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Abstract

Multilingual retrieval-augmented generation
(MRAG) systems heavily rely on robust Infor-
mation Retrieval (IR). Reranking as a key com-
ponent optimizes the initially retrieved docu-
ment set to present the most pertinent infor-
mation to the generative model, addressing
context limitations and minimizing hallucina-
tions. We propose an approach that trains Large
Language Models (LLMs) as multilingual list-
wise rerankers through supervised fine-tuning
(SFT) on a diverse mixture of multilingual and
extended English ranking examples, and en-
hancing reasoning capabilities through Direct
Preference Optimization (DPO) from translated
task-specific reasoning processes. Experiments
demonstrate that the approach improves accu-
racy@5 by 20-30% across all six high- medium-
and low-resource languages compared to the
BM25. The posted training 1B models achieve
comparable performance to 7B baseline mod-
els while enabling faster inference. Finally, we
investigate the effectiveness of different rea-
soning strategies in DPO with crosslingual and
monolingual thinking processes.

1 Introduction

Large Language Models (LLMs) often struggle
with factuality, particularly in multilingual con-
texts with limited training data. RAG systems ad-
dress this by combining LLMs with external knowl-
edge retrieval, enhancing language performance. In
these systems, the IR component is essential, with
reranking playing a critical role in refining retrieved
documents before decision making (“Fusion” Stage
in Figure 1).

This paper focuses on the rerankers in the multi-
lingual setting, a key component that optimizes re-
trieved content across diverse languages, ensuring
the most relevant information is provided to LLMs
while maintaining efficiency and performance even
with limited computational resources.

Recent advances in reranking have leveraged
transformer-based architectures, with LLM-based
listwise rerankers showing particular promise for
reasoning-intensive scenarios. Despite these ad-
vances, multilingual reranking is underexplored
and remains challenging.

Figure 1: Common stages in information retrieval pro-
cesses. The last “Fusion” stage is critical for gathering
and optimizing retrieved documents before generation.

Our contributions are as follows:
• Construct the training dataset with various En-

glish QA datasets with retrieval golden labels
and multilingual retrieval datasets with think-
ing traces from o4-mini1.

• Firstly propose a two-stage training method-
ology combining SFT and DPO to enhance
the capabilities of the ranking procedure and
enable reasoning ability separately.

• Investigate the impact of reasoning strategies
of language choice, comparing translated En-
glish versus in-language thinking.

2 Related Works

2.1 Multilingual Information Retrieval
Multilingual Information Retrieval (MLIR) extends
reranking to cross-language and multiple languages
scenarios, presenting unique challenges beyond
monolingual retrieval. A key difficulty is pro-
ducing comparable relevance scores across lan-
guages while avoiding language bias – the ten-

1OpenAI o4-mini
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dency for retrieval quality to vary by language.
(Yang et al., 2024b) found that BM25 rankings
for semantically identical queries in different lan-
guages diverge significantly, whereas neural mod-
els show more consistent behaviours. The other
three primary strategies shown in Appendix A.1
have emerged for MLIR reranking also, such as
translation pipelines, multilingual pre-trained mod-
els and loss-based alignment.

2.2 Reranking with Human Feedback
Integrating human feedback in LLMs has become
increasingly important for model alignment with
human preferences. The most common approach
involves supervised fine-tuning (SFT), where mod-
els learn from labelled examples of optimal rank-
ings – highlighted grey in the below Figure 2.
(Pradeep et al., 2023)

However, research indicates that simple SFT
is insufficient to fully address the challenges pre-
sented by complex benchmarks like MIRACL. To
overcome these limitations, researchers have incor-
porated explicit reasoning steps and error feedback
during training. Two notable approaches in this
direction are: DPO (Rafailov et al., 2023) provides
a straightforward method for preference alignment
without requiring explicit reward modeling and
GRPO (Shao et al., 2024) demonstrated effectively
in DeepSeek Math (Shao et al., 2024), which lever-
ages group-wise rewards to improve model per-
formance. Other specialized approaches include
Re3val (Song et al., 2024), a reinforced rerank-
ing method for generative retrieval, and Preference
Ranking Optimization (PRO), which extends DPO
to handle preference rankings of arbitrary length.
Farinhas et al. 2024 introduced a communication-
theoretic perspective, optimizing for information
preservation.

