Scaling, Simplification, and Adaptation: Lessons from Pretraining on Machine-Translated Text

Dan John Velasco* and Matthew Theodore Roque*

Samsung R&D Institute Philippines {dj.velasco,roque.mt}@samsung.com
*Equal Contribution

Abstract

Most languages lack sufficient data for largescale monolingual pretraining, creating a "data wall." Multilingual pretraining helps but is limited by language imbalance and the "curse of multilinguality." An alternative is to translate high-resource text with machine translation (MT), which raises three questions: (1) How does MT-derived data scale with model capacity? (2) Can source-side transformations (e.g., simplifying English with an LLM) improve generalization to native text? How well do models pretrained on MT-derived data adapt when continually trained on limited native text? We investigate these questions by translating English into Indonesian and Tamil-two typologically distant, lowerresource languages—and pretraining GPT-2 models (124M-774M) on native or MT-derived corpora from raw and LLM-simplified English. We evaluate cross-entropy loss on native text, along with accuracy on syntactic probes and downstream tasks. Our results show that (1) MT-pretrained models benefit from scaling; (2) source-side simplification harms generalization to native text; and (3) adapting MT-pretrained models on native text often yields better performance than native-only models, even with less native data. However, tasks requiring cultural nuance (e.g., toxicity detection) demand more exposure to native data.

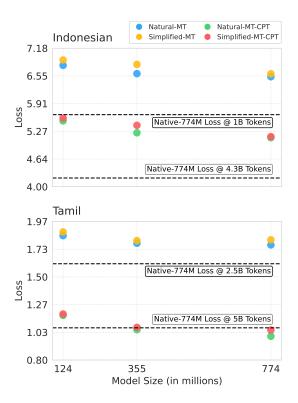


Figure 1: Loss vs. model size for Indonesian (**top**) and Tamil (**bottom**). CPT models are trained with 1B and 2.5B native tokens, respectively. Dashed lines show the loss of the best Native model (Native-774M) as the baseline. Natural-MT outperforms Simplified-MT in both languages. All CPT models exceed Native baselines under equal native token budgets, with Tamil CPT models even surpassing the 5B tokens baseline.

1 Introduction

Language technologies have advanced rapidly, with Large Language Models (LLMs) achieving strong performance across an array of tasks (Brown et al., 2020; Team et al., 2024; Qwen et al., 2025; Grattafiori et al., 2024). Scaling studies in pretraining language models show consistent gains with more parameters and more data (Kaplan et al., 2020; Hoffmann et al., 2022). Yet for most of the world's languages, the native corpora necessary to realize these pretraining benefits are scarce (Üstün

et al., 2024), causing models to quickly hit a "data wall"—a performance plateau imposed by limited training data. A common strategy to push past this data wall is multilingual pretraining, which aims to transfer knowledge from high-resource to low-resource languages. However, its effectiveness is constrained by challenges such as language imbalance (Chang et al., 2024), suboptimal multilingual vocabularies (Rust et al., 2021), and the "curse of multilinguality" (Conneau et al., 2020).

One alternative is to translate data from a high-resource language into the target language using machine translation (MT). While this enables large-scale corpus creation, it introduces limitations, including reliance on MT quality and the prevalence of "translationese"—literal phrasing, source-language bias, and cultural mismatches (Jalota et al., 2023). Nonetheless, its scalability makes MT a practical solution to data scarcity. Recent studies investigate the utility of pretraining on MT-derived data (MT pretraining) in both monolingual (Doshi et al., 2024; Alcoba Inciarte et al., 2024) and multilingual settings (Wang et al., 2025), consistently reporting downstream performance comparable to models pretrained on native text.

We structure our study around three research questions:

- (1) Does increasing the size of MT-pretrained models improve generalization to native text (cross-entropy loss on held-out native text, syntactic probes, downstream tasks), or does it merely overfit to translation artifacts?
- (2) Does simplifying source text prior to translation improve the usefulness of MT-derived corpora for pretraining?
- (3) Does MT pretraining improve the data efficiency of pretraining on limited native text?

Why these questions aren't obvious and why they matter.

- (1) **Scaling on MT-derived data.** Scaling studies show that performance reliably improves with more parameters and data, but this assumes access to large, high-quality native corpora. When MT-derived data is the only viable option, with its inherent noise and translation artifacts, it remains unclear whether scaling is beneficial or merely leads to overfitting.
- (2) **Source-side simplification.** Intuitively, simpler sentences are easier to translate and should yield fewer errors, but at the cost of reduced nuance and lexical/syntactic diversity. If such errors can be reduced in MT-derived data, will this improve pretraining and enhance generalization to native text?
- (3) MT pretraining → Native CPT. MT pretraining may yield transferable features but also embeds translationese patterns that must be

unlearned during continual pretraining (CPT) on native text. With a fixed native token budget, is CPT from an MT-pretrained checkpoint more effective than native-only pretraining?

To answer these, we conduct controlled experiments by translating English into Indonesian and Tamil and compare GPT-2 models (124M–774M parameters) pretrained on native corpora against those trained on MT-derived data from both natural and LLM-simplified English sources. We evaluate generalization to native text using cross-entropy loss on held-out data, as well as accuracy on syntactic minimal-pair probes and natural language understanding (NLU) tasks including sentiment analysis (SA), toxicity detection (TD), natural language inference (NLI), and causal reasoning (CR).

Our findings are as follows:

- Scaling MT-pretrained models (124M–774M) improves cross-entropy loss on held-out native text, indicating they do not simply overfit to translation-specific artifacts.
- Simplifying source text before translation reduces generalization to native text, likely due to diminished lexical and syntactic variety.
 Raw translation is therefore both simpler and more effective.
- Continual pretraining on limited native text generally improves syntactic probe accuracy and downstream performance, often surpassing native-only models even with less native data. This shows that MT pretraining provides a strong initialization for bootstrapping targetlanguage performance.
- MT-pretrained models underperform on tasks requiring cultural nuance, such as toxicity detection, suggesting that such domains demand more extensive native data.

To the best of our knowledge, this is the first systematic study of scaling effects in pretraining on MT-derived data, as well as the first exploration of source-side text manipulation prior to translation as a means of enhancing MT data quality.

2 Related Work

Performance gap in low-resource languages.

Recent LLM breakthroughs have centered on high-resource languages like English, where abundant high-quality data is available (Joshi et al., 2020). In contrast, low-resource languages still lag due to limited training data and benchmarks. This gap has driven community efforts such as Masakhane (Orife et al., 2020), SEA-CROWD (Lovenia et al., 2024), and multilingual open-source LLMs like BLOOM (Workshop et al., 2023) and Aya (Üstün et al., 2024), highlighting the need for data and model development beyond English.

Pretraining on Multilingual Data. Multilingual pretraining improves performance in low-resource languages (Liu et al., 2020), offering a path beyond the data wall. Its promise lies in transferring knowledge across languages, but this comes with the "curse of multilinguality" (Conneau et al., 2020), a phenomenon where training on many languages degrades performance on individual languages due to limited capacity and inter-language interference. Despite notable successes (Xue et al., 2021; Workshop et al., 2023; Üstün et al., 2024), multilingual models still face challenges such as imbalanced data (Chang et al., 2024), and suboptimal tokenization (Rust et al., 2021). As an alternative for improving monolingual performance with limited native data, we explore leveraging MT models to generate target-language data for monolingual pretraining.

Pretraining on Machine-Translated Data. Pretraining on MT-derived data has been explored in monolingual settings for Arabic (Alcoba Inciarte et al., 2024) and Indic languages (Doshi et al., 2024), as well as in multilingual settings (Wang et al., 2025), consistently showing downstream performance on par with models pretrained on native text. Most related to our work is Doshi et al. (2024), who pretrained 28M and 85M decoder models and explored CPT of larger LLMs (Gemma-2B, Llama-3-8B) on translationese and native texts, finding MT-derived data competitive with native data. Yet it remains unclear whether MT pretraining benefits larger models and whether CPT on native texts helps when the base model is pretrained on translationese. Our study fills this gap by examining model scaling on MT-derived data (124M-774M), source-side manipulation before translation, and CPT on native texts.

3 Data Setup

3.1 Languages and MT Systems

For the source language, we chose English because of its high-resource status. We selected target languages using the following criteria: (1) the language has not yet been studied in the context of MT pretraining; (2) monolingual data in that language are relatively scarce; (3) an open-source MT model is available; (4) high-quality, human-curated NLU benchmarks exist; and (5) a diagnostic benchmark for linguistic knowledge is available, similar to BLiMP (Warstadt et al., 2020). These criteria are essential for evaluating how MT pretraining generalizes to native text beyond language-modeling performance.

For MT, we use OPUS-MT (Tiedemann et al., 2023) for English \rightarrow Indonesian¹ and English \rightarrow Tamil², which achieve BLEU scores of 38.7 and 4.6 on the FLORES-101 dev set, respectively (Tiedemann, 2012). We use OPUS-MT due to its open-source license (CC BY 4.0), compact model size, and efficient inference.

