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Abstract

Black-box verifiers for abstractive summaries
often struggle with complex claims that require
multi-hop reasoning, and they typically pro-
vide a single verdict without an interpretable
rationale. As a result, it becomes difficult to
understand or audit their failures. We address
this with HalluTree, a framework that models
verification as an interpretable claim tree. Hal-
luTree first decomposes summaries into sub-
claims, classifying each into two types – ex-
tractive (directly verifiable against evidence) or
inferential (requiring reasoning) – which follow
distinct verification paths. Extractive claims are
robustly verified against evidence using an en-
semble of lightweight NLI models. Crucially,
inferential claims trigger a process that gener-
ates a natural program – an explicit reasoning
chain that integrates supporting evidence and
logical steps – which is then executed to de-
termine the claim’s validity. Evaluation on the
LLM-AggreFact benchmark demonstrates Hal-
luTree’s effectiveness: it achieves performance
competitive with top-tier black-box models, in-
cluding Bespoke-MiniCheck, while providing
transparent and auditable reasoning programs
for every inferential judgment. This combi-
nation of competitive accuracy and high in-
terpretability offers a significant advance over
opaque, single-classification verifiers.

1 Introduction

Large language models (LLMs) frequently hallu-
cinate, producing content that is factually unsup-
ported or incorrect (Dmonte et al., 2025; Huang
et al., 2023, 2025). Even when grounded in
source documents, LLM-generated summaries may
contain contradictions or unverifiable statements,
which can mislead readers and contribute to the
spread of misinformation (Huang et al., 2025; Scirè
et al., 2024). Ensuring the factual consistency of
such outputs is therefore critical, particularly in
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domains where accuracy is paramount. In addition
to raw accuracy, the explainability of these classi-
fiers is increasingly important for transparency and
human validation (Wang and Shu, 2023; Dammu
et al., 2024). Without clear rationales, even correct
predictions may be difficult to trust, and incorrect
ones may be difficult to diagnose.

Existing work on grounded factuality veri-
fication spans a variety of strategies, includ-
ing entailment-based classification, question-
answering formulations, and more recent LLM-
driven verification pipelines (Dmonte et al., 2025;
Huang et al., 2023). While these approaches have
achieved strong results in certain settings, they
often provide limited transparency into the infer-
ences behind complex judgments, and struggle with
claims that require multi-hop reasoning across dis-
persed evidence (Belém et al., 2025). Additionally,
despite the lack of fine-grained classification and
weak interpretability, frontier LLMs with few-shot
prompting can achieve top-tier performance even
compared to the strongest specialized baselines, but
still have room for improvement in complex reason-
ing tasks (Seo et al., 2025). This highlights the need
for strong-performing and explainable verification
methods that are robust to challenging multi-hop
reasoning.

We propose a dual-path verification framework
that decomposes a generated summary into sub-
claims and organizes verification results in an inter-
pretable claim tree, with the summary as the root.
The summary is first decomposed and decontextu-
alized with an LLM to preserve original, ensuring
potential hallucinations are not either introduced
or inadvertently corrected away. The system then
filters out unverifiable subclaims (advice, opinions,
or other statements not containing factually verifi-
able assertions) before classifying each subclaim
as extractive (directly checkable against the source)
or inferential (requiring multi-hop reasoning over
evidence to verify).
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Extractive subclaims are verified using two exist-
ing lightweight NLI-based hallucination detectors,
LettuceDetect (Ádám Kovács and Recski, 2025)
and MiniCheck-FT5 (Tang et al., 2024a), followed
by evidence retrieval for ease of understanding.

Inferential subclaims trigger a reasoning path-
way that gathers supporting facts from the source
and beyond, which may include textual evidence,
mathematical reasoning, logical inference, or unre-
lated elementary knowledge that need not be ver-
ified. We attach the chain-of-thought trace from
the LLM when verifying the subclaim based on
the supporting facts in the tree to boost auditability
and ease of understanding. More importantly, these
supporting facts are developed by the LLM into a
natural program – a natural language-based chain
of reasoning which explicitly sets out premises and
rigorously demonstrates how they are composed
to support the claim (Ling et al., 2023). The rea-
soning of this natural program is then executed and
validated step-by-step by an LLM for verification,
with dynamic error correction applied to detected
mistakes in the program.

