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Abstract

Multilingual Large Language Models (LLMs)
develop cross-lingual abilities despite being
trained on limited parallel data. However, they
often struggle to generate responses in the in-
tended language, favoring high-resource lan-
guages such as English. In this work, we intro-
duce CoCo-CoLa (Correct Concept - Correct
Language), a novel metric to evaluate language
adherence in multilingual LLMs. Using fine-
tuning experiments on a closed-book QA task
across seven languages, we analyze how train-
ing in one language affects others’ performance.
Our findings reveal that multilingual models
share task knowledge across languages but ex-
hibit biases in the selection of output language.
We identify language-specific layers, showing
that final layers play a crucial role in determin-
ing output language. Accordingly, we propose
a partial training strategy that selectively fine-
tunes key layers, improving language adher-
ence while reducing computational cost. Our
method achieves comparable or superior per-
formance to full fine-tuning, particularly for
low-resource languages, offering a more effi-
cient multilingual adaptation.1

1 Introduction

Multilingual LLMs are pre-trained on raw text from
multiple languages, typically consisting of sepa-
rate corpora for each language. Remarkably, de-
spite this lack of explicit parallel data to facilitate
cross-lingual associations, these models develop
an implicit understanding of inter-language rela-
tions and cross-lingual word associations (Wen-Yi
and Mimno, 2023). Instruction tuning further en-
hances their ability to follow prompts, and models
trained on multilingual data often exhibit zero-shot
cross-lingual transfer of instruction-following ca-
pabilities (Chirkova and Nikoulina, 2024). How-

*Equal contribution.
1Our code is available at https://github.com/elnaz

rahmati/CoCo-CoLa/

Figure 1: Evaluation of correctness and language ad-
herence on French input. The soda level visualizes the
CoCo-CoLa ratio, with higher levels indicating stronger
adherence to the input language. Our results show that
partially fine-tuning the final layers of an English-tuned
model on French achieves language adherence and accu-
racy comparable to a model fully fine-tuned on French.

ever, this generalization is uneven: while high-
resource languages in pretraining benefit signifi-
cantly from instruction tuning, lower-resource or
unseen languages often struggle to follow instruc-
tions reliably, frequently exhibiting degraded per-
formance or defaulting to generating output in a
preferred language (Nguyen et al., 2024; Chirkova
and Nikoulina, 2024). To address these issues, we
investigate how multilingual LLMs learn the same
task across different languages.

A crucial step toward addressing the limitations
of multilingual LLMs is understanding how they
internally process and encode multilingual knowl-
edge. Interpretability research has traditionally
focused on monolingual models, leveraging tech-
niques such as representation probing (Orgad et al.,
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2024; Saphra and Lopez, 2019) and model patch-
ing (Ghandeharioun et al., 2024; García-Carrasco
et al., 2024). These methods have been widely
used to examine LLMs’ performance across tasks
such as mathematics (Nikankin et al., 2024; Zhou
et al., 2024), and general knowledge (Jiang et al.,
2024; Burns et al., 2022; Singh et al., 2024; Gol-
goon et al., 2024; Chowdhury and Allan, 2024;
Rai et al., 2024). Studies on model internals sug-
gest that Multi-Layer Perceptrons (MLPs) retrieve
task-relevant information, while attention layers re-
fine and promote the correct response (Geva et al.,
2021; Meng et al., 2022). Furthermore, knowledge
is often identified in earlier layers and reinforced
in later layers (Fan et al., 2024).

However, these interpretability techniques have
primarily been applied to monolingual models,
which were initially dominant due to the early fo-
cus on English-language pertaining (Touvron et al.,
2023; Jiang et al., 2023; Team et al., 2024; Abdin
et al., 2024). The rise of multilingual LLMs trained
on diverse languages (Gao et al., 2024; Shaham
et al., 2024; Soykan and Şahin, 2024), necessitates
extending interpretability research beyond English.
Multilingual LLMs present additional challenges:
representations of different languages are inter-
twined within a shared space; cross-lingual align-
ment varies across languages; and shared tokens
between languages impact their process. These
complexities make it difficult to isolate language-
specific knowledge, benchmark cross-lingual gen-
eralization, and interpret how multilingual LLMs
acquire and apply linguistic information. Given the
prevalence of mid- and low-resource languages, un-
derstanding these mechanisms is crucial not only
for improving cross-lingual transfer but also for
mitigating the “curse of multilinguality” — the per-
formance degradation observed as the number of
supported languages increases.

Recent efforts have begun tackling these chal-
lenges by probing internal representations (Li et al.,
2024), analyzing the emergence of cross-lingual
transfer (Wang et al., 2024a), and studying token
representation alignment on cross-lingual transfer
(Gaschi et al., 2023). Furthermore, researchers
attempt to separate the linguistic abilities from
task abilities by developing language- and task-
specific adapters (Pfeiffer et al., 2020; Parovic et al.,
2023), subnetworks (Choenni et al., 2023), or lay-
ers (Bandarkar et al., 2024). However, despite this
progress, most prior works treat multilinguality as a
monolithic phenomenon, focusing on general cross-

lingual transfer or aggregating all languages into a
single block of linguistic knowledge. Less attention
has been given to understanding how LLMs pro-
cess individual languages at a more granular level,
particularly within the context of task learning.

