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Abstract

Regulatory compliance questions often require
aggregating evidence from multiple, interre-
lated sections of long, complex documents.
To support question-answering (QA) in this
setting, we introduce ObliQA-MP, a dataset
for multi-passage regulatory QA, extending
the earlier ObliQA benchmark (Gokhan et al.,
2024), and improve evidence quality with an
LLM–based validation step that filters out
∼20% of passages missed by prior natural lan-
guage inference (NLI) based filtering. Our
benchmarks show a notable performance drop
from single- to multi-passage retrieval, un-
derscoring the challenges of semantic overlap
and structural complexity in regulatory texts.
To address this, we propose a feature-based
learning-to-rank (LTR) framework that in-
tegrates lexical, semantic, and graph-derived
information, achieving consistent gains over
dense and hybrid baselines. We further add
a lightweight score-based filter to trim noisy
tails and an obligation-centric prompting tech-
nique. On ObliQA-MP, LTR improves retrieval
(Recall@10/MAP@10/nDCG@10) over dense,
hybrid, and fusion baselines. Our genera-
tion approach, based on domain-specific fil-
tering plus prompting, achieves strong scores
using the RePAS metric (Gokhan et al., 2025)
on ObliQA-MP, producing faithful, citation-
grounded answers. Together, ObliQA-MP
and our validation and RAG systems offer a
stronger benchmark and a practical recipe for
grounded, citation-controlled QA in regulatory
domains.

1 Introduction

Regulatory documents are long, complex, and
highly structured, often requiring professionals
to synthesize information from multiple sections
across documents to answer questions. Unlike
typical information retrieval tasks, relevant evi-
dence is frequently distributed across semantically
related but non-contiguous passages in multiple

documents. This poses challenges for retrieval
augmented generative question answering systems:
they must identify not only directly answer-bearing
text but also supporting context scattered across
long complex documents. To support progress in
this domain, the Regulatory Information Retrieval
and Answer Generation (RIRAG) task (Gokhan
et al., 2025) was introduced, along with the ObliQA
dataset (Gokhan et al., 2024), which provides syn-
thetic QA pairs grounded in real regulatory obliga-
tions. However, the initial formulation of ObliQA
primarily focused on single-passage retrieval and
relied on limited validation procedures, reducing
its applicability to more realistic multi-passage sce-
narios.

We address these limitations by introducing
ObliQA-MP, a multi-passage extension of ObliQA
requiring evidence from multiple documents, and
by refining the validation pipeline. We incorporate
a large language model (LLM)–based validation
step that significantly improves evidence quality by
filtering out approximately 20% of passages incor-
rectly retained by earlier NLI-based checks. Build-
ing on this dataset, we conduct a systematic study
of retrieval methods tailored for regulatory texts.
Specifically, we explore a feature-based learning-
to-rank (LTR) framework that integrates lexical,
semantic, and graph-based signals, and evaluate its
effectiveness against strong baselines. Our main
contributions are:

• ObliQA-MP1: a multi-passage regulatory QA
dataset with LLM-validated question–passage
alignment.

• Feature-based LTR for regulatory re-
trieval2 a framework that combines lexical,
semantic, and graph-derived signals, improv-
ing over dense and hybrid baselines.

1https://github.com/RegNLP/ObliQA-ML/
2https://github.com/RegNLP/RegulatoryRAG-ML
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• Post-retrieval filtering & grounded gener-
ation: a lightweight score-based filter plus
an obligation-aware prompting strategy that
enforces [P#] citations and provides fallback
answers when evidence is insufficient.

2 Related Work
Regulatory and Legal QA Datasets Several
datasets support regulatory and legal QA, in-
cluding EU2UK and UK2EU (Chalkidis et al.,
2021b) for legislative alignment, and GDPR-
based QA datasets (Abualhaija et al., 2022b,a) for
compliance-focused passage retrieval. Broader le-
gal benchmarks like EURLEX (Chalkidis et al.,
2021a), LexGLUE (Chalkidis et al., 2022), and
ContractNLI (Koreeda and Manning, 2021) fo-
cus on classification or entailment tasks. ObliQA
(Gokhan et al., 2024) addresses regulatory QA with
synthetic question-passage pairs sourced from the
financial regulations of a UAE authority. While
these resources advance regulatory QA, they pri-
marily focus on single-passage settings and lack
fine-grained validation of answer relevance — mo-
tivating our work on multi-passage QA with strict
evidence alignment in ObliQA-MP.
Retrieval: Sparse, Dense, Fusion, and LTR
Classical sparse retrieval (e.g., BM25) remains
competitive on legal/regulatory corpora, yet fusion
and learning-to-rank (LTR) often yield stronger top-
k quality. Reciprocal Rank Fusion (RRF) provides
a simple, effective ensemble over heterogeneous
runs (Cormack et al., 2009). In-domain dense
retrievers (e.g., E5 (Wang et al., 2022)) comple-
ment lexical signals, and hybrids (BM25+dense)
frequently outperform either alone. Feature-based
LTR with LambdaMART (Wu et al., 2010) and
LightGBM (Ke et al., 2017) exploits lexical over-
lap, run scores/ranks, and corpus signals; we adopt
a two-stage setup that gathers BM25/dense/RRF
candidates and re-ranks with LTR tailored to regu-
lation.
Legal RAG Systems and Benchmarks Legal
RAG is emerging, with benchmarks and systems
emphasizing evidence-grounded answers (e.g.,
LegalBench-RAG (Pipitone and Alami, 2024); in-
terpretable statute QA (Louis et al., 2024); case-
based and adaptive pipelines (Wiratunga et al.,
2024); KG-augmented RAG (Barron et al., 2025)).
These works are steps towards practical legal assis-
tants but largely target case law or statutes rather
than regulatory obligations. Our focus is comple-
mentary: ranking and selecting regulatory passages

for grounded answers in a multi-passage multi-
document setting.