The verification process is represented as a hi-
erarchical claim-tree for easy visualization, where
the root corresponds to the full summary, subclaims
are the children of the root, and each subclaim’s
children are either the evidence or supporting facts
which motivate its classification, making the moti-
vation for each subclaim’s classification clear. The
summary is deemed supported only if all verifi-
able subclaims (extractive and inferential) are sup-
ported, ensuring conservative, evidence-grounded
judgments that expose the full chain of evidence
and reasoning behind complex decisions, yielding
stronger reliability and greater interpretability than
prior single-pass verifiers.

Our primary contributions are:

• Typed, dual-path verification. A framework
that separates extractive and inferential sub-
claims, verifying the former with lightweight
NLI models and the latter through natural pro-
grams that rigorously combine evidence and
reasoning, yielding stronger multi-hop perfor-
mance.

• Interpretable claim tree. A hierarchical
structure that links each subclaim to evidence
or inferences, with natural programs making
inferential reasoning rigorous and auditable
rather than opaque.

• Empirical gains. Evaluation on AggreFact-
CNN (Hermann et al., 2015), AggreFact-
XSUM (Narayan et al., 2018), TofuEval (Tang
et al., 2024b), and WiCE (Kamoi et al., 2023)
using balanced accuracy, showing improve-
ments over strong baselines, including GPT-
4o, while also providing enhanced human-
interpretability and also setting a new state-of-
the-art on WiCE.

2 Related Work

Entailment-Based Methods. A major line of
work frames grounded factuality classification as
natural language inference (NLI) (Dmonte et al.,
2025; Huang et al., 2023). Several methods fine-
tune an NLI model to predict the faithfulness of a
generated claim, sentence, or summary against the
ground-truth source documents (Goyal and Dur-
rett, 2020; Tang et al., 2024a; Laban et al., 2022;
Kryscinski et al., 2020; Zha et al., 2023). These
approaches are very efficient compared to methods
involving LLMs but often offer poor interpretabil-
ity due to the low granularity of the classification
and the lack of a provided rationale. This can often
leave what is truly causing the classification am-
biguous to humans. To combat this, some methods
operate at a token or span level (Ádám Kovács and
Recski, 2025; Rawte et al., 2025; Belyi et al., 2025).
These provide a finer granularity of classification,
often helping pinpoint the precise subclaims which
are not faithful. However, since these methods
only operate on spans of the generated text, when
multi-hop reasoning is involved, they may still fail
to reveal the intermediate inferences or supporting
facts that connect the evidence to the claim, as such
implicit inferences do not appear in the generated
text.

QA-Based Metrics. Another prominent class of
faithfulness evaluation methods frames factuality
checking as a question-answering (QA) problem
(Scialom et al., 2021; Fabbri et al., 2022; Wang
et al., 2020). In these approaches, a set of questions
is typically generated from the summary. A QA
model is then used to answer these questions given
the source documents, and the answers are com-
pared to the corresponding content in the summary
(Huang et al., 2023). High overlap or semantic sim-
ilarity indicates factual consistency, whereas dis-
crepancies signal potential hallucinations. While
QA-based metrics offer the advantage of explic-
itly tying verification to discrete factual questions,
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Figure 1: This diagram shows a visualization of our method’s claim tree structure as well as a demonstration of how
our chain-of-thought reasoning traces enhance explainability.

multi-hop reasoning may still be unexplored or
left implicit as the reasoning required to support
or refute a claim is often only able to emerge in-
directly through evidence from the source rather
than being explicitly modeled from the surface-
level claims. Additionally, effectively verifying
how inferences over evidence connect to multi-hop
claims may require reasoning over both the source
and the summary, rather than relying on isolated
question–answer pairs.

