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Disclaimer: This paper includes exam-
ples of hateful or offensive language used
solely for illustrative purposes. These ex-
amples may be upsetting to some readers
and do not represent the views or beliefs
of the authors.

Abstract

Despite substantial efforts, detecting and pre-
venting hate speech online remains an under-
studied task for marginalized communities, par-
ticularly in the Global South, which includes
developing societies with increasing internet
penetration. In this paper, we aim to provide
marginalized communities in societies where
the dominant language is low-resource with a
privacy-preserving tool to protect themselves
from online hate speech by filtering offen-
sive content in their native languages. Our
contributions are twofold: 1) we release RE-
ACT (REsponsive hate speech datasets Across
ConTexts), a collection of high-quality, culture-
specific hate speech detection datasets compris-
ing multiple target groups and low-resource lan-
guages, curated by experienced data collectors;
2) we propose a few-shot hate speech detection
approach based on federated learning (FL), a
privacy-preserving method for collaboratively
training a central model that exhibits robust-
ness when tackling different target groups and
languages. By keeping training local to user de-
vices, we ensure data privacy while leveraging
the collective learning benefits of FL. We exper-
iment with both multilingual and monolingual
pre-trained representation spaces as backbones
to examine the interaction between FL and dif-
ferent model representations. Furthermore, we
explore personalized client models tailored to
specific target groups and evaluate their perfor-
mance. Our findings indicate the overall effec-
tiveness of FL across different target groups,
and point to personalization as a promising di-
rection.

1 Introduction

Combating online hate is a crucial aspect of con-
tent moderation, with prevailing solutions often
relying on machine learning models trained on
large-scale datasets (Pitenis et al., 2020; Rottger
et al., 2021; Nozza, 2021). However, these efforts
and the resources required are largely limited to a
few high-resource languages, such as English and
German. While multilingual hate speech datasets
have been developed (Réttger et al., 2022; Das
et al., 2022), a significant portion of the world’s
low-resource languages and their users remain un-
protected from online abuse. A key challenge in
hate speech detection lies in its inherently subjec-
tive and context-dependent nature, which varies not
only at the individual level but also across cultures
and regions. The issue is exacerbated by the lack
of expertise of annotators on marginalized target
groups, as many studies rely on crowdsourcing for
data collection, often resulting in a disconnect be-
tween those labeling the data and those directly
affected by hate speech (Davidson et al., 2019; Sap
et al., 2019). Additionally, both language and hate
speech constantly evolve, with new expressions and
terminology regularly emerging.

To address these challenges, we develop high-
quality, culturally relevant datasets that reflect the
experiences of marginalized communities. This
is achieved through a prompt-based data collec-
tion procedure, carried out by data collectors pro-
ficient in the target languages and familiar with
the nuances of hate speech directed at marginal-
ized groups within their respective contexts. The
result is REACT, a set of localized, context-aware
datasets containing positive, neutral, and hateful
sentences across various low-resource languages.
We release REACT under CC BY-SA 4.0. !

1https: //huggingface.co/datasets/htyeh/REACT
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One key limitation of current hate speech fil-
tering solutions is their reliance on centralized,
server-side processing. In such setups, user data
must be transmitted to remote servers for analysis,
restricting individual control over the content be-
ing filtered. Moreover, centralized models are less
adaptable to highly specific targets, particularly in
low-resource language settings.

To overcome this, we propose the use of fed-
erated learning (FL) (McMahan et al., 2017), a
decentralized machine learning paradigm where
multiple users collaboratively train a central model
without sharing raw data. FL operates in two itera-
tive stages: first, client devices receive the current
server model and train it locally on private data;
then, updates are sent back to the server, aggre-
gated, and used to improve the server model. This
decentralized approach not only preserves user pri-
vacy but also enables rapid adaptation to culturally
specific hate speech patterns.

Our work aims to tackle the following research
questions. RQ1: Can zero-shot or few-shot learn-
ing effectively detect hate speech in low-resource
languages? RQ2: If not, can FL bridge this per-
formance gap? RQ3: Given the specificity of hate
speech, does client personalization improve over
zero- or few-shot learning in low-resource settings?

2 Related Work

2.1 Toxic and offensive language datasets

Earlier efforts in the detection of toxic and offen-
sive language, including hate speech, have con-
tributed to the curation of diverse datasets, predom-
inantly in English (Waseem and Hovy, 2016; Wul-
czyn et al., 2017; Zhang et al., 2018) and to a lesser
extent in other high-resource languages, like Ger-
man and Arabic (Mandl et al., 2019; Mulki et al.,
2019). More recent work has developed datasets
with more fine-grained details, such as different
types of abuse (Sap et al., 2020; Guest et al., 2021)
and target groups (Grimminger and Klinger, 2021;
Maronikolakis et al., 2022). In a related manner,
Dixon et al. (2018) and Réttger et al. (2021) adopt a
template-based data generation process to construct
hate speech datasets categorized by targeted sub-
groups. Recognizing the need for broader linguistic
coverage, recent initiatives have expanded data col-
lection to include multiple languages, including
low-resource ones (Réttger et al., 2022; Das et al.,
2022; Dementieva et al., 2024; Bui et al., 2025),
which is crucial for developing robust hate speech

detection systems for underrepresented languages.
Notably, Muhammad et al. (2025) introduce Afri-
Hate, an offensive speech dataset covering 15 low-
resource languages and dialects spoken in Africa.

2.2 Hate speech detection

Transformer-based (Vaswani et al., 2017) language
models have emerged as the backbone of many
natural language processing tasks. This trend ex-
tends to hate speech detection, where various
Transformer-based models have been employed
(Mozafari et al., 2019; Ranasinghe and Zampieri,
2021, 2022), including some pre-trained specifi-
cally to identify hate and offensive content (Caselli
et al., 2021; Sarkar et al., 2021).

More recently, large language models (LLMs)
based on Transformer architectures have demon-
strated remarkable capabilities across a wide range
of domains (Brown et al., 2020; Ouyang et al.,
2022; Webb et al., 2023). Despite their effective-
ness, training such models remains highly data- and
resource-intensive, requiring substantial computa-
tional power and centralized datasets (Gupta et al.,
2022; Patel et al., 2023).

2.3 Federated learning

Public datasets used to train language models often
contain personally identifiable information (PII),
raising privacy concerns as models may inadver-
tently memorize and expose such data (Kim et al.,
2023; Lukas et al., 2023). At the same time, the
rapid development of LLMs, which require increas-
ingly vast amounts of training data, has sparked
concerns over the depletion of publicly available
data. A recent study by Villalobos et al. (2022) sug-
gests that we may reach this data limit as early as
2026.