3 ObliQA-MP: Multi-Passage Dataset for
Regulatory QA

We construct ObliQA-MP, a multi-passage ex-
tension of the ObliQA dataset (Gokhan et al.,
2024), starting from the original generation
pipeline—which includes structured regulatory
documents, topic-based rule clustering, and LLM-
based question generation. We merge newly gener-
ated multi-passage questions and their associated
passages with the original ObliQA dataset, and re-
tain only those questions that are linked to multiple
passages, resulting in 13,191 candidate examples.

To ensure the quality and relevance of the
supporting evidence, we validate each question-
passage pair using the gpt-4.1-2025-04-14
model. The model receives the following prompt:

You are validating if a Passage answers
a Question.
Reply with:
- "Directly Connected": Passage directly
answers.
- "Indirectly Connected": Passage
provides related context.
- "Not Connected": Passage is
irrelevant.
Respond ONLY with JSON: {"Connection":
"...", "ShortReason": "..." }

Each passage is labeled according to this schema.
Across 13,191 questions and 31,037 passage pairs,
4,212 passages (13.57%) are labeled as Directly
Connected, 20,474 (65.97%) as Indirectly Con-
nected, and 6,351 (20.46%) as Not Connected.

Table 1: Distribution of questions in the ObliQA-MP
dataset by number of associated passages across train,
validation, and test splits.

# Passages Train Validation Test

2 Passages 1,559 322 326
3 Passages 382 93 88
4 Passages 90 16 21
5 Passages 34 9 11
6 Passages 18 6 1

Total 2,083 446 447

To ensure that each retained question is sup-
ported by reliable and relevant evidence, we apply
two filtering criteria: each question must be asso-
ciated with at least two passages labeled as either
Directly Connected or Indirectly Connected, and at
least one of these passages must be labeled as Di-
rectly Connected. Applying these criteria removes
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3,872 questions that contain fewer than two con-
nected passages and 6,343 questions that lack any
Directly Connected passage.

The final ObliQA-MP dataset consists of 2,976
multi-passage QA pairs. We randomly split this
dataset into training, validation, and test sets using
a 70/15/15 ratio. Table 1 shows the distribution of
questions across splits and the number of associated
passages per question. A representative example
of a multi-passage QA pair is shown in listing 1.

Listing 1: Example QA pair from ObliQA-MP showing
multi-passage evidence across documents.
{" QuestionID ": "739921c1 -385a-4735-a052 -

dee9fba73602",
"Question ": "What are the key

compliance indicators that a Fund
Manager should monitor to confirm
that a Passported Fund is being
managed and operated within its
constitutional framework and
applicable ADGM legislation ?",

"Passages ": [
{ "DocumentID ": 16,

"PassageID ": "Part 3.6.(2)",
"Passage ": "Each Reporting UAE

Financial Institution shall
establish and implement
appropriate systems and
internal procedures to enable
its compliance with the
Cabinet Resolution and these
Regulations .",

"Connection ": "Indirectly
Connected",

"ShortReason ": "The passage
discusses general
institutional compliance
procedures but does not
directly mention Fund Managers
or Passported Funds."},

{ "DocumentID ": 5,
"PassageID ": "6.1.2" ,
"Passage ": "The Fund Manager of a

Passported Fund must:\n(a)
ensure that the Passported
Fund is at all times managed
and operated in compliance
with its constitution , in
accordance with applicable
ADGM legislation , and with
these Rules; and\n(b) maintain
, or cause to be maintained , a
Unitholder register for the

Passported Fund.",
"Connection ": "Directly Connected

",
"ShortReason ": "The passage

directly outlines the Fund
Manager 's responsibilities
regarding compliance with the
constitution and ADGM
legislation ."}

]
}

The LLM-based validation step introduced
in ObliQA-MP is intended to increase the
precision of supervision by addressing a sys-
tematic failure mode of NLI-only validation.
In the original ObliQA pipeline, passages
were treated as premises and questions as
hypotheses under a lightweight NLI model
(nli-deberta-v3-xsmall) (He et al., 2021).
However, NLI-only screening can admit false posi-
tives: a passage may linguistically entail the ques-
tion yet fail to provide extractable, citation-backed
answer spans (e.g., generic or templated compli-
ance statements)—a problem amplified in multi-
passage settings where evidence is distributed. In
ObliQA-MP we therefore prompt GPT-4 with ci-
tation control to label each candidate passage as
Directly Connected (contains answer spans), In-
directly Connected (supportive context), or Not
Connected. This finer-grained validation reveals
that 20.46% of the 31,037 evaluated passages are
Not Connected despite having previously passed
NLI filtering. Moreover, only 2,976 out of 13,191
candidate multi-passage questions contain at least
one Directly Connected passage and at least one
additional supporting passage, underscoring the ne-
cessity of stricter validation for dispersed-evidence
queries.