In this work, we focus on language adherence by
first identifying both shared and distinct patterns in
cross-lingual task acquisition, revealing how mul-
tilingual models internalize and apply linguistic
knowledge (Section 3). We find that training on
a task in one language improves performance in
other languages. However, this benefit is not al-
ways directly observable due to an inherent model
bias towards generating output in a preferred lan-
guage, rather than strictly adhering to the input lan-
guage (Section 4.1). To quantify this bias, we intro-
duce CoCo-CoLa (Correct Concept, Correct Lan-
guage), a novel metric designed to assess a model’s
ability to generate responses in the intended input
language, particularly for languages not included
in supervised finetuning (SFT). Furthermore, we
propose a partial training method that selectively
fine-tunes specific model layers which reveals the
relation between language adherence and model
layers (Section 4.2). This approach enables more
efficient language adaptation, achieving compara-
ble or even superior performance compared to full
model retraining, especially for low-resource lan-
guages. Finally, we show that the issue of language
adherence can be addressed by finetuning only the
final layers of LLMs on a small balanced multilin-
gual data (Section 4.3).

2 Related Work

This work builds on several active research areas
that inform our study of multilingual task learning
in LLMs. Specifically, we draw from (1) Mul-
tilingual interpretability, which helps us analyze
how LLMs process different languages and how
their internal structures influence multilingual task
learning; (2) Representation alignment, which pro-
vides insights into token-level similarities across
languages and how shared representations facilitate
cross-lingual generalization; (3) Adapters, which
separate language knowledge from task-specific
knowledge, offering a structured framework for un-
derstanding their interactions; and (4) Subnetworks,
which identify task- and language-specific parame-
ters within existing models, offering an alternative
to external adapters and directly informing our ap-
proach to efficient partial training.
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Interpretability. Li et al. (2024) use probing
techniques to analyze accuracy changes across lay-
ers in LLMs, showing that high-resource languages
exhibit patterns similar to English, with accuracy
increasing from lower to upper layers. However,
this pattern is inconsistent for low-resource lan-
guages. Wang et al. (2024b) examine cross-lingual
transfer by analyzing neuron overlap in differ-
ent languages using checkpoints from BLOOM’s
pre-training (Le Scao et al., 2023). They find
a strong correlation between neuron overlap and
cross-lingual transfer, though neuron overlap does
not increase monotonically during training, and pat-
terns vary across model sizes. Similarly, Zhao et al.
(2024a) investigate language-specific neurons and
assess how these neurons affect both English and
non-English language performance.

Representation alignment. Beyond studying
multilingualism in LLMs, some research focuses
on improving model performance across languages
through representation alignment. Gaschi et al.
(2023) align English and Arabic model representa-
tions using a bilingual dictionary before fine-tuning
on a target task. Zhang et al. (2024) align En-
glish representations with other languages using
question-translation data before instruction-tuning.
Additionally, Salesky et al. (2023) introduce a pixel
representation method to enhance alignment and
improve translation quality.

Adapters. Another approach for cross-lingual
transfer involves integrating adapters into the
model. This technique is based on the assump-
tion that task-solving knowledge can be sepa-
rated from language knowledge. Pfeiffer et al.
(2020) introduce MAD-X, a framework where lan-
guage and task adapters are trained separately, with
each block’s representations passing through a lan-
guage adapter before a task adapter. Building on
this, later works aim to refine adapter creation
and composition methods. For instance, Parović
et al. (2022) propose BAD-X, which replaces
monolingual adapters with bilingual adapters, im-
proving performance for low-resource languages.
Zhao et al. (2024b) introduce AdaMergeX, where
adapters for language-task pairs are trained in-
dependently and later combined through linear
operations (addition and subtraction) to generate
adapters for new language-task pairs.

Subnetworks. To enhance cross-lingual trans-
fer without adding new parameters, some methods

focus on identifying existing task- and language-
specific parameters within the model. Choenni et al.
(2023) fine-tune models for specific languages or
tasks, extract the most affected neurons, and use the
resulting subnetworks to enable multilingual task
adaptation. Bandarkar et al. (2024) take a layer-
wise approach in multiple steps: they train separate
language- and task-expert models, analyze parame-
ter changes to identify key layers for language and
task learning, and use layer-swapping techniques to
create a math expert in a new language. Consistent
with Zhao et al. (2024a), their findings suggest that
initial and final layers primarily encode linguistic
information, while middle layers are task-specific.

3 Preliminary Analysis

In the preliminary section of this paper, we first iso-
late language effects from task learning by choos-
ing multi-lingual parallel QA data (Section 3.1), ex-
amine fine-tuning performance across multiple lan-
guages (Section 3.2), explore how well LLMs gen-
eralize knowledge across languages (Section 3.3),
and which model components are most affected
during training (Section 3.4). Then, in Section 4.1,
we introduce CoCo-CoLa metric to measure lan-
guage adherence in multilingual LLMs followed
by an efficient partial training method to increase
the model adherence (Section 4.2).

