
context is added to the case facts. A limited
system instruction then tells the model to out-
put only canonical IPC section numbers in a
bracketed list (this reduces hallucination and

Hyperparameter / Setting Value (from code)
KG embedding model law-ai/InLegalBERT

Embedding pooling mean-pooling, max_len=512

Neo4j vector index section_desc_embedding_index

KG retrieval top-k 3

Ollama temperature (example run) 0.6

Ollama max tokens (example run) 4096

Dataset Exploration-Lab/IL-TUR, subset=lsi (test split)

Prompt format KG context + Case facts + restricted system prompt

Table 6: Configurations used for the LLM+KG inference runs (values taken from the provided scripts).
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simplifies automatic evaluation). Approaches
that combine text and graph structure for LSI
have shown to be effective in prior work (e.g.,
LeSICiN). (Paul et al., 2021). Refer A.1 for
system prompt.

4. LLM scoring/generation: The enhanced
prompt is sent to the Ollama generation API,
the response and the KG context used are
saved for each example.

5. Post-processing: model outputs are normal-
ized to canonical section tokens (e.g., 302,
294B), mapped to the IL-TUR 100-section tar-
get set (Joshi et al., 2024), and added to a CSV
for evaluation.

We evaluate model outputs using a deterministic
post-processing and metric pipeline.

5.2.2 Normalization & mapping
The evaluation pipeline performs three main steps:

1. Normalize raw model responses (function
normalize_model_response): this extracts
numeric tokens and common suffixes (A/B/C),
expands numeric ranges (e.g., ‘402-405’ →
‘402 403 404 405’), collapses tokens like ‘403
(a)’ → ‘403A’, strips noise words (e.g., ‘sec-
tion’, ‘ipc’), and returns a canonical bracketed
string (e.g., ‘[302 304]’).

2. Map canonical tokens to IL-TUR IDs: a
reverse mapping converts normalized section
tokens into the IL-TUR label ids (1..100). We
preserve the canonical format used by the IL-
TUR benchmark to avoid label-mismatch is-
sues. (Joshi et al., 2024)

5.2.3 Evaluation Metrics
Outputs are binarized with sklearn’s
MultiLabelBinarizer and evaluated using
micro/macro Precision, Recall and F1; per-sample
precision/recall/F1 are also computed and ap-
pended to the CSV for fine-grained analysis.

(Pedregosa et al., 2011). We report both micro-
averaged and macro-averaged Precision, Recall,
and F1 scores. Micro scores treat all true and
predicted section labels across the test set as
one group. This highlights overall correctness.
Macro scores average the metrics across classes.
They give equal weight to both rare and frequent
sections.

5.2.4 Quantitative comparison and analysis
Table 7 summarizes micro- and macro-averaged

Precision, Recall, and F1 for three inference modes:
(i) a standard LLM baseline, (ii) the LLM enhanced
with IPC KG context (LLM+KG, top_k=10), and
(iii) a KG-only expansion-based retrieval. The stan-
dard LLM achieves the highest overall micro-F1
score of 0.072, showing the best balance between
precision and recall under strict multi-label eval-
uation. The KG-only pipeline attains the highest
recall (micro R = 0.091), but this comes with very
low precision, resulting in many false positives.
The combined LLM+KG approach improves recall
compared to the standard LLM (0.067 vs 0.061),
but it results in a lower micro-F1 score of 0.059.
This indicates that the model did not filter or re-rank
the additional candidates from the KG effectively.

These results suggest that while the KG greatly
improves coverage by reducing false negatives, sim-
ply adding KG context to the prompt or making ba-
sic expansions increases false positives. It requires
a stronger re-ranking or calibration step to turn
this coverage into improved accuracy. Retrieval-
augmented methods typically need a learned re-
ranking or calibration stage to transform recall
gains into better overall accuracy (Lewis et al.,
2020; Nogueira and Cho, 2019; Karpukhin et al.,
2020).