Feature	Simplified	Natural	
PER-DATASET STATS			
Total words	3.45B	3.72B	
Types (unique words)	9.56M	12.70M	
Type-token ratio (%)	0.28%	0.34%	
Unigram entropy (bits)	10.34	10.77	
CROSS-DATASET STATS	3		
Compression (<80%)	27.52%	_	
Exact match	2.02%	_	
High lexical overlap	3.75%	_	
Medium lexical overlap	32.08%		
Low lexical overlap	60.77%	_	
Exact mismatch	1.38%	_	
Semantic Sim (>80%)	77.78%	_	

Table 1: Per-dataset and Cross-dataset statistics of the source-side corpus. Reduced per-dataset stats in Simplified indicate lower complexity compared with Natural. Lexical overlap is measured using ROUGE-2 (R2), with the following thresholds: exact match (R2=1), high (0.8 < R2 < 1), medium $(0.4 < R2 \le 0.8)$, low $(0 < R2 \le 0.4)$, and exact mismatch (R2=0). Semantic Sim is computed as the cosine similarity of the paragraph embeddings. Cross-dataset stats suggest Simplified texts differ in form but preserve core content. See examples in Appendix A and B.

¹Version opus-2019-12-18, https://huggingface.co/ Helsinki-NLP/opus-mt-en-id

 $^{^2} Version$ opus-2020-07-26, https://huggingface.co/Helsinki-NLP/opus-mt-en-dra

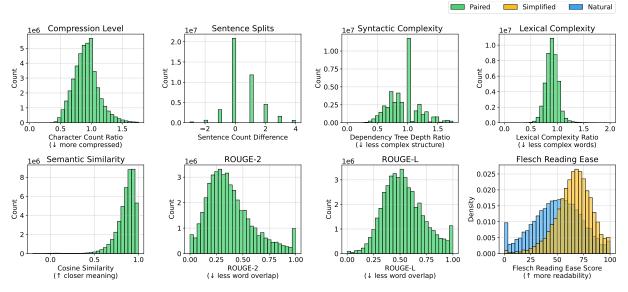


Figure 2: Corpus Feature distributions. Metrics in the first row are adapted from Alva-Manchego et al. (2020). The first row suggests Simplified is shorter, has more sentence splits, uses simpler structures, and uses more common words. The second row shows that Simplified is semantically similar to Natural, with low word-order overlap (low ROUGE-2), moderate preservation of idea flow and structure (moderate ROUGE-L), and clearly higher FRE, indicating systematic differences in readability. For better visualization, we removed outliers, which account for 3% of the data (see Appendix C for definition and examples of outliers).

Native Data. For Indonesian, we use Indo4B (Wilie et al., 2020), one of the largest and most widely adopted pretraining datasets for the language. For Tamil, we sample 5B tokens from the Tamil subset of IndicMonoDoc (Doshi et al., 2024), a large-scale, document-level pretraining corpus.

Natural Data. The English data was drawn from three permissively licensed corpora³: Dolma v1.6 (Soldaini et al., 2024), FineWeb-Edu (Penedo et al., 2024), and Wiki-40B (Guo et al., 2020). The final dataset contains 4B tokens, with 40% Dolma (web, social media, books, academic), 10% Wiki-40B (Wikipedia), and 50% FineWeb-Edu (web).

Simplified Data. We use Llama 3.1 8B (Grattafiori et al., 2024) to convert the Natural Data into simplified texts, referred to as the Simplified Data. Simplification reduces surface-level complexity—shorter sentences, simpler words, and simpler structures—while keeping core content approximately constant. For efficient inference, we employ the INT8 quantized version⁴ of the model with vLLM (Kwon et al., 2023) as the inference server. More details on the prompt in Appendix D. We validate the reduction in complexity and preservation of core content using per-dataset and cross-

dataset metrics (Table 1) as well as distributional analysis (Figure 2). An example simplified text is shown below:

Natural Data: Maintaining a relaxed state of mind allows you to approach challenges with clarity and calm, making it easier to find balanced solutions.

Simplified Data: Staying calm helps you face challenges more clearly and find better solutions.

Machine-Translated Data. Translation is performed at the sentence level and then reconstructed into documents. We apply pre-MT and post-MT processing and filtering to control quality and efficiency (see Appendix E). Token statistics for all datasets are shown in Table 4.

3.2 Evaluation and Fine-tuning Data

The evaluation touches on three aspects: (1) out-of-distribution generalization to native text, (2) native-language proficiency, and (3) native-language downstream performance.

Aspect (1): Out-of-distribution generalization to native text. We use a held-out validation set of 200 million tokens from each language's native corpus and compute cross-entropy loss. Strong performance indicates proficiency in native language modeling.

³Dolma and FineWeb-Edu (ODC-BY), Wiki-40B (CC) ⁴https://huggingface.co/neuralmagic/ Meta-Llama-3.1-8B-Instruct-quantized.w8a8

Aspect (2): Native-language grammatical proficiency. We use the LINDSEA syntax subset (Leong et al., 2023), formatted as minimal pairs—sentence pairs differing only by a specific grammatical feature to test whether a model favors the grammatical form over the ungrammatical one. The benchmark covers morphology, negation, argument structure, and filler-gap dependencies. Strong performance indicates robust grammatical knowledge.

Aspect (3): Native-language NLU performance. We evaluate on the Indonesian and Tamil subsets of SEA-HELM (Susanto et al., 2025) across four NLU tasks: sentiment analysis (SA), toxicity detection (TD), natural language inference (NLI), and causal reasoning (CR). Strong performance indicates effective transfer from MT-derived to native data.

3.3 Fine-tuning Data

Task	Train Data	Labels (counts)
SA	Amazon (Hou et al., 2024) Yelp (Zhang et al., 2015)	negative (50K) positive (50K)
TD	HateSpeech (Davidson et al., 2017)	hate (0.6K) clean (2.4K) rough (10.3K)
NLI	WANLI (Liu et al., 2022)	contradiction (11.2K) entailment (10.9K) neutral (11K)
CR	B-COPA (Kavumba et al., 2019)	cause (0.5K) effect (0.5K)

Table 2: Overview of fine-tuning tasks, data sources, label splits, and example counts (in thousands). SA = Sentiment Analysis, TD = Toxicity Detection, NLI = Natural Language Inference, CR = Causal Reasoning.

In low-resource settings with little or no finetuning data, we extend the MT pretraining approach by translating English task datasets into the target language (Table 2). All datasets are curated to be label-balanced, except TD, where downsampling would reduce the data to roughly 600 examples per label. Translation and filtering follow the same procedure as used for pretraining data.

4 Experimental Setup

4.1 Models and Training

Architectures. We train models in three sizes (Table 3) following the GPT-2 architecture (Radford et al., 2019). A 50,257-token BPE (Sennrich

et al., 2016) is trained per language on native data and reused across all pretraining conditions (Native, Natural-MT, Simplified-MT). Details on the tokenizer and special tokens are provided in Appendix F.

Size	Layers	$d_{\mathbf{model}}$	Heads	MLP	Params
Small	12	768	12	3072	124M
Medium	24	1024	16	4096	355M
Large	36	1280	20	5120	774M

Table 3: Model configurations for the three GPT-2 sizes. Columns show number of layers, hidden size ($d_{\rm model}$), attention heads, feed-forward dimension (MLP), and parameter counts in millions.

Pretraining conditions. For each language we train nine models: three corpora (Native, Natural-MT, Simplified-MT) crossed with three sizes (Small, Medium, Large). We use causal language modeling objective with a 1,024-token context. Native-only models are pretrained on whole native corpus (4.3B for Indonesian and 5B for Tamil) to serve as a proxy for upper bound performance in low-resource scenarios. Full optimizer and schedule details are in Appendix F.

Continual pretraining (CPT). For CPT, we continue pretraining the final Natural-MT and Simplified-MT models on a subset of native corpus (1B tokens for Indonesian, 2.5B for Tamil). All settings match pretraining except for a lower peak learning rate. More details in Appendix F.

Token budgets. Table 4 summarizes MT and native token budgets for each training setup. CPT refers to native continuation after MT pretraining stage. For example, in Indonesian, Native-only is trained on 4.3B native tokens, Natural-MT on 2.9B MT-derived tokens, and Natural-MT-CPT continues Natural-MT training with an additional 1B native tokens.

4.2 Fine-tuning & Evaluation

Supervised tasks. Each pretrained checkpoint is fine-tuned on *sentiment analysis* (SA), *natural-language inference* (NLI), and *toxicity detection* (TD; Indonesian only) using machine-translated training data, then evaluated on native SEA-HELM test sets. Dataset sources and label splits are in Table 2. We also fine-tune on *causal reasoning* (CR), but because all systems remain near chance (\approx 50–54% balanced accuracy) with no clear trends,

	Indonesian T		amil	
Setup	MT	Native	MT	Native
Native	_	4.3B	_	5.0B
Natural-MT	2.9B	_	4.8B	_
Natural-MT-CPT	2.9B	1.0B	4.8B	2.5B
Simplified-MT Simplified-MT-CPT	2.7B 2.7B	 1.0B	5.2B 5.2B	 2.5B

Table 4: Training token budgets by setup for each language (billions). MT counts reflect machine-translated corpora; Native counts reflect native-language text. CPT denotes native continuation from the MT checkpoint. All token counts are computed with each language's fixed 50,257-token BPE tokenizer trained on native corpora and reused across all conditions.

we omit CR from the main results tables; for transparency, full CR means \pm std appear in Appendix Table 9.