In this context, effectively leveraging privately
held data, such as that stored on user devices, in
a privacy-preserving way offers a promising po-
tential. Federated learning (FL) (McMahan et al.,
2017) is a decentralized machine learning paradigm
designed to preserve data privacy. Instead of col-
lecting user data centrally, FLL enables models to
be trained locally on individual devices (clients),
ensuring that raw data never leaves the device.
Model updates from each client are then col-
lected and aggregated on a central server using the
FederatedAveraging (FedAvg) algorithm, which
computes a weighted average of received local up-
dates. One of the first applications of FL was in im-
proving next-word prediction in Gboard, Google’s
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virtual keyboard (Hard et al., 2018). In this setting,
user interactions contributed to model improve-
ments without exposing any actual data generated
by individuals. FL has since been applied to other
privacy-sensitive domains such as finance (Byrd
and Polychroniadou, 2020) and medicine (Sheller
et al., 2020). Despite its potential, FL. has only re-
cently begun to be explored in the context of hate
speech detection. Gala et al. (2023) and Zampieri
et al. (2024) apply FL on public offensive speech
datasets and benchmarks, demonstrating its feasi-
bility for content moderation. Additionally, Singh
and Thakur (2024) explore FL to detect hate speech
in various Indic languages, showing its relevance
for low-resource contexts. In contrast to these ap-
proaches, we investigate the use of FL for few-
shot hate speech detection in low-resource settings,
where annotated data is extremely limited. We fur-
ther explore personalized FL to enhance adaptabil-
ity to specific target groups.

2.4 Personalized FL

The standard FL framework assumes that client
data is independently and identically distributed
(i.i.d.). In scenarios where client data is highly het-
erogeneous (non-i.i.d.), traditional FL. may suffer
from degraded performance and slow convergence
due to client drift (Karimireddy et al., 2020; Li
et al., 2020). In the context of hate speech detection,
clients may represent marginalized or underrepre-
sented groups whose data characteristics differ sig-
nificantly from the majority. Personalized FL offers
a potential solution by allowing model customiza-
tion at the client level, better addressing group-
specific sociolinguistic patterns. Additionally, it
further enhances privacy by limiting the amount
and type of information shared with the central
server. A straightforward approach to client per-
sonalization is FedPer (Arivazhagan et al., 2019),
which decouples the client model into base (shared)
and personalized layers. This architecture enables
clients to retain parameters tailored to their local
data while still contributing to the server model.
Following this approach, we apply personalized FL
to integrate local adaptations with selective infor-
mation sharing.

3 REACT Dataset

We release a localized hate speech detection dataset
for several marginalized groups in regions where
low-resource languages are predominantly used.

We name this dataset REACT (REsponsive hate
speech datasets Across ConTexts). To construct the
dataset, we recruit data collectors who are either
native or highly proficient in the target language
and have deep familiarity with the sociocultural
nuances and contexts of hate speech in the respec-
tive countries. REACT comprises data on six tar-
get groups—Black people, LGBTQ, Russians, Rus-
sophone Ukrainians, Ukrainian war victims, and
women-—across four languages: Afrikaans, Korean,
Russian, and Ukrainian.

Each dataset is organized into six categories
based on the sentiment polarity (positive, neutral,
hateful) and the presence or absence of profanity,
which includes vulgar or obscene language such as
swear words. We collect data both with and without
profanity within each polarity category to minimize
the association of profanity with hateful content.

For each of the six categories, data collectors
receive a prompt formatted as follows:

Provide [polarity] text in [target
language] about the [target group]
[using/without using] profanity.

To prepare the data collectors, we first show min-
imal pair examples illustrating the distinction be-
tween profane and non-profane usages with the
same polarity. Data collection is conducted using
structured Google Sheets,? with one sub-sheet per
category. The corresponding prompt is displayed
at the top of each sub-sheet, and data collectors
are instructed to record one sentence per row. In
addition to the sentence itself, optional fields al-
low collectors to provide information such as an
English translation and notes explaining culturally
specific terms or contexts.

Further details on the data collection procedure
are provided in §A. Table 1 shows the number of
sentences collected for each category across all
datasets. Most datasets are balanced across cate-
gories and contain around 1000-2000 sentences
related to the target groups.

Data source. Data is collected predominantly

from social media platforms like Facebook® and

X (formerly Twitter),* as well as local online fo-

rums, news articles, and comment sections. Addi-

tional sources include books and text corpora, such

as Common Crawl.’ In some cases, data collec-
2https://docs.google.com/spreadsheets
Shttps://www. facebook . com

4https://x.com
5https://commoncrawl.org
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language  target positive neutral hateful total
P+ P- P+ P- P+ P-

Aftikaans  Black people | 338 (16.6%) 338 (16.6%) | 338 (16.6%) 338 (16.6%) | 338 (166%) 338 (16.6%) | 2028
A0S GBTQ 197 (193%) 174 (17.1%) | 169 (16.6%) 150 (14.8%) | 174 (17.1%) 152 (14.9%) | 1016
Ukrainian  RUSSians 300 (16.6%) 300 (16.6%) | 300 (16.6%) 300 (16.6%) | 300 (16.6%) 300 (16.6%) | 1800
Russophones | 200 (16.6%) 200 (16.6%) | 200 (16.6%) 200 (16.6%) | 200 (16.6%) 200 (16.6%) | 1200

Russian | LGBTQ 90 (117%) 164 (212%) | 102 (132%) 136 (17.6%) | 137 (17.7%) 143 (18.5%) | 772
5 War victims | 158 (8.1%) 157  (8.1%) | 194  (9.9%) 260 (13.3%) | 542 (27.7%) 649 (33.1%) | 1960
Korean ~ Women | 214 (165%) 210 (162%) | 206 (159%) 221 (17.1%) | 245 (189%) 198 (15.3%) | 1294

Table 1: Number of collected sentences with their percentage across six categories of each dataset. P+: with profanity,
P-: without profanity. In total, the data covers six distinct target groups in four languages.

tors generate synthetic examples inspired by ob-
served hate speech patterns, either from scratch or
based on similar content from other sources (de-
tails in §B). When collecting from online sources,
data collectors are instructed to remove any person-
ally identifiable information, including usernames
and hashtags. Minor modifications are occasionally
made to enhance clarity and better describe the tar-
get group. In addition, a portion of the data (under
20% for most datasets) is generated using Al tools
such as ChatGPT® and subsequently reviewed and
refined by data collectors to ensure realism and
consistency with the category (details in §C).