3.1 Setup

To investigate how multilingual LLMs learn a new
task in a monolingual setting, we train four differ-
ent models on a Closed-Book Question-Answering
(CBQA) task. We include two sizes of the Llama-
3.2 series (Dubey et al., 2024) to analyze the effect
of model size on multilingual performance and be-
havior, given that these models are specifically op-
timized for multilingual dialogue. We also include
Llama-3.1-8B as a point of comparison, as it, while
not explicitly optimized for multilingualism, was
trained on a small multilingual corpus. To test gen-
eralizability to multilingualy balanced models, we
include Gemma-3-4B (Team et al., 2025), which
was trained with UniMax (Chung et al., 2023) for
addressing language imbalances.

We select CBQA because it is language-
dependent and demonstrates a model’s ability to act
as a knowledge base (Wang et al., 2021). To isolate
the impact of language differences from the effects
of learning a new task or acquiring new knowl-
edge, we use the Mintaka CBQA dataset (Sen et al.,
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Llama-1B Llama-3B Llama-8B Gemma-4B

Language PLM SFT ∆ PLM SFT ∆ PLM SFT ∆ PLM SFT ∆

English 13.27 38.44 25.17 32.85 53.09 20.24 12.92 50.98 38.06 30.69 53.67 22.98
French 11.30 40.27 28.97 22.90 43.80 20.90 18.53 50.85 32.32 21.67 48.43 26.76
German 7.16 40.34 33.18 23.79 48.10 24.31 11.04 44.35 33.31 23.76 45.79 22.03
Hindi 5.27 21.18 15.91 7.33 30.39 23.06 6.21 35.29 29.08 8.84 43.96 35.12
Italian 7.06 41.58 34.52 21.87 42.73 20.86 16.48 43.22 26.74 20.44 50.05 29.61
Portuguese 5.38 38.23 32.85 20.06 37.04 16.98 18.38 31.11 12.73 19.96 44.16 24.20
Spanish 6.13 41.71 35.58 22.01 45.69 23.68 16.60 45.46 28.86 26.33 48.13 21.80

Table 1: Performance of pre-trained models (PLM), fine-tuned models (SFT), and their difference (∆ = SFT - PLM)
on CBQA data across languages.

2022). Mintaka provides identical question-answer
pairs in nine languages, allowing us to keep the
question content consistent and thus isolate the
influence of language itself. The dataset was orig-
inally created in English and later translated into
Arabic, French, German, Hindi, Italian, Japanese,
Portuguese, and Spanish.

One challenge with Mintaka is that some answer
types are not translated across languages. To keep
question-answer pairs within the same language,
we use Google Translate to convert these answers
into the language of their respective questions and
apply back-translation for accuracy checks. Addi-
tionally, since our goal is to study how models learn
new tasks in languages they have been exposed to
before, we exclude Arabic and Japanese.

3.2 SFT Performance

Our initial step is to assess the model’s ability
to learn the task in each individual language, ef-
fectively measuring how learning difficulty varies
across languages. To do this, we perform SFT for
all models on each language of the CBQA dataset
for three epochs and generate answers for given
questions. Next, we select the best model based on
the validation loss. Further implementation details
are provided in Appendix A.1.

Table 1 shows a comparison of accuracy between
the pre-trained model and the best checkpoint of the
language-specific SFT model across different lan-
guages. SFT significantly improves performance
for all languages with relatively consistent accu-
racy levels, except for Hindi in all Llama model
sizes and Portuguese for Llama-8B, which exhibit
notably lower accuracy. This discrepancy is likely
due to undertraining. Among the SFT models, En-
glish achieves the highest accuracy in all models,
except Llama-1B that performs best in Spanish.
The largest accuracy gains are observed in En-

glish (+38.06%) for Llama-8B, German (+24.31%)
for Llama-3B, Spanish (+35.58%) for Llama-1B,
and Hindi (+35.12%) for Gemma-4B, indicating
that these languages benefited the most from fine-
tuning. The comparable accuracy across languages
indicates comparable knowledge acquisition.

However, two critical questions remain: (1) Do
models share learned knowledge uniformly across
languages, or do they correctly answer distinct sub-
sets of questions depending on the language? (2)
Are there specific parts of the model that are respon-
sible for encoding language-specific information?
To address these questions, we first analyze the
overlap in correct answers across languages using
the Jaccard Index, followed by an investigation of
parameter updates to determine whether certain
components of the model specialize in handling
linguistic differences.

3.3 Cross-lingual Task Knowledge

To further investigate the extent of cross-lingual
task knowledge transfer within the model, we an-
alyze the overlap in correct answers across lan-
guages. Specifically, we measure how consistently
the model arrives at the same correct answers in
different languages, providing insight into whether
knowledge is shared across languages. It is im-
portant to note that there is no overlap between
the knowledge present in the training and evalua-
tion data. This ensures that any correct answers
during evaluation are derived from knowledge ac-
quired during pretraining rather than memoriza-
tion. Consequently, the model’s ability to generate
correct responses across languages indicates that
it has internalized the underlying task knowledge
from the training data, rather than relying solely
on language-specific cues. Let LA and LB repre-
sent two languages, and let CLA

denote the set of
correct answers for LA. To quantify the degree
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Figure 2: Jaccard similarity index between different languages, measuring the proportion of overlapping correctly
answered questions between pairs of languages.

of shared task knowledge between languages, we
compute the Jaccard Index, also known as Intersec-
tion over Union (IoU), between CLA

and CLB
(see

Equation 1). The Jaccard Index is a natural choice
for this analysis as it directly measures the propor-
tion of overlapping correct answers relative to the
total distinct answers across languages. This al-
lows us to assess knowledge consistency and cross-
lingual transfer within the model.