Why did the KG not uniformly improve F1?
Our analysis points to several factors:

• Precision-recall tradeoff from KG expan-
sion. The KG-only expansion significantly
boosts candidate recall but also adds many ir-
relevant candidates. Without a good reranker,

Run Pmicro Rmicro F1micro Pmacro Rmacro F1macro

Vanilla_Tnference_Llama_3.1_8B 0.087 0.061 0.072 0.082 0.066 0.048
KG_Inference_top_k_10_Llama_3.1_8B 0.053 0.067 0.059 0.071 0.074 0.035

KG_Only_Inference_top_k_10 0.044 0.091 0.059 0.028 0.098 0.021

Table 7: LLM and KG inference results on the IL-TUR LSI test split. Values are micro- and macro-averaged
Precision, Recall and F1. The KG runs use expansion with top_k=10 (chosen from prior KG-only tuning).
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the LLM is more likely to include those irrel-
evant candidates in its output (Sokolova and
Lapalme, 2009; Powers, 2011).

• Class imbalance. The low macro-F1 values
indicate many classes are under-served. KG
expansion can increase macro-recall in some
cases, but it results in poor macro-precision
(Sokolova and Lapalme, 2009).

• Prompt and decoding effects. Prompt de-
sign and decoding settings (temperature, sam-
pling strategy) significantly impact whether
the added context helps or confuses the model.
Deterministic decoding and few-shot prompt
examples can reduce formatting and halluci-
nation errors (Brown et al., 2020).

Practical recommendations and next ablations
To turn KG coverage gains into net performance
improvement we recommend the following experi-
ments (or future work):

1. Tune retrieval k for LLM+KG separately:
the k selected from KG-only experiments (10)
may be too large when KG context is fed to
the LLM. Report LLM+KG results for k ∈
{3, 5, 8, 10} (Lewis et al., 2020)..

2. Reranker: train a learned reranker that com-
bines the LLM score with KG-derived fea-
tures (citation-degree, shared crime-head flag,
shortest-path length). This should reduce false
positives introduced by expansion (Nogueira
and Cho, 2019; Karpukhin et al., 2020).

3. Prompt engineering: test deterministic infer-
ence (temperature=0), and add 1–2 few-shot
examples of correct bracketed outputs to re-
duce format and hallucination errors (Brown
et al., 2020)..

4. Ablate KG components: inject only citations,
only NCRB crime-head context, or both; com-
pare effects on precision/recall.

Resource constraints Our experimental scope
was limited by the computational and financial re-
sources we had. Specifically, we could not per-
form extensive hyperparameter sweeps, evaluate
additional large instruction-tuned models, or test
proprietary cloud-hosted LLMs, such as GPT-4, be-
cause of costs and infrastructure issues (Strubell
et al., 2019; Schwartz et al., 2020). When possi-
ble, we prioritized controlled comparisons among

vanilla LLM, LLM+KG, and KG-only using lo-
cally available Ollama-hosted models and smaller
LLM families. These limitations also led us to fo-
cus the KG on the IPC instead of creating a larger
multi-act KG. We chose an efficient embedding
model, InLegalBERT, that balances retrieval perfor-
mance with computational cost. We acknowledge
this limitation and provide sanitized code and ex-
act configuration details to help groups with larger
computing budgets reproduce our work.

6 Conclusion

In summary, this work contributes (1) a repro-
ducible IPC knowledge graph anchored in official
statutory and NCRB sources, (2) an interoperable
retrieval + KG + LLM pipeline for LSI, and (3) an
empirical analysis showing that KG-derived struc-
ture meaningfully increases coverage but requires
careful retrieval/ranking design to improve end-to-
end statutory identification performance. We be-
lieve the KG and the experimental recipe provided
here can serve as a foundation for future work in
KG-grounded legal NLP, especially for targeted
reranking, human-in-the-loop validation, and scal-
able extensions across additional Indian statutes
and case-law corpora.