Cross-annotation. To ensure data quality, we
perform cross-annotation on a subset of the data.
Specifically, we sample sentences from each of the
six categories and have them annotated by an ad-
ditional native speaker of the language (details in

SA).

4 Hate speech detection experiments

To implement federated learning (FL) using our
collected data, we use the Flower framework,’ cho-
sen for its simplicity and flexibility. FL at scale
typically involves a central server connected with
multiple client nodes, each operating on a user’s
device. Flower supports the simulation of this setup
by enabling the creation of virtual clients on a sin-
gle machine, allowing us to conduct controlled FL
experiments without relying on real user devices.

We focus on four language-target group com-
binations: Afrikaans - Black people (afr-black),
Afrikaans - LGBTQ (afr-1gbtqg), Russian -
LGBTQ (rus-1gbtq), and Russian - war victims
(rus-war).

®https://chatgpt.com
7https ://flower.ai

4.1 Models

Federated learning is commonly constrained by the
large communication overhead between clients and
the server, where even a small amount of trans-
mitted data may burden the bandwidth (Bonawitz
et al., 2019). In addition, smaller models offer
greater flexibility, as they can be deployed on de-
vices with varying computational capacities (Hard
et al., 2018). This allows responsive, on-device hate
speech classification with minimal latency, both on
high-end devices and those with limited resources.

Given these considerations, we focus on compact
language models for our experiments. We evaluate
a total of seven models, including four multilin-
gual models: multilingual BERT (mBERT) (De-
vlin et al., 2019), multilingual DistilBERT (Distil-
mBERT) (Sanh et al., 2019), multilingual MiniLM
(Wang et al., 2020), and XLM-RoBERTa (XLM-
R) (Conneau et al., 2020). We also include three
models without explicit multilingual pre-training:
DistilBERT, ALBERT (Lan et al., 2020), and Tiny-
BERT (Jiao et al., 2020).

Comprehensive results for all seven models
are provided in §D.2. Preliminary experiments re-
veal that models without explicit multilingual pre-
training perform poorly across all four language-
group combinations, with F; scores below 0.50
in most cases. Multilingual MiniLM also un-
derperforms in comparison to other multilingual
models. In contrast, mBERT and Distil-mBERT
consistently achieve the highest performance (£}
scores of 0.70 and 0.72 respectively on the best-
performing client models). Being more compact
than XLLM-R, both also offer a favorable balance
between performance and model size. Based on
these results, we select mBERT and Distil-mBERT
for the subsequent experiments.

634


https://chatgpt.com
https://flower.ai

4.2 Federated learning

Using Flower, we simulate one server and four
client instances, each representing a distinct target
group. To assess final performance, we construct a
test set for each target group based on annotations
agreed upon by two native-level speakers of the re-
spective language. Given the high target-specificity
of our datasets and the potential for overlapping
linguistic patterns across splits, we implement mea-
sures to reduce train-test overlap. Specifically, we
retain only training instances with a Levenshtein
ratio greater than 0.5 with test data. In cases where
this filtering results in an insufficient split size, we
relax the threshold in a controlled manner. Fur-
ther details are provided in §E. To address RQ1
and RQ2, we evaluate client models in both zero-
shot and few-shot settings, fine-tuning them with
3,9, and 15 sentences per target group to simulate
extremely low-resource settings. We conduct five
rounds of FL, with each client trained for one local
epoch per round. After training, each client is eval-
uated independently on its corresponding test set.
Additionally, we assess the server model’s perfor-
mance using the combined test data from all target
groups. All results are reported using the macro-F£}
score, averaged over five different random seeds.

4.3 Client personalization

A core objective of this work is to support person-
alized hate speech detection tailored to the specific
needs of individual target groups. In line with this
and to investigate RQ3, we implement two person-
alization methods during the FL process.

FedPer. FedPer, introduced by Arivazhagan et al.
(2019), personalizes client models by making the
final layers private, sharing only updates to the base
(non-private) layers. K g and K p are introduced to
denote the number of base and personalized layers,
respectively. Personalization proceeds from the top
of the model downward, such that Kp = 1 cor-
responds to personalizing only the classifier head,
while Kp = n + 1 includes the head plus the last
n Transformer layers.

Following Arivazhagan et al. (2019), we test
Kp € {1,2,3,4} for mBERT and Distil-mBERT.
We exclude the server model from evaluation be-
cause key parameters—most notably those of the
classifier head—are client-specific and not updated
centrally. As a result, server-side performance is
uninformative.

Adapters. A growing body of research has ex-
plored incorporating annotators’ demographics and
preferences (Kanclerz et al., 2022; Fleisig et al.,
2023; Hoeken et al., 2024), or even gaze features
of the users (Alacam et al., 2024) into annotations
to better capture subjectivity. Inspired by this line
of work, we introduce a small number of trainable
parameters in the form of adapters (Houlsby et al.,
2019) between each pair of Transformer blocks,
which serve as client-specific parameters. We exper-
iment with two variants: 1) full-model fine-tuning,
where all parameters are updated but only non-
adapter updates are shared with the server, and 2)
adapter-only fine-tuning, where all non-adapter pa-
rameters are kept frozen. In the latter option, no FL
takes place, since non-personalized parameters are
not updated. As with FedPer, we exclude the server
model from evaluation.

4.4 Baseline

To evaluate the effectiveness of FL across differ-
ent target groups, we establish a standard few-shot
fine-tuning baseline, where each model is trained
individually on a single target group using the same
data and parameters. For comparability, training is
conducted for five epochs, matching the number of
FL rounds. In addition, we evaluate performance
using the Perspective APL® a widely used tool de-
signed specifically for toxic speech filtering. Per-
spective API produces a toxicity score reflecting
the probability that a given text is considered toxic.
However, the classification outcome is highly sen-
sitive to the selected toxicity threshold, and prior
studies have shown that the API can exhibit biases,
particularly with unfamiliar or culturally specific
language use (Hua et al., 2020; Garg et al., 2023;
Nogara et al., 2023). For this reason, we report re-
sults using two toxicity thresholds of 0.7 and 0.9
according to the API's recommended range.