IoU(A,B) =
|CLA

∩ CLB
|

|CLA
∪ CLB

| (1)

The results, shown in Figure 2, indicate that on
average approximately 60% of correctly answered
questions are shared across languages for all mod-
els, suggesting a strong degree of shared knowl-
edge among languages. However, Hindi exhibits
significantly lower overlap with other languages in
Llama-3.2 models, suggesting weaker generaliza-
tion for this language. Interestingly, in Llama-8B,
Hindi shows higher overlap compared to Llama-
3.2 models, but Portuguese experiences a notable
drop in overlap. Additionally, Llama-3B demon-
strates a higher rate of shared knowledge compared
to Llama-8B, despite both models achieving com-
parable accuracy across languages (see Table 1).
This highlights the importance of multilingual opti-
mization in enhancing cross-lingual transfer among
languages. For Gemma-4B, despite comparable
accuracy across languages, the overall overlap is
lower than that observed in the Llama models, in-
dicating less cross-lingual knowledge sharing.

3.4 Parameter Updates
To investigate language-specific encoding in LLMs,
we analyze parameter updates during fine-tuning
and compare them across languages to determine
whether certain components of the model special-
ize in processing linguistic information. Meng et al.
(2022) suggest that MLP modules primarily store

knowledge, while attention modules control infor-
mation retrieval and selection. SFT models cor-
rectly answer approximately 40% of evaluation
questions in all languages. However, they require
fine-tuning to improve their ability to select and out-
put the correct information. As a result, we expect
substantial modifications in the attention modules,
particularly in the final layers, while changes in the
MLP modules remain limited. Since these datasets
differ only in language, not in task or knowledge,
analyzing the model updates allows us to pinpoint
which layers or components are most crucial for
learning language-specific representations.

To compute parameter update, we follow Ban-
darkar et al. (2024) and calculate the average pa-
rameter modifications for each module in each
layer. Denoting the pre-trained weight matrix as
Wp and the fine-tuned weight matrix as Wf , the
average magnitude of differences is given by:

∆W =
1

n

n∑

i=1

|W (i)
p −W

(i)
f | (2)

The results for English and French are shown in
Figure 3, with the remaining languages in Figure 6.
As expected, significant modifications occur in the
attention modules of the final six layers for Llama-
1B and the final 14 layers for Llama-3B, Llama-8B,
and Gemma-4B models across all languages. How-
ever, in Llama-3.2 models and Gemma-4B model,
we observe substantial changes in the MLP mod-
ules in these layers for all languages except En-
glish, suggesting that these variations might be tied
to language-specific processing rather than task-
related learning. Surprisingly, for Llama-8B, even
the model fine-tuned on English shows a high rate
of change similar to other languages. Considering
the unexpectedly low accuracy of the Llama-8B
pre-trained model across all languages compared to
Llama-3B, this larger modification could be related
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Figure 3: Heatmaps of parameter update magnitudes during monolingual fine-tuning on English (top) and French
(bottom) across different LLMs. Gray boxes show MLP modules where parameter update differs between languages.

to learning the task or acquiring new knowledge
rather than just language adaptation.

4 Approach

Our previous analysis suggests that while task
knowledge is largely shared across languages, the
way this knowledge is processed and accessed dif-
fers. Although a Jaccard Index analysis revealed
substantial overlap in correct answers, our inves-
tigation of parameter updates showed that models
trained on non-English languages required more
substantial modifications in their MLP modules
compared to English, even when achieving compa-
rable accuracy. This raises an important question:
Do these modifications reflect deviations in knowl-
edge acquisition, or are they more related to lan-
guage generation? In this section, we first introduce
a metric to analyze linguistic bias in multilingual
LLM outputs. Then, we propose a partial training
strategy aimed at reducing this bias by selectively
fine-tuning specific model components.

4.1 Correct Concept in Correct Language

According to Dubey et al. (2024), only 8% of the
pre-training data used for Llama-3 models is mul-
tilingual, while the rest is dominated by English
general knowledge, mathematics, and code. This
suggests a strong bias toward English. Given this
imbalance, we hypothesize that the observed MLP
module changes in non-English languages may not
indicate new knowledge acquisition but rather ad-
justment in language selection during response gen-
eration. Supporting this, Chirkova and Nikoulina
(2024) found that when Llama-2-13B is instruction-
tuned on English and tested in other languages, it
generates responses in a different language from
input language in over 30% of cases, with this be-
havior influenced by training hyperparameters.