No pretraining baseline. For each size (Small/Medium/Large), we also train a *No Pretraining* baseline: a randomly initialized GPT-2 decoder with the same architecture and classification head, optimized only on the task data (no LM pretraining). Optimization settings, sequence length, and hyperparameter search match those used for pretrained checkpoints.

Metric and model selection. We select by balanced accuracy on a translationese dev split and report average scores over three seeds on SEA-HELM benchmark. Batch sizes per task are listed in Appendix Table 7; fine-tuning heads, pooling, and the hyperparameter search space are described in Appendix G.

Zero-shot syntactic probing. To assess the linguistic knowledge encoded in the pretrained representations, we evaluate all models on the Syntax subset of LINDSEA. The subset is converted to BLiMP-style minimal pairs; a model is correct when it assigns a higher log-probability to the grammatical member of the pair. Accuracy is averaged across all syntactic phenomena.

5 Results and Discussion

We present results by our three research questions, then report translationese fine-tuning outcomes. Each subsection starts with a short answer, followed by evidence and a practical takeaway.

	Indo	nesian	Tamil		
Model	Acc.	Δ	Acc.	Δ	
Small					
Native	53.6		71.5		
Natural-MT	47.6		66.2		
Natural-MT-CPT	52.9	+5.3	69.1	+2.9	
Simplified-MT	46.6		61.3		
Simplified-MT-CPT	52.4	+5.8	72.1	+10.8	
Medium					
Native	52.4		62.8		
Natural-MT	50.5		65.5		
Natural-MT-CPT	53.7	+3.2	72.8	+7.3	
Simplified-MT	49.5		65.1		
Simplified-MT-CPT	52.1	+2.6	76.0	+10.9	
Large					
Native	57.4		70.9		
Natural-MT	49.7		62.8		
Natural-MT-CPT	54.5	+4.8	72.8	+10.0	
Simplified-MT	49.7		62.8		
Simplified-MT-CPT	56.3	+6.6	70.9	+8.1	

Table 5: Accuracy on the LINDSEA Syntax subset (higher is better; random chance is 50%). Native pretraining produces the strongest Indonesian model (57.4%), whereas CPT lifts MT models to the top for Tamil (76.0% for Medium Simplified-MT-CPT). In Indonesian, MT models score close to or below random, but CPT raises them by 2–7 percentage points, partially closing the gap to native. Tamil results are uniformly higher: even MT-only models exceed 60%, and CPT adds another 7–11 percentage points. Medium Simplified-MT-CPT surpasses all Large models in Tamil. A per-phenomenon breakdown appears in Appendix Table 8.

5.1 Does scaling on MT-derived data improve loss on native text?

Answer: Within our setup, yes. Larger MT-pretrained models generally achieve lower loss on held-out native text than smaller ones, except for the Tamil Simplified-MT 774M model, which performs slightly worse.

Evidence: For both languages, validation loss on native text decreases with larger model size when pretrained on MT-derived data (Fig. 1). Diminishing returns appear at 774M, likely due to the data—to—parameter ratio, but further experiments are needed to confirm. Overall, the trend suggests larger models improve generalization to native text, despite being trained only on MT-derived data. This pattern persists after CPT, indicating that greater capacity captures transferable structure rather than simply memorizing translation artifacts.

Takeaway: More parameters enhance transfer to

native text even when pretraining solely on MT-derived data.

	In	donesi	Tamil		
Model	SA	NLI	TD	SA	NLI
Small					
No Pretraining (LB)	56.1	43.0	41.3	75.3	38.3
Native (UB)	63.4	53.7	52.6	87.1	42.8
Natural-MT	61.9	56.9	42.5	88.4	42.3
Natural-MT-CPT	63.5	57.4	47.6	88.9	43.5
Simplified-MT	61.3	56.2	44.5	88.8	40.7
Simplified-MT-CPT	62.9	58.2	49.6	89.0	43.0
Medium					
No Pretraining (LB)	55.9	43.7	41.8	75.2	38.9
Native (UB)	62.7	57.7	53.0	84.8	41.1
Natural-MT	62.6	60.7	44.1	90.3	43.8
Natural-MT-CPT	64.2	59.7	49.5	91.2	45.1
Simplified-MT	61.6	55.8	44.6	90.6	44.8
Simplified-MT-CPT	62.6	57.2	48.3	90.5	45.1
Large					
No Pretraining (LB)	56.0	37.1	41.0	75.8	40.0
Native (UB)	63.7	56.6	54.7	86.2	43.4
Natural-MT	62.6	61.6	45.2	90.6	43.6
Natural-MT-CPT	63.7	61.4	48.3	92.1	45.6
Simplified-MT	61.5	63.2	46.2	90.0	43.3
Simplified-MT-CPT	64.3	61.9	49.1	90.3	44.4

Table 6: Balanced accuracy on SEA-HELM after fine-tuning each model on translationese (averaged over three seeds). **LB** = lower bound (No Pretraining); **UB** = upper bound (Native). For **SA** and **NLI**, MT-pretrained models approach Native performance, with CPT typically boosting results beyond UB. For **TD**, Native pretraining remains stronger, with MT-pretrained models lagging by 3–11 points despite identical fine-tuning data. Standard deviations are in Table 9 in the Appendix.

5.2 Does source-side simplification help transfer to native text?

Answer: Within our setup, no. Simplifying English before translation reduces transfer to native text.

Evidence: In language modeling, Simplified-MT yields worse loss on native text than Natural-MT across all sizes (see Fig. 1). In syntactic probing, Natural-MT consistently outperforms Simplified-MT, with the largest gap in Tamil small models, though the gap narrows with larger sizes (Table 5). In downstream tasks, neither is consistently better—Simplified-MT leads on some tasks and Natural-MT on others—except for TD, which strongly favors Native models. Overall, accuracy differences are usually within 1–2 points (Table 6), suggesting that improvements in language modeling loss do not always translate directly into down-

stream gains.

Takeaway: For source-side English, higher lexical and syntactic diversity yields MT-derived data that transfers better to native text. Avoid operations that reduce this diversity (e.g., simplification) if the goal is native transfer.

5.3 Is MT pretrain \rightarrow Native CPT more data-efficient than native-only?

Answer: Within our setup, yes. With the same native-token budget, MT-initialized CPT matches or surpasses native-only.

Evidence: A short CPT phase (1B tokens for Indonesian; 2.5B for Tamil) reduces loss on native text, surpassing native-only models trained on the same native budget. Notably, Tamil CPT models surpassed native-only models trained on 5B native tokens (see Figure 1). In syntactic probing, CPT yields significant gains across model sizes, raising accuracy by about 2–7 points in Indonesian and 7–11 points in Tamil (Table 5). We surmise the gains come from better alignment with the native distribution, suggesting an "error correction" or unlearning of translationese artifacts.

Takeaway: When native data is scarce, MT pretraining followed by continual pretraining on native text often outperforms native-only pretraining.

5.4 Translationese fine-tuning outcomes

Answer: For SA and NLI, MT-pretrained models approach the Native upper bound, with CPT often pushing results beyond it. For TD, performance strongly favors Native models.

Evidence: After fine-tuning on translationese, all pretrained models (*Native*, *MT*, *MT-CPT*) exceed the *No Pretraining* baseline across tasks, confirming the utility of pretraining. For *SA* and *NLI*, MT-pretrained models are typically within 1–2 points above the Native models, and CPT variants often *exceed* the upper bound performance (Native) within each size group (Table 6). For Indonesian *TD*, Native models retain a 3–11 point edge over MT-pretrained ones despite identical fine-tuning data. We omit *CR* from Table 6 because all systems remain near chance (\approx 50–54% balanced accuracy) and perform similarly to *No Pretraining*; full means \pm std over three seeds appear in Appendix Table 9.

Takeaway: In low-resource scenarios, MT-derived fine-tuning data is useful for tasks like sentiment analysis and NLI but has limited value for more culturally nuanced tasks such as toxicity detection.

6 Conclusion

In this work, we asked whether larger models improve generalization to native text when pretraining data is pure machine-translated text, how sourceside complexity affects transfer to native text, and whether MT-pretrained models are good starting points for continually pretraining on native text. We observed three consistent patterns. First, for the 124M to 774M parameters setup, more parameters improve transfer to native text even when pretraining solely on MT-derived data. Second, for source-side English texts, higher lexical and syntactic diversity yields MT-derived data that transfers better to native text. Avoid operations that reduce this diversity (e.g., simplification) if the goal is native transfer. Third, when native data is scarce, MT pretraining followed by continual pretraining on native text often outperforms native-only pretraining. In scenarios with zero or limited fine-tuning data, MT-derived fine-tuning data is useful for tasks like sentiment analysis and NLI but has limited value for more culturally nuanced tasks such as toxicity detection.

