jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval

Michael Günther, Saba Sturua, Mohammad Kalim Akram, Isabelle Mohr, Andrei Ungureanu, Bo Wang, Sedigheh Eslami, Scott Martens, Maximilian Werk, Nan Wang, Han Xiao


Abstract
We introduce jina-embeddings-v4, a 3.8 billion parameter embedding model that unifies text and image representations, with a novel architecture supporting both single-vector and multi-vector embeddings. It achieves high performance on both single-modal and cross-modal retrieval tasks, and is particularly strong in processing visually rich content such as tables, charts, diagrams, and mixed-media formats that incorporate both image and textual information. We also introduce JVDR, a novel benchmark for visually rich document retrieval that includes more diverse materials and query types than previous efforts. We use JVDR to show that jina-embeddings-v4 greatly improves on state-of-the-art performance for these kinds of tasks.
Anthology ID:
2025.mrl-main.36
Volume:
Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025)
Month:
November
Year:
2025
Address:
Suzhuo, China
Editors:
David Ifeoluwa Adelani, Catherine Arnett, Duygu Ataman, Tyler A. Chang, Hila Gonen, Rahul Raja, Fabian Schmidt, David Stap, Jiayi Wang
Venues:
MRL | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
531–550
Language:
URL:
https://preview.aclanthology.org/ingest-emnlp/2025.mrl-main.36/
DOI:
Bibkey:
Cite (ACL):
Michael Günther, Saba Sturua, Mohammad Kalim Akram, Isabelle Mohr, Andrei Ungureanu, Bo Wang, Sedigheh Eslami, Scott Martens, Maximilian Werk, Nan Wang, and Han Xiao. 2025. jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval. In Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025), pages 531–550, Suzhuo, China. Association for Computational Linguistics.
Cite (Informal):
jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval (Günther et al., MRL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-emnlp/2025.mrl-main.36.pdf