As a result, the retained QA pairs are grounded
in semantically related passages that also provide
explicit, citation-backed evidence sufficient to sup-
port answer generation; we nonetheless treat the
LLM check as a precision-oriented filter rather than
expert adjudication and acknowledge that a tar-
geted expert audit remains future work.

4 Feature-Based Learning-to-Rank for
Regulatory RAG

Our method builds on the standard RAG
pipeline—retrieve, re-rank, and generate (Fig. 1).
The key novelty lies in a feature-based learning-to-
rank retriever, combined with a lightweight score-
based filter to prune noisy candidates before answer
generation.

4.1 Retrieval and Ranking Framework

4.1.1 Baseline Retrieval
As baselines, we employ sparse and dense retriev-
ers. For sparse retrieval, we use BM25 (Robertson
and Jones, 1976), retrieving the top-k passages
(k ∈ {100, 200}) per query. While BM25 is ro-
bust in capturing keyword overlap, it struggles with
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Figure 1: Overview of our retrieval–and–ranking pipeline. Stage 1: candidate retrieval (BM25, fine-tuned dense,
and RRF). Stage 2: feature extraction (lexical, retrieval/fusion, graph, and neighbor-semantic features). Stage 3:
LTR re-ranking. Stage 3.5: score-based filtering (min–max; thresholds τmin and τ∆). Stage 4: obligation-centric
answer generation with citation control.

paraphrased obligations and multi-passage depen-
dencies. For dense retrieval, we fine-tuned four
pretrained encoders on the ObliQA-MP training
split: intfloat/e5-base-v2, BAAI/bge-base-en-v1.5,
all-MiniLM-L6-v2, and msmarco-MiniLM-L-12-v3.

4.1.2 Graph Construction
We represent the corpus as a heterogeneous, di-
rected passage-level graph to encode both the doc-
ument structure and cross-document references.

Nodes. We create four node types: (1) Docu-
ment nodes for each regulatory document; (2) Pas-
sage nodes for atomic sections/clauses identified
by stable IDs (e.g., “6.1.2”); (3) NamedEntity
(NE) nodes for globally shared entities extracted
from the source JSON (NamedEntities); and (4)
DefinedTerm (DT) nodes for globally shared glos-
sary/definition items (DefinedTerms). Each pas-
sage node stores the raw text and its document
identifier.

Edges. We add typed, directed edges to cap-
ture structure and references: (1) CONTAINS
(Document → Passage) for document member-
ship; (2) PARENT_OF (Passage → Passage) for
intra-document hierarchy, induced by trimming
dot-delimited IDs (e.g., 4.7.14 → 4.7); (3) MEN-
TIONS (Passage → NE) and USES_TERM (Pas-

Figure 2: Illustration of the regulatory graph. Docu-
ments contain passages; passages cite, mention, and use
terms or entities.
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Table 2: Feature groups and definitions used in the learning-to-rank model.

Group Feature Description

Lexical

unigram_hits Count of overlapping unigrams
bigram_hits Count of overlapping bigrams
q_coverage Proportion of unique query terms matched in the passage
idf_overlap_sum IDF-weighted sum over overlapping terms, idf(w) = log N+1

df(w)+1
+ 1

q_len, d_len Query and passage length (tokens)
len_diff Absolute length difference
len_ratio_q_over_d Query length divided by passage length

Graph
pr PageRank of the passage node (Brin and Page, 1998)
hits_auth HITS authority score (Kleinberg, 1999)
deg Degree centrality

Retrieval / Fusion

bm25_score, bm25_rank Score and per-query rank from a BM25 run
ft_e5_score, ft_e5_rank Score and per-query rank from a fine-tuned E5 dense run (base:

intfloat/e5-base-v2) (Wang et al., 2022)
rrf_score, rrf_rank Score and per-query rank from precomputed reciprocal rank fusion

(Cormack et al., 2009)
bm25xft_e5_w0.3_score Linear blend of BM25 and dense scores (0.3 / 0.7)
ft_e5xrrf_score_prod Product of dense and RRF scores (if both present)
rank_diff_bm25_ft Signed rank difference (BM25 – dense)
rank_diff_abs Absolute rank difference
rank_min, rank_max Min/Max rank across (BM25, dense)

Neighbor-Semantic q_to_nbrcentroid_cos Cosine between query embedding and centroid of up to K neighbors
q_to_nbrmean_cos Mean cosine between query embedding and each neighbor embedding

sage → DT); and (4) CITES/CITED_BY edges
between passages based on curated cross-reference
tables.

4.1.3 Feature Extraction

For each query–passage pair, we build features that
cover lexical overlap, run-based retrieval signals,
graph structure, and (optionally) neighbor-aware
semantics. Table 2 lists all features.
Lexical and Graph. Lexical overlap features (un-
igrams, bigrams, IDF-weighted coverage, length
statistics) ground the model in surface similarity,
while graph centralities (PageRank (Brin and Page,
1998), HITS (Kleinberg, 1999), degree) identify
structurally salient passages in the regulatory cita-
tion network.
Retrieval / Fusion. We consume scores and ranks
from three candidate runs: BM25, a dense retriever
fine-tuned from intfloat/e5-base-v2 on the ObliQA-
MP training split, and their Reciprocal Rank Fusion
(RRF, k = 60) (Cormack et al., 2009). For each
run we add {score, rank} per query. Interaction
features include a 0.3/0.7 linear blend (BM25 +
dense), a dense×RRF score product, and signed/ab-
solute/min/max rank differences between BM25
and dense.
Neighbor-Semantic. To model local semantic co-
herence, we embed queries and up to K graph
neighbors (K=10) using the pretrained intfloat/e5-

base-v2 encoder (Wang et al., 2022). We then com-
pute cosine similarity to the centroid of neighbor
embeddings and the mean over all query–neighbor
pairs.