5 Results

RQ1: Performance of Perspective API varies
As shown in Figure 1, Perspective API performs
strongly on Russian data, achieving Fis of 0.75
and 0.81 for rus-1gbtq and rus-war, respectively,
at the 0.7 threshold. At the 0.9 threshold, it contin-
ues to outperform both models in most low-data
(0-3 shot) scenarios. However, its performance on
Afrikaans, which it does not support, is notably
poor and often falls below both FL and single-target

8https: //perspectiveapi.com

635


https://perspectiveapi.com

F1-Score
F1-Score

—e— mBERT FL
—e— Distil-mBERT FL
-#- mBERT

--- Distil-mBERT

—e— mBERT FL
—e— Distil-mBERT FL
-e- mBERT

--#-- Distil-mBERT

Perspective API (0.7) 01
Perspective API (0.9)

Perspective API (0.7)
Perspective API (0.9)

15 0

15

3 9 3 9
Training Samples Training Samples

(a) afr-black (b) afr-1gbtq

°
©
°
©
°
©

°
£y
°
By
°
By

°
3

°
S

0.6

F1-Score
F1-Score

F1-Score
°

0.4

—e— mBERT FL —e— mBERT FL —e— mBERT FL

03 —e— Distil-mBERT FL 03 —e— Distil-mBERT FL 03 —e— Distil-mBERT FL
s - MBERT 0 -e- MBERT 0 e~ MBERT
- Distil-mBERT - Distil-mBERT - Distil-mBERT

Perspective API (0.7)
Perspective APl (0.9)

°

Perspective API (0.7)
Perspective API (0.9)

Perspective API (0.7)
Perspective API (0.9)

3 9
Training Samples

°
o

15 0

3 9
Training Samples

15

(c) rus-1gbtq

(d) rus-war

3 9
Training Samples

15

(e) server

Figure 1: Comparison of F} scores using mBERT and Distil-mBERT across three training settings: FL (solid
lines), single-target training (dashed lines), and Perspective API (horizontal dotted lines). Each subplot illustrates
performance on a specific target group or the server. FL consistently improves client and server performance,
especially with more (9-15) training samples.

Training | afr-black afr-1gbtq rus-1lgbtq rus-war server

Samples | M D M D M D M D M D
0 0.04 -0.01 0.00 0.02 0.02 -0.08 -0.02 -0.01 -0.02 -0.02
A No FL 3 -0.05 -0.09 000 -0.11 0.1 0.00 -0.03 -0.14 0.0 -0.07
9 0.02 006 0.03 001 0.04 003 005 006 005 0.13
15 015 0.05 0.02 -0.11 0.02 -0.04 0.04 -0.10 0.2 -0.03
0 -0.07 -0.10 -0.05 0.00 -037 -0.38 -042 -044 -023 -0.22
A Perspective 3 011 0.03 0.08 -0.08 -023 -035 -024 -0.36 -0.09 -0.21
API (0.7) 9 0.08 022 0.03 022 -0.17 -002 -020 -0.10 0.00 0.10
15 017 0.06 0.09 0.03 -0.08 -0.05 -0.11 -0.17 0.02 -0.07
0 -0.03 -0.05 005 0.10 -0.18 -0.19 -0.20 -0.21 -0.07 -0.06
A Perspective 3 0.15 0.07 018 0.01 -0.04 -0.16 -0.02 -0.13 0.07 -0.05
API (0.9) 9 012 026 013 031 0.02 0.17 0.03 012 016 0.26
15 022 010 019 012 011 014 011 005 0.18 0.09

Table 2: F; differences between the three baseline settings and FL. Bold: FL improves the client performance.
Underlined: highest improvement for each setting and target group. M: mBERT, D: Distil-mBERT. mBERT benefits
from FL with more data (15), whereas Distil-mBERT benefits the most with less data (9).
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fine-tuning. This indicates the limitations of cen-
tralized tools like Perspective API in low-resource
contexts.

RQ2: Individual clients benefit consistently
fromFL. Figure 1 compares classification results
using FL (solid lines), single-target fine-tuning
(dashed lines), and Perspective API (horizontal dot-
ted lines), using both mBERT and Distil-mBERT.
Each plot corresponds to either a target group or
the server and shows F} scores across an increas-
ing number of training samples. Table 2 shows the
Fy improvements using FL over the baselines. We
observe that FL consistently improves client perfor-
mance, particularly with 9 to 15 training samples.
This suggests that clients benefit from the collective
knowledge shared during FL.. Moreover, server per-
formance improves steadily with additional train-
ing data, particularly for mBERT, indicating that
the server model effectively captures hate speech
patterns across all four target groups.

F1-Score
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Figure 2: F} scores of client models customized us-
ing FedPer (dashed lines) are compared against those
trained with standard FL (solid lines). Results are
presented for the optimal Kp value, which is 4 for
both models. While FedPer occasionally yields mod-
est improvements, its overall advantages are target- and
language-specific.

RQ3: Personalization works, but performance
varies. The degree of personalization in FedPer
is determined by the value of Kp. We test Kp €
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Figure 3: I scores of client models customized us-
ing adapters and full-model fine-tuning (dashed lines),
compared against those trained with standard FL (solid
lines). Although a few clients see gains from adapter-
based personalization, the overall improvement is un-
clear.

{1,2,3,4} for both mBERT and Distil-mBERT,
and report results using the best-performing K p
for each model in Figure 2. Full results for all Kp
values are provided in §F. For simplicity, we define
the optimal K'p as the one that yields the highest
average F'} improvement per client across the four
training sizes. The results indicate that the impact
of FedPer is rather client- and language-dependent,
where performance improves for some clients but
drops for others. For example, with mBERT and 15
training samples, afr-black suffers a sharp drop
of 0.14 in F}, whereas rus-1gbtq improves by
0.06. Similar variability is observed with Distil-
mBERT. At 3-shot, all clients show performance
declines (up to -0.16), yet all demonstrate improve-
ments at 9-shot (up to 0.18).

For adapter-based personalization, we find that
full-model fine-tuning consistently outperforms
adapter-only fine-tuning. Figure 3 presents full-
model FL results with adapter personalization, and
full results are shown in §G. While certain clients,
such as rus-1lgbtq and rus-war, benefit from
adapters (with mBERT gains of up to 0.13 and
0.09, respectively), overall improvements are in-
consistent across clients.
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Smaller models benefit slightly more from per-
sonalization. A comparison between standard
FL (Figure 1) and personalized FL results (Figures
2 and 3) reveals that the smaller Distil-mBERT
model benefits slightly more from FedPer than
mBERT (an average F; improvement of 0.02 per
client with the best-performing K p). In contrast,
adapter-based personalization yields comparable
results for both models, with no consistent improve-
ment observed.