2.3 Datasets of MLIR
Evaluation datasets have expanded significantly in
recent years. MIRACL (Zhang et al., 2023) pro-
vides ad-hoc retrieval queries and relevance judg-
ments in 18 typologically diverse languages using
Wikipedia passages. Multi-EuP (Yang et al., 2023)
offers European Parliament documents in 24 EU
languages with fully parallel queries. BordIRlines
(Li et al., 2024) contains queries about disputed ter-
ritories with aligned passages in 49 languages. For
RAG evaluation, NoMIRACL (Thakur et al., 2024)
provides human-labelled non-relevant and relevant
passage sets to test retrieval robustness across 18

Figure 2: Training data example of SFT and DPO.
languages. Mr.TyDi (Zhang et al., 2021) is a di-
verse multilingual benchmark covering eleven ty-
pologically distinct languages, designed for mono-
lingual retrieval evaluation. It provides queries,
relevance judgments, and training data with nega-
tive examples from the top-30 BM25 results.

3 Methodology

This section will introduce our two-stage train-
ing pipeline for developing efficient multilingual
rerankers. First, we establish foundational ranking
capabilities through SFT on a diverse and curated
dataset. Then, we enhance reasoning-based rank-
ing capabilities using DPO with structured thinking
processes.

3.1 Stage 1: Supervised Fine-Tuning
The first stage of the training pipeline focuses on es-
tablishing strong multilingual ranking capabilities
through SFT on a diverse and curated dataset.

3.1.1 Dataset Construction and Preparation
We aggregate data from multiple sources to ensure
both coverage and diversity. The dataset includes:

• Base: The RankZephyr dataset (Pradeep et al.,
2023) 2, providing around 40,000 high-quality
English ranking examples.

• English Extended: Datasets such as
MuSiQue (Trivedi et al., 2022), 2WikiMul-
tihopQA (Ho et al., 2020), TriviaQA (Joshi
et al., 2017), ChroniclingAmericaQA (Piryani
et al., 2024), MultiHop-RAG (Tang and Yang,

2https://huggingface.co/datasets/rryisthebest/
rank_zephyr_training_data_alpha
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2024), Canada News (EN/FR), and FEVER
(Thorne et al., 2018) retrieved with BM25
(Robertson et al., 2009) or ColBERT (Khattab
and Zaharia, 2020), to introduce task related
and complex reasoning scenarios.

• Multilingual (TyDi (Zhang et al., 2021)):
Arabic, English, Japanese, and Swahili sub-
sets, enabling cross-lingual ranking ability.

All datasets are filtered for quality: we remove
duplicates, passages that are too short, and ensure
each example contains at least one passage with
golden evidence. For TyDi, we sampled 15-20 pas-
sages per query, always including golden evidence.
Overall, the Table 3 in Appendix summarizes the
original and final counts for each dataset after filter-
ing, as well as the retrieval model used. Subtotals
are provided for each group.

3.2 Stage 2: Direct Preference Optimization
After establishing fundamental ranking capabilities
through SFT, we employed DPO to enhance the
models’ reasoning-based ranking abilities. DPO
offers a mathematically principled alignment ap-
proach that bypasses the need for an explicit reward
model. Additional technical details about DPO are
provided in Appendix A.2.

Reasoning Dataset Construction To develop an
effective DPO training corpus for multilingual rea-
soning, we leveraged o4-mini to construct the first
reasoning-focused dataset specifically designed for
list-wise ranking across multiple languages. The
construction process followed these key steps:

1. Strategic candidate selection: We use
queries from the TyDi training split where
BM25 retrieval successfully included golden
evidence passages but failed to rank them.

2. Reasoning extraction: We prompted o4-mini
to generate detailed reasoning traces for these
selected queries without revealing golden evi-
dence information.

3. Reasoning refinement: In a second pass, we
provided both the initial reasoning and golden
evidence information to o4-mini, guiding it
to produce improved reasoning that correctly
identified the most relevant passages.

4. Structural formatting: All content was con-
sistently formatted with reasoning processes
enclosed in <think>...</think> tags and fi-
nal rankings in <answer>...</answer> tags,
creating clear separation between reasoning
process and ranking output.

The complete prompt templates used for this rea-
soning generation are documented in Appendix C.
This methodical approach yielded high-quality rea-
soning examples across all target languages.

Translating Thinking We further investigated
two distinct cross-lingual reasoning strategies, as
outlined in the following Table 1. The final DPO
training corpus follows the preference pair con-
struction example in Figure 2 and comprises 3,267
training and 363 test examples for in-language rea-
soning, alongside 3,199 training and 359 test exam-
ples for translated reasoning.