4.1.4 Learning-to-Rank Model

We treat multi-passage selection as a ranking prob-
lem and employ a gradient-boosted decision tree
framework. We use LightGBM (Ke et al., 2017)
with the lambdarank objective (Wu et al., 2010),
which optimizes Normalized Discounted Cumula-
tive Gain (NDCG) by assigning higher penalties to
misordered relevant documents.

Each training instance corresponds to a query–
passage pair, represented by the features in Ta-
ble 2. Candidate sets are formed from the union of
BM25, dense, and fused runs, ensuring broad recall.
Queries form natural ranking groups, and relevance
labels are binary, derived from ObliQA-MP. Dur-
ing training, the model learns feature interactions
that discriminate relevant passages from distrac-
tors within each query group. At inference time,
the trained ranker re-scores the candidate set and
outputs a refined ranking. We release all training
scripts in our public repository3.

3https://github.com/RegNLP/RegulatoryRAG-ML
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Table 3: Results of applying the Gokhan et al. (2024) BM25 + GPT baseline from ObliQA to ObliQA-MP.

Dataset Method Recall@10 MAP@10 Es Cs OCs RePASs

ObliQA Baseline - BM25(passage)+GPT4 0.761 0.624 0.308 0.123 0.214 0.466
Baseline - BM25 (fusion)+GPT4 0.764 0.625 0.320 0.131 0.222 0.470

ObliQA-MP Baseline - BM25(passage)+GPT4 0.561 0.454 0.293 0.129 0.159 0.441
Baseline - BM25 (fusion)+GPT4 0.561 0.457 0.299 0.145 0.157 0.437

4.2 Post-Retrieval and Answer Generation

Score-Based Filtering. Given a per-query
ranked list (d1, . . . , dK) with scores (s1, . . . , sK)
from any run or re-ranker, we apply per-query
min–max normalization s̃i =

si−minj sj
maxj sj−minj sj

; if
maxj sj = minj sj , we set s̃i = 1 for all i. We
then keep a prefix by two rules applied for i ≥ 2:
(i) minimum score: s̃i ≥ τmin; (ii) drop rule:
stop if s̃i−1− s̃i ≥ τ∆. We use τmin=0.7, τ∆=0.2,
and always keep d1. This step removes low-utility
tail passages while retaining high-confidence
evidence for generation (Gokhan et al., 2024).

Answer Generation. We use a deterministic
LLM (temperature = 0.0, max output = 600 to-
kens) with instructions to (i) use only retrieved
passages, (ii) extract all obligations relevant to
the question, (iii) cite evidence as [P#], and (iv)
output Insufficient evidence in retrieved passages.
if sources are incomplete or contradictory. Con-
cretely, we use gpt-4.1-mini with a short, fixed
system message and a user prompt that enumerates
the filtered passages as [P1..Pn]. See Appendix A
for the full prompts and Appendix B for a worked
Question/Passages/Answer example.

5 Experiments and Results

5.1 Experimental Setup

We implement all sparse retrieval runs with the
Pyserini toolkit4, which provides a standard-
ized interface to Anserini’s BM25 implementa-
tion. Dense retrievers and cross-encoders are taken
from HuggingFace Transformers, and training of
the LTR model is carried out with LightGBM’s
lambdarank objective. All feature extraction, train-
ing, and evaluation scripts are released in our public
repository.5

To evaluate retrieval performance, we use the
pytrec_eval library6 (Van Gysel and de Ri-
jke, 2018), reporting Recall@10, MAP@10, and

4https://pypi.org/project/pyserini/
5https://github.com/RegNLP/RegulatoryRAG-ML
6https://pypi.org/project/pytrec-eval/

nDCG@10. For answer generation, we adopt the
RePASs metric7 (Gokhan et al., 2024), a domain-
oriented evaluation designed for regulatory QA.
Unlike general-purpose metrics such as ROUGE
or BLEU, RePASs directly assesses factual ground-
ing and obligation coverage: it combines (i) the
average entailment score (Es), (ii) the average con-
tradiction score (Cs, lower is better), and (iii) the
obligation coverage score (OCs). The final com-
posite captures both semantic faithfulness and do-
main adequacy.

5.2 Results
Comparative Evaluation with Prior Work To
contextualize our results, we reproduce the pipeline
of Gokhan et al. (2024), which was originally de-
signed for the ObliQA dataset. Their system com-
bines BM25-based retrieval with GPT-4 for answer
generation. For comparability, we re-run their re-
trieval component on the ObliQA-MP test set and,
in the answer generation stage, replace GPT-4 with
the more recent gpt-4.1-2025-04-14.

As shown in Table 3, BM25 achieves strong re-
sults on the original ObliQA dataset (Recall@10 =
0.761) but drops substantially on ObliQA-MP (Re-
call@10 = 0.561). This degradation illustrates the
increased difficulty of multi-passage retrieval and
underscores the need for more effective retrieval
models in such settings.

