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Abstract
Despite the effective performance of multilin-
gual large language models (LLMs), the mecha-
nisms underlying their multilingual capabilities
remain unclear. This study examines the inter-
mediate representations of multilingual LLMs
to determine if these models utilize human-like
second language acquisition strategies: coor-
dinate, sub-coordinate, or compound learning.
Our investigations into the discriminative and
generative aspects of these models indicate that
coordinate learning is the dominant mechanism,
with decoder-only models progressively devel-
oping distinct feature spaces for each language,
while encoder-only models exhibit a mixture
of coordinate and compound learning in their
middle layers. We find little evidence for sub-
coordinate learning. Moreover, the role of train-
ing data coverage in shaping multilingual repre-
sentations is reflected in the fact that languages
present in a model’s training data consistently
exhibit stronger separation than those absent
from it.

1 Introduction

Large language models (LLMs) have exhibited im-
pressive performance across multiple languages
in a wide range of tasks (Shi et al., 2023). How-
ever, the underlying mechanisms that enable their
multilingual capabilities remain largely unexplored.
Recent studies suggest that these capabilities may
stem from a combination of implicit translation
into a dominant language like English and inter-
nally adopted language-specific processing strate-
gies (Zhang et al., 2023; Wendler et al., 2024).

However, these studies primarily base their hy-
potheses on the generative capabilities of language
models, leaving the explicit exploration of their
internal mechanisms unaddressed. We fill this gap
by providing a granular perspective on the internal
mechanisms underlying multilingualism in multi-
lingual large language models. Specifically, we ex-
amine the intermediate representations (activations)
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Figure 1: A conceptual visualization of feature spaces
corresponding to human bilingualism. Each circle repre-
sents a feature space for a language. The gray diamond
in compound learning refers to a universal space formed
by the intersection of all language spaces.

of LLMs to identify the presence of multilingual
information that supports each of the three types
of bilingualism in human language learners: co-
ordinate, sub-coordinate, and compound learning
(D’Acierno, 1990). We generalize human bilin-
gualism into multilingualism and conceptualize it
in terms of the vector representation of linguistic
units formed in the intermediate activations of an
LLM. Figure 1 illustrates this conceptualization.

Coordinate learners acquire languages in dis-
tinct environments, such as home and school,
leading them to process each language indepen-
dently through separate cognitive systems. In
other words, coordinate learners tend to develop
language-specific feature spaces, where each lan-
guage is encoded in its own dedicated representa-
tional structure with minimal cross-linguistic in-
fluence. From a language model perspective, co-
ordinate learning manifests as distinct language
clusters in the intermediate representations.

Sub-coordinate learners, however, interpret lan-
guages through the lens of a dominant language
by implicitly translating non-dominant languages
into the dominant one. This typically occurs in late
acquisition, low proficiency, or non-immersive set-
tings, where the learner relies on mental translation
rather than direct comprehension. From the per-
spective of a language model, this translates to the
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existence of a broad feature space for the dominant
language, which includes other languages.

In contrast, compound human learners develop
a core, universal understanding of language, where
linguistic units such as word categories and con-
cepts are partially shared across different languages
and expressed through varying verbal forms. These
learners acquire multiple languages simultaneously
within the same environment and tend to abstract
away language-specific properties. In a language
model’s feature space, this translates into the exis-
tence of feature spaces shared across all languages.

The training environment of multilingual lan-
guage models resembles that of coordinate and
compound learners, as their training data are sam-
pled from multiple language sources, but each seg-
ment primarily consists of a pragmatically com-
plete text (i.e., coherent and self-contained seg-
ments, such as articles or conversational exchanges)
in a single language, with limited language mixing.
Accordingly, we hypothesize that multilingual lan-
guage models primarily adopt a coordinate learning
strategy with some degree of compound learning,
while sub-coordinate learning, if present, is likely
restricted to unseen languages.

We employ two complementary strategies to in-
vestigate this hypothesis based on the intermedi-
ate activations of language models. The first is
a discriminative approach, quantifying language-
specific and universal information in intermediate
feature activations. The second examines the mod-
els’ generation process by analyzing the contribu-
tion of intermediate features to token generation.

Our findings across different LLM architectures
strongly support the view that multilingual process-
ing in these models aligns primarily with coordi-
nate learning, with partial evidence of compound
learning. Decoder-only models such as mGPT
(Shliazhko et al., 2024) and BLOOM (Scao et al.,
2023) predominantly rely on coordinate learning,
whereas encoder-only models like mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020)
exhibit a more complex interplay of coordinate and
compound strategies. Evidence for sub-coordinate
learning is limited, as none of the models show
a strong dependence on a dominant language to
process others.