Strategy Description
Translated Request model translates passages into English, con-

ducts reasoning in English, and then ranks.
In-Language The model maintains the source language throughout

both the reasoning and ranking processes.

Table 1: Cross-lingual reasoning strategies used for
DPO, prompts are displayed in Appendix C.

4 Experiments

Evaluation Dataset We evaluate reranker mod-
els using MIRACL (Zhang et al., 2023), a multilin-
gual information retrieval dataset with queries and
relevant passages across 18 languages, focusing on
the 6 languages described in Table 3.

Evaluation Metrics We measure performance
using Top-k accuracy, noted as acc@k, which de-
termines whether at least one relevant document
appears in the first k retrieved documents. Report
results for k ∈ {1, 3, 5, 10, 20}.

Baseline Models

• BM253: Standard retrieval model without
reranking. For each query, retrieved top 100.

• RankZephyr (Pradeep et al., 2023): Listwise
reranker based on Zephyr 7B architecture

• Llama-3.2-1B-Instruct (Grattafiori et al.,
2024)/ Gemma-3-1b-it (Gemma Team et al.,
2025) SFT: 1B parameter models trained on
the same dataset as RankZephyr (Pradeep
et al., 2023).

5 Results

5.1 Supervised Fine-Tuning Results

Table 2 presents acc@5 across languages, revealing
a striking divergence in how architectures respond
to multilingual TyDi data. Gemma-3-1B experi-
ences catastrophic performance degradation when

3bm25s.github.io
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Model English French Arabic Japanese Swahili Yoruba Non-En Avg

BM25 (No reranking) 62.5 26.0 59.0 54.5 55.0 52.1 49.3
RankZephyr (7B) 80.5 51.5 74.0 52.5 64.5 63.9 61.3

Gemma-3-1B Origin 63.0 28.0 60.0 58.0 56.5 51.3 50.8
Gemma-3-1B Origin + Extended 60.0 37.5 59.5 44.5 45.5 42.9 46.0
Gemma-3-1B Origin + TyDi 40.0 25.5 40.0 24.5 27.5 21.8 27.9
Gemma-3-1B + All 60.0 42.0 65.0 51.5 51.0 48.7 51.6
Llama-3.2-1B Origin 70.0 37.0 65.0 58.0 59.5 54.6 54.8
Llama-3.2-1B Origin + Extended 74.5 49.5 74.5 61.5 68.5 60.5 62.9
Llama-3.2-1B Origin + TyDi 68.5 41.5 68.5 57.0 64.5 55.5 57.4
Llama-3.2-1B + All 76.0 48.5 74.5 63.5 69.0 63.0 63.7

Pure DPO (Translated) 76.5 49.0 74.5 64.5 69.0 64.7 64.3
Pure DPO (In-language) 61.0 26.5 59.0 54.5 55.5 52.1 49.5
Llama-3.2-1B + All + DPO (Translated) 76.5 49.0 74.5 64.0 69.0 64.7 64.2
Llama-3.2-1B + All + DPO (In-language) 77.0 49.0 75.0 63.5 69.0 62.2 63.7

Table 2: Model performance comparison across languages (Acc@5)

Figure 3: Performance across different top-k values in
French. Figure 5 in appendix covers other languages.

trained with TyDi data, with drops of 20-33 points
across all languages. In contrast, Llama-3.2-1B
shows resilience with the same data, ranging from
minimal decline in English (-1.5 points) to gains in
Arabic (+3.5 points) and Swahili (+5 points).

Despite similar parameter counts, Llama-3.2-1B
consistently outperforms Gemma-3-1B across all
languages, with the gap widening when includ-
ing TyDi data. The best-performing Llama-3.2-
1B model approaches or exceeds the much larger
RankZephyr (7B) model, delivering improvements
over BM25 ranging from 9 to 22.5 points. Per-
formance varies by language, with English and
Arabic showing highest accuracy, while Japanese
and French present greater challenges. The gain is
more pronounced for languages covered in training
data (Arabic, Swahili, Japanese) compared to other
non-covered languages.

Analyzing retrieval patterns across different k
values (Figure 3), improvements are most pro-
nounced at lower k values. The improvement
curves flatten as k increases, with most dramatic
gains occurring between k=1 and k=5. Japanese
and French show more gradual improvement as k
increases compared to English and Arabic, suggest-
ing different document relevance distributions.