To investigate this further, we introduce CoCo-
CoLa (Correct Concept - Correct Language), a
metric designed to measure how well the model
adheres to the input language while generating cor-
rect responses. Let Li denote the input language,
CLi→Lo the set of correct output in language Lo

when passing language Li as input. We define the
CoCo-CoLa ratio as follows:

CoCo-CoLa(Li) =

|CLi→Li −
⋃

Lo ̸=Li

CLi→Lo |

|CLi→Li ∆
⋃

Lo ̸=Li

CLi→Lo |
(3)

The denominator uses the symmetric difference
between CLi→Li and correct answers in other lan-
guages because many answers involve named en-
tities, such as well-known places, books, and indi-
viduals. Since most of the languages in this work
use similar scripts, named entities often appear in
identical forms across multiple languages. This
redundancy leads to overlap between CLi→Li and⋃

Lo ̸=Li
CLi→Lo , which the symmetric difference

helps mitigate by ensuring that shared named enti-
ties do not artificially inflate the metric.

Given that these models are primarily trained on
English, when the input is in Li the output is usu-
ally either Li or English. Thus,

⋃
Lo ̸=Li

CLi→Lo is
largely dominated by CLi→en, meaning that most
language switching occurs between the input lan-
guage and English rather than other languages.

To further simplify the calculation, we filter the
data to include only questions where the correct
answers in Li and English are different. Under this
condition, CLi→Li ∩ CLi→en = ∅, allowing the
CoCo-CoLa ratio to reduce to:

CoCo-CoLa(Li) =
|CLi→Li |

|CLi→Li |+ |CLi→en|
(4)

67



Table 2: CoCo-CoLa ratio (Ratio) and cumulative accuracy (Acc) of pretrained model (PLM), English-tuned model
(→ en), and Li-tuned model (→ Li) across languages for Llama-1B, Llama-3B, Llama-8B, and Gemma-4B.

Language Metric Llama-1B Llama-3B Llama-8B Gemma-4B

PLM → en → Li PLM → en → Li PLM → en → Li PLM → en → Li

French
Acc 12.07 52.66 55.73 20.57 62.55 52.97 12.89 58.64 66.01 18.67 65.16 63.23
Ratio 49.42 13.47 88.58 52.51 14.73 89.45 58.11 12.32 87.54 50.77 19.22 90.14

German
Acc 8.05 51.97 50.92 16.99 49.30 57.01 10.43 59.95 52.27 15.26 64.59 60.24
Ratio 53.87 10.50 91.02 56.53 19.64 89.26 57.49 11.03 87.21 42.82 15.23 92.64

Hindi
Acc 8.65 29.34 27.42 15.77 38.26 39.67 9.79 37.29 39.21 12.58 47.81 49.66
Ratio 43.16 13.28 90.79 31.93 10.04 77.47 43.67 10.74 90.68 40.86 9.39 97.19

Italian
Acc 7.76 51.35 62.39 16.63 53.17 46.02 11.77 61.88 58.55 14.62 62.99 67.98
Ratio 51.32 10.00 93.60 56.68 16.29 87.91 52.11 10.90 91.35 48.76 14.84 91.08

Portuguese
Acc 10.22 54.85 57.57 17.60 55.52 50.64 16.23 60.75 42.90 17.11 63.81 61.16
Ratio 56.40 12.73 91.07 63.37 15.99 85.10 51.41 11.49 90.73 51.89 14.98 90.69

Spanish
Acc 9.75 57.52 59.02 19.17 57.55 60.38 14.13 58.34 54.27 17.69 65.88 60.65
Ratio 52.28 12.01 91.24 61.68 15.84 89.18 61.98 9.40 91.35 51.15 14.70 91.36

To evaluate language adherence and accuracy,
we pass the input in Li to pre-trained, en-tuned,
and Li-tuned models. We then compute the CoCo-
CoLa ratio and the cumulative accuracy, defined as
the proportion of correct answers either in Li or En-
glish. The results, presented in Table 2, show that
while the en-tuned models and the Li-tuned models
achieve comparable cumulative accuracy on Li in-
put, the CoCo-CoLa ratio is significantly lower for
the en-tuned model. This suggests that although the
en-tuned model can correctly process the question
in Li and retrieve the correct answer at the same
rate as the Li-tuned model, it frequently generates
the answer in English instead of Li. Furthermore,
analyzing the CoCo-CoLa ratio of the pre-trained
model reveals that the model already exhibits a bias
toward generating English responses, though this
bias is less pronounced than in the en-tuned model.
These findings support our hypothesis that the vary-
ing rate of parameter updates across languages is
related to output language preference. Since the
model is already inherently biased toward English,
en-tuned results in the least MLP change compared
to other languages.

4.2 Partial Training for Language Adaptation

In this section, we aim to disentangle task learn-
ing from output generation in language Li. Our
previous results reveal two key observations. First,
as shown in Section 4.1, both the en-tuned model
and the Li-tuned model achieve comparable cumu-
lative accuracy on Li, indicating that they learn
the task equally well. The only difference is their
CoCo-CoLa score, meaning that while both mod-
els understand the task to the same degree, they

generate outputs in different languages. Second,
from Section 3.4, we observed that the en-tuned
and Li-tuned models undergo different parameter
updates. Some of these updates are necessary for
learning the task itself, while others may specifi-
cally steer the model toward producing responses
in the intended language.

