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Abstract

Named-entity recognition (NER) in low-
resource languages is usually tackled by fine-
tuning very large multilingual LMs, an option
that is often infeasible in memory- or latency-
constrained settings. We ask whether small de-
coder LMs can be pretrained so that they adapt
quickly and transfer zero-shot to languages un-
seen during pretraining. To this end we replace
part of the autoregressive objective with first-
order model-agnostic meta-learning (MAML).
Tagalog and Cebuano are typologically similar
yet structurally different in their actor/non-actor
voice systems, and hence serve as a challeng-
ing test-bed. Across four model sizes (11 M
– 570 M) MAML lifts zero-shot micro-F1 by
2–6 pp under head-only tuning and 1–3 pp after
full tuning, while cutting convergence time by
up to 8%. Gains are largest for single-token
person entities that co-occur with Tagalog case
particles si/ni, highlighting the importance of
surface anchors.
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1 Introduction

Named-entity recognition (NER) locates and cat-
egorises Persons (PER), Organisations (ORG) and
Locations (LOC) in unstructured text (Chinchor and
Robinson, 1997). It is used in a variety of impor-
tant domains such as healthcare (Kundeti et al.,
2016; Polignano et al., 2021; Shafqat et al., 2022)
and law (Leitner et al., 2019; Au et al., 2022; Naik
et al., 2023), yet progress remains concentrated in a
handful of well-resourced languages. Cross-lingual
named-entity recognition is therefore important to
better serve underserved communities, yet recent
advancements remain unevenly distributed since
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NER performance in many languages remains poor
due to limited training resources.

A key challenge is that entity boundaries and
categories are not universal: languages differ in
their morphosyntactic cues, word order, and or-
thographic conventions. Models trained primarily
on Indo-European data thus fail to generalize reli-
ably to underrepresented settings. In this paper, we
address this problem through meta-pretraining:
shaping language model initializations to adapt
rapidly to new linguistic conditions. Unlike stan-
dard pretraining, which minimizes average loss
over a static corpus, episodic meta-pretraining (e.g.
via MAML; Finn et al. 2017) explicitly optimizes
for fast transfer. For low-resource NER, this offers
two potential benefits: (i) rapid adaptation to lan-
guages with typologically distinct cues (e.g. case
particles, voice systems, code-switching), and (ii)
stronger zero-shot prototypes for common entity
types, even without in-language exposure. While
meta-learning has been explored for classification
tasks in English or cross-lingually at BERT scale
(Wu et al., 2020; Li et al., 2020; de Lichy et al.,
2021), its efficacy for small decoder LMs and mor-
phologically rich languages is underexplored.

As a case study, we focus on NER in Tagalog and
Cebuano, the two most widely spoken Philippine
languages (Miranda, 2023). Typologically, both
languages combine Austronesian features such as
voice alternations, case particles, and reduplica-
tion with pervasive borrowing and code-switching
(Figure 8; Table 1). These languages stress-test
whether meta-pretraining can yield more adaptable
NER representations than vanilla pretraining alone.
We ask the following research questions:

RQ1 Efficacy. How much does first-order MAML
improve zero-shot NER on Tagalog and Ce-
buano relative to vanilla autoregressive pre-
training?

RQ2 What transfers? Which entity classes, mor-
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Typological Feature Tagalog Cebuano

Voice system ✓ Four-way ✓ Reduced two-way
Case marking ✓ Obligatory ✗ Often dropped
Borrowing / code-switch ✓ High density ✗ More conservative
Morphological richness ✓ Productive affixa-

tion
✓ Regular affixation

Word order flexibility ✓ ✓
Pronominal systems ✓ Rich clitic pronouns ✓ Similar
Reduplication ✓ Common ✓ Widespread
Orthography variation ✓ Multiple conven-

tions
✗ Multiple conven-
tions

Pivot marking ✓ Consistently overt ✓ Overt but less con-
sistent

Table 1: A selection of Typological Features of Taga-
log and Cebuano relevant for NER. ✓ indicates strong
presence, ✗ indicates reduced/less overt presence in
each language. We highlight high divergence features,
moderate divergence and similar features compared to
Indo-European Languages, motivating these languages
as a case-study for low-resourced NER. We provide
a more detailed comparison along with an illustrative
gloss in Appendix A.

phological cues, and lexical patterns (espe-
cially those tied to Tagalog/Cebuano typol-
ogy) explain the observed gains or failures?

We answer these questions by systematically
comparing first-order MAML and vanilla pretrain-
ing on LLaMa-style Pico Decoders across scales,
analyzing both downstream performance and rep-
resentation dynamics (Diehl Martinez, 2025; Mar-
tinez et al., 2025). This allows us to investigate:

RQ3 How does the effect of meta-pretraining vary
with model size? Are benefits stronger at
small scales, or do they persist as capacity
increases?

1.1 Contributions.
We provide the following contributions:

• A systematic evaluation of meta-pretrained
small decoder LMs for zero-shot NER in Taga-
log and Cebuano, comparing against strong
vanilla pretraining baselines across four model
scales.

• Quantitative and qualitative evidence that
MAML-based meta-pretraining produces
sharper single-token entity prototypes, im-
proving zero-shot NER, especially for person
entities and Tagalog’s particle-rich syntax.

• An analysis of failure modes and learning dy-
namics, showing the capacity-dependent na-
ture of meta-learning gains and the tradeoff
between prototype sharpening and contextual
generalization.