We distill our findings into a recipe for improving monolingual models beyond what is achievable with the available native data:

- Generate more target-language data via MT.
- Pretrain on MT-derived data (using the largest model size you can afford).
- Continue pretraining on native data from an MT-pretrained checkpoint.
- With limited native fine-tuning data and a fixed annotation budget, maximize coverage by translating training data from highresource languages for tasks like sentiment analysis and NLI, while reserving native annotation for more culturally nuanced tasks like toxicity detection.

For future work, extending these experiments to larger models, better MT systems, different source-side and target languages, and more advanced pre-processing that balances MT ease with linguistic diversity will clarify when the effects observed here amplify or taper. Furthermore, extending this approach to post-training regimes such as instruction tuning and preference alignment remains an open direction.

Limitations

Our study has some limitations. First, we used a fixed dataset and only three GPT-2 sizes (124M, 355M, 774M), which may limit generalizability; broader variation in data and scale could yield different insights. Second, fine-tuning relied on translated rather than native data, so it is unclear if the same patterns hold with native training data. Third, MT quality matters—BLEU scores varied across languages, but we did not separate translation effects from linguistic confounds. Fourth, LLM-based simplification can hallucinate or omit information, causing Simplified-MT to diverge semantically from Natural-MT to some degree. Finally, since language and culture are deeply connected, our focus on translation does not address the transfer of cultural knowledge.

References

Alcides Alcoba Inciarte, Sang Yun Kwon, El Moatez Billah Nagoudi, and Muhammad Abdul-Mageed. 2024. On the utility of pretraining language models on synthetic data. In *Proceedings of the Second Arabic Natural Language Processing Conference*, pages 265–282, Bangkok, Thailand. Association for Computational Linguistics.

Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, Benoît Sagot, and Lucia Specia. 2020. ASSET: A dataset for tuning and evaluation of sentence simplification models with multiple rewriting transformations. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 4668–4679, Online. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, and 12 others. 2020. Language models are few-shot learners. In *Advances in Neural Information Processing Systems*, volume 33, pages 1877–1901. Curran Associates, Inc.

Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and Ben Bergen. 2024. When is multilinguality a curse? language modeling for 250 high- and low-resource languages. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 4074–4096, Miami, Florida, USA. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised

- cross-lingual representation learning at scale. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 8440–8451, Online. Association for Computational Linguistics.
- Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated hate speech detection and the problem of offensive language. *Preprint*, arXiv:1703.04009.
- Meet Doshi, Raj Dabre, and Pushpak Bhattacharyya. 2024. Pretraining language models using translationese. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 5843–5862, Miami, Florida, USA. Association for Computational Linguistics.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, and 542 others. 2024. The llama 3 herd of models. *Preprint*, arXiv:2407.21783.
- Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami Al-Rfou. 2020. Wiki-40B: Multilingual language model dataset. In *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pages 2440–2452, Marseille, France. European Language Resources Association.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, and 3 others. 2022. Training compute-optimal large language models. *Preprint*, arXiv:2203.15556.
- Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. 2024. Bridging language and items for retrieval and recommendation. *Preprint*, arXiv:2403.03952.
- Rricha Jalota, Koel Chowdhury, Cristina España-Bonet, and Josef van Genabith. 2023. Translating away translationese without parallel data. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 7086–7100, Singapore. Association for Computational Linguistics.
- Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. 2020. The state and fate of linguistic diversity and inclusion in the NLP world. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 6282–6293, Online. Association for Computational Linguistics.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,

- Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language models. *Preprint*, arXiv:2001.08361.
- Pride Kavumba, Naoya Inoue, Benjamin Heinzerling, Keshav Singh, Paul Reisert, and Kentaro Inui. 2019. When choosing plausible alternatives, clever hans can be clever. *Preprint*, arXiv:1911.00225.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large language model serving with pagedattention. *Preprint*, arXiv:2309.06180.
- Wei Qi Leong, Jian Gang Ngui, Yosephine Susanto, Hamsawardhini Rengarajan, Kengatharaiyer Sarveswaran, and William Chandra Tjhi. 2023. Bhasa: A holistic southeast asian linguistic and cultural evaluation suite for large language models. *Preprint*, arXiv:2309.06085.
- Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and Yejin Choi. 2022. Wanli: Worker and ai collaboration for natural language inference dataset creation. *Preprint*, arXiv:2201.05955.
- Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising pretraining for neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:726–742.
- Holy Lovenia, Rahmad Mahendra, Salsabil Maulana Akbar, Lester James Validad Miranda, Jennifer Santoso, Elyanah Aco, Akhdan Fadhilah, Jonibek Mansurov, Joseph Marvin Imperial, Onno P. Kampman, Joel Ruben Antony Moniz, Muhammad Ravi Shulthan Habibi, Frederikus Hudi, Railey Montalan, Ryan Ignatius Hadiwijaya, Joanito Agili Lopo, William Nixon, Börje F. Karlsson, James Jaya, and 42 others. 2024. SEACrowd: A multilingual multimodal data hub and benchmark suite for Southeast Asian languages. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 5155–5203, Miami, Florida, USA. Association for Computational Linguistics.
- Iroro Orife, Julia Kreutzer, Blessing Sibanda, Daniel Whitenack, Kathleen Siminyu, Laura Martinus, Jamiil Toure Ali, Jade Abbott, Vukosi Marivate, Salomon Kabongo, Musie Meressa, Espoir Murhabazi, Orevaoghene Ahia, Elan van Biljon, Arshath Ramkilowan, Adewale Akinfaderin, Alp Öktem, Wole Akin, Ghollah Kioko, and 6 others. 2020. Masakhane machine translation for africa. *Preprint*, arXiv:2003.11529.
- Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, and Thomas Wolf. 2024. The fineweb datasets: Decanting the web for the finest text data at scale. *Preprint*, arXiv:2406.17557.

- Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, and 25 others. 2025. Qwen2.5 technical report. *Preprint*, arXiv:2412.15115.
- Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.
- Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. 2021. How good is your tokenizer? on the monolingual performance of multilingual language models. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 3118–3135, Online. Association for Computational Linguistics.
- Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. *Preprint*, arXiv:1508.07909.
- Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, and 17 others. 2024. Dolma: an open corpus of three trillion tokens for language model pretraining research. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 15725–15788, Bangkok, Thailand. Association for Computational Linguistics.
- Yosephine Susanto, Adithya Venkatadri Hulagadri, Jann Railey Montalan, Jian Gang Ngui, Xian Bin Yong, Weiqi Leong, Hamsawardhini Rengarajan, Peerat Limkonchotiwat, Yifan Mai, and William Chandra Tjhi. 2025. Sea-helm: Southeast asian holistic evaluation of language models. *Preprint*, arXiv:2502.14301.
- Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy Jerome, and 179 others. 2024. Gemma 2: Improving open language models at a practical size. *Preprint*, arXiv:2408.00118.
- Jörg Tiedemann. 2012. Parallel data, tools and interfaces in OPUS. In *Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)*, pages 2214–2218, Istanbul, Turkey. European Language Resources Association (ELRA).

- Jörg Tiedemann, Mikko Aulamo, Daria Bakshandaeva, Michele Boggia, Stig-Arne Grönroos, Tommi Nieminen, Alessandro Raganato Yves Scherrer, Raul Vazquez, and Sami Virpioja. 2023. Democratizing neural machine translation with OPUS-MT. *Language Resources and Evaluation*, (58):713–755.
- Ahmet Üstün, Viraat Aryabumi, Zheng Yong, Wei-Yin Ko, Daniel D'souza, Gbemileke Onilude, Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne Longpre, Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. 2024. Aya model: An instruction finetuned open-access multilingual language model. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 15894–15939, Bangkok, Thailand. Association for Computational Linguistics.
- Jiayi Wang, Yao Lu, Maurice Weber, Max Ryabinin, David Adelani, Yihong Chen, Raphael Tang, and Pontus Stenetorp. 2025. Multilingual language model pretraining using machine-translated data. *Preprint*, arXiv:2502.13252.
- Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and Samuel R. Bowman. 2020. BLiMP: The benchmark of linguistic minimal pairs for English. *Transactions of the Association for Computational Linguistics*, 8:377–392.
- Bryan Wilie, Karissa Vincentio, Genta Indra Winata, Samuel Cahyawijaya, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, and Ayu Purwarianti. 2020. IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding. In *Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing*, pages 843–857, Suzhou, China. Association for Computational Linguistics.
- BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, and 375 others. 2023. Bloom: A 176b-parameter open-access multilingual language model. *Preprint*, arXiv:2211.05100.
- Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual pre-trained text-to-text transformer. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 483–498, Online. Association for Computational Linguistics.
- Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text clas-

sification. In Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.