6 Analysis

Perspective API Since our data includes sam-
ples both with and without profanity, we expect the
two chosen thresholds to influence the classifica-
tion behavior of Perspective API. We observe per-
formance drops across all target groups when the
threshold is raised from 0.7 to 0.9. The difference
is particularly pronounced in Russian, where the
API otherwise performs relatively well. Increasing
the threshold to 0.9 makes the API more conserva-
tive, reducing its sensitivity to hate. While hateful
sentences containing repeated profanity or highly
offensive language are correctly identified under
both thresholds, more subtle ones with little or no
profanity are often missed at the higher threshold.
Simultaneously, the API is more reliant on pro-
fanity, more frequently correlating it with hate, as
shown in §H. Conversely, due to increased insen-
sitivity to profanity, slightly profane yet positive
sentences toward target groups, which are previ-
ously misclassified as hate, are correctly identified
as non-hateful at the 0.9 threshold.

In addition to its threshold sensitivity, we find
that Perspective API fails to detect culturally sensi-
tive expressions, regardless of the threshold used.
For instance, ethnic slurs such as xoxJibt (Khokhols)
and ykpwl (Ukry), which are derogatory terms
for Ukrainians, as well as homophobic slurs in
Afrikaans, such as Moffie and skeef, which are
offensive references to effeminate or gay men,
are not consistently flagged. This is an indication
that while Perspective API is effective for general-
purpose hate speech detection, it lacks the cultural
and linguistic nuance necessary for adaptation to
specific cultural or ethnic contexts.

Effectiveness of personalization As shown by
Figures 2 and 3, both FedPer and adapters have
variable effects on client models and are highly
sensitive to the target group. To assess their overall
effectiveness, we compute the average F; improve-

mBERT Distil-mBERT

Kp=1 -0.05 -0.03
Kp=2 -0.03 -0.01
Kp=3 -0.04 -0.01
Kp=4 -0.01 0.00
adapter-only -0.13 -0.10
full-model 0.01 0.00

Table 3: Average F; improvement per client using Fed-
Per with Kp € {1,2,3,4} (top four rows) and two
modes of adapter-based personalization (bottom two
TOWS).

ment per client across all four training sizes. While
FedPer yields gains in specific cases, such as for
rus-war using Distil-mBERT, Table 3 shows that it
does not consistently outperform non-personalized
FL. Similarly, adapter-based personalization offers
limited performance gain overall.

Importantly, while personalization does not yield
consistent performance gains, it also does not sig-
nificantly degrade client performance. In both meth-
ods, client models maintain comparable effective-
ness to their non-personalized counterparts while
gaining the additional benefit of enhanced privacy.
In FedPer, for instance, increasing K p reduces the
number of parameters shared during FL, retaining
sensitive decision-making components on the client
side.

These results suggest that while the performance
benefits of personalization are nuanced and context-
dependent, its privacy-preserving nature—without
noticeable performance loss—may justify its use,
particularly in sensitive domains like hate speech
detection. Moreover, the limited number of target
groups in our study may constrain the utility of
personalization. Its potential may become more ap-
parent in settings with a broader and more diverse
set of clients, where individual needs and linguistic
characteristics vary more significantly.

7 Conclusion

This work makes two key contributions. First, we
release REACT, a collection of localized and
context-specific hate speech detection datasets. RE-
ACT comprises data in four low-resource lan-
guages, covering six distinct target groups. The
datasets are curated by data collectors who are
not only proficient in the target languages but also
deeply familiar with the cultural nuances and con-
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texts of hate speech in the respective countries.
Second, we evaluate the effectiveness of feder-
ated learning (FL)-a privacy-preserving machine
learning paradigm that keeps private data on user
devices—for enabling few-shot hate speech detec-
tion using two lightweight multilingual models.
These models are suitable for deployment even
on devices with limited computational resources.
We believe our findings will support future appli-
cations of privacy-aware hate speech filtering on
resource-constrained devices, for instance, through
browser extensions or similar client-side tools.

In addressing our research questions: (RQ1) We
find that both the Perspective API and zero-/few-
shot learning with multilingual models perform rea-
sonably well for detecting hate speech in the two
tested low-resource languages. (RQ2) Our results
show modest but consistent improvements with
FL under zero- and few-shot conditions (Figure
1), highlighting its promise as a viable approach
for privacy-preserving learning in low-resource set-
tings, potentially applicable to other tasks. (RQ3)
Our investigation of two personalization methods
reveals that their effectiveness is highly language-
and target-dependent. However, personalization of-
fers a clear privacy advantage without significant
performance loss. We therefore see personaliza-
tion as a promising direction, particularly in more
resource-rich or heterogeneous environments.

Limitations

Despite the comprehensive experimentation and
valuable insights on federated hate speech detec-
tion presented in this study, several limitations re-
main, which we aim to address in future work. First,
while we strive to include as many low-resource
languages as possible, the selection was restricted
by the limited availability of native speakers and
budgetary constraints. This, in turn, limited the
diversity and number of clients we could test. Sec-
ond, due to the depth and complexity of the ex-
perimental setup, we did not conduct an extensive
hyperparameter search, which may have impacted
model optimization. Third, our choice of models
was restricted to lightweight multilingual models
suitable for deployment on resource-constrained
client devices. Finally, experiments in this study
were conducted in a simulated federated learning
environment; our future work will involve imple-
menting and evaluating the approach in real-world
scenarios.

Ethics Statement

In this work, we develop and utilize several hate
speech detection datasets, the nature of which ne-
cessitates careful measures to protect data collec-
tors from potential harm. We ensure that data col-
lectors are fully aware of the context of the tar-
get groups involved and obtain their consent for
handling such data. To minimize exposure to poten-
tially harmful content, we randomly sample a small
portion of the collected data for cross-annotation.
Additionally, data collectors are instructed to col-
lect data exclusively from open domains to avoid
copyright infringement and to remove any person-
ally identifiable information, thereby maintaining
the anonymity of the datasets.

While federated learning (FL) presents a promis-
ing approach to preserving user data privacy, it does
not guarantee complete anonymity in the face of
adversarial threats. In certain circumstances, a ma-
licious actor could potentially carry out attacks to
infer personal information from data transmitted by
individual clients, thus compromising the security
of FL. Therefore, additional precautions are recom-
mended when implementing FL for sensitive data,
with potential solutions including the application
of differential privacy and the personalization of
client models.
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A Annotation details

A.1 Data collectors

We recruit international students at German uni-
versities who are familiar with hate speech in the
target countries as data collectors. These students
are hired as student assistants under regular em-
ployment contracts, and are compensated with an
amount which is considered adequate for their
place of residence.