Based on these observations, we hypothesize that
fine-tuning specific layers of an en-tuned model on
Li can enable it to generate responses in Li without
requiring full model updates. Specifically, these
layers correspond to the parameters that were up-
dated in the Li-tuned model but not in the en-tuned
model. To test this hypothesis, we first identify
the layers that undergo language-specific updates.
We then fine-tune only these layers in the en-tuned
model and compare the results to fine-tuning other
layers. This comparison allows us to isolate the
parameters responsible for output language.

Identifying language layers. We select layers
for partial training based on the variation in pa-
rameter update rates observed in Section 3.4. For
the Llama-1B model, we train three variants by
unfreezing different sets of layers: (1) layers 11-
16, (2) layers 1-5 (chosen to match the parameter
count of the final six layers), and layers 1-10 (in-
cluding all parameters except the final six). We
expect the first variant to be the most language-
related and to result in the largest improvement in
the CoCo-CoLa ratio, while the other two should
have a smaller effect. For Llama-3B and Gemma-
4B, we similarly train two variants each: unfreez-
ing layers 15–28 and 1–14 for Llama-3B, and lay-
ers 21–34 and 1–20 for Gemma-4B. Again, we
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Figure 4: Cumulative accuracy and Li accuracy on en-tuned (SFTen) and Li-tuned models (SFTLi
), along with

partially trained models, across all Llama model sizes.

expect the final-layer variants to have a stronger
relationship to language generation. For Llama-8B,
which does not show clear variations in update rates
across languages (as noted in Section 3.4), we in-
stead select layers based on the most updated MLP
modules. Specifically, we choose layers 16–32 and
layers 1–15 for partial training to determine which
part of the model is more responsible for language
generation. Through this analysis, we aim to ver-
ify whether the final layers play a greater role in
controlling the output language

Partial training evaluation. To evaluate the ef-
fectiveness of partial training, we compare all par-
tially trained models to both their fully en-tuned
and fully Li-tuned models. Figure 4 presents cu-
mulative accuracy and Li accuracy across three
languages, while results for the remaining three
languages are included in Figure 7. In addition,
CoCo-CoLa ratios for partially trained models are
also available in Appendix A.4, providing further
insight into the extent to which partial fine-tuning
improves output language consistency.

As shown in Figure 4, among the partially
trained models, unfreezing the final layers results
in the highest accuracy and CoCo-CoLa ratio for all
models, highlighting the crucial role these layers
play in determining the output language. Notably,
the accuracy of this partially trained configuration
closely approaches that of the fully Li-tuned model,
suggesting that the earlier layers already encode
sufficient information for question answering, even
without direct exposure to Li during training. In-
terestingly, Hindi-which initially exhibited lower

performance than other languages-benefits signifi-
cantly from cross-lingual transfer, achieving better
results with partial training than with full train-
ing in both Llama-3.2 models. Llama-3B demon-
strates even stronger cross-lingual transfer, with
improved accuracy for Italian and Portuguese as
well. For Llama-8B and Gemma-4B, training the
second half of the model yields the highest CoCo-
CoLa ratio; however, the differences in Li accu-
racy across partial training configurations are less
pronounced than in the Llama-3.2 models. These
models also show improved accuracy with partial
training compared to full training for German, Ital-
ian, and Portuguese in Llama-8B, and for French,
Portuguese, and Spanish in Gemma-4B. For low-
resource languages, partially training only the final
layers of an en-tuned model can achieve similar or
even better accuracy compared to full fine-tuning in
the target language. Beyond its effectiveness, par-
tial training is significantly more efficient, reducing
training time to half and memory usage to 65%
of full training. Furthermore, the model achieves
higher accuracy in fewer training steps, requiring
less than one epoch, meaning it is trained on fewer
data points.

These findings confirm the hypothesis that the
final layers are linked to output language selection,
whereas initial and middle layers have less effect
on the output language. Our results are aligned
with concurrent work suggesting that LLMs pro-
cess input in three stages: understanding the in-
put, reasoning and knowledge retrieval in a shared
space among languages, and generating output
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French German Hindi Italian Portuguese Spanish Average

Model Ratio Acc Ratio Acc Ratio Acc Ratio Acc Ratio Acc Ratio Acc Ratio Acc

Llama-1B 82.15 47.53 64.47 39.02 90.75 28.00 83.58 50.39 73.89 41.51 72.72 41.65 77.93 41.35
Llama-3B 78.37 42.19 79.55 36.14 85.34 33.54 80.11 41.61 74.27 49.04 78.92 44.22 79.43 41.12
Llama-8B 75.95 67.62 85.29 49.75 96.89 32.00 87.83 59.77 88.63 64.55 86.94 38.01 86.92 51.95
Gemma-4B 88.35 57.38 88.04 55.88 83.71 37.32 90.22 64.21 87.00 60.69 87.34 61.81 87.45 56.22

Table 3: CoCo-CoLa ratio (Ratio) and cumulative accuracy (Acc) of models partially trained on balanced multilingual
data, with averages across all languages.