2 Method

2.1 Motivation

Why these two languages? Tagalog and Ce-
buano are used every day by well over 100 million
people. However, they occupy only a small frac-
tion of the web text that current language models
are pretrained on, which makes them both socially
important and under-served by existing NLP tools
(Miranda, 2023). Linguistically, these languages
also offer complementary typological challenges
for NER, which we summarise in Figure 1. Tagalog
and Cebuano combine Austronesian voice systems,
case particles, reduplication, and discourse-driven
topic marking in ways that are rare in widely stud-
ied NLP benchmarks. In particular, Tagalog offers
more overt morphosyntactic cues than Cebuano: it
retains a four-way actor/non-actor voice paradigm,
while Cebuano reduces this to two (Tanangkings-
ing, 2011) and marks syntactic roles with case
particles (si/ni/ang/ng/sa). These languages of-
fer a test bed for multilingual NER models that
must generalize beyond Indo-European NER cues
– where entities are typically identifiable through
fixed word order and stable orthography– to handle
the interaction of morphological marking, argu-
ment interaction and code-switching. Tagalog con-
tains more Spanish loans and code-switching into
English, while Cebuano maintains a more conser-
vative Austronesian lexicon (Bautista, 2004; Bak-
lanova, 2019). We provide a more detailed compar-
ison of Tagalog and Cebuano typological features
in Table 3.

Why Meta-learning? Being underrepresented in
natural language processing (NLP) corpora (Ca-
jote et al., 2024; Quakenbush, 2005; Dita et al.,
2009; Bandarkar et al., 2024), Philippine language
datasets suffer from size and quality issues. In low-
resource settings, where pretraining data is scarce
or absent, it is important to ask the question: will a
given checkpoint finetune or transfer rapidly when
exposed to a novel language (such as in deploy-
ment)?

Meta-learning addresses this by shaping initial-
izations for quick adaptation. Model-Agnostic
Meta-Learning (MAML) optimizes an LM back-
bone so that a few gradient steps yield high per-
formance on a new task (Finn et al., 2017). We
ask whether such an initialization, learned entirely
without Tagalog/Cebuano exposure, can transfer to
these languages’ distinct morphological and lexical
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cues for NER. Our working hypothesis is that a
pretraining routine that is itself optimized for rapid
adaptation will induce representations that gener-
alize more readily across languages. Prior NLP
studies have tested this mostly on English or on
“BERT-scale” encoder models (Wu et al., 2020; Ma
et al., 2022; Li et al., 2020; de Lichy et al., 2021);
we explore whether episodic meta-pretraining of
small decoder LMs, without any exposure to Taga-
log or Cebuano, can still yield zero-shot gains for
NER. We do not evaluate a multilingual language-
model baseline, as our objective is to isolate the
effect of episodic meta-pretraining under a matched
corpus and schedule; training a competitive multi-
lingual baseline would require different data and
budgets, confounding a like-for-like comparison.

Our working hypothesis is that a pretraining rou-
tine that is itself optimized for rapid adaptation will
induce representations that generalize more readily
across languages, so that a model exposed only to
high-resource sources can still zero-shot transfer to
typologically distant, low-resource targets.

2.2 Architecture
We build upon the PICO decoder stack (Diehl Mar-
tinez, 2025), a LLaMa-style causal Transformer im-
plemented in PyTorch. Four capacity tiers (tiny (11
M), small (65 M), medium (181 M) and large (570
M)) share all hyper-parameters except hidden width
d ∈ {96, 384, 768, 1536}. Each model comprises
L=12 RMS-normalised decoder blocks (Zhang and
Sennrich, 2019) with grouped-query self-attention
(Ainslie et al., 2023), RoPE positions (Su et al.,
2024) and SwiGLU feed-forwards (Shazeer, 2020)
that expand to 4d.

2.3 Hybrid pretraining objective
Training alternates between two outer-loop up-
dates:

1. Autoregressive LM step. Standard next-
token prediction on a pre-tokenized version of
Dolma (Soldaini et al., 2024) released by the
Pico library (Diehl Martinez, 2025).

2. First-order MAML episode. A 32-way,
4-shot Subset-Masked LM Task (SMLMT;
Bansal et al., 2020) is sampled, where the
model predicts a masked token from the cor-
pus on the fly. The inner loop finetunes a
lightweight MLP head for ten SGD steps
(α=10

−3) and the outer loop back-propagates
the query loss through the frozen backbone.

The branch decision is a Bernoulli draw with
probability ρ=0.5, synchronised across four A100-
80 GB GPUs. The pseudocode for both can be
found in Appendix C.

2.4 Optimisation and monitoring
We run 6,000 outer updates with AdamW (ηpeak =
3×10−4, 2.5 k warm-up, cosine decay), accumulat-
ing eight micro-batches of 256 sequences to reach
an effective batch of 2048 sequences (1024 for
tiny). Every 100 steps we log: Paloma perplexity
(Magnusson et al., 2024), singular-value spectra of
three attention and three feed-forward weight matri-
ces, from which we compute proportional effective
rank (PER; Diehl Martinez et al., 2024), and sup-
port and query accuracy within MAML episodes.

2.5 Finetuning on High-Resourced Languages
We deliberately choose high-resource languages as
the finetuning sources because, in realistic deploy-
ments, these are the languages for which sizable,
high-quality NER data already exists. They there-
fore form the most natural setting for cross-lingual
transfer into low-resource settings.