LLM-based Metrics. A growing body of work
leverages LLMs for factuality evaluation by de-
composing outputs into smaller, verifiable units
(Huang et al., 2025). A common approach, often
termed Decompose-then-Verify, prompts an LLM
to split a generated summary or claim into atomic
statements, assess each against source evidence,
and then aggregate the results into an overall fac-
tuality judgment (Hu et al., 2025; Lu et al., 2025;
Zheng and Lee, 2025; Akbar et al., 2024). This
approach improves interpretability over coarse-
grained entailment scoring by providing statement-
level judgements. While the faithfulness judge is
typically an LLM, FENICE (Scirè et al., 2024) in-
stead applies an NLI model to each subclaim.

Our method builds on this paradigm but intro-
duces several extensions. First, we propose a dual-
typed classification of subclaims into extractive

and inferential, with separate verification path-
ways. Like FENICE, extractive claims are han-
dled with lightweight NLI-based verifiers. In con-
trast, inferential claims trigger a reasoning process
that collects supporting facts—which may include
source evidence or logical and mathematical infer-
ences—and evaluates whether they logically sup-
port the claim through a natural program, a struc-
tured reasoning sequence executed and validated
step by step, marking its first use in factuality veri-
fication for summarization.

3 Methodology

Our claim verification framework operates through
a multi-stage process that decomposes generated
text into subclaims, verifies each subclaim accord-
ing to its relation to the evidence, and organizes
the verification results in an interpretable tree struc-
ture. Given a summary, the framework constructs
a tree where the root node represents the full sum-
mary, intermediate nodes represent subclaims, and
leaf nodes contain evidence snippets or supporting
facts.

3.1 Claim Decomposition

We begin by prompting the LLM (we use GPT-
4o for our purposes) to break the summary into
decontextualized subclaims. Rather than decom-
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posing into atomic claims, we decompose the sum-
mary into subclaims mirroring the structure of a
sentence or complete clauses as closely as possi-
ble, to preserve semantic fidelity and avoid over-
decomposition. For decontextualization, pronouns
and ambiguous references are replaced by the LLM
with explicit entity mentions, making each sub-
claim interpretable in isolation.

3.2 Subclaim Classification
The LLM then classifies each subclaim into one
of three categories, determining the verification
pathway that follows.

Extractive: Subclaims that can be directly
supported or refuted by textual evidence from
the source without requiring additional reasoning
steps.

Inferential: Subclaims that are not directly sup-
ported or refuted by evidence in the documents and
may require multi-hop reasoning or logical infer-
ence to judge their veracity.

Unverifiable: Subclaims that represent opinions,
judgements, or unrelated elementary knowledge
not about the subject(s) of the source. These are
excluded from further processing.

3.3 Verification Process
Depending on the classification of the subclaim,
the verification process differs.

Subclaims classified as extractive are evaluated
on LettuceDetect (Ádám Kovács and Recski, 2025)
and MiniCheck-FT5 (Tang et al., 2024a) for verifi-
cation, lightweight NLI models for groundedness
classification. We aggregate the results of these
models by deeming the claim unsupported if both
models find it unsupported; otherwise, we deem
the claim supported.

For subclaims classified as inferential, the sys-
tem initiates a reasoning pathway. The LLM first
proposes a set of supporting facts—drawn from
the source text, logical or mathematical reason-
ing, or elementary knowledge not requiring verifi-
cation—and orders them so they can form a co-
herent reasoning chain. Finally, we prompt an
LLM to judge the groundedness of the claim given
the supporting facts with chain-of-thought reason-
ing. These facts are added as children of the sub-
claim node in the verification tree, and additionally,
to increase explainability, we attach the chain-of-
thought reasoning from the LLM’s verification to
provide the rationale and logical connection be-
tween the supporting facts and the claim.