Moreover, Llama-3.2-1B+All outperforms the

larger RankZephyr (7B) model across most lower-
resource languages (Arabic, Japanese, Swahili,
Yoruba), while RankZephyr maintains an edge in
high-resource languages (English, French). This
suggests our approach of mixing diverse training
data is particularly effective for lower-resource lan-
guages, even with smaller models.

5.2 Direct Preference Optimization Results

DPO experiments results from Table 2 reveal clear
patterns regarding reasoning strategy and training
methodology. Reasoning strategy dramatically af-
fects pure DPO performance. Models trained with
in-language thinking regress to baseline BM25 lev-
els across all non-English languages. Conversely,
translated thinking (reasoning in English) yields
strong improvements comparable to SFT models,
suggesting stronger reasoning capabilities in En-
glish benefit multilingual reranking.

Combined SFT+DPO approach mitigates reason-
ing strategy sensitivity. When applied after SFT,
both reasoning approaches yield similar results,
with in-language thinking showing only slight
degradation. The SFT phase provides a founda-
tion that DPO can effectively refine.

6 Conclusion

Our results demonstrate that compact 1B-parameter
models can effectively perform multilingual rerank-
ing when appropriately trained, with Llama-3.2-1B
consistently outperforming Gemma-3-1B, particu-
larly with diverse training data. The dramatic dif-
ferences between model families in their ability to
incorporate multilingual data highlight the impor-
tance of architecture in cross-lingual transfer. For
deployment scenarios requiring efficiency across
multiple languages, carefully trained 1B models
offer an attractive alternative to larger 7B models
with comparable performance but faster inference.
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8 Limitations

Despite promising results, our approach faces sev-
eral important limitations:

Language Coverage While we demonstrate im-
proved performance across six languages, our train-
ing focuses primarily on four languages (Arabic,
English, Japanese, and Swahili). The generaliza-
tion to low-resource languages remains challeng-
ing, as evidenced by the relatively lower perfor-
mance gains in Yoruba and French. Future work
should incorporate a broader language spectrum
during training to better address linguistic diver-
sity.

Reasoning Quality While our DPO approach
improves reasoning capabilities, the quality of rea-
soning varies significantly between languages. The
stark difference between translated and in-language
reasoning performance suggests that reasoning abil-
ities in non-English languages remain underdevel-
oped in these models, creating potential fairness
issues in deployment scenarios.

GRPO Implementation Challenges Our at-
tempts to implement Group Relative Policy Op-
timization (GRPO) with language-specific reward
functions did not yield stable results, often pro-
ducing random strings instead of coherent rank-
ings. This suggests fundamental challenges in de-
signing effective reward functions for multilingual
reranking tasks, particularly for maintaining lan-
guage consistency during reasoning. The language-
alignment reward function showed promise in con-

cept but requires further research to stabilize train-
ing dynamics.

Computational Resources Although our 1B pa-
rameter models offer efficiency advantages over
larger models, the two-stage training pipeline still
requires substantial computational resources, par-
ticularly during the DPO phase. This may limit
accessibility for research groups with limited in-
frastructure.

Evaluation Metrics Our evaluation primarily fo-
cuses on accuracy@k metrics, which may not fully
capture nuanced aspects of ranking quality such as
diversity, fairness across demographic groups, or
robustness to adversarial queries. The rank-based
metrics could be adopted, such as MRR (Mean
Reciprocal Rank), MAP@k (Mean Average Preci-
sion).

Future work should address these limitations by
expanding language coverage, developing more sta-
ble GRPO implementations with carefully designed
reward functions, and exploring alternative evalua-
tion frameworks that better capture real-world per-
formance considerations across diverse linguistic
contexts.
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A Extended Relative Work

A.1 MLIR Reranking pipeline
Translation pipelines convert either queries or doc-
uments into a pivot language (typically English) to
leverage monolingual rankers. (Adeyemi et al.,
2024) evaluated LLM rerankers by translating be-
tween English and four African languages, finding
that LLMs perform best when operating in English,
but cross-lingual setups can approach monolingual
effectiveness with sufficiently multilingual models.

Multilingual pre-trained models like mBERT,
XLM-R, and multilingual T5 enable direct cross-
lingual encoding. Recent work by (Zhang et al.,
2024) developed mGTE, a new long-context (8192
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tokens) multilingual encoder with a contrastively
trained reranker that achieves SOTA performance
across multiple languages.