Retrieval Results. Table 4 reports retrieval ef-
fectiveness across different methods, grouped into
baselines, dense retrievers, hybrid combinations,
and our proposed LTR models. Among first-stage
retrievers, BM25 provides a strong sparse base-
line (Recall@10 = 0.549), while dense encoders
such as FT-BGE (Recall@10 = 0.573) and FT-
E5 (Recall@10 = 0.561) yield modest improve-
ments. Hybrid methods that combine BM25 with
dense retrievers consistently outperform individ-
ual components, with the best hybrid performance
achieved by BM25+FT-BGE at α = 0.5 (Re-
call@10 = 0.617, MAP@10 = 0.480, nDCG@10

7https://github.com/RegNLP/RePASs
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Table 4: Retrieval performance across different baselines, fusion methods, hybrid approaches, and our Learning-to-
Rank (LTR) model on ObliQA-MP test set.

Method Recall@10 MAP@10 nDCG@10

Baselines

BM25 0.5493 0.4056 0.5209
Dense (FT_E5) 0.5608 0.3976 0.5096
Dense (FT_BGE) 0.5730 0.4009 0.5143
Dense (FT_MiniLM) 0.5258 0.3698 0.4783
Dense (FT_MSMARCO) 0.5213 0.3582 0.4641

Fusion (RRF)

RRF(BM25 + FT_E5) 0.6105 0.4714 0.5898
RRF(BM25 + FT_BGE) 0.6173 0.4667 0.5883
RRF(BM25 + FT_MiniLM) 0.5956 0.4474 0.5672
RRF(BM25 + FT_MSMARCO) 0.6066 0.4567 0.5760

Hybrid (BM25 + Dense, α-weighted)

BM25 + FT_E5 (α = 0.3) 0.5977 0.4634 0.5819
BM25 + FT_E5 (α = 0.5) 0.6153 0.4888 0.6061
BM25 + FT_E5 (α = 0.7) 0.6114 0.4746 0.5910
BM25 + FT_BGE (α = 0.3) 0.6000 0.4586 0.5792
BM25 + FT_BGE (α = 0.5) 0.6171 0.4795 0.5993
BM25 + FT_BGE (α = 0.7) 0.6158 0.4714 0.5894
BM25 + FT_MiniLM (α = 0.3) 0.5880 0.4526 0.5719
BM25 + FT_MiniLM (α = 0.5) 0.6034 0.4642 0.5841
BM25 + FT_MiniLM (α = 0.7) 0.5878 0.4485 0.5655
BM25 + FT_MSMARCO (α = 0.3) 0.5917 0.4567 0.5746
BM25 + FT_MSMARCO (α = 0.5) 0.6021 0.4701 0.5859
BM25 + FT_MSMARCO (α = 0.7) 0.5917 0.4540 0.5671

Hybrid + Secondary Signals (SR)

BM25 + FT_BGE (α = 0.5) + SR(BGE) 0.5174 0.3684 0.4792
BM25 + FT_E5 (α = 0.5) + SR(BGE) 0.5245 0.3741 0.4859
BM25 + FT_MiniLM (α = 0.5) + SR(BGE) 0.5256 0.3713 0.4838
BM25 + FT_MSMARCO (α = 0.5) + SR(BGE) 0.5409 0.3761 0.4920

Learning-to-Rank (Ours)

LTR 0.6403 0.5116 0.6298

Table 5: Answer generation performance across the best baselines, fusion methods, hybrid approaches, and our
Learning-to-Rank (LTR) model on the ObliQA-MP test set.

Method Es Cs OCs RePASs

Gokhan et al. (2024) 0.2990 0.1450 0.1570 0.4370

BM25 0.3916 0.2171 0.1791 0.4512
Dense (FT_BGE) 0.4134 0.1918 0.2324 0.4847
RRF(BM25 + FT_BGE) 0.4083 0.2007 0.2164 0.4747
BM25 + FT_E5 (α = 0.5) 0.4320 0.1542 0.1960 0.4913
BM25 + FT_MSMARCO (α = 0.5) + SR(BGE) 0.4101 0.1785 0.2255 0.4857
LTR 0.4624 0.1340 0.1984 0.5090

= 0.599). RRF also delivers competitive gains, al-
though slightly lower than weighted hybrid fusion.

Our LTR models achieve the strongest per-
formance. In particular, LightGBM trained on
the full feature set (ltr_lgbm_allfeat) reaches
Recall@10 = 0.640, MAP@10 = 0.512, and
nDCG@10 = 0.630, outperforming all hybrid and
dense-only baselines. This demonstrates the ad-
vantage of feature-enriched reranking that inte-

grates lexical, retrieval, graph-based, and neighbor-
semantic signals.

Answer Generation Results Our LTR is best
overall, reaching RePASs 0.50 with the highest Es

(0.46) and lowest Cs (0.13), yielding more faithful
and less contradictory answers than all baselines.
Relative to the Gokhan et al. (2024) BM25+GPT
baseline on ObliQA-MP (RePASs 0.43), this is a
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+0.072 absolute gain (+16.5%).
We attribute this lift primarily to prompt align-

ment: the obligation-centric instructions with
mandatory [P#] citations (under deterministic de-
coding) steer the model to extract only supported
content, directly improving Es.