After pretraining we attach an untrained lin-
ear conditional random field head (Lafferty et al.,
2001), which is a well-known method used often
for NER (Bundschus et al., 2008; Ma and Hovy,
2016). We finetune on a high-resource language
(Danish, English, Croatian, Portuguese, Slovak,
Serbian, Swedish, Chinese, Chinese-Simplified,
and a mixture of all languages) before zero-shot
evaluation on Tagalog (tl_trg, tl_ugnayan) and
Cebuano (ceb_gja) from Universal NER v1 (May-
hew et al., 2024). Results are later broken down
by finetuning language. Further, two finetuning
regimes are compared: head-only, where the trans-
former is frozen and only the classifier learns, and
full, where all parameters are freed to update.

Finetuning uses AdamW (3×10−5) for up to ten
epochs with early stopping on development F1. We
report micro-F1, with full details in Appendix D.

2.6 Baselines
For each capacity tier we also evaluate a "vanilla"
Pico model (no MAML, pure autoregressive loss)
under identical data, schedule and compute. Pre-
training results can be found in Appendix E with
model configuration details in Appendix F. A more
detailed discussion of pretraining results and over-
all methodology can be found in Africa et al.
(2025).
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Figure 1: Scale curve. Zero-shot Micro-F1 on Cebuano
& Tagalog versus parameter count. Bars compare PICO-
MAML (blue) to vanilla pretraining (green); the over-
laid line shows the relative gain of MAML (Delta F1,
right axis). Meta-pretraining helps at every scale, but
the relative lift shrinks from +38 % (11 M) to +6 %
(570 M), revealing a capacity threshold below which
the inner loop cannot extract reusable features.

3 Zero-Shot Transfer Results

Zero-shot evaluation. Unless stated otherwise,
all scores are obtained without seeing any Taga-
log/Cebuano data during finetune, relying solely
on the UNER test sets (§ 2.4).

Figure 1 shows that PICO-MAML improves Ce-
buano/Tagalog micro-F1 at every parameter budget.
The relative lift is largest for moderate sizes and
tapers with scale (+6% at 570M). These results in-
dicate that adding a single outer-loop meta-update
per batch yields a cross-lingual prior not captured
by vanilla pretraining under our setup.

Comparison of head-only tuning and full tun-
ing. Decomposing by finetuning regime (Fig. 2),
MAML yields 1–2 pp gains when only the CRF
head is trained, implying that the frozen weights
already embeds better entity cues. Full tuning nar-
rows the gap to 0.5–1.3 pp, indicating that the lift
persists even when the optimiser is free to overwrite
the initialisation.

Further, results indicate that the benefit provided
by the meta-objective is scale-dependent. For the
11 M (tiny) model, MAML moves the overall score
by < 1 pp and yields no gain under head-only tun-
ing. From 65 M parameters upward the benefit
becomes clearer with larger head-only lifts, sug-
gesting a threshold at which meta-gradients can
provide reusable entity features without crowding
out the LM signal.

Sensitivity to finetuning language. Figure 3
profiles performance after adapting on nine high-
resource languages. Eight of nine languages exhibit
positive deltas; the largest relative lifts occur for
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Figure 2: Impact of finetuning regime. Head-only
tuning (left) magnifies the meta-learning advantage up
to +2.5 pp at 570 M, likely because the backbone must
already encode entity cues. Full tuning (right) reduces
but does not erase the gap, suggesting that MAML pri-
marily accelerates convergence rather than acting as a
regulariser.

Slovak (+18 %) and Croatian (+13 %). Gain in
Slovak might be due to fixed case endings that con-
sistently bracket entity names, providing a clear
surface boundary signal for the model (similar in
function to Tagalog’s case particles but realised
morphologically rather than syntactically.) The
sole regression (–2 pp on Simplified Chinese) is
most likely due to a known issue in poor cross-
script transfer to Chinese, but it may also be due
to subword sparsity in the shared vocabulary rather
than a failure of the meta-objective. (Mayhew et al.,
2024).

Overall, MAML appears to teach the model
to exploit shallow lexical anchors (particles, af-
fixes) that generalise well across Indo-European
languages while still transferring to more typologi-
cally distant Austronesian targets. To better under-
stand the mechanisms underlying these gains, we
conduct a focused qualitative analysis on a repre-
sentative configuration.

4 Analysis of MAML Pretrained Models

In order to analyze the learning process, rather than
just the last checkpoint, we focus our qualitative
study on a MEDIUM-sized model (181 M param-
eters) finetuned in a head-only regime on Slovak
(sk_snk), finetuning on all 61 checkpoints from
step 0 of pretraining to step 6000. We restrict our
analysis to this slice because while finetuning 9760
(2 pretraining regimes x 2 finetuning regimes x 4
model sizes x 10 finetuning languages x 61 check-
points) models would be prohibitively expensive,
this configuration at least offers a reasonable signal-
to-cost trade-off. This is for a few reasons: (i) the
medium tier is the smallest model that still exhibits
a clear 2–3 pp head-only lift (Figure 1) yet is three-
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Figure 3: Sensitivity to finetuning language. Grid of
zero-shot F1 curves after adapting on nine high-resource
languages plus an All-languages mixture. Eight of nine
languages show positive deltas; the largest relative gains
occur for Slovak and Croatian, while Simplified Chinese
is the lone outlier (–2 pp). This pattern indicates that the
meta-objective encourages reliance on surface affixes
and particles that generalise well across Indo-European
sources yet still transfer to Austronesian targets.

times cheaper to run than the 570 M variant, (ii)
Slovak delivers one of the largest relative gains
without vocabulary sparsity issues and, as a Slavic
language, should produce transfer errors that differ
sharply from those in Tagalog and Cebuano, and
(iii) freezing the backbone during head-only fine-
tuning ensures that any performance delta must
stem from representations learned during meta-
pretraining rather than from subsequent weight
updates. In the next subsection, we inspect how
pretraining affects finetuning performance across
checkpoints.