A.2 Data collection guidelines

To ensure consistent and culturally contextual-
ized data collection, data collectors are first intro-
duced to the six-category polarity-profanity scheme
through minimal pair examples illustrated in Table
4. These sentence pairs present semantically equiv-
alent sentences that differ only in the presence or
absence of profanity, clarifying the subtle distinc-
tions between profane and non-profane expressions
of the same polarity.

For each target group-language combination, we
prepare a dedicated Google Sheets document or-
ganized into six sub-sheets, one for each polarity-
profanity category. The corresponding prompt is
displayed at the top of each sub-sheet. Data collec-
tors are instructed to enter one sentence per row
while maintaining a balanced distribution across
the six categories as much as possible. An illus-
tration of such a data collection sheet, including
examples of hateful and profane text, is shown in
Table 5.

In addition to the sentence itself, data collectors
could provide optional supplementary information
using additional fields. These include:

 an English translation of the sentence,

e cultural or contextual notes,

* identification of profane or offensive terms,
* source or URL of the text.

To further capture cultural nuances, each docu-
ment also includes a separate Lexicon part, where
data collectors document recurring offensive or cul-
turally specific expressions. Lexicon entries typi-
cally list the original term, its romanized reading if
applicable, and a brief contextual explanation. An
example of the Lexicon sheet is provided in Table
6.

A.3 Cross-annotation

To ensure data quality, a subset of the data from
all six categories is independently reviewed and an-
notated by one or more additional native speakers
of the respective languages. In total, four data col-
lectors contribute to the rus-1gbtqg and rus-war
datasets, and two data collectors each contribute
to the afr-black, afr-lgbtqg, ukr-russians,
ukr-russophones, and kor-women datasets. De-
tails of the cross-annotated datasets are presented
in Table 7.
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category example sentence
I take inspiration from Syrian /motherfuckers/ who are rebuilding their lives after the terrible
P-P
catastrophe that befell them #notohate
I take inspiration from refugees who are rebuilding their lives after the terrible catastrophe that
P-NP
befell them #notohate
N-P Refugees running away from bombs and hardships to make it past our borders are not here to take
your /fucking/ job...
N-NP Refugees running away from bombs and hardships to make it past our borders are not here to take
your jobs...
P Don’t get fooled by those arab /twats/, that little refugee boy will get at your wallet right after you
give him money. #refugees
LLNP Don’t get fooled by those arab monkeys, that little refugee boy will get at your wallet right after

you give him money. #refugees

Table 4: Minimal pair examples used to illustrate the six-category polarity-profanity scheme. The target group in all
examples is refugees. Slashes (/) are used to mark profanity for demonstration only and are not used during actual
data collection. Category labels indicate polarity (P-positive, N-neutral, H-hateful) and the presence (P) or absence

(NP) of profanity.

Provide hateful text in Russian about the war victims using profanity.

Text (Original) Text (English) Notes Profane words Source
IIycrunn xoxs10B B cTpamny, ceii- | They let the khokhols into the | Uses “khokhol”, a xeno- | maxyit VK
Jac BCe paccTamar Haxyil. country, now they’ll steal every- | phobic slur for Ukraini-
thing to hell. ans.

Eb6ansie ykponanucrer, cujgar | Fucking Ukro-Nazis, sitting | It is common to associate | ebaxHbIe VK

taMm B EBpore. there in Europe. Ukrainians with Nazis.

Parynu B ITogmockosbe nosty- | Raguli in the Moscow suburbs | “nm3zers” is spelled with | muszset News articles

YA TUSJIBL got their asses kicked. “u” to resemble “u”, mak- comment  sec-
ing automatic detection tion
harder.

Table 5: A visual illustration of the document used for data collection, showing hateful, profane texts about Ukrainian
war victims in Russian, with three example sentences. The header defines the required fields: the original text, its

English translation, and additional columns for supplementary notes.

A.4 Inter-annotator agreement

We measure inter-annotator agreement using Co-
hen’s kappa (k) and Krippendorff’s alpha («). Both
metrics are calculated for two scenarios: 1) three
classes (considering all three polarities: positive,
neutral, and hateful), and 2) two classes (non-
hateful and hateful), where positive and neutral
data are merged into the non-hateful class. Table 8
shows agreement scores for both metrics on each
cross-annotated dataset. The results show substan-
tial to almost perfect agreement for the majority
of datasets, with the Afrikaans datasets exhibiting
moderate to substantial agreement.

A.5 Corpus statistics

We report corpus statistics for each REACT dataset
in Table 9. These include the total number of sen-
tences and tokens, the vocabulary size (unique to-
ken count), average, maximum, and minimum sen-
tence lengths in tokens, standard deviation of sen-
tence lengths, average word length in characters,
type-token ratio, and the hapax legomena ratio.

B Self-generated data

Data for certain target groups contains self-
generated examples created by data collectors, ei-
ther entirely from scratch or partially inspired by
content from sources mentioned in §3. For the three
target groups where detailed source information is
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Word

Pronunciation

(Contextual) Definition

banyiepodamntictel | banderofashisty A derogatory term for supporters of Ukraine, combining the name of Stepan Bandera, a
Ukrainian nationalist leader, and darmmmucror (“fascists”).

caJioe bl saloyedy A derogatory term meaning “lard eaters,” based on the stereotype that Ukrainians consume
large amounts of casio (pork fat).

crpana 404 strana 404 A term that comes from “error 404,” implying the inadequacy of Ukraine as an independent
state.

Kyxpanna kukraina A derogatory alteration of “Ukraine” intended to resemble the sound of roosters (“kykapexy”
- “kukareku’)

YKPOIIBI ukropy An offensive way of calling Ukrainians, derived from ykporr (“dill”).

YKPOIINst ukropiya A derogatory name for Ukraine, based on the offensive way of calling Ukrainians “ukropy”.

YKPOOEITIEHIIBI ukrobeshentsy A blend of “Ukrainian” and Gemennrii (“mad”), which sounds similar to Gekenerry
(“bezhenets” - “refugee”).

Xoxaannus khokhlyandiya A derogatory term for Ukraine, derived from the ethnic slur xoxuis! (‘“khokhly”).