(Wendler et al., 2024; Dumas et al., 2025; Schut
et al., 2025). Although it remains debated whether
this shared knowledge space is language agnostic
(Dumas et al., 2025) or whether the model simply
thinks in English (Wendler et al., 2024; Schut et al.,
2025), these works, alongside ours, all suggest that
the process happening in middle layers is not de-
pendent on the input language. However, what
previous works overlooks is that the final stage is
defective and cannot generate the response in the
correct language. We believe this phenomenon has
led to misleading evaluations and the belief that
multilingual LLMs think better in English (Etxaniz
et al., 2024). Our work emphasizes the importance
of considering both correctness and language ad-
herence, as relying on output accuracy against the
ground truth does not provide a complete picture
of a model’s ability to reason and operate in non-
dominant languages.

4.3 Improving Language Adherence in
Multilingual LLMs

As demonstrated in Section 4.1, multilingual LLMs
exhibit a strong linguistic bias toward English, the
most prevalent language in their training data. In
Section 4.2, we further established that this bias
is closely linked to the model’s final layers. To
investigate whether this bias can be mitigated and
to enable the model to better adhere to the input
language, we take the en-tuned model and, rather
than adapting it to a single target language, we par-
tially fine-tune the language-related layers using a
balanced multilingual dataset, where all languages
appear with equal frequency in the training data.

As shown in Table 3, the average CoCo-CoLa
ratio for multilingually fine-tuned Gemma-4B and
Llama-8B reaches 87.45% and 86.92%, respec-
tively, while Llama-1B and Llama-3B achieve
slightly lower ratios of 77.93% and 79.43%. These
results are similar to the monolingual models par-
tially trained for each language (Appendix A.4).
These findings indicate that, even when starting

from a model pretrained on biased data, fine-tuning
only the final layers on a balanced multilingual
dataset substantially improves language adherence
across all languages. Notably, for Llama-8B and
Gemma-4B, the accuracy of the resulting multilin-
gual model is competitive with models fully fine-
tuned for each individual language, despite using
only 200 datapoints per language during training.

5 Conclusion

In this work, we first analyzed shared knowledge
across seven languages and identified key differ-
ences in the parameters most affected when train-
ing models for each language. Building on these
insights, we proposed the CoCo-CoLa ratio, a met-
ric for evaluating language adherence in multilin-
gual LLMs, and used it to evaluate both pre-trained
and fine-tuned LLMs. Our findings show that pre-
trained models tend to generate English outputs re-
gardless of the input language and that fine-tuning
on English further amplifies this bias.

To address this problem, we leveraged insights
from parameter updates and CoCo-CoLa results to
develop a partial training method that improves lan-
guage adherence in English-trained models. Our
analysis demonstrated a more efficient alternative
to full fine-tuning, achieving comparable or even
superior performance while significantly reducing
the number of updated parameters. Additionally,
we showed that partial training on balanced multi-
lingual data achieves similar language adherence to
monolingual training. Given the widespread avail-
ability of instruction-tuned and task-specific En-
glish models, partial training of final layers presents
a fast and efficient approach for improving lan-
guage adherence and adapting LLMs to new lan-
guages.

Limitations

We acknowledge that training hyperparameters can
influence the linguistic bias of fine-tuned models,
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as highlighted by Chirkova and Nikoulina (2024).
For instance, while smaller learning rates may re-
duce bias, they can also lead to degraded task per-
formance. Due to resource constraints, we used a
single set of hyperparameters optimized for task
performance. Additionally, we applied the same
hyperparameter settings across all languages and
model sizes, though fine-tuning them individually
for each model-language pair could potentially
yield better results.

Moreover, linguistic bias in pre-trained models
and the observed trends in parameter updates across
languages are influenced by factors such as model
architecture, training procedures, data proportions,
and even the order in which the model encoun-
ters training data. As a result, the specific layers
we identified for each model size may differ when
tested on other LLMs. Additionally, our obser-
vations suggest that certain languages are under-
trained in Llama models. However, due to the lack
of publicly available information on training data
and procedures, we cannot make definitive claims
regarding language-specific training discrepancies.

Another limitation is that our study focuses on
languages that mostly come from the same lan-
guage family, and are relatively close to each other.
As a result these languages exhibit significant to-
ken overlap, facilitating cross-lingual transfer. The
models we evaluated were also trained on a lim-
ited set of languages with similar characteristics.
The studied languages mainly fall into the mid- or
high-resource category, meaning our findings may
not generalize to massively multilingual models
trained on a more diverse set of languages.