4.1 Checkpoint Analysis

Does the head-only learner actually learn? Fig-
ure 4 overlays the complete finetuning trajectories
for every Slovak head-only run (61 checkpoints,
maml_s0000–maml_s6000). Viridis traces show
the individual runs (getting darker the later the
model checkpoint was taken), while the bold line
and ribbon denote the median and inter-quartile
range (IQR). The train-loss fan collapses to its
asymptote within the first ≈ 800 steps and stays
flat thereafter; in parallel the evaluation F1 rises
smoothly to 0.14 and plateaus with a narrow ±0.01
IQR. Crucially, no run diverges or oscillates, con-
firming that freezing the backbone and training
only a linear chain CRF head is both stable and
something is learned. This satisfies the prerequi-
site for using the configuration as a clean test-bed:
any downstream difference between MAML and
vanilla is likely to stem from the initial represen-
tations, not from optimisation quirks or training
instabilities.

Does meta-pretraining yield transfer-relevant
representations? The checkpoint sweep in Fig-
ure 5 confirms the other prerequisite for this quali-
tative analysis: that meta-pretraining produces rep-
resentations which become increasingly helpful for
zero-shot transfer. First, the top panel shows that,
regardless of which MAML snapshot we freeze,
the linear chain CRF head always converges to
essentially the same narrow band of train loss
(0.10-0.15); optimisation is therefore stable and
predictable, satisfying our first prerequisite. More
importantly, the bottom panel reveals a very differ-
ent story for cross-lingual evaluation: while Slovak
dev F1 plateaus early (by around step 1k), Taga-
log and Cebuano F1 continue to climb for another
four thousand meta-updates, ending 0.15 and 0.12
points higher than at the initial checkpoint. In
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Figure 4: Learning curves for the Slovak head-only
setting. Top: train loss; bottom: eval micro-F1. Faint
green lines = all individual checkpoints; bold line =
median; shaded band = 25–75 % IQR. Both metrics
converge monotonically and remain tightly bunched,
indicating a stable optimisation surface for the linear
head.

other words, additional MAML steps learn features
that are invisible to the in-language dev set yet di-
rectly benefit unseen Austronesian targets. Tagalog
improves earlier and peaks higher than Cebuano,
hinting that the meta-objective is capturing surface
cues (e.g. case particles) that are more diagnos-
tic in Tagalog. Taken together with the “fan” plot
of learning curves, the sweep demonstrates that
meta-pretraining yields encoder states that are both
optimisation-friendly and transfer-relevant, justify-
ing the focus on this snapshot for deeper qualitative
inspection. As such, we deepen the analysis in the
next subsection by inspecting the behavior of our
models on the level of the NER tags predicted.

4.2 Tag-level Analysis

Per-tag behaviour. Figure 6 reports per-entity F1
obtained after head-only finetuning the Slovak CRF
head on each MAML checkpoint. PER climbs
to 0.6-0.7 while LOC and ORG remain at zero.
This is not a case of the classifier “over-fitting” in
the usual sense—i.e. collapsing to always predict-
ing a single label. A linear-chain CRF is free to
emit any BIO tag at any position; if it were truly
degenerate we would see train loss stagnate near
the log-uniform baseline and the PER curve itself
would also be flat. Instead, train loss converges to
the same narrow band for every checkpoint (Fig.4)
and PER performance tracks the amount of meta-
pretraining, so the head is learning a genuine deci-
sion boundary. It simply has informative features
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meta-updates learn representations useful specifically
for zero-shot transfer.
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Figure 6: Per-entity F1 across MAML checkpoints.
PER (dark viridis) improves steadily with more meta-
steps; LOC and ORG curves remain at chance level,
indicating that the frozen backbone provides transfer-
able features for single-token personal names but little
for multi-token locations or organisations. Tagalog ben-
efits earlier than Cebuano, consistent with its obligatory
case particles.

for people but none for locations or organisations.

Observed imbalance and potential causes.
First, the Slovak finetune set is intrinsically person-
heavy. As Table 4 shows, PER spans outnum-
ber LOC by roughly 8∶1 and ORG by 15∶1. Un-
der head-only training, every gradient step passes
through the frozen encoder unchanged and the CRF
receives thousands of positive updates for persons
but only a few hundred for the other classes. This
likely leads to only the PER decision boundary
sharpening. Second, 87.6% of Slovak person men-
tions are single tokens compared with 75.1 % for
locations and 56.9% for organisations. A single-
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token span can be captured by one weight vec-
tor, whereas multi-word spans require the head to
model boundaries and label transitions—a capacity
it simply does not have when the encoder cannot
adapt. Third, Tagalog still offers a comparatively
reliable surface cue. The case particles si and ni
precede roughly 11% of gold PER spans, almost
double the 5–6 % rate observed in Cebuano (Ta-
ble 5). The earlier lift and higher ceiling of the
Tagalog PER curve are therefore consistent with
the backbone having learned to map the pattern
"particle + token" to the PER label, a cue that is in-
formative in Tagalog but is sparser in Cebuano. Fi-
nally, cross-lingual lexical overlap is likely higher
for personal names, many of which (e.g. Obama,
Manuel) appear verbatim in English corpora used
during pretraining; locations and organisations, by
contrast, are often translated or abbreviated. All
four factors act in the same direction, favouring
PER. Disentangling their individual contributions
would require targeted ablations (particle masking,
balanced resampling, controlled name substitution,
etc.) which we leave for future work. In the next
subsection, we assess behaviors on the level of
words and tokens to relate NER performance to the
low-resource languages being transferred to.