A Examples from Natural and Simplified Data by Semantic Similarity

As shown in Table 1, 77.78% of datasets have semantic similarity of greater than 80%. We show examples here of texts with varying semantic similarity scores with their corresponding ROUGE-2 scores.

Examples of semantic similarity > 0.8:

```
SEMANTIC SIMILARITY: 0.90, ROUGE-2: 0.27;
       Natural:important officials and well
           known persons who visited the islands
            wrote
       Simplified:important visitors to the
           islands wrote
SEMANTIC SIMILARITY: 0.95, ROUGE-2: 0.41;
       Natural:Also, the authors now expect to
           apply their approach to other regions
             They have a lot of work to do.
           After all, arid landscapes occupy
           about 65 million square kilometers of
            the earth's surface (this is almost
           four areas of Russia).
       Simplified: The authors now plan to use
            their method in other areas. They
           have a lot of work ahead of them.
           Arid landscapes cover almost 65
           million square kilometers of the
           Earth's surface, which is roughly
           four times the size of Russia.
SEMANTIC SIMILARITY: 0.90, ROUGE-2: 0.19;
       Natural:On its face, the USDA's decision
           to have participation in the NAIS be
           voluntary seems to solve all of the
           major concerns. Small and organic
           farmers will be able to "opt out" of
           participation in the NAIS if they
           have objections to its methodology. [
           FN203]
       Simplified: The USDA made the NAIS
           voluntary. This means that small and
           organic farmers can choose not to
           participate if they don't agree with
           how the NAIS works.
SEMANTIC SIMILARITY: 0.96, ROUGE-2: 0.43;
       Natural:The ICD-11 includes a revised
           definition for alcohol use disorders
           (AUDs) and, more specifically, for
           alcohol dependence and the "harmful
           patterns of alcohol use."
       Simplified: The ICD-11 has changed how it
           defines alcohol use disorders (AUDs).
            It now includes a new definition for
            alcohol dependence and for when
           alcohol use causes harm.
SEMANTIC SIMILARITY: 0.95, ROUGE-2: 0.75;
       Natural: Feel free to check out more of
           this website. Our goal is to provide
           rebuttals to the bad science behind
           young earth creationism, and honor
           God by properly presenting His
           creation.
       Simplified:Our goal is to provide
           rebuttals to the bad science behind
```

```
young earth creationism, and honor
           God by properly presenting His
           creation. You can find more
           information on this website.
SEMANTIC SIMILARITY: 0.82, ROUGE-2: 0.50;
       Natural:separate trees you simply set the
            CODEBASE attributes of each applet
       Simplified:set the CODEBASE attribute of
           each applet
SEMANTIC SIMILARITY: 0.98, ROUGE-2: 0.74;
       Natural: The U.S. Geological Survey's
           National Wildlife Health Center
           verified the disease in a little
           brown bat found this month in North
           Bend, about 30 miles east of Seattle.
       Simplified: The U.S. Geological Survey's
           National Wildlife Health Center found
            a disease in a little brown bat in
           North Bend, which is about 30 miles
           east of Seattle.
```

Examples of semantic similarity < 0.5:

```
SEMANTIC SIMILARITY: 0.09, ROUGE-2: 0.00;
       Natural:- Press Ctrl + 2 to add more text
             boxes. Press Ctrl + shift + 2 to
            adjust text box.
       Simplified: (Note: Please provide your
            output in the format specified above,
            ensuring it is free of grammatical
            errors and easy to read.)
SEMANTIC SIMILARITY: 0.38, ROUGE-2: 0.00;
       Natural: his bark is worse than his bite,
            he is bad-tempered but harmless
       Simplified: This person is grumpy, but he
            won't hurt you.
SEMANTIC SIMILARITY: 0.44, ROUGE-2: 0.00;
       Natural:said to have sworn, under duress,
             that he
       Simplified: The person was forced to say
            something, but he didn't really mean
SEMANTIC SIMILARITY: 0.35, ROUGE-2: 0.24;
       Natural: and operated at 33 MHz and 20
           MIPS. ... Many thanks to Robert B
           Garner - who
       Simplified: The computer was made by Intel
            and operated at 33 million cycles
            per second and 20 million
            instructions per second.
SEMANTIC SIMILARITY: 0.48, ROUGE-2: 0.32;
       \label{lem:natural:you are near the surface of the} \\
            Earth, regardless of what the object
       Simplified: The surface of the Earth is
            the outermost solid layer of our
           planet.
SEMANTIC SIMILARITY: 0.36, ROUGE-2: 0.09;
       Natural:upon his visage, rather than pure
             devotion, such as one might
       Simplified: The person's face showed more
            of a sense of duty than pure love.
SEMANTIC SIMILARITY: 0.14, ROUGE-2: 0.00;
       Natural: - Genetic screens in human cells
            using the CRISPR-Cas9 system. Science
             343, 80-84 (2014) , , &
       Simplified:Simplification of the text
            should be provided in the format
            specified above.
SEMANTIC SIMILARITY: 0.11, ROUGE-2: 0.00;
```

Natural:Strategies you implement are usually defined as the tone of your information. Here is the summary of tone types: Simplified: (Note: Please provide your output in the format specified above, ensuring it is clear, well-organized , and free of grammatical errors.) SEMANTIC SIMILARITY: 0.08, ROUGE-2: 0.00; Natural: - Mathematics - Knowledge of arithmetic, algebra, geometry, calculus, statistics, and their applications. Simplified: Simplification of the text should be done in the same format as the examples provided. SEMANTIC SIMILARITY: 0.14, ROUGE-2: 0.00; Natural:Art. 304, consists of two clauses , and each clause operates as a proviso to Arts. 301 and 303. Simplified: The law has two parts. Each part is connected to other laws. SEMANTIC SIMILARITY: 0.45, ROUGE-2: 0.00; Natural:- Can you think of other cases where a government has addressed its previous wrongdoing? Simplified:- Yes, there are several examples.

B Examples from Natural and Simplified Data by ROUGE-2

In Table 1, we used ROUGE-2 (R2) thresholds to define the level of lexical overlap.

Examples of low lexical overlap ($0 < R2 \le 0.4$):

ROUGE-2: 0.19; Natural:An independent panel of technical experts convened by the American Chemical Society Green Chemistry Institute formally judged the 2017 submissions from among scores of nominated technologies and made recommendations to EPA for the 2017 winners. The 2017 awards event will be held in conjunction with the 21st Annual Green Chemistry and Engineering Conference. Simplified: An independent group of experts looked at many technologies and chose the best ones for the 2017 awards. They recommended these winners to the EPA. The 2017 awards ceremony will be held at the same time as a conference on green chemistry.

Natural:Only \$24.00 and a pair of high boots was all it took for the first property owner to purchase the land where the now renowned Pioneer Courthouse Square is located. The block was the site for Portland's first school. Shortly thereafter, it became the Portland Hotel where it served as a social center. The hotel

was demolished in 1951 to make room

for the automobile with installation

ROUGE-2: 0.38;

of a full city block of parking. Due to progressive civic leadership in the 1970's, Portland worked to revitalize its downtown, including a move away from the use of automobiles and back toward mass transit. The demolition of the parking garage and creation of Pioneer Courthouse Square remains a major landmark of this effort.

Simplified:Only \$24.00 and a pair of boots was all it took for the first person to buy the land where Pioneer Courthouse Square is now. This block was once home to Portland's first school. Later, it became the Portland Hotel, where people would meet and socialize. The hotel was torn down in 1951 to make room for cars. In the 1970s, Portland's leaders decided to make the city more people-friendly. They wanted to reduce the use of cars and increase the use of public transportation. As part of this effort, the parking garage was removed, and Pioneer Courthouse Square was created.

ROUGE-2: 0.10;

Natural:- 2002 - 2011 is the ten years preceding the ratings evaluation, and Simplified:- 2002 to 2011 was the time before the ratings were checked.

ROUGE-2: 0.39;

Natural: The wearing of gowns at formals is compulsory at some colleges and various other traditions are usually observed, including grace said in Latin or English. The wearing of gowns may sometimes constitute the only dress code; in other cases, formal wear (for example, a lounge suit for men or equivalent for women) is required in addition to, or instead of, the gown.

Simplified: The wearing of gowns at formals is required at some colleges and some other traditions are followed, like saying grace in Latin or English. In some places, wearing a gown is the only dress code, while in others, you also need to wear formal clothes (like a suit for men or something similar for women) along with the gown.

Examples of medium lexical overlap (0.4 $< R2 \le 0.8$):

ROUGE-2: 0.68;

Natural:HDTV technology is estimated that this will be the future of television standards, so a senior researcher in the field of systems and management strategies Dr. Indu Singh predicts that the world market for HDTV would reach 250 billion dollars per year (year 2010).

Simplified:HDTV technology is expected to be the future of television standards. Dr. Indu Singh, a senior

researcher in the field of systems and management strategies, predicts that the world market for HDTV will reach \$250 billion per year by 2010.