7 Limitations

Our study presents two principal limitations. First,
the knowledge graph’s scope is restricted to the
Indian Penal Code and NCRB crime classifications,
excluding other statutes, procedural codes, or case-
law citations, which limits generalizability to civil
law, regulatory frameworks, or multi-statutory con-
texts. Second, computational constraints necessi-
tated the use of locally-hosted Ollama models and
smaller transformer architectures, precluding evalu-
ation of large proprietary instruction-tuned models
(e.g., GPT-4, Claude) that may exhibit different
performance characteristics and limiting the scope
of ablation studies.

8 Future Work

A number of promising avenues follow from our re-
sults and limitations. We intend to train lightweight
learned rerankers that incorporate LLM scores
and KG-extracted features (citation degree, crime-
head relationships, graph distances) to minimize
false positives from naive expansion, while expand-
ing the knowledge graph to include other statutes
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(CrPC, Evidence Act), case citations, and amend-
ment histories with expert verification. System-
atic ablation experiments will fine-tune retrieval
parameters, context crafting, and prompt engineer-
ing techniques on bigger instruction-tuned mod-
els and cloud APIs to determine strong operating
points. They will also evaluate prediction sound-
ness and explainability advantages through human-
in-the-loop experiments involving legal profession-
als, along with hybrid retrieval architecture mix-
ing sparse and dense approaches with reranking
pipelines to enhance candidate accuracy prior to
graph-based expansion.

9 Ethics Statement

All KG content and evaluation data are derived
from publicly available sources (the IPC statute text
and NCRB reports) and the anonymized IL-TUR
benchmark; we do not use private or unredacted
court records. The KG is a factual transcription
of those sources and is not a substitute for legal
interpretation. Outputs from our models should
never be treated as legal advice; they are intended
for research and decision-support under expert su-
pervision only.

We take several practical mitigations: (i) pre-
serve provenance for KG edges, (ii) use determin-
istic evaluation and conservative post-processing
to reduce spurious matches, (iii) omit any private
credentials from released artifacts, and (iv) recom-
mend human-in-the-loop validation (legal experts)
before any operational use. Finally, we acknowl-
edge limitations (class imbalance, extraction noise,
compute constraints) and encourage future work
on expert audits, reranking, and controlled deploy-
ments prior to real-world use.
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A Appendix

A.1 System Prompt

This system prompt is used in both vanilla and KG
enhanced LLM inferencing.

You are an intelligent Legal Crime
Classification system. In the Indian legal
system, the Indian Penal Code (IPC) is an
Act in the Indian legislature that contains
many legal articles or ‘Sections’ that codify
different laws. Your task is, given the facts
or evidence of an Indian court case as input,
to predict the relevant or violated ‘Sections’
of the IPC as output.
Only predict from the following IPC Sections:
Section 2, Section 3, Section 4, Section 5,
Section 13, Section 34, Section 107, Section
109, Section 114, Section 120, Section
120B, Section 143, Section 147, Section
148, Section 149, Section 155, Section
156, Section 161, Section 164, Section
173, Section 174A, Section 186, Section
188, Section 190, Section 193, Section
200, Section 201, Section 228, Section
229A, Section 279, Section 294, Section
294(b), Section 299, Section 300, Section
302, Section 304, Section 304A, Section
304B, Section 306, Section 307, Section
308, Section 313, Section 320, Section
323, Section 324, Section 325, Section
326, Section 332, Section 336, Section
337, Section 338, Section 341, Section
342, Section 353, Section 354, Section
363, Section 364, Section 365, Section
366, Section 366A, Section 375, Section
376, Section 376(2), Section 379, Section
380, Section 384, Section 389, Section
392, Section 394, Section 395, Section
397, Section 406, Section 409, Section
411, Section 415, Section 417, Section
419, Section 420, Section 427, Section
436, Section 437, Section 438, Section
447, Section 448, Section 450, Section
452, Section 457, Section 465, Section
467, Section 468, Section 471, Section
482, Section 494, Section 498, Section
498A, Section 500, Section 504, Section 506,
Section 509, Section 511
Your output MUST be ONLY the list of relevant
IPC Section numbers in square brackets,
separated by spaces.
Do NOT include any explanation, punctuation,
or text other than this list format.
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