4.3 Word-level Analysis
Figures 7a–7d visualise the checkpoint-by-
checkpoint evolution of token-level confidence
(p(correct tag)) for the ten most frequent surface
words in each evaluation set. Entities and
non-entities are split so the dynamic range is not
drowned out by O tokens. Two qualitative patterns
emerge.

Fast confidence in frequent tokens. Non-entity
function words such as ng, ang, sa in Tagalog
and the Cebuano clitic -ng start with high confi-
dence and barely budge after the first 200 meta-
updates (Fig. 7b, 7d). As these tokens domi-
nate the language-model loss, autoregressive train-
ing achieves a high confidence in them early and
MAML has little head-room to improve over check-
points.

Monotonic gains for high-overlap proper names.
In the Tagalog set, international names (City,
Maynila, Maria) and locations transliterated from
English (Pasay) become steadily brighter (lower
loss) until about step 3000 (Fig. 7a). Similar be-
haviour appears for Maria, Cebu, Mary in Cebuano
(Fig. 7c). These words either appear verbatim in

Size Regime ∆t90 ∆AUC ∆slope

large full -111.1 -0.004 0.0e-05
head -55.6 -0.012 1.0e-05

medium full 0.0 -0.005 0.0e-05
head 55.6 -0.011 0.0e-05

small full 0.0 0.003 0.0e-05
head -55.6 0.003 -0.0e-05

tiny full -111.1 0.004 -0.0e-05
head 55.6 -0.023 5.0e-05

Table 2: Finetuning convergence speed metrics ∆
(MAML-Vanilla) averaged over nine in-language tasks.
The largest and smallest models enjoy the most pro-
nounced speed-ups from full MAML meta-initialization,
while medium and tiny models show negligible ∆t90
under full-model tuning. Under head-only tuning, large
and small decoders still benefit modestly, whereas
medium and tiny decoders actually slow down. Across
all settings, slope remains near zero, indicating that
meta-training primarily accelerates mid-to-late conver-
gence rather than the very first gradient steps.

the English Dolma corpus or share sub-tokens (Ma_,
Ceb_) with it, so the meta-objective can reuse pro-
totypes that happen to be used by the Austronesian
targets. The timing matches the checkpoint-sweep
(Fig. 5): cross-lingual F1 continues to climb long
after Slovak dev has saturated likely because the
back-bone is still lowering loss on these anchor
words. We illustrate these mechanisms further in
two case studies in Appendix B.

5 Finetuning Speed of Meta-Pretraining

Finally, we assess finetuning speed using conver-
gence time (measuring time to achieve 90% of fi-
nal loss t90), normalized area under the loss curve
(measuring aggregate convergence behavior over
the curve), and initial slope (measuring the initial
speed of learning in the first few steps), as seen in
Table 2. Across nine in-language tasks, full-model
finetuning shows the clearest acceleration for the
largest and smallest models: MAML cuts t90 by
roughly 8% (≈ 111 steps) and modestly reduces
loss AUC. Medium and small models show negligi-
ble or inconsistent speed-ups under full tuning, sug-
gesting that the effect depends strongly on model
capacity. In head-only tuning, large and small mod-
els again benefit slightly, while medium and tiny
models slow down, likely due to underpowered or
collapsed meta-dynamics.

Initial slopes remain effectively unchanged
across all settings, indicating that MAML does not
alter the very first gradient steps but instead reorga-
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Figure 7: Evolution of token-level confidence (p(correct tag)) across pretraining checkpoints. Top row: Tagalog;
bottom row: Cebuano. Left: entities only. Right: non-entities.

nizes the loss landscape to make mid- to late-stage
convergence more efficient. These results align
with earlier findings that MAML’s main benefit
lies in providing sharper, more reusable token-level
features for high-capacity backbones, with limited
or negative effects when capacity is insufficient to
retain both language modeling and episodic priors.

6 Related Work

NER in Filipino, Tagalog, and Cebuano. NER
for Philippine languages remains underexplored,
with most work focusing on resource construction
rather than cross-lingual modeling. Recent cor-
pora include TLUnified-NER (Miranda, 2023), TF-
NERD (Ramos and Vergara, 2023), CebuaNER
(Pilar et al., 2023), and UniversalNER (Mayhew
et al., 2024). Modeling efforts in this area primar-
ily use NER-specific systems (Sagum and Sagum,
2025; Eboña et al., 2013; Dela Cruz et al., 2018)
incorporating a simpler backbone such as a support
vector machine (Castillo et al., 2013) or an LSTM
(Chan et al., 2023). Most recently, FilBench (Mi-
randa et al., 2025) and Batayan (Montalan et al.,
2025) support Filipino evaluation on NLP tasks for
LLMs.