Discussion. Overall, our results demonstrate that
LTR models leveraging heterogeneous features pro-
vide consistent improvements over both sparse and
dense baselines. In particular, the feature-rich
LightGBM models outperform fusion strategies
such as RRF or linear interpolation, indicating that
the model successfully learns how to combine com-
plementary signals.

The comparison with prior work further high-
lights the limitations of relying solely on BM25 for
multi-passage retrieval. While BM25 remains com-
petitive in single-passage ObliQA, its performance
degrades sharply in the ObliQA-MP setting. By
contrast, our LTR approach maintains strong per-
formance under the more challenging conditions,
suggesting better robustness to contextual fragmen-
tation across passages.

These findings confirm that multi-passage reg-
ulatory retrieval requires models that integrate
structural and semantic cues beyond simple lex-
ical overlap. The integration of graph-derived and
neighborhood features is particularly promising, as
they allow the retriever to exploit inherent cross-
references and local semantic coherence within reg-
ulatory corpora. This aligns with our central claim:
robust retrieval for complex regulatory tasks de-
mands multi-faceted ranking strategies rather than
reliance on single retrieval approaches.

6 Conclusion

We introduced ObliQA-MP, a multi-passage reg-
ulatory QA dataset, and a stricter LLM-based val-
idation that removes incomplete or off-target evi-
dence more effectively than prior NLI filters. Build-
ing on this resource, we presented a retrieve–re-
rank–generate pipeline that couples a feature-based
LTR retriever with lightweight score-based filtering
and an obligation-centric prompt with mandatory
[P#] citation control.

Our experiments show that multi-passage re-
trieval is markedly harder than single-passage
ObliQA, yet LTR consistently outperforms strong
sparse, dense, and fusion baselines on retrieval met-
rics. More importantly, under a common, deter-
ministic generation setup, LTR plus filtering and

prompt discipline yields the best answer quality on
RePASs—raising entailment and lowering contra-
dictions relative to prior BM25 + GPT baselines on
ObliQA-MP.

Future work will focus on exploring hybrid re-
trievers that combine symbolic and neural rep-
resentations, developing more robust generation
pipelines, and designing evaluation metrics that
align more closely with expert-level legal reason-
ing and compliance practices.

Limitations

ObliQA-MP is a synthetic dataset generated and
validated using LLMs, which may introduce lin-
guistic biases and lack the nuance of real-world
regulatory queries. While our LLM-based valida-
tion improves semantic precision, it cannot fully
guarantee legal correctness or reasoning complete-
ness; a targeted expert audit and an error taxonomy
remain future work.

The dataset is based solely on regulations from
a single regulatory authority, limiting its generaliz-
ability to other jurisdictions. Additionally, although
each question includes at least one directly con-
nected passage, we do not assess whether all nec-
essary information is present for generating fully
comprehensive answers.

Our proposed learning-to-rank framework relies
on feature engineering that incorporates lexical, re-
trieval, graph-based, and neighbor-semantic signals.
While this combination provides strong empirical
gains, it also increases system complexity and may
reduce portability to other domains. The approach
requires access to structured cross-references to
construct the regulatory graph, which may not be
available in less formalized corpora. Moreover,
the reliance on pretrained encoders (e.g., e5-base-
v2) fine-tuned on regulatory QA introduces domain
adaptation challenges; performance may vary when
applied to corpora with different legal or linguistic
characteristics.

Ethics Statement

This work focuses on question answering over pub-
licly available regulatory documents. No personal,
sensitive, or proprietary data is used in the con-
struction of the ObliQA-MP dataset. All content
is derived from legal and regulatory sources meant
for public dissemination. We ensure that all syn-
thetic questions and annotations are automatically
generated and validated using LLMs.
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Appendix

A Answer Generation Prompt

A.1 System Instructions

You are a careful compliance QA assistant. Your job
is to extract and present ALL obligations that
are directly supported by the retrieved
passages for the given question.

Rules:
1) Use ONLY the provided passages , no outside

knowledge or speculation.
2) Include every obligation explicitly supported and

relevant to the question.
3) Each obligation MUST cite its evidence as [P#] (

one or more), using only valid passage indices.
4) If the passages are incomplete , ambiguous , or

contain contradictory obligations relevant to
the question , reply exactly with: Insufficient
evidence in retrieved passages.

5) Keep it concise and factual. Use a short bullet
list; avoid repetition.

6) Preserve modality (must/shall/should); do not
change meanings.

7) Do not include obligations that are outside the
scope of the question , even if present in the
passages.

A.2 User Message Template

Question:
{<question text >}

Retrieved Passages:
[P1] {<passage 1 text >}
[P2] {<passage 2 text >}
...
[PN] {<passage N text >}

Task: Based ONLY on the passages above , list ALL
obligations that answer the question. Each
bullet MUST end with supporting [P#] cites. If
evidence is insufficient or contradictory ,
reply exactly: 'Insufficient evidence in
retrieved passages.'

B End-to-End Example with Cited
Evidence ([P#]): Retrieval → Filtering
→ Answering

Question: What specific actions does the FSRA expect
an Authorised Person to take to resolve any

identified breach of Sanctions in a 'timely
fashion ' as mentioned in AML Rule 11.2.1(1)?

Answer:
- An Authorised Person must have powers to resolve

any breach of sanctions in a timely fashion ,
including taking emergency action itself or
compelling the delivery and/or storage facility
to take appropriate action.