After initial judgment, for each inferential sub-
claim, the LLM constructs a natural program based
off its supporting facts using few-shot prompting
adapted from Ling et al. (2023) in order to verify
the judgment rigorously. A natural program is a nat-
ural language-based chain of reasoning that explic-
itly lays out premises and demonstrates how they
compose to support the claim. Crucially though,
this does not simply verify the judgment rigorously
but provides an interpretable demonstration of the
underlying reasoning to humans, allowing even the
rigorous reasoning between the premises and the
claim to be audited. This reasoning for the natural
program is executed and validated step-by-step by
the LLM, with mistakes detected within the origi-
nal classification being dynamically corrected.

3.4 Evidence Retrieval for Extractive
Subclaims

To collect the relevant evidence snippets for extrac-
tive subclaims, we first segment the source into
manageable chunks. The LLM is then prompted it-
eratively, selecting the most relevant chunk with re-
spect to verifying the subclaim and decides whether
additional evidence is needed. This process contin-
ues until the model judges the gathered evidence
sufficient for verification. Finally, we add all col-
lected snippets as children of the respective sub-
claim.

3.5 Final Verification

After the independent verification of subclaims,
the system considers that the original claim is sup-
ported only if all verifiable subclaims (extractive
and inferential) are individually supported.

4 Experiments and Results

4.1 Datasets

To evaluate our method, we evaluate the balanced
accuracy of our model on binary factuality verifi-
cation tasks from several established datasets from
the LLM-AggreFact benchmark (Tang et al., 2023)
that are established in faithfulness verification for
abstractive summarization.

AggreFact-CNN includes generated summaries
of CNN/DailyMail articles from the CNN/DM
dataset (Hermann et al., 2015). The dataset consists
of source news articles from the CNN/DailyMail
corpus, generated summaries produced by various
summarization models, and binary hallucination
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Model AggreFact TofuEval WiCE AVGCNN XSUM MediaS MeetingB

GPT-4o-2024-08-06 67.5 73.9 66.0 81.1 74.3 72.6
AlignScore 73.2 72.4 67.1 76.5 69.6 71.8
LettuceDetect-large-v1 58.3 67.7 65.8 69.6 79.2 68.1
MiniCheck-FT5 69.9 74.3 73.6 77.6 72.4 73.5
Bespoke-MiniCheck-7B 65.5 77.8 76.0 78.3 83.0 76.1
HalluTree 68.5 74.5 66.4 79.8 83.7 74.6

Table 1: Balanced accuracy (%) on datasets from LLM-AggreFact. Highest score is bolded. Second highest is
underlined.

Model AggreFact TofuEval WiCE AVGCNN XSUM MediaS MeetingB

HalluTree (Dual-Pathed) 68.5 74.5 66.4 79.8 83.7 74.6
Treat All Extractive 58.4 71.0 57.8 68.6 80.1 67.2
Treat All Inferential 63.0 71.9 65.8 79.2 83.0 72.6

Table 2: Results of ablation study on dual-paths for subclaims.

labels indicating whether summaries contain fac-
tual inconsistencies with respect to their source
articles. We evaluate on the 558 examples in LLM-
AggreFact.

AggreFact-XSum contains generated summaries
of BBC articles from the XSum corpus (Narayan
et al., 2018). Like AggreFact-CNN, it provides
binary hallucination labels for summaries gener-
ated by various models. We evaluate on the 558
examples in LLM-AggreFact.

WiCE is a fine-grained textual entailment dataset
built on claim and evidence pairs extracted from
Wikipedia (Kamoi et al., 2023). The data set uses
real-world examples extracted from Wikipedia sen-
tences, evidence articles to which the claims re-
fer, fine-grained entailment judgments over sub-
sentence units, and minimal subsets of evidence
sentences supporting each sub-claim. WiCE in-
cludes challenging verification and retrieval prob-
lems involving multi-sentence reasoning. We eval-
uate on the 358 examples from this dataset in LLM-
AggreFact.