Contrastive and loss-based alignment tech-
niques explicitly align language representations.
(Yang et al., 2024a) proposed Multilingual
Translate-Distill (MTD), which trains a multilin-
gual dual encoder using translation and teacher-
student distillation to ensure consistently scored
documents across languages.

A.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has emerged as an effective RL-free
technique for aligning models with human prefer-
ences. Instead of explicitly training a reward model
and then using RL, DPO leverages a mapping be-
tween reward functions and optimal policies. It
directly optimizes the language model policy using
a simple binary cross-entropy loss on preference
pairs (x, yw, yl), where yw is the preferred and yl
is the dispreferred completion for prompt x. The
DPO loss is defined as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[

log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]

where πθ is the policy being optimized, πref is a
reference policy (usually the SFT model), β con-
trols the deviation from the reference policy, and
σ is the logistic function. This approach implicitly
optimizes a reward function while being computa-
tionally lightweight and stable.

B Experiments Details and Results

B.1 Data Statistic

Category Dataset Retrieval
Model

Original
Count

Final
Count

Origin RankZephyr - 39,912 39,912
Extended musique (dev) BM25 2,417 998

2WikiMultihopQA (train) BM25 14,999 8,655
2WikiMultihopQA (dev) BM25 12,576 7,693
TriviaQA (dev) BM25 8,837 7,387
TriviaQA (train) ColBERT 78,785 67,711
ChroniclingAmericaQA (val) BM25 24,111 7,994
MultiHop (train) BM25/BGE 940 938
Canada News EN (train) BM25 896 866
Canada News FR (train) BM25 1,140 908
FEVER (train) BM25 300 182
Subtotal 144,701 103,332

Multilingual Arabic BM25 12,335 7,484
(TyDi) English BM25 3,547 3,119

Japanese BM25 3,697 3,364
Swahili BM25 2,072 1,888
Subtotal 21,651 15,855

Train Total 212,051 160,206
Multilingual Arabic (ar) BM25 2,896 200
Evaluation English (en) BM25 799 200
(MIRACL) Japanese (ja) BM25 860 200

Swahili (sw) BM25 482 200
Yoruba (yo) BM25 119 119
French (fr) BM25 343 200
Test Total 5,499 1,119

Table 3: Detailed dataset composition for Supervised
Fine-Tuning and evaluation. The final count represents
the number of examples after filtering for quality and
relevance.

B.2 Finetuning Setup

For training Llama-3.2-1B-SFT and Gemma-3-1B-
it SFT, we follow RankZephyr (Pradeep et al.,
2023) with a learning rate of 5e-5, AdamW op-
timizer, and cosine learning rate schedule. We train
for 3 epochs with batch size of 16 and gradient
accumulation of 3. For DPO, we use a learning
rate of 5e-7 and beta parameter of 0.1, training for
5 epochs. All experiments were run on 4 NVIDIA
H100 80GB GPUs using bf16 precision and Deep-
Speed ZeRO-3.

B.3 Results

Figure 4: Performance improvement of Llama-3.2-1B
over BM25 baseline across languages and metrics.
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Figure 5: Performance of rerankers across different top-k values by language

C Prompts and Data Example

This section documents the prompt templates used
for creating the reasoning-based DPO training
datasets.

C.1 Initial Thinking Prompt
The initial prompt used to obtain reasoning pro-
cesses without revealing golden evidence informa-
tion:

System: You are RankLLM, an intelligent
assistant that can rank passages
based on their relevancy to the
query.

↪→

↪→

↪→

User: I will provide you with
{num_contexts} passages, each
indicated by a numerical identifier
[].

↪→

↪→

↪→

Rank the passages based on their
relevance to the search query:
{query}

↪→

↪→

{contexts}

Search Query: {query}

Think carefully about the relevance of
each passage to the query.↪→

Explain your reasoning process in detail,
and then provide your final ranking.↪→

For the final ranking, list all passages
in descending order of relevance
using the format [N] > [M] > etc.

↪→

↪→

C.2 Refinement Prompts

C.2.1 In-Language Thinking Refinement

The prompt used to refine reasoning while main-
taining the query language:

System: You are RankLLM, an intelligent
assistant that can rank passages
based on their relevancy to the
query.

↪→

↪→

↪→

User: I received the following thinking
process and ranking for this search
query: {query}

↪→

↪→

Initial thinking and ranking:
{initial_thinking_response}

The passages that actually contain the
answer are: {golden_ids_str}↪→

Please refine the thinking process to
focus on why these passages are most
relevant to the query.