ROUGE-2: 0.74;

Natural:Prophetically, he feels the need to plead for ten years of life so that:

Simplified:Prophetically, he feels the
 need to ask for ten more years of
 life so that:

ROUGE-2: 0.47;

Natural:Most common palm species are Elaeis guineensis and Borassus aethiopium (rhun palm).

Simplified: The two most common types of palm trees are Elaeis guineensis and Borassus aethiopium, also known as the rhun palm.

ROUGE-2: 0.51;

Natural:The glare of publicity that swirled about Yellow Thunder Camp last September when the government ordered its occupants to leave their chosen spot has faded like the leaves of autumn. The traditional but transient tepees have been supplemented with a geodesic dome. The legal battle which will determine the camp's future drags on in nearby Rapid City.

Simplified: The glare of publicity that swirled around Yellow Thunder Camp last September when the government ordered its occupants to leave their chosen spot has faded. The campers have added a new, dome-shaped shelter to their traditional tepees. The legal fight about the camp's future is still going on in Rapid City.

ROUGE-2: 0.41;

Natural:Also, the authors now expect to apply their approach to other regions . They have a lot of work to do.

After all, arid landscapes occupy about 65 million square kilometers of the earth's surface (this is almost four areas of Russia).

Simplified: The authors now plan to use their method in other areas. They have a lot of work ahead of them. Arid landscapes cover almost 65 million square kilometers of the Earth's surface, which is roughly four times the size of Russia.

ROUGE-2: 0.75:

Natural:Feel free to check out more of this website. Our goal is to provide rebuttals to the bad science behind young earth creationism, and honor God by properly presenting His creation.

Simplified:Our goal is to provide rebuttals to the bad science behind young earth creationism, and honor God by properly presenting His creation. You can find more information on this website.

Examples of high lexical overlap (0.8 < R2 <

1):

ROUGE-2: 0.85;

Natural: That same year, the FDA and EPA issued a recommendation that pregnant women and young children eat no more than two servings, or 12 ounces, of salmon and other low-mercury fish each week.

Simplified: The FDA and EPA suggested that pregnant women and young children eat no more than two servings, or 12 ounces, of salmon and other lowmercury fish each week.

ROUGE-2: 0.84;

Natural:With a little imagination, other services could be provided as well. Simplified:With a little imagination, other services could be provided too.

ROUGE-2: 0.82;

Natural:o Suggests questions to help facilitate professional development group discussions, especially among peers

Simplified:o Suggests questions to help facilitate group discussions, especially among peers

ROUGE-2: 0.90;

Natural:tendonitis. The flattened arch pulls on calf muscles and keeps the Achilles tendon under tight strain. This constant mechanical stress on the heel and tendon can cause inflammation, pain and swelling

Simplified:tendonitis. The flattened arch pulls on calf muscles and keeps the Achilles tendon under tight strain. This constant stress on the heel and tendon can cause pain and swelling.

Examples of exact match (R2 = 1):

ROUGE-2: 1.00;

Natural:- Does the modal not show a coupon code? Then you can click directly in the big blue button " VISIT Hidden24 VPN

Simplified:- Does the modal not show a coupon code? Then you can click directly in the big blue button " VISIT Hidden24 VPN"

ROUGE-2: 1.00;

Natural:- IVF through implanting multiple embryos can be one way of getting science to help with the process

Simplified:IVF through implanting multiple embryos can be one way of getting science to help with the process.

ROUGE-2: 1.00;

Natural:For more information about the program contact Stoughton at 435-259-7985 or email email@example.com.

Simplified:For more information about the program, contact Stoughton at 435-259-7985 or email email@example. com.

ROUGE-2: 1.00;

Natural:An earthworm's home, and the dirt around it, can be called a factory.

```
This factory makes a special kind of
           dirt called topsoil.
       Simplified: An earthworm's home and the
           dirt around it can be called a
            factory. This factory makes a special
            kind of dirt called topsoil.
ROUGE-2: 1.00;
       Natural: Tim Wilson will be speaking to
           The New Zealand Initiative in:
       Simplified: Tim Wilson will be speaking to
            The New Zealand Initiative in:
ROUGE-2: 1.00:
       Natural: - extending far in width; broad:
           deep lace; a deep border.
       Simplified:- extending far in width;
           broad: deep lace; a deep border.
```

Examples of exact mismatch (R2 = 0):

```
ROUGE-2: 0.00;
       Natural:ensure that every medical issue
           receives attention.
       Simplified: Medical issues should get
           attention.
ROUGE-2: 0.00;
       Natural: - Press Ctrl + 2 to add more text
            boxes. Press Ctrl + shift + 2 to
           adjust text box.
       Simplified: (Note: Please provide your
           output in the format specified above,
            ensuring it is free of grammatical
            errors and easy to read.)
ROUGE-2: 0.00:
       Natural: judicial decorum when expressing
           himself on conservation matters. . .
       Simplified: The judge spoke about
           conservation in a respectful and
           proper way.
ROUGE-2: 0.00;
       Natural: his bark is worse than his bite,
           he is bad-tempered but harmless
       Simplified: This person is grumpy, but he
           won't hurt you.
ROUGE-2: 0.00;
       Natural: *An earlier version of this
           article misstated the study's
           benchmark for deficit reduction.
       Simplified: The article previously
           mentioned the wrong target for
           reducing the deficit.
ROUGE-2: 0.00;
       Natural: said to have sworn, under duress,
            that he
       Simplified: The person was forced to say
            something, but he didn't really mean
ROUGE-2: 0.00;
       Natural:and resulted in considerable
       Simplified: The hurricane caused a lot of
           damage.
ROUGE-2: 0.00;
```

Natural: - Thomas, B. 2009. Did Humans

"Thomas wrote about a discovery called 'Ardi' in

2009. He asked if humans evolved from this

(11): 8-9.

ancient creature.

Simplified:Simplified Text:

Evolve from 'Ardi'? Acts & Facts. 38

```
ROUGE-2: 0.00;
       Natural:Strategies you implement are
           usually defined as the tone of your
           information. Here is the summary of
           tone types:
       Simplified: (Note: Please provide your
           output in the format specified above,
            ensuring it is clear, well-organized
            , and free of grammatical error
```

Outliers

To improve visualizations, we clipped outliers (Flesch Reading Ease) which only accounts for 3.49% (Natural) and 1.37% (Simplified), and also removed outliers (Sentence Split Difference, Compression Level, Dependency Tree Depth Ratio) which only accounts for 3% of paragraphs. Total paragraphs for each dataset is 44,868,680. This section defines, quantifies, and illustrates the outliers.

C.1 Outliers: Flesch Reading Ease

Flesch Reading Ease (FRE) is interpreted as 0 to 100 but the FRE formula does not enforce boundaries, for this reason we clip negative values to 0 and clip to 100 if FRE is beyond 100. Negative FRE values can happen for dense paragraphs with very long sentences (typically, complex sentences) with long words. While FRE of greater than 100 can happen for paragraphs with very short sentences with short words. The percentage of outliers are as follows: 3.49% for Natural and 1.37% for Simplified examples.

Examples of outliers are provided below.

```
FRE: 100.00; "Come out of her, my people, lest
    you take part of her sins, lest you share in
FRE: 112.09; - Press Ctrl + 2 to add more text
    boxes. Press Ctrl + shift + 2 to adjust text
FRE: 102.53; Do you know the name of the bird
    group you are looking for?
# Simplified
FRE: 103.01; - 2002 to 2011 was the time before
    the ratings were checked.
FRE: 103.70; - As these experts say, we need to
    start
FRE: 103.65; The eastern part of the bridge
    weighs over 3,800 tons. The western part
    weighs over 1,000 tons.
FRE: -15.65; Zambia started its accelerated
    malaria control campaign in 2003 when
    approximately 500,000 insecticide-treated
    nets were distributed and artemisinin-based
    combination therapy (ACT) started in seven
```

pilot districts through a grant from the UN-

backed Global Fund to fight AIDS, Tuberculosis and Malaria.

FRE: -11.91; NASA Image: ISS015E13648 - View of Expedition 15 astronaut and Flight Engineer, Clayton Anderson, working with test samples in the Human Research Facility - 2 Refrigerated Centrifuge for the Nutritional Status Assessment experiment to help understand human physiologic changes during long-duration space flight.

FRE: -1.59; o Suggests questions to help facilitate professional development group discussions, especially among peers

Simplified

FRE: -53.65230769230766; Interconnectedness, empowerment, cooperation, relationships, partnership, flexibility, and diversity are key to realizing opportunities and creating sustainable systems. This includes nations, organizations, and communities working together effectively.

FRE: -8.098461538461521; Occupational therapists help people do everyday activities by giving them exercises and practice.

C.2 Outliers: Sentence Split Difference, Compression Level, Dependency Tree Depth Ratio

For these metrics, we identified outliers by computing the interquartile range (IQR). We compute bounds as $lower_bound = Q1 - 3 * IQR$ and $upper_bound = Q3 + 3 * IQR$, where IQR = Q3 - Q1 and Q1 and Q3 stands for Quartile 1 and 3, respectively. Usually, 1.5 was used to compute the bounds but we increased it to 3 to widen the threshold and make the tagging of outliers less aggressive. The percentage for each outlier type are as follows: sentence split difference (1.28%), compression level (0.37%), dependency tree depth ratio (1.55%). Combined and without duplicates, it accounts for only 3% of the data. We removed these outliers for the visualization in Figure 2. We give examples of outliers below.