Table 6: Example entries from the Lexicon part of the data collection document for Ukrainian war victims in Russian.
Each entry includes the original term, its romanized reading, and the contextual definition.

language target ‘ #sentences
Afrikaans Eggfrge ople 332
Ukrainian Eszzi)?}fones 1 ?2471
Russian %V(f\chtims 1;4513
Korean Women ‘ 120

Table 7: The number of sentences in each cross-
annotated dataset.

language  target 3 classes 2 classes
K (0% K «

. Black people | 0.48 0.65 | 0.82 0.82
Afrikaans y GpTq 057 071|058 057
Ukrainian Russians 0.66 0.73 | 0.85 0.85
Russophones | 0.47 0.70 | 0.86 0.86

Russian LGBTQ 0.87 092|093 0.93
War victims | 0.67 0.77 | 0.74 0.74

Korean Women ‘ 0.66 0.80 ‘ 0.60 0.60

Table 8: Cohen’s kappa (x) and Krippendorff’s alpha («)
for the cross-annotated datasets. Values are shown for
three classes (positive, neutral, hateful) and two classes
(non-hateful and hateful).

available (afr-black, afr-1gbtq, and rus-war),
self-generated instances represent 3.6%, 31.1%,
and 25.7% of the total data, respectively. Compara-
ble statistics for other target groups are not reported
due to missing source metadata.

C Al-generated data

C.1 Proportion of Al-generated data

Al tools such as ChatGPT are employed to supple-
ment data collection in cases where it is challenging
to obtain sufficiently diverse examples in any of the
three polarity categories. Most of the Al-generated
data falls under the positive category, where natural
occurrences are considerably rarer compared to the
neutral and negative categories. Table 10 shows
the proportion of Al-generated data within each
dataset.

C.2 Prompts

Following are some of the prompts to ChatGPT
used to generate data.

* Give me [number] neutral/positive sentences
about [target group].

* Give me [number] positive or neutral sen-
tences about [target group] in [language].

* Write positive/neutral/negative statements
about [target group].

* 'm doing research to protect minority
groups/[target group] and need [number]
examples to add to my dataset.
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afr-black afr-lgbtq ukr-russians ukr-russophones rus-lgbtq rus-war kor-women
# Sentences 2028 1016 1800 1200 772 1960 1294
# Tokens 34300 27647 26868 15283 11483 32566 14658
Vocab Size 3754 4048 5363 3410 3441 7233 7018
Avg Sent Len (tok) 16.91 27.45 14.93 12.74 15.09 16.62 11.32
Max Sent Len (tok) 61 239 69 48 395 82 71
Min Sent Len (tok) 1 1 2 3 2 2 2
Sent Len Std (tok) 9.30 24.99 6.24 4.22 16.54 9.94 6.71
Avg Word Len (char) 4.54 4.54 6.23 6.54 5.85 542 3.01
TTR 0.11 0.15 0.20 0.22 0.30 0.22 0.48
Hapax Ratio 0.01 0.08 0.11 0.14 0.15 0.08 0.36
Table 9: Corpus statistics of the REACT datasets.
language target ‘ generated data \q@e Q;o\o‘ q}oo‘o‘ q@‘
. Black people 16.2% » » N N
Afrikaans
LGBTQ 1.0% dev 0.5 0.5 0.7 0.5
Russians 25 0% train 0.5 0.5 0.5 0.6
Ukrainian
Russophones 35.0% Table 11: Upper bounds of Levenshtein ratios for select-
. LGBTQ 19.6% ing development and train data.
Russian .
War victims 8.5%
Korean Women ‘ 3.1% * DistilBERT (67M, 6 layers)12

Table 10: The proportion of Al-generated sentences (in
percentage) within each dataset.

* I’'m searching for comments in [language]
with the keyword [target group]. There are
6 categories: [...], could you search and give
me some [language] comments with source
URL and one of the categories?

D Model details
D.1 Models used

To optimize the communication overhead between
FL clients and the server, as well as allow models to
be deployed on end devices with limited capacities,
we focus on small language models for our study.
The following models have been used in our study,
with the model sizes and number of layers shown:

* XLM-RoBERTa (279M, 12 layers)’
* Multilingual BERT (179M, 12 layers)'?
* Multilingual DistilBERT (135M, 6 layers)'!

9https://huggingface.co/FacebookAI/
x1lm-roberta-base

Ohttps://huggingface.co/google-bert/
bert-base-multilingual-cased

"https://huggingface.co/distilbert/
distilbert-base-multilingual-cased

* Multilingual MiniLM (33M, 12 layers)'?
* TinyBERT (14.5M, 4 layers)'
« ALBERT (11.8M, 12 layers)"

D.2 Model selection

We evaluate the performance of the seven models
in §D.1 on classifying hate speech in a federated en-
vironment. Four of the models are multilingual, the
rest have not been explicitly trained on multilingual
data. Full results are shown in Figure 4.

E Selection of development and train data

Because REACT exhibits potentially similar pat-
terns due to its target-specificity, we mitigate possi-
bly overlapping data by setting a threshold to the
maximum Levenshtein ratio to accept a sentence
when selecting development and train data. By de-
fault, a Levenshtein ratio of <0.5 is used, meaning
any sentence in the development set should have a
Levenshtein similarity of less than 0.5 with any test

12https://huggingface.co/distilbert/
distilbert-base-uncased
Bhttps://huggingface.co/microsoft/
Multilingual-MinilM-L12-H384
14https://huggingface.co/huawei—noah/TinyBERT_
General_4L_312D
15https://huggingface.co/albert/albert—base—vz
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Figure 4: Comparison of F scores of seven models, four multilingual and three monolingual. Each subplot shows
performance on a specific target group or the server. The three monolingual models and multilingual MiniLM
perform poorly across all target groups. Multilingual BERT and Distil-mBERT have the highest performance in
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afr-black  afr-Igbtq rus-lgbtq rus-war
train 0-15 0-15 0-15 0-15
dev 300 120 120 300
test 87 225 111 154

Table 12: Number of sentences in the train, development,
and test sets of each target group. We use 0, 3, 9, and 15
sentences per target group for training.

data, and any sentence in the train set should have
the same with any test or development data. This
ratio is slightly loosened in the case of rus-1gbtq
and rus-war because the resulting datasets are too
small. In both cases, to ensure we do not include
near-identical sentences accidentally, we sample
sentences with a Levenshtein ratio of over 0.5 and
manually check them against sentences they are
reported to be similar with. Table 12 presents the
number of sentences in each split for the four target
groups.