↪→

↪→

Format your thinking in the same
language as the query ({language}).↪→
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Format your response with the thinking
part wrapped in <think></think> tags
and the final ranking wrapped in
<answer></answer> tags.

↪→

↪→

↪→

The final ranking should be in the same
language as the query.↪→

The final ranking should include all
passages in descending order of
relevance using the format [N] > [M]
> etc.

↪→

↪→

↪→

C.2.2 Translated Thinking Refinement
The prompt used to refine reasoning with English
translation:

System: You are RankLLM, an intelligent
assistant that can rank passages
based on their relevancy to the
query.

↪→

↪→

↪→

User: I received the following thinking
process and ranking for this search
query: {query}

↪→

↪→

Initial thinking and ranking:
{initial_thinking_response}

The passages that actually contain the
answer are: {golden_ids_str}↪→

Please refine the thinking process to
focus on why these passages are most
relevant to the query.

↪→

↪→

Format your thinking in English while
making clear references to the
passages.

↪→

↪→

Format your response with the thinking
part wrapped in <think></think> tags
and the final ranking wrapped in
<answer></answer> tags.

↪→

↪→

↪→

The final ranking should be in the same
language as the query ({language}).↪→

The final ranking should include all
passages in descending order of
relevance using the format [N] > [M]
> etc.

↪→

↪→

↪→

C.3 DPO Preference Pair Construction

The format for creating DPO preference pairs:

System: You are RankLLM, an intelligent
assistant that can rank passages
based on their relevancy to the
query.

↪→

↪→

↪→

User: I will provide you with passages,
each indicated by a numerical
identifier [].

↪→

↪→

Rank the passages based on their
relevance to the search query:
{question}

↪→

↪→

{contexts}

Search Query: {question}

Rank the passages above based on their
relevance to the search query.↪→

All passages should be included and
listed using identifiers, in
descending order of relevance.

↪→

↪→

The output format should be [] > [],
e.g., [1] > [2].↪→

Chosen Response:
<think>
{thinking content}
</think>
<answer>
{correct ranking with golden evidence

prioritized}↪→

</answer>

Rejected Response:
<think></think>
<answer>
{incorrect ranking with golden evidence

deprioritized}↪→

</answer>

C.4 Complete Sample

Below is a simplified example showing a DPO
training pair related to the query "What is stainless
steel?" with associated passages (only key passages
shown):

Query: What is stainless steel?

[8] Stainless steel In metallurgy,
stainless steel, also known as inox
steel or inox from French

↪→

↪→
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inoxydable (inoxidizable), is a steel
alloy, with highest percentage
contents of iron, chromium,

↪→

↪→

and nickel, with a minimum of 10.5%
chromium content by mass and a
maximum of 1.2% carbon by mass.

↪→

↪→

[7] Austenitic stainless steel
Austenitic stainless steel is a
specific type of stainless steel

↪→

↪→

alloy. Stainless steels may be
classified by their crystalline
structure into four main types:

↪→

↪→

"austenitic", "ferritic," "martensitic
and duplex."↪→

[2] Stainless steel The Allegheny Ludlum
Corporation worked with Ford on
various concept cars with

↪→

↪→

stainless steel bodies from the 1930s
through the 1970s to demonstrate the
material's potential.

↪→

↪→

Chosen Response:
<think>
We prioritize passages that directly

explain what stainless steel is—its
composition and classification.

↪→

↪→

1. Passage [8] gives the core definition:
it states stainless steel is a steel
alloy with a minimum

↪→

↪→

chromium content, precisely
answering "what is stainless
steel."

↪→

↪→

2. Passage [7] expands on the definition
by classifying stainless steels into
main types.

↪→

↪→

3. Passage [2] only illustrates
applications rather than defining
the material.

↪→

↪→

</think>
<answer>[8] > [7] > [3] > [10] > [2] >

[6] > [1] > [4] > [5] > [9]</answer>↪→

Rejected Response:
<think></think>
<answer>[2] > [7] > [6] > [3] > [4] > [5]

> [1] > [9] > [10] > [8]</answer>↪→

This example demonstrates how DPO pairs are
structured: the chosen response includes detailed
reasoning that correctly prioritizes the definitional

passage [8], while the rejected response lacks rea-
soning and incorrectly ranks an application-focused
passage [2] first, placing the core definition passage
[8] last.
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