2 Previous Work

Zhang et al. (2023) systematically investigate the
multilingual capabilities of LLMs across three di-

mensions: reasoning, knowledge access, and artic-
ulation. Their analysis of ChatGPT-generated text
shows that LLMs perform better when prompted in
English, excel in tasks that allow direct translation,
and exhibit a mix of coordinate and sub-coordinate
bilingual processing. Our findings strongly sup-
port Zhang et al. (2023)’s conclusion that LLMs
function as coordinate learners. However, we find
clear contradictions with their claim that LLMs
also exhibit sub-coordinate bilingualism based on
their behavioral analysis of language models. Since
their study relies on a different methodology and
uses a commercial model (ChatGPT), which does
not provide access to internal representations, di-
rectly validating their results within our experimen-
tal setup remains infeasible.

Wendler et al. (2024) take a different approach to
examining the origins of multilingual capabilities
in language models primarily trained on English
text. They apply the logit lens technique, which
projects intermediate representations into the vo-
cabulary space using the model’s final token pro-
jection layer. Through this method, they argue that
a translational shift in intermediate representations
is indicative of sub-coordinate learning. However,
Belrose et al. (2025) highlight key limitations of
the logit lens, showing that it fails to yield meaning-
ful insights for modern language models, including
BLOOM (Scao et al., 2023). In particular, they
demonstrate that the logit lens often predicts the
input token itself as the top output and dispropor-
tionately allocates probability mass to tokens that
diverge from those emphasized in the model’s true
output distribution.

When it comes to implications of compound
learning, previous studies have suggested the ex-
istence of partially shared subspaces between lan-
guages in mBERT (Shliazhko et al., 2024). Specifi-
cally, Pires et al. (2019) attribute mBERT’s cross-
lingual capabilities to its language-independent to-
kenization, while Chi et al. (2020) demonstrate
that the model shares portions of its representations
across languages, suggesting that compound learn-
ing supports cross-lingual transfer through over-
lapping representational subspaces. Yet, whether
these subspaces reflect universal linguistic features
or artifacts of training remains an open question
that our analysis investigates.

This paper extends previous research by examin-
ing multilingualism in open-source LLMs trained
on multiple languages and architectures, in contrast
to Wendler et al. (2024), which focus on English-
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centric models. In addition, we propose novel
methods for probing interactions across languages
at the level of neural activations, enabling deeper
insights into multilingual processing than output-
based analyses, a line of inquiry recently criticized
for its limitations (Zhao et al., 2025)..

3 Methodology

Let us consider a sentence s = t1, . . . , tn drawn
from a language, and define A as an l×n×d tensor
representing the intermediate activations of a lan-
guage model as it processes s. Here, l denotes the
number of layers, and d represents the number of
features, i.e., embedding dimension. In this setup,
A provides l distinct representations, each residing
in a separate d-dimensional space, for every token.
We extend this formulation to multiple aligned sen-
tences across different languages, where each token
is annotated with relevant linguistic labels (e.g., lan-
guage identification or POS tag). This results in a
large tensor of size l×N × d, where N is the total
number of tokens across all sentences.

To facilitate efficient visualization, reduce noise,
and retain the most informative features of the acti-
vation space, we apply principal component anal-
ysis (PCA) to each of the l views independently,
reducing their dimensionality to d̃ while preserving
at least 95% of the activation variance. This results
in a tensor H̃ of size l × N × d̃, which, together
with H , serves as the foundation for our analysis.

We adopt two approaches to examine the gen-
erative and discriminative aspects of intermediate
representations. The first adopts an information-
theoretic procedure to quantify the amount of V-
usable information (Xu et al., 2020) encoded in
intermediate representations that discriminates be-
tween language-specific and universal features.
The V-usable information in a random variable
X for predicting a category Y is defined as the dif-
ference in conditional entropy between predictions
based on X and a baseline prediction where no
input features are provided (i.e., Φ):

Iv(Y ;X) = H(Y |Φ)−H(Y |X)

A high value of Iv(Y ;X) indicates that X is highly
effective at reducing the uncertainty in predicting
Y , though this does not necessarily translate to bet-
ter task performance. In order to make the usable
information comparable across tasks, we normal-
ize them by the marginal task entropy and refer to
it as the normalized usable information or usable

information for short.

Inv(Y ;X) = 1− H(Y |X)

H(Y |Φ) (1)

Our motivation for using this metric is twofold.
First, its discriminative nature makes it applicable
to both encoder-only and decoder-only architec-
tures. Second, it allows for a direct comparison of
the effectiveness of feature vectors across differ-
ent tasks defined over the same feature space X
(Ethayarajh et al., 2022). Such a comparison would
not be possible if the analysis were based solely on
task-specific metrics (e.g., F1-score and accuracy),
as these metrics are not directly comparable across
different tasks. Additional details regarding the
implementation of this metric are in Appendix A.