TofuEval contains two factuality evaluation tasks
– MediaS and MeetingB – drawn from the TofuE-
val benchmark (Tang et al., 2024b), which was
designed to assess LLM factual consistency across
multiple domains. MediaS consists of summaries
of news and media sources with binary factual-
ity annotations, while MeetingB consists of gener-

ated summaries of meeting transcripts, annotated
for consistency with the meeting records. These
datasets broaden evaluation coverage to conversa-
tional and multi-speaker domains, providing a more
diverse testbed for factual verification methods.

4.2 Baselines

We compare our method against strong baselines
spanning both NLI-based and LLM-based verifi-
cation approaches. On the NLI side, we include
LettuceDetect (Ádám Kovács and Recski, 2025),
MiniCheck-FT5 (Tang et al., 2024a), and Align-
Score (Zha et al., 2023), which use lightweight nat-
ural language inference models to detect hallucina-
tions and assess faithfulness. Among LLM-based
systems, we consider chain-of-thought prompting
GPT-4o, a state-of-the-art model frequently used
for faithfulness assessment, as well as Bespoke-
MiniCheck-7B (Tang et al., 2024a), a state-of-
the-art finetuned model which outperforms frontier
models on LLM-AggreFact.

4.3 Main Results

Table 1 presents balanced accuracy across the
datasets selected from LLM-AggreFact. Hal-
luTree achieves the second-highest average accu-
racy (74.6%), outperforming all baselines we tested
except for Bespoke-MiniCheck. While Bespoke-
MiniCheck attains a slightly higher average accu-
racy, HalluTree offers a key advantage in trans-
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Snippet from Natural Program Output for Inferential Subclaim (WiCE)

Premises
#1. ROOT (R4): “Currently, SriLankan operates an all-Airbus fleet with the
exception of its discontinued Air-Taxi services.”
#2. S4 (INFERENTIAL): “SriLankan Airlines currently operates an all-Airbus
fleet with the exception of SriLankan Airlines' discontinued Air-Taxi services.”
#3. E4A: The context mentions a fiasco involving the launch of an air taxi
service
which was eventually abandoned causing millions of dollars in losses to
SriLankan Airlines.
#4. E4B: The context does not provide any specific information about the\
current fleet composition of SriLankan Airlines being exclusively Airbus.

Reasoning
#5. (by #3) The air taxi service of SriLankan Airlines was discontinued.
#6. (by #4) There is no evidence in the context to confirm that SriLankan
Airlines operates an all-Airbus fleet currently.
#7. (by #5, #6) While the air taxi service is confirmed to be discontinued, the
claim that the current fleet is all-Airbus is not supported by the provided
evidence; S4 is not supported.

Subclaim Status
- S4: Not Supported — The context confirms the discontinuation of the air taxi
service but does not confirm that the current fleet is exclusively Airbus.

Figure 2: An example natural program generated during verification of a inferential claim from the WiCE dataset.

parency. The finer-grained decomposition into sub-
claims, coupled with hierarchical verification trees,
makes the reasoning process auditable and inter-
pretable.

Importantly, HalluTree outperforms all NLI-
based methods such as AlignScore, MiniCheck-
FT5, and LettuceDetect, demonstrating that struc-
tured decomposition paired with specialized verifi-
cation pathways can yield stronger performance
than flat entailment classification. This shows
that HalluTree narrows the gap with Bespoke-
MiniCheck while introducing interpretable reason-
ing, enabling both competitive accuracy and im-
proved transparency.

4.4 Explainability in Practice

Unlike black-box verifiers that surface only a final
label, HalluTree exposes the full reasoning trail for
each decision. Consider the Natural Program ex-
cerpt for the WiCE subclaim about SriLankan Air-
lines’ fleet: the system (i) lists concrete premises
(#1–#4), separating source evidence from assump-
tions; (ii) derives intermediate conclusions (#5–#6)

with provenance (e.g., “by #3”); and (iii) composes
these steps into a final inference (#7) that justifies
the verdict of "Not Supported" because the con-
text confirms the air-taxi discontinuation but lacks
evidence that the current fleet is all-Airbus. This
structured trace makes the decision auditable: a re-
viewer can pinpoint exactly which premise would
need revision to flip the outcome.