- The Authorised Person must have the ability to
sanction a Member , market participant , or the
delivery and/or storage facility for acts or
omissions that compromise compliance with
applicable sanctions.

- The Authorised Person must notify the Regulator as
soon as practicable of any breaches or

potential breaches of applicable sanctions and
the actions taken to correct them. [P1 , P2]

P1: REGULATORY REQUIREMENTS - SPOT COMMODITY
ACTIVITIES\nSanctions\nPursuant to AML Rule
11.2.1(1) , an Authorised Person must have
arrangements in place to ensure that only Spot
Commodities that are not subject to sanctions
or associated with an entity in the supply
chain that is itself subject to a sanction , are
used as part of its Regulated Activities , or

utilised as part of a delivery and/or storage
facility operated by itself (or by any third
parties it uses). In demonstrating compliance
with the Rule , an Authorised Person must have
powers to resolve any breach in a timely
fashion , such as taking emergency action itself
or by compelling the delivery and/or storage

facility to take appropriate action. The FSRA
expects this to include the Authorised Person
having the ability to sanction a Member , market
participant or the delivery and/or storage

facility for acts or omissions that compromise
compliance with applicable sanctions.

P2: REGULATORY REQUIREMENTS - SPOT COMMODITY
ACTIVITIES\nSanctions\nPursuant to AML Rule
11.1.1(2) , an Authorised Person must have
arrangements in place to notify the Regulator ,
as soon as practicable , of any breaches , or
potential breaches of applicable sanctions , as
well as the actions it has taken to correct.
Authorised Persons using Accepted Spot
Commodities will also need to comply with all
other applicable FSRA notification requirements
.

Question: Could you provide further guidance on the
expectations for an Authorised Person in terms
of establishing a risk management system that
addresses the specific risks listed ,
particularly in relation to reinsurance risk?

Answer:
- An Authorised Person must develop , implement , and

maintain a risk management system to identify ,
assess , monitor , mitigate , and control
reinsurance risk , which relates to risks from
the Insurer 's use of reinsurance arrangements
as cedant [P2].

- The risk management system must address all
material risks , including reinsurance risk
specifically [P3].

- The system must include a written reinsurance
management strategy appropriate to the size and
complexity of the Insurer 's operations ,

defining and documenting the Insurer 's
objectives and strategy regarding reinsurance
arrangements [P4].

- The reinsurance management strategy must include
systems for selecting reinsurance brokers and
advisers , selecting and monitoring reinsurance
programmes , clearly defined managerial
responsibilities and controls , and clear
methodologies for determining all aspects of
the reinsurance programme , including:
- identification and management of aggregations

of risk exposure;
- selection of maximum probable loss factors;
- selection of realistic disaster scenarios ,

return periods , and geographical
aggregation areas;
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- identification and management of vertical and
horizontal coverage of the reinsurance
programme [P1].

- The strategy must also include selection of
participants on reinsurance contracts
considering diversification and
creditworthiness , and systems for identifying
credit exposures to individual reinsurers or
groups of connected reinsurers on existing
programmes [P1].

P1: An Insurer 's reinsurance management strategy
should , at a minimum , include the following
elements :\na.\ tsystems for the selection of
reinsurance brokers and other reinsurance
advisers ;\nb.\ tsystems for selecting and
monitoring reinsurance programmes ;\nc.\ tclearly
defined managerial responsibilities and

controls ;\nd.\ tclear methodologies for
determining all aspects of a reinsurance
programme , including :\ni.\ tidentification and
management of aggregations of risk exposure ;\
nii.\ tselection of maximum probable loss
factors ;\niii.\ tselection of realistic disaster
scenarios , return periods and geographical

aggregation areas; and\niv.\ tidentification and
management of vertical and horizontal coverage
of the reinsurance programme ;\ne.\ tselection

of participants on reinsurance contracts ,
including consideration of diversification and
credit worthiness; and\nf.\ tsystems for
identifying credit exposures (actual and
potential) to individual reinsurers or Groups
of connected reinsurers on programmes that are
already in place.

P2: An Insurer must develop , implement and maintain
a risk management system to identify , assess ,
monitor , mitigate and control reinsurance risk.
Reinsurance risk refers to risks associated

with the Insurer 's use of reinsurance
arrangements as cedant.

P3: While the risk management systems of an Insurer
must address all material risks , Rule 2.3 lays
down specific requirements for an Insurer to
maintain risk management systems in respect of
the following areas:\na.\ tbalance sheet risk;\
nb.\ tcredit quality risk;\nc.\tnon financial or
operational risk;\nd.\ treinsurance risk; and\

ne.\ tGroup risk.
P4: Without limiting the generality of Rule 2.3.4 ,

an Insurer 's risk management system in respect
of its use of reinsurance arrangements must
include the development , implementation and
maintenance of a written reinsurance management
strategy , appropriate to the size and

complexity of the operations of the Insurer ,
defining and documenting the Insurer 's
objectives and strategy in respect of
reinsurance arrangements.

C Ablation on Learning-to-Rank (LTR)

C.1 Model hyperparameter ablation

We ablate core LTR hyperparameters while hold-
ing the feature set in Table 2 and the training
protocol fixed. We sweep: (i) candidate-union
size K ∈ {100, 200}, (ii) LightGBM tree width
(num_leaves ∈ {63, 127}), (iii) learning rate
∈ {0.05, 0.07}, and (iv) min_data_in_leaf ∈
{50, 100}. At test time we re-apply each trained
model using the per-model feature order saved at
training and the same IDF definition to ensure
train/test feature parity. We report nDCG@10,
MAP@10, and Recall@10 with pytrec_eval on
the ObliQA MultiPassage test set.