Meta-learning for Pretraining. Although most
work applies meta-learning at fine-tuning time, a
growing line of research embeds meta-objectives
directly into pretraining. (Raghu et al., 2021)
showed that framing parameter-efficient adapter
learning as a bilevel problem yields representa-

tions that fine-tune more effectively than standard
PEFT. (Hou et al., 2022) extend this to full trans-
formers. (Miranda et al., 2023) argue that explicit
MAML objectives can outperform fixed pretrain-
ing on highly diverse task distributions. (Ke et al.,
2021) integrate a MAML-style inner loop into a
multi-criteria Chinese Word Segmentation pretrain-
ing task.

7 Conclusion

This paper shows that MAML-based meta-
pretraining, even when applied to small decoder-
only language models, can meaningfully improve
zero-shot transfer to low-resource languages, as
demonstrated on Tagalog and Cebuano NER. The
gains are most pronounced for person entities and
head-only finetuning, and scale best with larger
model capacities. Our qualitative and word-level
analyses reveal that the mechanism of improvement
centers on the sharpening of lexical prototypes and
better anchoring to surface cues like Tagalog case
particles. Hence, we do not expect these improve-
ments to fully generalize to multi-token or highly
contextual entity types.

These findings suggest that meta-learning can
provide a principled route to more adaptable small
models, but also highlight key limitations: the ben-
efits are capacity- and task-dependent, and the cur-
rent approach struggles with richer entity struc-
tures. Future work should explore alternative meta-
learning objectives, extend to more diverse tasks

113



and languages, and investigate the dynamics of pro-
totype formation in even lower-resource settings.

Limitations

The gains are most pronounced for person entities
and head-only finetuning, and scale best with larger
model capacities. All training runs stop at exactly
six thousand outer steps, a horizon that may be too
short for the largest model, so the conclusions de-
rived only cover a fraction of the training budget
a corporate setup might have. A more diverse and
multilingual corpus may alter both quantitative and
qualitative conclusions, and varying languages in
the meta-task is a natural way to extend this work.
Qualitative analysis was conducted on a single con-
figuration and single seed due to cost and GPU
constraints. Qualitative analysis was conducted by
a native Tagalog speaker with a register typical of
Manila, and a wide variety of perspectives would
improve the robustness of the analysis. Finally
(and most naturally), our focus on only two Aus-
tronesian languages controls for certain lexical and
syntactic divergences but limits the generality of
the typological conclusions; extending to a broader
set of Philippine and Malayo-Polynesian languages
is a natural next step.
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A NER-Relevant Typological Features of Cebuano and Tagalog

This extended table highlights how morphosyntactic and discourse-level differences between the two
languages interact with the challenges of named entity recognition (NER). We lay out feature-by-feature
contrasts to illustrate that even closely related Philippine languages present distinct hurdles for tasks like
NER. The table emphasizes that while Tagalog offers overt morphosyntactic cues (e.g., case particles,
topic marking), Cebuano relies more heavily on discourse inference, thereby requiring different modeling
strategies for effective NER.

Typological Feature Tagalog Cebuano Challenge for NER

Voice system Four-way actor/non-
actor voice paradigm

Reduced two-way sys-
tem

Tagalog’s rich voice alternations encode argument roles
morphologically, complicating alignment of entities with
semantic roles. Cebuano’s reduced system lowers redun-
dancy, making cues for role identification less explicit.

Case marking Obligatory case parti-
cles (si, ni, ang, ng, sa)

Case particles often
dropped or fused

Tagalog provides reliable morphosyntactic signals for
entity boundaries/roles. Cebuano forces reliance on dis-
course, requiring coreference and contextual inference.

Lexical borrowing /
code-switching

High density of Spanish
loans and English code-
switching

More conservative Aus-
tronesian lexicon

Tagalog NER must cope with OOV issues, language-
mixing, and orthographic variation. Cebuano NER must
handle morphologically complex Austronesian stems,
underrepresented in multilingual embeddings.

Morphological richness Productive affixa-
tion (focus, aspect,
causatives)

Similarly rich, but
slightly more regular

Surface forms for named entities may be inflected or
derivationally complex, increasing sparsity for training
data.

Word order flexibility Relatively free (voice
and particles constrain
roles)

Even freer, especially
without explicit case
markers

Named entities may appear in non-canonical positions,
reducing the utility of positional cues.

Pronominal systems Rich system of clitic
pronouns that attach to
verbs or particles

Similar system but with
different distributions

Entities can be referred to obliquely or dropped entirely;
clitic attachment blurs tokenization boundaries, confus-
ing NER pipelines.

Reduplication Common for aspect, plu-
rality, intensification

Widespread and produc-
tive

Reduplicated forms of named entities (nicknames, redu-
plicated roots) may not be recognized as related to the
canonical form.

Orthography & varia-
tion

Spanish-influenced
orthography, multiple
spelling conventions

More phonologically
consistent, but dialectal
spelling variation per-
sists

Orthographic inconsistency makes lexicon-based NER
brittle, especially in noisy social media text.

Discourse prominence /
topic marking

Ang-marked topic influ-
ences salience

Topic is often inferred
from discourse, less ex-
plicit marking

Tagalog gives overt topic marking, aiding salience detec-
tion; Cebuano relies on pragmatics, requiring discourse-
level modeling.

Table 3: Detailed typological contrasts between Tagalog and Cebuano and their implications for NER.