Empirically, HalluTree matches or exceeds most
state-of-the-art baselines while providing superior
transparency. For extractive claims, span-level ev-
idence highlights show where the text is (or isn’t)
supported; for inferential claims, natural programs
show why—linking premises to conclusions via
explicit, checkable steps. The result is a verifier
that not only performs competitively but also turns
factuality judgments into explanations that users
can inspect, contest, and improve.

4.5 Ablations

To better understand the effect of our dual-path rout-
ing, we conduct two ablations. First, we evaluate
variants that route all subclaims through the extrac-
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tive pathway (All-Extractive) or through the infer-
ential pathway (All-Inferential). Second, we ana-
lyze the distribution of claim types across datasets
along with our method’s performance on those
datasets considering the proportion of extractive
and inferential claims.

Routing Variants. Table 2 shows balanced ac-
curacy for the ablated models. Both constrained
settings degrade performance: All-Extractive
struggles on inference-heavy datasets, while All-
Inferential incurs extra reasoning cost while having
worse performance on extractive-heavy datasets.
These results demonstrate that routing based on
subclaim type enables our method to selectively
apply natural program reasoning where it matters,
improving accuracy on complex inferential claims,
while avoiding unnecessary overhead on extractive
ones.

Claim-Type Distribution. We also measure the
proportion of extractive vs. inferential subclaims in
each dataset (Table 3). Comparing our results from
Table 1, our method performed strongly compared
to other baselines on datasets with heavy inferen-
tial subclaim ratios, such as WiCE and AggreFact-
XSUM, while generally maintaining more average
performance on extractive-heavy datasets. This dis-
tribution provides an explanation for where type-
aware routing yields the largest gains.

Dataset Extractive Inferential

AggreFact-CNN 96.9 2.1
AggreFact-XSUM 50.4 49.6
TofuEval-MediaS 85.6 14.4
TofuEval-MeetingB 81.2 18.8
WiCE 42.0 58.0

Table 3: Subclaim type distribution (% of verifiable
subclaims).

Summary. These ablations highlight that type-
aware decomposition and routing are not only in-
terpretable but also empirically necessary: forc-
ing all claims into a single pathway reduces accu-
racy, while claim-type distributions explain why
balanced routing achieves consistent gains.

5 Conclusion

We present a hierarchical claim verification frame-
work that advances the state-of-the-art in hallucina-
tion detection by providing both accurate classifica-

tion and human-interpretable explanations. Unlike
black-box approaches that output only binary clas-
sifications, our framework makes the verification
process transparent through a tree-based structure
that traces the pipeline from claim decomposition
to evidence gathering and reasoning.

Our method provides several key advantages. It
offers fine-grained explainability by attaching con-
crete evidence or inferences to each subclaim and
by generating Natural Programs—explicit, natural
language reasoning chains that demonstrate how
inferential claims are logically supported. This
hybrid verification design combines lightweight
transformer-based models for extractive verifica-
tion with LLM-based reasoning for more complex
inferential claims, organized in a natural tree struc-
ture for clarity.

Experimental evaluation across four diverse
datasets—AggreFact-CNN, AggreFact-XSUM, To-
fuEval, and WiCE—demonstrates the effectiveness
of our approach. Our method achieves competitive
performance with an average balanced accuracy of
74.6%, exceeding GPT-4o while providing detailed
reasoning traces that enhance transparency. This
combination of strong performance with explicit
reasoning via Natural Programs represents a signif-
icant advance over existing black-box approaches.

Such transparency is crucial for practical deploy-
ment, where understanding not just whether a claim
is supported but also why it is supported or refuted
can help identify weaknesses, build trust, and im-
prove reliability in real-world applications.

Limitations

Performance Tradeoffs. HalluTree improves
on inference-heavy datasets but underperforms
on extractive-heavy ones, where some simpler
entailment-based baselines remain stronger. This
reflects that our specialized reasoning pathway ben-
efits complex claims, but introduces unnecessary
overhead and noise when most claims can be di-
rectly verified against the source.