Example of Compression Level outliers:

Compression level: 1.80;

Natural:- Centers for Disease Control and Prevention. Update: respiratory syncytial virus activity - United States, 1998-1999 Season. MMWR Morb Mortal Wkly Rep. 1999;48:1104-15.

Simplified:Simplified Text:
"The Centers for Disease Control and Prevention (CDC) reported on the respiratory syncytial

virus (RSV) activity in the United States

for the 1998-1999 season. RSV is a virus that affects the respiratory system. The CDC monitored RSV activity and reported the findings in a weekly report. Compression level: 2.12; Natural: LEEDS, A. Introduction. In: WILBERT, J. (Ed.). The evolution of horticultural systems in native south America: causes and consequences -Symposium. Caracas: Sociedad de Ciencias Naturales La Salle, 1961. p. 1-12. [Links] Simplified: The evolution of horticultural systems in native South America is a topic of great interest. This symposium aims to explore the causes and consequences of these changes. The book you are reading is a collection of papers presented at this symposium. It covers various aspects of horticulture in South America, from the early days to the present. The authors of these papers are experts in their fields and have contributed significantly to our understanding of this subject. Compression level: 1.81; Natural:of the legion to carry out special duties. Marius thus created a fully Simplified:Marius created a special group of soldiers within the Roman legion.

Example of Dependency Tree Depth Ratio outliers:

This group was responsible for carrying out specific tasks.

Max Dependency Tree Depth Ratio: 2.33; Natural: - Press Ctrl + 2 to add more text boxes. Press Ctrl + shift + 2 to adjust text box. Simplified: (Note: Please provide your output in the format specified above, ensuring it is free of grammatical errors and easy to read.) Max Dependency Tree Depth Ratio: 2.00; Natural: Reade, Julian. Assyrian Sculpture. London: The British Museum; and Cambridge, MA: Harvard University Press, 1983, repr. 1994. Simplified: Julian Reade wrote a book about Assyrian sculpture. It was published by the British Museum in London and Harvard University Press in Cambridge, MA. The book was first published in 1983 and then again in 1994. Max Dependency Tree Depth Ratio: 2.00; Natural:Clarke disclosed no relevant relationships with industry. Coauthors disclosed multiple relevant relationships with industry. Simplified:Clarke did not have any relationships with companies that could affect the study. The other authors had relationships with companies that could affect the study

D LLM-based Simplification Prompt

The prompt engineering is done through trial-anderror and judged by the authors according to the following qualitative criteria:

- Does it use simpler words? By "simpler words," we mean commonly used words.
- Does it convert compound or complex sentences into simple sentences?
- Does it preserve the original content and organization of thoughts?

Once we found a prompt that can reliably do all those things on a small sample, we used that prompt to transform the whole corpus.

The final prompt is shown below:

Role Description:

You are an experienced educator and linguist specializing in simplifying complex texts without losing any key information or changing the content. Your focus is to make texts more accessible and readable for primary and secondary school students, ensuring that the essential information is preserved while the language and structure are adapted for easier comprehension.

Task Instructions:

- 1. Read the Following Text Carefully:
 - Thoroughly understand the content, context, and purpose of the text to ensure all key information is retained in the simplified version.
- 2. Simplify the Text for Primary/Secondary School Students:
 - Rewrite the text to make it more accessible and easier to understand.
 - Use age-appropriate language and simpler sentence structures.
 - Maintain all key information and do not omit any essential details.
 - Ensure that the original meaning and intent of the text remain unchanged.
- 3. Preserve Key Information:
 - Identify all essential points, facts, and ideas in the original text.
 - Ensure these elements are clearly presented in the simplified version.
- 4. Avoid Adding Personal Opinions or Interpretations:
 - Do not introduce new information or personal views.
 - Focus solely on simplifying the original content.

Simplification Guidelines:

Sentence Structure:

- Use simple or compound sentences.
- Break down long or complex sentences into shorter ones.
- Ensure each sentence conveys a clear idea.

Vocabulary:

- Use common words familiar to primary and secondary school students.
- Replace advanced or technical terms with simpler synonyms or provide brief explanations.
- Avoid jargon unless it is essential, and explain it if used.

Clarity and Coherence:

- Organize the text logically with clear paragraphs.
- Use transitional words to connect ideas smoothly.
- Ensure pronouns clearly refer to the correct nouns to avoid confusion.
- Eliminate redundancies and unnecessary repetitions.

Tone and Style:

- Maintain a neutral and informative tone.
- Avoid overly formal language.
- Write in the third person unless the text requires otherwise.

Output Format:

Provide the simplified text in clear, wellorganized paragraphs.

Do not include the original text in your output.

Do not add any additional commentary or notes

Ensure the final output is free of
 grammatical errors and is easy to read.
Output \$<|eot_id|>\$ right after the
 simplified text.

Example Simplifications:

Example 1:

Original Text:

"Photosynthesis is the process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water. Photosynthesis in plants generally involves the green pigment chlorophyll and generates oxygen as a byproduct."

Simplified Text:

"Photosynthesis is how green plants make food using sunlight, carbon dioxide, and water. They use a green substance called chlorophyll, and the process produces

```
oxygen.$<|eot_id|>$"
Example 2:
Original Text:
"Global warming refers to the long-term rise
    in the average temperature of the Earth'
    s climate system, an aspect of climate
    change shown by temperature measurements
     and by multiple effects of the warming
Simplified Text:
"Global warming means the Earth's average
    temperature is increasing over a long
    time. This is part of climate change and
     is shown by temperature records and
    various effects.$<|eot_id|>$"
Example 3:
Original Text:
"The mitochondrion, often referred to as the
    powerhouse of the cell, is a double-
    membrane-bound organelle found in most
    eukaryotic organisms, responsible for
    the biochemical processes of respiration
     and energy production through the
    generation of adenosine triphosphate (
    ATP)."
Simplified Text:
"A mitochondrion is a part of most cells that
     acts like a powerhouse. It has two
    membranes and makes energy for the cell
    by producing something called ATP.$<|
    eot_id|>$"
Text to Simplify:
<Insert Text Here>
Your Output:
```

E Data Filtering

Pre-MT filtering. We drop documents with at least one problematic sentences. We define problematic sentences as sentences outside the sentence length bounds to avoid translating excessively long inputs and to reduce MT runtime. For Indonesian, sentence length bounds range from 3–250 tokens, while for Tamil they range from 4–150 tokens. This choice is made purely for efficiency.

Post-MT filtering. After translation, we compute the target/source sentence-length ratio (in tokens) and drop any document containing a sentence with ratio > 2. We then reassemble sentences back into documents.

Parallelization constraint. All Natural and Simplified English documents are kept parallel prior to MT; the resulting Natural-MT and Simplified-MT corpora therefore cover the same text content.

F Training Details

Tokenizer and special tokens. For each language (Indonesian and Tamil), we train a 50,257-token BPE on native corpora and reuse it across Native, Natural-MT, and Simplified-MT pretraining. We add [PAD] and [SEP]; [PAD] also serves as EOS during sequence packing. Vocabularies are language-specific and fixed for all experiments.

Implementation note. All models are causal decoders with a standard LM head during pretraining; downstream experiments replace the LM head with a lightweight classification head (details in Appendix G).

Optimization and schedule. Left-to-right language modeling with a 1,024-token context and an effective batch size of 384. AdamW (β_1 =0.9, β_2 =0.999, ε =10⁻⁸), weight decay 0.01, 5% warm-up, linear decay. A 100M-token LR sweep over $\{5\times10^{-5}, 1\times10^{-4}, 5\times10^{-4}\}$ selected 5×10^{-4} for pretraining. Mixed precision (autocast + GradScaler) and gradient clipping (1.0) are enabled; Large models use gradient checkpointing.

Continual pretraining (CPT). Applied only to Natural-MT and Simplified-MT models. Each run resumes from the final MT checkpoint and continues on native text: 1B tokens (Indonesian) and 2.5B tokens (Tamil), i.e., about half of the respective MT budgets. All hyperparameters are retained except the peak learning rate, reduced to 5×10^{-5} ; warm-up (5%) and linear decay are unchanged.

Hardware and runtime. Small/Medium: $8\times P100$ (16 GB); Large: $8\times P40$ (24 GB). Wall-clock times range from 19 h (Indonesian Simplified-MT, Small) to 12 d 11 h (Tamil Simplified-MT, Large). Fine-tuning uses the same hardware; a complete grid search for one model across all tasks takes ~ 5 h (Small), 11 h (Medium), and 20 h (Large).