Tag. Pumunta si Maria sa Cebu.
Gloss go.PFV NOM Maria OBL Cebu
NER O O B-PER O B-LOC

Ceb. (with marker) Miadto si Juan sa Sugbo.
Gloss go.PST NOM Juan OBL Cebu
NER O O B-PER O B-LOC
Ceb. (zero-marked) Miadto Juan sa Sugbo.
Gloss go.PST Juan OBL Cebu
NER O B-PER O B-LOC

Figure 8: Surface cues for named entities. Tagalog typically provides an overt personal article (si/ni) before names;
Cebuano may show the same article, but zero-marked variants also occur in some registers/contexts, reducing overt
anchors.
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B Case Studies

To illustrate the mechanisms underlying MAML’s improvements, we present two contrasting examples
that demonstrate how meta-pretraining affects different types of linguistic patterns in Tagalog NER. We
measure ∆ log-prob as the change in surprisal (−! log p) for the gold label between the vanilla and MAML
model. A negative ∆ means the model is more confident after MAML; a positive ∆ means less confident.

Case 1: Prototype Amplification. Sentence: “Inahit ni John ang sarili niya.” (Gloss: “John shaved
himself.”)

The first case study demonstrates how MAML strengthens recognition of cross-linguistically common
proper names. In this example, MAML sharply reduces surprisal on “John,” indicating stronger prototype
activation.

We suspect improvement operates at two levels: (1) lexical level, in the sense that the token "John"
becomes more strongly associated with person entities through meta-learning’s emphasis on rapid adapta-
tion to new entities, and (2) contextual level, in the sense that the ni + proper-name pattern gets reinforced
as a reliable PER indicator during meta-training episodes.

Case 2: Contextual Suppression (Loss). Sentence: “Malapit kay Maria si Juan.” (Gloss: “Juan is close
to Maria.”)

The second case study reveals MAML’s limitations with complex multi-token constructions. Here, ∆ is
positive for key tokens, showing that MAML reduces confidence in the correct label. In "Malapit kay
Maria si Juan" (Juan is close to Maria), both the locative adverb "Malapit" (close/near) and the oblique
case marker "kay" show substantially decreased confidence for location labeling under MAML (combined
decrease of approximately −3.3 log-probability points).

We suspect this occurs due to: (1) capacity constraints, in the sense that the frozen backbone has limited
representational capacity, and strengthening PER features may crowd out LOC/ORG representations,
and (2) training signal imbalance, in the sense that finetuning contained more person-like entities than
complex locative expressions, biasing the learned representations toward single-token person recognition.
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(a) Prototype Amplification. (b) Contextual Suppression.

Figure 9: MAML’s impact on (a) single-token prototype confidence and (b) multi-token contextual cue sensitivity.
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C Pseudocode

Below is the pseudocode for the MAML and vanilla pretraining setup.

Distributed Subset Masked Language Modeling Tasks (SMLMT) Training

Algorithm 1 Distributed SMLMT Loop
1: // Initialization: same as Alg. 2, plus
2: initialize inner-optimizer SGD on head hϕ
3: step ← 0
4: for each sub_batch in dataloader do
5: // gather across GPUs
6: X ← fabric.all_gather(sub_batch["input_ids"])
7: // sync random branch decision
8: r ← Uniform(0, 1); r ← fabric.broadcast(r)
9: if r < ρ then

10: // Meta-learning episode
11: (S,Q), labelsS , labelsQ ← mask_tokens(X)
12: ϕ0 ← ϕ ▷ snapshot head params
13: for t = 1 to Tinner do
14: ℓS ← CE(hϕt−1(fθ(S)), labelsS)
15: ϕt ← ϕt−1 − α⬤ℓS ▷ inner SGD
16: end for
17: ℓQ ← CE(hϕT

(fθ(Q)), labelsQ)
18: ϕ ← ϕ0 ▷ restore head
19: fabric.backward(ℓQ/accum_steps)
20: else
21: // Standard AR
22: Xin, Y ← X[ ∶, ∶ −1 ], X[ ∶, 1 ∶ ]
23: ℓAR ← CE(fθ(Xin), Y )
24: fabric.backward(ℓAR/accum_steps)
25: end if
26: // outer-step and logging
27: if (step+1) % accum_steps == 0 then
28: opt.step(); scheduler.step(); opt.zero_grad()
29: // aggregate metrics across GPUs
30: log_loss ← fabric.all_reduce(ℓ)
31: fabric.log(. . . )
32: fabric.barrier()
33: end if
34: step + = 1
35: end for
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Distributed Autoregressive (AR) Training

Algorithm 2 Distributed AR Loop
1: // Initialization (in Trainer.__init__):
2: Load configs; initialize Fabric, tokenizer, model fθ
3: (model, opt) ← fabric.setup(fθ, AdamW)
4: dl ← base dataloader; dl ← fabric.setup_dataloaders(dl)
5: step ← 0; zero gradients
6: for each sub_batch in dl do
7: // Gather full batch across GPUs if needed:
8: X ← fabric.all_gather(sub_batch["input_ids"])
9: Xin, Y ← X[ ∶, ∶ −1 ], X[ ∶, 1 ∶ ]

10: // forward + loss
11: ℓ ← CE(fθ(Xin), Y )
12: // backward (handles synchronization)
13: fabric.backward(ℓ/accum_steps)
14: // outer-step when accumulated
15: if (step+1) % accum_steps == 0 then
16: opt.step(); scheduler.step(); opt.zero_grad()
17: // optional barrier
18: fabric.barrier()
19: end if
20: step + = 1
21: end for

C.1 Multi-GPU processing
Pico already uses Lightning-Fabric data parallelism but meta-learning introduces various demands that
make multi-GPU processing complicated. A Bernoulli draw is done on one GPU and broadcast so all
ranks choose the same objective. Support and query tensors are constructed on rank 0 then scattered,
because per-rank random masks would destroy gradient equivalence. Every GPU performs the same ten
head updates before any gradient is communicated. A stray early all_reduce would mix gradients from
different inner steps, so we place an explicit barrier between inner and outer phases.