Granularity of Judgments. Our framework out-
puts binary faithful/unfaithful decisions at the
claim level. While subclaims are verified individ-
ually, the final aggregation does not capture inter-
mediate degrees of support or uncertainty, which
could limit usefulness in downstream applications
that require nuanced reliability scores.
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Computational Overhead. Compared to single-
pass verification methods, HalluTree incurs signifi-
cantly higher cost. Each stage—decomposition,
classification, evidence selection, and verifica-
tion—requires separate LLM calls. This overhead
grows with claim length and makes the method
less practical for large-scale or latency-sensitive
deployments.

Reliance on LLM Quality. Errors in early
stages, such as decomposition or classification,
propagate through the pipeline and can compro-
mise verification accuracy. In particular, misclassi-
fication between extractive and inferential claims
can route subclaims through an inappropriate veri-
fication pathway, lowering performance.

Evaluation Scope. Our experiments are limited
to benchmark datasets that primarily focus on
factual consistency in summarization. Broader
domains—such as multimodal sources, conversa-
tional data, or more diverse factuality errors—may
expose different challenges not addressed by our
current framework.
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A Appendix

A.1 Prompts
Decomposition and Decontextualization Prompt

You are given a summary text. Your task is
to decompose it into subclaims that mirror
the sentence-like structure of the original as
closely as possible. Each subclaim should
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be decontextualized, meaning it must stand
on its own and be understandable without
reference to the surrounding text.

Guidelines:
Preserve sentence alignment: Each sub-
claim should correspond to one sentence
in the original summary wherever possible,
or the closest equivalent if sentences are not
present.
Minimal splitting: Do not overdecompose
by introducing claims not directly stated in
the text.
No merging or compression: Each subclaim
should stay as close as possible to its origi-
nal sentence(s).
Decontextualize: Rewrite each subclaim
so that it is fully interpretable in isolation,
avoiding pronouns or vague references.
Output format: Output sentences in a
numbered list (1. 2. 3. etc) with each
sentence on its own line.

Source document for context: {}
Summary: {}
Subclaims:

Subclaim Classification Prompt

You are an expert at classifying sentences
based on their relationship to the provided
context and the subjects (the main entities
or events the context is about) of that
context.

Classifications:
UNVERIFIABLE: Contains opinions
or judgments, and background/common-
knowledge or definite-truth statements not
about the subject(s) of the source. Includes
math or logic truths, calendar arithmetic,
unit conversions, definitional or taxonomic
facts, and geographic containment that do
not need verification against the context.
These are often bridge facts used to connect
evidence.
EXTRACTIVE: Contains claims that are
directly supported or directly refuted by ex-
plicit spans in the context without reason-
ing.

INFERENTIAL: Contains claims about
the subject(s) of the source that are not
directly supported or refuted by the context
and require multi-hop reasoning over the
provided evidence. They may rely on
UNVERIFIABLE background facts as
bridges, but the claim itself is about the
subject(s).

Rubric:
1) Identify the subject(s) of the source.
2) If the ENTIRE claim is a background
or definite-truth proposition not about the
subject(s) of the source, classify as UNVER-
IFIABLE.
3) Else, if explicit context spans support or
refute the claim, classify as EXTRACTIVE.
4) Else, classify as INFERENTIAL.
Tie-breakers:
- Prefer UNVERIFIABLE for math, logic,
calendar arithmetic, unit conversions, defini-
tional or lexical truths, and geography con-
tainment that are not about the subject(s).
- Do not mark as UNVERIFIABLE if the
statement asserts a property or relation of
the subject(s), even if widely known; that is
INFERENTIAL unless directly supported
by the context.
- If deciding requires external, subject-
specific facts not in the context, classify as
INFERENTIAL.
1. First reason toward your decision. Do
not decide until after you have reasoned.
2. After reasoning, output exactly one label
from UNVERIFIABLE, EXTRACTIVE,
INFERENTIAL on a new line and nothing
else.