Ethical Statement

This research investigates language adherence in
multilingual large language models and proposes
partial training methods for efficient adaptation.
Our work aims to enhance linguistic fairness and
accessibility by mitigating biases that favor high-
resource languages. We acknowledge that training
data composition and fine-tuning decisions can in-
troduce unintended biases, which may dispropor-
tionately affect underrepresented languages. While
our findings contribute to more equitable multi-
lingual model adaptation, they are limited to lan-
guages present in the model’s pretraining data and
may not generalize to unseen languages. We en-
courage further work to assess our method’s appli-
cability to a broader set of languages, particularly

low-resource and non-Indo-European languages.
This study does not involve human subjects, per-

sonal data, or user interactions, and we adhere to
ethical guidelines for computational research. Our
experiments were conducted using publicly avail-
able models and datasets, ensuring transparency
and reproducibility.
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A Appendix

A.1 Implementation details

We experimented with dropout rates of 0.1 and
0.05, and learning rates of 5e-5, 1e-5, 5e-6, 1e-6,
5e-7, and 1e-7 for training on the English CBQA
task. The best setting (dropout = 0.1, learning rate
= 5e-6) was selected based on the minimum valida-
tion loss. These hyperparameters were used consis-
tently across all languages and models throughout
the paper.

For all training runs in our experiments, we used
the hyperparameters listed in Table 4. All experi-
ments were conducted with a fixed random seed of
42. We implemented our models using Transform-
ers 4.46.3 and Torch 2.5.1, with Accelerate 1.1.0
and DeepSpeed 0.16.1 for multi-GPU training. All
experiments were run on NVIDIA RTX A6000
GPUs, with all experiments taking approximately
48 hours on eight GPUs.

Parameter value

num_epochs 3
save_steps 100
eval_steps 100
logging_steps 100
batch_size 64
gradient_accumulation 1
weight_decay 0.01
bf16 True

Table 4: Training hyperparameters

A.2 Language specific knowledge

Beyond measuring similarities between languages
using the Jaccard Index, we also analyze differ-
ences by identifying answers that are known in
language A but unknown in language B. This al-
lows us to examine the distribution of languages
within the 40% of answers that are not correctly
predicted by both languages. The results, presented

in Figure 5, reveal an almost symmetrical distribu-
tion of known and unknown answers across most
language pairs. However, notable deviations oc-
cur for languages with significantly lower overall
accuracy. Specifically, Hindi shows a greater dis-
parity in the Llama-3.2 models, while both Hindi
and Portuguese exhibit this trend in the Llama-8B
model.

A.3 Parameter update
Due to space constraints, the main text presents
results for only four languages. However, the anal-
ysis of model updates for Italian, Spanish, and Por-
tuguese follows similar trends and can be found in
Figure 6. These additional results confirm the pat-
terns observed in other languages, reinforcing our
findings on language-specific parameter updates.

A.4 Partial Training
Due to space limitations, the results of partial train-
ing on Italian, Portuguese, and Spanish are pro-
vided in Figure 7. Additionally, the CoCo-CoLa
ratios for both partially trained and fully trained
models are shown in Table 5 for Llama-1B, Ta-
ble 6 for Llama-3B, and Table 7 for Llama-8B.
These comparisons highlight the consistently supe-
rior CoCo-CoLa ratio in the partial training of final
layers.

Language SFTen 1-5 1-10 11-16 SFTLi

French 13.47 44.63 50.22 78.72 88.58
German 10.50 25.12 31.77 76.66 91.02
Hindi 13.28 56.82 58.49 92.73 90.79
Italian 10.00 32.12 65.17 86.18 93.60
Portuguese 12.73 45.18 56.33 75.43 91.07
Spanish 12.01 34.61 34.41 81.66 91.24

Table 5: CoCo-CoLa Ratios (%) for different languages
across finetuned Llama-3.2-1B models.

Language SFTen 1-14 14-27 SFTLi

French 14.73 54.64 81.18 89.45
German 19.64 71.40 86.04 89.26
Hindi 10.04 26.40 88.41 77.47
Italian 16.29 65.45 86.91 87.91
Portuguese 15.99 61.76 84.45 85.10
Spanish 15.84 72.38 85.50 89.18

Table 6: CoCo-CoLa Ratios (%) for different languages
across finetuned Llama-3.2-3B models.
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Figure 5: Difference in known knowledge between each pair of languages across different model sizes.

Language SFTen 1-15 16-31 SFTLi

French 12.32 78.93 87.77 87.54
German 11.03 81.91 88.69 87.21
Hindi 10.74 67.08 96.06 90.68
Italian 10.90 78.92 90.28 91.35
Portuguese 11.49 74.68 90.11 90.73
Spanish 9.40 75.82 93.55 91.35

Table 7: CoCo-CoLa Ratios (%) for different languages
across finetuned Llama-3.1-8B models.

Language SFTen 1-20 21-34 SFTLi

French 19.22 64.26 89.99 90.14
German 15.23 86.70 93.03 92.64
Hindi 9.39 92.74 96.30 97.19
Italian 14.84 85.03 91.20 91.08
Portuguese 14.98 70.93 88.40 90.69
Spanish 14.70 68.14 90.19 91.36

Table 8: CoCo-CoLa Ratios (%) for different languages
across finetuned Gemma-3-4B models.
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Figure 6: Average magnitude of difference between pretrained and monolingually fine-tuned models for Llama-1B,
Llama-3B, and Llama-8B.
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Figure 7: Cumulative accuracy and Li accuracy on en-tuned (SFTen) and Li-tuned models (SFTLi
), along with

partially trained models, across all Llama model sizes.
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