F FedPer full results

We evaluate mBERT and Distil-mBERT using Fed-
Per. We test Kp (number of personalized layers)
values € {1,2,3,4}. The complete results are
shown in Figures 5-6.

G Adapters full results

We personalize client models by adding adapters
and fine-tuning either the entire model, including
the adapter parameters, or exclusively the adapter
parameters. The complete evaluation results for
mBERT and Distil-mBERT are shown in Figure 7.

H Analysis of toxicity thresholds

Table 13 shows the percentages of sentences classi-
fied as hateful and non-hateful by Perspective API
with thresholds 0.7 and 0.9, alongside the distri-
bution in ground truth labels. At both thresholds,
Perspective API identifies substantially fewer hate-
ful sentences (13.11% and 3.44%) compared to the
ground truth (40.24%), while simultaneously over-
estimating the proportion of non-hateful sentences.

While the ground truth data reflects a rela-
tively balanced split between hateful sentences with
(20.38%) and without (19.86%) profanity, Perspec-
tive API demonstrates a strong association between
profanity and hate, shown by the higher proportions
of profane sentences compared to non-profane ones
among those classified as hateful. This is especially

pronounced at the 0.9 threshold, where 85.71% of
sentences labeled as hateful contain profanity, in-
dicating a heavier reliance on profanity as a signal
for hate compared to the 0.7 threshold.

I Examples of collected data

Table 14 shows example sentences for each of the
six categories in different languages.

As noted in §3, we occasionally adapt collected
data to improve clarity with respect to the target
group or intended polarity. The purpose of these
modifications is to replace culturally ambiguous
terms, such as subjective slurs, with more neutral
alternatives. Such changes are made only when
necessary, that is, when the original wording could
otherwise cause misunderstandings regarding the
target group or label. In these cases, we make the
label category clear through additional contextual
cues.

In the following positive example, the Russian
term xoxibl (Khokhols), which may be perceived
as either neutral or an ethnic slur depending on
audience and context, is replaced with the neutral
term ykpawa1s! (Ukrainians):

Original: Hy xoxJjib1 MoJIo/II1bI KOHEY-
1o Ouisath. (Well, the Khokhols sure did
a good job, f*ck.)

Modified: Hy yxpaunIibpr MOJIOAIBI KO-
neuno 0711, (Well, the Ukrainians sure

did a good job, f*ck.)

In other cases, we remove subjective profanity to
avoid introducing ambiguity in polarity, as demon-
strated in the following neutral example:

Original: B Espone nmosiHO ykpann-
ckux Oexenries, 6Jisith. (There are tons
of Ukrainian refugees in Europe, f*ck.)

Modified: B Espore nosino ykpaus-
ckux Oexxennen. (There are tons of
Ukrainian refugees in Europe.)

We also occasionally add contextual information
to clarify the intended polarity. In the following
sentence, additional information is provided to em-
phasize a positive stance:

Original: JII'BT+ nobusaercsa cBoero
naxyit. (LGBT+ are achieving what they
f*cking want.)
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Figure 5: FedPer results for mBERT. Each plot shows F7 scores of a target group with K p (number of personalized
layers) € {1,2,3,4}.
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Figure 6: FedPer results for Distil-mBERT. Each plot shows F} scores of a target group with Kp (number of
personalized layers) € {1,2,3,4}.

F1-Score

—®- mBERT (FM)

-®- mBERT (AO)
~®- Distil-mBERT (FM)
-®- Distil-mBERT (AO)

F1-Score

MBERT (FM)
-®- mBERT (AO)
Distil-mBERT (FM)
-®- Distil-mBERT (A0)

F1-Score

~®- mBERT (FM)
-®- mBERT (A0)
~®— Distil-mBERT (FM)
-@- Distil-mBERT (A0)

F1-Score

—®- mBERT (FM)
-@®- mBERT (AO)
—®- Distil-mBERT (FM)
-®- Distil-mBERT (AO)

15

3 3
Training Samples

(a) afr-black

15

3 3
Training Samples

(b) afr-1gbtq

15

3 3
Training Samples

(c) rus-lgbtq

15

3 S
Training Samples

(d) rus-war

Figure 7: Adapter-based personalization results for mBERT and Distil-mBERT. Results are compared between
full-model fine-tuning (FM, solid lines) and adapter-only fine-tuning (AO, dashed lines).

API 0.7 API0.9 Gold
P+ P- P+ P- P+ P-
Hateful 9.34 3.77 2.95 0.49 20.38 19.86
Not Hateful 40.98 45.90 47.38 49.18 27.53 32.23

Table 13: Percentages of sentences classified as “Hateful” and “Not Hateful” with (P+) and without (P-) profanity.
API 0.7 (resp. 0.9): classified using Perspective API with threshold 0.7 (resp. 0.9). Gold: ground truth labels.
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Modified: JII'BT+ aBuzkenume akTUB-
HO TOIHUT OJATH 3a IIpaBa dYeJIoBe-
Ka u gobuBaercst cBoero Haxyil. (The
LGBT+ movement is actively pushing for
human rights and is achieving what it
fF¥cking want.)

J Computation

Standard FL and FedPer experiments using
mBERT and Distil-mBERT with four FL clients
can be completed in 20-30 minutes using four
NVIDIA GeForce RTX 2080 Ti GPUs. Adapter-
personalized FL experiments with the same client
models can be completed in about 30 minutes on
four NVIDIA RTX A6000 GPUs.
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category text target group

PP+ (afr) Swart Namibiérs is van die beste fokken mense ooit! Black peoble
(eng) Black Namibians are some of the best fucking people out there! peop

PP (ukr) POCHF.IHI/I XOPpOIIIi i He XO4yThb BiffHU. Russians
(eng) Russians are good and do not want war.
(eng) Most women are fucking fond of cute things.

N P- (rus) Bexkentipr 13 YKpanHbl PacCKA3bIBAIOT O YKU3HU B OKKYIIAIUN. War victims
(eng) Refugees from Ukraine talk about life under occupation.

H P+ (ukr) Ckisibku BU 111e OyJjieTe XPIOKATH, yPOJIU POCIHCHKOMOBHI?! Russophones
(eng) How much longer will you grunt, you Russian-speaking freaks?!

HP. (afr) Daar is nie plek vir homoseksuele in Namibié& nie. LGBTQ

(eng) There is no place for homosexuals in Namibia.

Table 14: Example data for each category. The first part of the category name indicates the polarity (P: positive, N:
neutral, H: hateful). The second part indicates the presence of profanity (P+: with profanity, P-: without profanity).
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