G Fine-tuning Settings

Classification head and pooling. We attach a single linear classification layer on top of the decoder. For each input, we pool by taking the logits

Lang.	Task	Batch size
	CR	50
Indonesian	SA	12
	NLI	10
	TD	2
	CR	10
Tamil	SA	2
	NLI	2

Table 7: Batch sizes used during downstream fine-tuning.

at the final non-padding token; cross-entropy loss is computed on the pooled logits. All decoder parameters and the classification head are updated jointly.

Search space and schedule. We sweep learning rates $\{1 \times 10^{-4}, 5 \times 10^{-5}, 2 \times 10^{-5}, 1 \times 10^{-5}, 5 \times 10^{-6}\}$ with task-dependent epoch budgets (SA: 1 epoch, NLI: 1–2 epochs, TD/CR: 1–3 epochs). Maximum sequence length is 1,024 tokens; we use 5% warm-up with linear decay and no early stopping. Batch sizes per task are given in Table 7.

H LINDSEA Phenomenon Breakdown

We report per-phenomenon accuracies on the LINDSEA Syntax subset to complement the aggregate results in Table 5. The evaluation follows our BLiMP-style minimal-pair setup described in §4.1 (Zero-shot syntactic probing): a model is correct when it assigns a higher log-probability to the grammatical member of each pair. Table 8 shows accuracies (%) for four phenomenon families—Negative Polarity Items (NPIs) & negation, argument structure, filler—gap dependencies, and morphology.

Across sizes, continual pretraining (CPT) consistently improves MT-pretrained models, especially for Tamil; Simplified-MT tends to underperform Natural-MT at the phenomenon level, echoing our main findings in §5.2.

I Full Downstream Results (incl. CR, mean±std)

Causal reasoning (CR) is omitted from the main results due to near-chance performance across all settings; full CR means and standard deviations are included here for transparency.

	Indonesian				Tamil			
Model	NPIs	Arg.	Fill-gap	Morph.	NPIs	Arg.	Fill-gap	Morph.
Small								
Native	72.5	45.9	59.2	57.1	100.0	75.7	58.3	71.2
Natural-MT	60.0	40.0	60.0	49.3	90.0	72.1	50.0	65.8
Natural-MT-CPT	70.0	41.9	65.0	57.9	100.0	75.7	55.0	67.7
Simplified-MT	65.0	38.8	53.3	50.0	100.0	63.6	50.0	61.2
Simplified-MT-CPT	65.0	41.9	66.7	56.4	100.0	80.0	50.0	71.9
Medium								
Native	70.0	40.6	66.7	57.1	50.0	70.0	50.0	62.3
Natural-MT	55.0	41.9	68.3	52.1	100.0	70.0	50.0	65.4
Natural-MT-CPT	80.0	40.6	68.3	58.6	100.0	82.9	58.3	69.6
Simplified-MT	65.0	40.6	60.0	52.9	80.0	65.7	55.0	66.5
Simplified-MT-CPT	65.0	40.0	66.7	57.9	80.0	85.0	61.7	74.2
Large								
Native	70.0	47.5	63.3	64.3	100.0	77.1	53.3	70.4
Natural-MT	60.0	39.4	63.3	54.3	60.0	64.3	50.0	65.0
Natural-MT-CPT	70.0	41.2	70.0	60.7	100.0	82.1	50.0	71.9
Simplified-MT	60.0	45.0	60.0	49.3	90.0	62.9	48.3	65.0
Simplified-MT-CPT	75.0	48.8	66.7	57.9	90.0	78.6	56.7	69.2

Table 8: **LINDSEA syntax accuracy by phenomenon (Indonesian and Tamil).** Columns show *Negative Polarity Items (NPIs)*, *argument structure (Arg.)*, *filler–gap (Fill-gap)*, and *morphology (Morph.)*. Item counts: Indonesian 20/160/60/140; Tamil 10/140/60/260 (NPIs/Arg./Fill-gap/Morph.). Trends mirror Table 5: CPT most benefits Tamil MT models, simplification generally underperforms Natural-MT, and Medium+CPT can surpass Large. Values are accuracy (%).

		Indo	nesian		Tamil			
Pretraining	CR	SA	NLI	TD	CR	SA	NLI	
Small								
No Pretraining	51.3 ± 0.6	56.1 ± 0.3	43.0 ± 0.8	41.3 ± 1.2	51.6 ± 0.3	75.3 ± 0.7	38.3 ± 0.1	
Native	$\textbf{54.5} \pm \textbf{2.8}$	63.4 ± 0.4	53.7 ± 0.3	$\textbf{52.6} \pm \textbf{0.4}$	50.8 ± 0.8	87.1 ± 0.7	42.8 ± 1.4	
Natural-MT	51.6 ± 0.9	61.9 ± 1.0	56.9 ± 1.8	42.5 ± 0.8	48.8 ± 3.3	88.4 ± 0.6	42.3 ± 0.5	
Natural-MT-CPT	51.2 ± 3.1	$\textbf{63.5} \pm \textbf{0.5}$	57.4 ± 0.8	47.6 ± 2.9	50.9 ± 0.2	88.9 ± 0.3	$\textbf{43.5} \pm \textbf{0.7}$	
Simplified-MT	51.2 ± 1.9	61.3 ± 0.5	56.2 ± 1.2	44.5 ± 3.5	$\textbf{51.3} \pm \textbf{3.3}$	88.8 ± 0.4	40.7 ± 0.7	
Simplified-MT-CPT	49.4 ± 1.3	62.9 ± 0.7	$\textbf{58.2} \pm \textbf{0.4}$	49.6 ± 1.0	50.0 ± 1.7	$\textbf{89.0} \pm \textbf{0.6}$	43.0 ± 0.5	
Medium								
No Pretraining	51.3 ± 0.8	55.9 ± 0.4	43.7 ± 0.4	41.8 ± 1.0	50.1 ± 0.8	75.2 ± 1.0	38.9 ± 0.8	
Native	51.5 ± 3.8	62.7 ± 0.2	57.7 ± 1.8	$\textbf{53.0} \pm \textbf{0.7}$	50.8 ± 3.0	84.8 ± 0.2	41.1 ± 0.9	
Natural-MT	49.6 ± 2.8	62.6 ± 0.5	$\textbf{60.7} \pm \textbf{0.9}$	44.1 ± 1.1	$\textbf{53.7} \pm \textbf{2.2}$	90.3 ± 0.2	43.8 ± 0.2	
Natural-MT-CPT	51.9 ± 3.6	$\textbf{64.2} \pm \textbf{0.5}$	59.7 ± 0.7	49.5 ± 0.7	50.9 ± 1.5	$\textbf{91.2} \pm \textbf{0.5}$	$\textbf{45.1} \pm \textbf{0.8}$	
Simplified-MT	47.7 ± 2.2	61.6 ± 0.8	55.8 ± 0.4	44.6 ± 1.5	51.9 ± 3.1	90.6 ± 0.1	44.8 ± 0.9	
Simplified-MT-CPT	$\textbf{53.4} \pm \textbf{1.6}$	62.6 ± 0.7	57.2 ± 0.3	48.3 ± 1.6	50.7 ± 3.1	90.5 ± 0.2	$\textbf{45.1} \pm \textbf{0.3}$	
Large								
No Pretraining	52.3 ± 0.8	56.0 ± 1.0	37.1 ± 6.0	41.0 ± 1.9	52.2 ± 3.7	75.8 ± 0.9	40.0 ± 0.6	
Native	51.5 ± 3.7	63.7 ± 0.5	56.6 ± 1.1	$\textbf{54.7} \pm \textbf{1.9}$	$\textbf{51.9} \pm \textbf{1.5}$	86.2 ± 0.9	43.4 ± 0.8	
Natural-MT	$\textbf{54.8} \pm \textbf{1.6}$	62.6 ± 0.3	61.6 ± 1.6	45.2 ± 1.3	50.9 ± 4.7	90.6 ± 0.2	43.6 ± 1.4	
Natural-MT-CPT	52.9 ± 2.9	63.7 ± 0.3	61.4 ± 0.7	48.3 ± 1.8	51.7 ± 2.0	$\textbf{92.1} \pm \textbf{0.4}$	$\textbf{45.6} \pm \textbf{0.8}$	
Simplified-MT	52.7 ± 3.0	61.5 ± 0.3	$\textbf{63.2} \pm \textbf{1.0}$	46.2 ± 0.5	49.0 ± 0.9	90.0 ± 0.4	43.3 ± 0.7	
Simplified-MT-CPT	52.5 ± 1.6	$\textbf{64.3} \pm \textbf{0.2}$	61.9 ± 1.0	49.1 ± 2.3	51.6 ± 1.2	90.3 ± 0.2	44.4 ± 0.6	

Table 9: **SEA-HELM: balanced accuracy** (%, mean \pm std over three seeds). Most standard deviations are \leq 2 points, supporting the trends in Table 6. Wider spreads (\approx 2–4) appear mainly for **CR**. Qualitatively: native pretraining dominates **TD**, MT-CPT delivers the strongest **NLI/SA**, CR hovers near chance, and **Medium** occasionally surpasses **Large**.