Context: {}
Claim: {}
Let’s think step by step:

Evidence Collection Prompt

You are an expert at extracting evidence
from context to support or refute a subclaim.

Critical Rules:
1. If possible, extract the span of evidence
that is most directly relevant to the sub-
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claim.
2. Don’t repeat evidence that has already
been collected.
3. If there is truly no additional relevant
evidence in the context, output the token
<NO_MORE_EVIDENCE>

Context: {}
Subclaim: {}
Already collected evidence (do not repeat):
Next evidence:

Supporting Fact Proposal Prompt

You are an expert at constructing logical
bridges between evidence and an inferential
subclaim to either support or refute the
subclaim.

Terminology:
- EVIDENCE fact: directly supported by
explicit spans in the context.
- BACKGROUND fact: elementary com-
mon knowledge or definite truth (math,
logic, calendar arithmetic, definitions,
geography containment) that is not about
the subject(s) of the source and does not
require verification against the context. Use
only if needed to connect evidence to the
subclaim.

Critical Rules:
1. Include EVIDENCE facts only if they are
explicitly supported by the context. Closely
paraphrase or directly copy the supporting
span.
2. You may include BACKGROUND facts
that are not about the subject(s) and are nec-
essary to form the reasoning chain. Do not
introduce subject-specific facts that are ab-
sent from the context.
3. Order the facts so they form a minimal,
coherent chain that best supports or refutes
the subclaim.
4. Do not add new, subject-specific
information. If the context provides
nothing usable, output the token
<NO_SUPPORTING_FACTS>.
5. Reason first, then output the FACTS.

Example:
Context: "Aspirin was first synthesized in
1897 by chemist Felix Hoffmann at Bayer."
End of Context

Inferential subclaim: "Aspirin was synthe-
sized over a century ago"

Let’s think step by step: From the context
we know the synthesis year is 1897. Using
current-year arithmetic, 1897 is more than
100 years before 2025, so the subclaim is
supported.

FACTS:
1. Aspirin was first synthesized in 1897
2. The current year is 2025.
3. 1897 is more than 100 years before
2025.

Context: {}
Inferential subclaim: {}
Let’s think step by step:

Inferential Subclaim Verification Prompt

You are an expert at judging whether a
set of proposed supporting facts logically
supports an inferential subclaim.

Critical Rules:
1. Use only the facts provided; do not rely
on any external knowledge or assumptions
except for cases of common knowledge or
facts that need not be verified.
2. The supporting facts should be able to
form a coherent reasoning chain that di-
rectly supports the subclaim.
3. Output sections in this order: Reasoning,
then final judgment ("YES" or "NO"). YES
for supported, NO for refuted.
4. Don’t be pedantic in your judgments,
direct contradictions or completely un-
founded statements are mainly what we
seek to prevent. Refuted claims should be
clearly, strongly refutable.

Example:
Context:
"Aspirin was first synthesized in 1897 by
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chemist Felix Hoffmann at Bayer."
End of Context

Supporting facts:
1) [EVIDENCE] "Aspirin was first synthe-
sized in 1897 ..."
2) [BACKGROUND] The current year is
2025.
3) [BACKGROUND] 1897 is more than
100 years before 2025.

Inferential subclaim: "Aspirin was synthe-
sized over a century ago"

Let’s think step by step: The facts provide
the synthesis year, the current year, and the
difference being more than 100 years. This
supports the the subclaim.
Is the claim supported: YES

Context: {}
Supporting facts: {}
Inferential subclaim: {}
Let’s think step-by-step:

GPT-4o Baseline Faithfulness Verification
Prompt

Your task is to check if the Summary is ac-
curate to the Evidence.
Generate ’Supported’ if the Summary is
supported when verified according to the
Evidence, or ’Unsupported’ if the Summary
is inaccurate (contradicts the evidence) or
cannot be verified.

Evidence: {}
End of Evidence

Summary: {}
End of Summary

Classification (’Supported’ or ’Unsup-
ported’):
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