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1 Introduction

Whether certain structural patterns are shared
across all natural languages, despite surface-level
differences, has long been a topic of debate in lin-
guistics. In Natural Language Processing, studies
have shown that multilingual language models pos-
sess semantically aligned capabalities across lan-
guages even without explicit parallel supervision
(Pires et al., 2019; Conneau et al., 2020; Tang et al.,
2024). This suggests that machine-learned repre-
sentations capture crosslinguistic regularities, but
it should be noted that this alignment is aided by
shared vocabularies and parameters (Dufter and
Schütze, 2020; Philippy et al., 2023).

A more fundamental question remains: can in-
dependently trained monolingual LMs – which
share no parameters nor vocabulary – nonetheless
converge on analogous high-level features? If so,
this would suggest that certain structural principles
of language emerge robustly in machine learning,
even when models are trained in isolation. Gold-
fish (Chang et al., 2024) provides us with a suite of
monolingual GPT-style models covering 350 lan-
guages. These models have identical architectures
and training budgets but were each trained with
strictly monolingual corpora. They thus form a
controlled testbed for crosslinguistic comparison.

A key technical challenge is how to identify and
compare high-level features across different mod-
els. To overcome this, we adopt sparse autoen-
coders (SAEs) as an analysis tool. Recent work
(Cunningham et al., 2023) showed that training a
single-layer SAE on a model’s activations yields a
set of sparsely activating features that are far more
interpretable and monosemantic than the original
neuron basis. In essence, the SAE “discovers” a
dictionary of latent feature directions in activation
space, each corresponding to a distinct concept
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or pattern in the data. Brinkmann et al. (2025)
demonstrated that SAEs trained on multilingual
LLMs uncover both monolingual and multilingual
features. Notably, Lan et al. (2025) recently em-
ployed SAEs to compare features across different
English LLMs. They hypothesized that the spaces
spanned by SAE features are similar, such that one
SAE space is similar to another SAE space under
rotation-invariant transformations, and found high
similarities for SAE feature spaces across various
LLMs, providing evidence for feature space uni-
versality. We build on this approach in a novel
crosslinguistic setting. Our research questions are
framed as follows:

RQ1: Can SAE features trained on independently
trained monolingual LMs be matched across
languages? After matching, do they show non-
trivial (above baseline) convergence (i.e., have
higher alignment score)?

RQ2: At which model depths (layers) is feature
alignment strongest across languages?

RQ3: Does the degree of alignment correlate sys-
tematically with linguistic relatedness (e.g.,
typological or genealogical distance)?

RQ4: Are there features that emerge universally
across languages, and can they be interpreted
(e.g., punctuation, numerals, structural delim-
iters)? How prevalent are such features?

2 Methodology

2.1 SAE Training
For each monolingual model, we collect hidden
activations from each layer using held-out text sam-
pled from the same monolingual training corpus
used in Goldfish (5MB–1GB per language, de-
pending on availability). Given these activations,
we train an SAE to learn a set of latent features
that can reconstruct the activations. Each SAE
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is a one-hidden-layer autoencoder with tied en-
coder–decoder weights, a linear hidden layer, and
an ℓ1 sparsity penalty to encourage most feature
units to remain off for any given input. We train
separate SAEs for each language model’s each lay-
ers.

2.2 SAE Feature Activations (Data Matrix)
For each language ℓ and layer h, we construct an ac-
tivation matrix A(ℓ,h) ∈ RN×K by feeding N par-
allel sentences from FLORES-200 (NLLB Team,
2022) through the monolingual model and record-
ing the activations of its K SAE features (z-scored
per feature across sentences).

2.3 Pairwise Feature Matching
Given two languages (ℓ1, ℓ2) at layer h, we com-
pute the K ×K correlation matrix C(ℓ1,ℓ2,h) with
entries Cij = corr

(
A

(ℓ1,h)
·i ,A

(ℓ2,h)
·j

)
(Pearson over

the shared FLORES sentences). We obtain a one-
to-one alignment via maximum-weight bipartite
matching (Hungarian algorithm) on C(ℓ1,ℓ2,h).

2.4 Pairwise Alignment Score
For each pair (ℓ1, ℓ2, h), the alignment score is the
mean correlation of matched pairs:

Align(ℓ1, ℓ2, h) =
1

K

∑

(i,j)∈M(ℓ1,ℓ2,h)

Cij .

We visualize the matrix of Align(ℓ1, ℓ2, h) across
all language pairs as a heat map.

3 Analysis

3.1 Alignment Against Baselines
To ensure the alignment is non-trivial, we compare
against: (i) random feature assignment—shuffle
columns of A(ℓ2,h) before matching, (ii) row-
shuffled sentences—independently permute rows
of A(ℓ2,h) (breaks sentence-level correspondence),
and (iii) within-model shuffle—match ℓ1 to a copy
of itself with feature order shuffled. We report ∆
over baseline (absolute and percentage), with 95%
CIs from bootstrap over sentences.

3.2 Layer-wise Analysis
We aggregate Align(ℓ1, ℓ2, h) over language pairs
for each layer h to obtain layer-wise trends. We
test for a peak layer via a mixed-effects model
with random intercepts for language pairs and fixed
effect for layer, or via paired non-parametric tests
across layers.

3.3 Language-Distance Analysis

Given the Pairwise Alignment Score, a natural
question—and our hypothesis—is whether more
closely related (genealogically or typologically)
languages share more emergent features, i.e., ex-
hibit higher pairwise alignment score.We correlate
alignment strength with linguistic distance. For
each pair (ℓ1, ℓ2) we compute: (i) genealogical fam-
ily match (binary), (ii) typological distance (e.g.,
URIEL/WALS features), and (iii) script match (bi-
nary). We fit Align(ℓ1, ℓ2, h) ∼ distance metrics+
layer and report standardized coefficients. We also
stratify heat maps by family/script to visualize sys-
tematic variation.

4 Universal Features

After aligning features between each pair of lan-
guages, we ask if these features are universal across
all languages.

Definition. A feature cluster is universal at layer
h if it contains aligned features from at least p% of
languages (we choose p ∈ {50, 75, 90}).

Construction. We build a graph whose nodes
are (language, feature) and whose edges connect
matched pairs from Section 2.3 (weight = Cij).
Connected components (or communities via Lou-
vain) define crosslinguistic clusters. For each clus-
ter we report: coverage (fraction of languages
present), mean within-cluster correlation, and sta-
bility across bootstrap resamples. Preliminary ex-
pectations are that a non-trivial fraction of the
learned features – especially those capturing very
general patterns – will be universal. For instance,
we anticipate discovering features related to punc-
tuation, numerals, and structural delimiters that
appear in every model.

Interpretability. For each universal cluster, we
list top activating n-grams/tokens per language
and show cross-language trigger sets (digits,
punctuation, brackets, etc.). We include exem-
plar sentences and activation traces for qualita-
tive validation. We hope that uncovering such
crosslinguistic universal features will shed light
on whether machine-learned representations mir-
ror long-standing hypotheses in linguistic theory,
and may even provide a complementary empirical
perspective to the study of linguistic universals in
human languages.
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