D Universal NER Datasets

To comprehensively evaluate the pretraining method, each permutation of finetuning setup ({head-only,
full}, finetuning dataset ({da_ddt, . . . , zh_gsdsimp, all}) (where all consists of all available training
sets), model size ({tiny, small, medium, large}), and pretraining setup ({vanilla, MAML}) is evaluated,
for a total of 160 evaluation runs.

• Publicly Available In-language treebanks (9 langs): full train/dev/test splits, identical to the
official UD partitions.

– da_ddt, en_ewt, hr_set, pt_bosque, sk_snk, sr_set, sv_talbanken, zh_gsd, zh_gsdsimp

• Parallel UD (PUD) evaluation (6 langs): single test.txt files, all sentence-aligned across German,
English, Portuguese, Russian, Swedish and Chinese.

– de_pud, en_pud, pt_pud, ru_pud, sv_pud, zh_pud

• Other eval-only sets (3 langs): small test splits for low-resource languages.

– ceb_gja (Cebuano), tl_trg (Tagalog TRG), tl_ugnayan (Tagalog Ugnayan)
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D.1 Slovak Fine-Tune Token Statistics

Entity # spans % single-token

PER 2 277 87.6 %
LOC 277 75.1 %
ORG 153 56.9 %

Table 4: Span statistics for the Slovak finetune set (sk_snk train). The data are strongly person-heavy and person
spans are almost always single words, whereas locations and organisations are both rarer and more often multi-token.

D.2 Tagalog and Cebuano Particle and Out-of-Vocabulary Statistics

Language Particle recall OOV rate

Tagalog 0.113 ± 0.000 0.523 ± 0.000
Cebuano 0.058 ± 0.000 0.534 ± 0.000

Table 5: Mean (± s.d. across checkpoints) of particle–preceding-span recall and token out-of-vocabulary rate,
measured on the zero-shot evaluation sets after Slovak head-only tuning. “Particle recall” is the fraction of gold
PER entities whose left context token is a Filipino case particle recognised by the model.
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E Pretraining Results

We present the unedited pretraining indicators for each pico-maml-decoder model below, as logged on
WandB.

Figure 10: Pretraining training loss curve.

Figure 11: PALOMA score over pretraining steps.
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Figure 12: Query accuracy during pretraining.

Figure 13: Support accuracy over pretraining.
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Figure 14: Mean of weights in classifier head over pretraining.

Figure 15: Standard deviation of weights in classifier head over pretraining.
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F Default pico-maml-train Configurations

Category Parameter Default Value

Model

Model Type pico_decoder
Hidden Dimension (dmodel) 768
Number of Layers (nlayers) 12
Vocabulary Size 50,304
Sequence Length 2,048
Attention Heads 12
Key/Value Heads 4
Activation Hidden Dim 3,072
Normalization Epsilon 1 × 10

−6

Positional Embedding Theta 10,000.0

Training

Optimizer AdamW
Learning Rate 3 × 10

−4

LR Scheduler Linear w/ Warmup
Warmup Steps 2,500
Gradient Accumulation Steps 128
Max Training Steps 200,000
Precision BF16 Mixed

Data
Dataset Name pico-lm/pretokenized-dolma
Batch Size 1,024
Tokenizer allenai/OLMo-7B-0724-hf

Checkpointing

Auto Resume True
Save Every N Steps 100
Learning Dynamics Layers "attention.v_proj",

"attention.o_proj",
"swiglu.w_2"

Learning Dynamics Eval Data pico-lm/pretokenized-paloma-tinsy

Evaluation
Metrics ["paloma"]
Paloma Dataset Name pico-lm/pretokenized-paloma-tinsy
Eval Batch Size 16

Monitoring
Logging Level INFO
Log Every N Steps 100

Meta-Learning

Enabled True
Hybrid Ratio 0.5
Inner Steps (k) 10
Inner Learning Rate 0.001
Support Shots (k) 4
Query Ways (n) 32
Classifier Head Layers 4
Classifier Head Hidden Dim 128
Classifier Head Dropout 0.1
Classifier Head Init Method xavier

Monitoring
Logging Level INFO
Log Every N Steps 100

Table 6: Default configuration settings used in pico-maml-train.
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Pico-MAML-Decoder Model Comparison
Attribute tiny small medium large

Parameter Count 11M 65M 181M 570M
Hidden Dimension (dmodel) 96 384 768 1536
Feed-forward Dim 384 1536 3072 6144
Training Time (6k steps) 10h 15h 16h 25h

Table 7: Comparison of pico-maml-decoder model variants trained with default pico-maml-train configurations.
Except for hidden and feed-forward dimension, all models share the training settings detailed in 6. Models were
trained for 6000 training steps on 4 NVIDIA A100-SXM4-80GB GPUs; the listed training times correspond to the
initial 6000 steps.
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