Results. Table 6 (and the full grid in Ta-
ble 7) summarizes outcomes. The LTR base-
line attains 0.6298 nDCG@10 (MAP@10=0.5116,
R@10=0.6403). Within our grid, the best configu-
ration uses K=200, num_leaves= 63, lr= 0.05,
and min_leaf= 50, yielding 0.6121 nDCG@10
(MAP@10=0.4968, R@10=0.6151)—only 0.0177
below the legacy best—indicating the simplified
setting remains competitive.

Observations. (1) Larger candidate pools
(K=200) consistently help. (2) Slightly smaller
trees (num_leaves= 63) are marginally preferable
to wider ones. (3) A moderate learning rate (0.05)
edges out 0.07. (4) Varying min_data_in_leaf
has a small effect at the top. (5) A lightweight
cross-encoder second pass (MiniLM-L-6-v2,
w=0.2) did not improve nDCG@10 and is omitted
from subsequent results for clarity.

C.2 Feature ablation
We perform a drop-one-group study over the
feature groups in Table 2. For each group,
we remove its columns from the training/vali-
dation feature CSVs, retrain the LTR with the
tuned hyperparameters (K=200, num_leaves=
63, lr= 0.05, min_leaf= 50), and evaluate on
the same test candidates. Table 8 reports test
metrics and absolute deltas w.r.t. the tuned LTR
baseline (nDCG@10=0.6121, MAP@10=0.4968,
R@10=0.6151).

Results. Dropping Lexical features causes
the largest degradation (nDCG@10=0.0844,
∆−0.5277; MAP@10=0.0511, ∆−0.4457;
R@10=0.1251, ∆−0.4900). Removing
Graph signals yields nDCG@10=0.5260
(∆−0.0861), while removing Neighbor-Semantic
yields nDCG@10=0.5429 (∆−0.0692). Re-
moving Retrieval/Fusion signals results in
nDCG@10=0.5717 (∆−0.0404).8

Observations. Lexical matching remains indis-
pensable for this task, with graph-based centrality
(PageRank/HITS/degree) and neighbor-semantic
cues providing meaningful complementary gains.
Fusion signals contribute consistent but smaller im-
provements than the other groups, suggesting that
most of the discriminative power is captured by
lexical and graph structure, with fusion providing
a pragmatic boost.

8In our feature CSVs, Retrieval/Fusion corresponds to the
precomputed RRF score/rank.
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Table 6: LTR baselines on ObliQA MultiPassage (test). We report nDCG@10, MAP@10, and Recall@10 (macro-
averaged).

Run (label) nDCG@10 MAP@10 Recall@10

LTR (all features) 0.6298 0.5116 0.6403
LTR (allfeat, min_leaf=100) 0.6143 0.4959 0.6219
LTR + CE (MiniLM, w=0.2) 0.0504 0.0246 0.0895

Table 7: LTR ablation on ObliQA MultiPassage (test). We vary K, num_leaves, learning rate (lr), and
min_data_in_leaf. Neighbor-semantic features are off for all rows. Metrics are nDCG@10, MAP@10, Re-
call@10 (macro-averaged).

K ns num_leaves lr min_leaf nDCG@10 MAP@10 Recall@10

200 off 63 0.05 50 0.6121 0.4968 0.6151
200 off 63 0.07 100 0.6106 0.4955 0.6153
200 off 63 0.05 100 0.6093 0.4935 0.6164
200 off 127 0.07 100 0.6075 0.4920 0.6104
100 off 63 0.07 50 0.6075 0.4905 0.6102
200 off 63 0.07 50 0.6069 0.4920 0.6101
100 off 63 0.07 100 0.6069 0.4915 0.6105
100 off 63 0.05 100 0.6066 0.4915 0.6065
100 off 127 0.05 100 0.6063 0.4914 0.6104
100 off 63 0.05 50 0.6063 0.4889 0.6147
200 off 127 0.05 50 0.6060 0.4901 0.6122
100 off 127 0.05 50 0.6053 0.4898 0.6136
200 off 127 0.07 50 0.6040 0.4870 0.6104
100 off 127 0.07 50 0.6037 0.4877 0.6079
100 off 127 0.07 100 0.6028 0.4871 0.6094
200 off 127 0.05 100 0.5981 0.4824 0.6038

Table 8: Feature ablation on the test split. Each row drops one group from the tuned LTR baseline (K=200, ns=off,
num_leaves=63, lr=0.05, min_leaf=50). ∆ is the absolute difference vs the baseline.

Group nDCG@10 MAP@10 Recall@10 ∆ nDCG@10 ∆ MAP@10 ∆ Recall@10

Retrieval/Fusion 0.5717 0.4503 0.5900 −0.0404 −0.0465 −0.0251
Lexical 0.0844 0.0511 0.1251 −0.5277 −0.4457 −0.4900
Graph 0.5260 0.4107 0.5257 −0.0861 −0.0861 −0.0894
Neighbor-Semantic 0.5429 0.4250 0.5547 −0.0692 −0.0719 −0.0604
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