The second approach examines the generation
capability of the decoder-only models. It utilizes
saliency maps to examine how individual interme-
diate features contribute to token generation (Hou
and Castanon, 2023). By examining the gradients
of next-token predictions with respect to interme-
diate activations, we identify the features that play
a key role in encoding language-specific and uni-
versal properties. We use Gradient-weighted Class
Activation Mapping to measure the importance of
a feature hki at a layer k to the prediction of a token
by computing the product of the feature value for
an input token (i.e., hki (tj) ) and the gradient of
the prediction (before softmax) with respect to that
feature (i.e., ∂f(tj+1)

∂hk
i (tj)

). This product undergoes a
ReLU activation to ignore negative contributions:

cki (tj) = ReLU(hki (tj) ·
∂f(tj+1)

∂hki (tj)
)

where hki (tj) corresponds to the element (k, j, i)
in H , and f(tj+1) is the logit for tj+1.

To assess the significance of cki for a group of
tokens (e.g., tokens belonging to a particular lan-
guage), we conduct a two-tailed t-test with a sig-
nificance level of 0.01. We refer to features with
significant contribution to the generation of a par-
ticular token group as differentiating features for
the group. Accordingly, we define the differenti-
ating rate of layer k as the ratio of differentiating
features to the total features in the layer:

Dk =

∑d
i=1 I

(
p-value(cki ) < 0.01

)

d
(2)

where I is an indication function.
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In addition to the aforementioned metrics, which
are designed to assess coordinate and compound
learning, we introduce another approach in Sec-
tion 8 to assess sub-coordinate learning based on
the proximity of intermediate activations to those
of a dominant language.

4 Experiment Setup

We leverage the Parallel Universal Dependencies
(PUD) treebanks (Zeman et al., 2017; Nivre et al.,
2016) which comprise aligned sentences from news
sources and Wikipedia, annotated for both morpho-
logical and syntactic structures. The cross-lingual
alignment of sentences ensures that our findings
are not skewed by domain-specific variations or
differences in syntactic and semantic structures in
certain languages. Additionally, the availability of
syntactic annotations allows us to effectively assess
compound learning within LLMs.

Our experiments are based on 1000 sentences
from each of the 21 topologically different lan-
guages in PUD. A summary of the dataset is avail-
able in Table 1. The analyses are based on three
publicly available multilingual language models
with different architectures and language coverages:
BLOOM (Scao et al., 2023) and mGPT (Shliazhko
et al., 2024) are decoder-only models, and mBERT
(Devlin et al., 2019) and XLMR (Conneau et al.,
2020) (base and large) are encoder-only models.
More information about the models’ size and lan-
guage coverage is provided in Table 2.

To assess the generalizability of information to
unseen languages, we consider two experimental
scenarios based on whether a test language is in-
cluded in a model’s pre-training data. The Seen
setting contains only languages present during pre-
training, while the Unseen setting includes those
absent from it. For mBERT and XLM-R, the Un-
seen set is empty, as all test languages are covered
in their pre-training data.

5 Coordinate Learning

We investigate coordinate learning by analyzing the
separability of intermediate representations across
input languages through the usable information for
language identification and the feature differentia-
tion rate for language processing. The underlying
principle is that coordinate learners construct dis-
tinct processing systems for each language.

Language ISO Family Size A B C D

Arabic ar Afro-Asiatic 20K ✓ ✓ ✓ ✓
Chinese zh Sino-Tibetan 21K ✓ ✗ ✓ ✓
Czech cs IE Slavic 18K ✓ ✗ ✗ ✓
English en IE Germanic 21K ✓ ✓ ✓ ✓
Finnish fi Uralic 15K ✓ ✓ ✗ ✓
French fr IE Romance 25K ✓ ✓ ✓ ✓
Galician gl IE Romance 25K ✓ ✗ ✗ ✓
German de IE Germanic 21K ✓ ✓ ✗ ✓
Hindi hi IE Indo-Aryan 23K ✓ ✓ ✓ ✓
Icelandic is IE Germanic 18K ✓ ✗ ✗ ✓
Indonesian id Austronesian 19K ✓ ✓ ✓ ✓
Italian it IE Romance 25K ✓ ✓ ✗ ✓
Japanese ja Japonic 28K ✓ ✓ ✗ ✓
Korean ko Koreanic 16K ✓ ✓ ✗ ✓
Polish pl IE Slavic 18K ✓ ✓ ✗ ✓
Portuguese pt IE Romance 24K ✓ ✓ ✓ ✓
Russian ru IE Slavic 19K ✓ ✓ ✗ ✓
Spanish es IE Romance 23K ✓ ✓ ✓ ✓
Swedish sv IE Germanic 19K ✓ ✓ ✗ ✓
Thai th Kra-Dai 22K ✓ ✓ ✗ ✓
Turkish tr Turkic 17K ✓ ✓ ✗ ✓

Table 1: Selected languages. IE: Indo-European. A:
mBERT, B: mGPT, C: BLOOM, D: XMLR.

LLM Size l d LD LC

BLOOM 1.7B 24 1536 46 17%
mGPT 1.3B 24 2048 61 28%
mBERT 172M 12 768 104 100%
XLMR-base 270M 12 768 100 100%
XLMR-large 550M 24 1024 100 100%

Table 2: Language Models. l and d: number of layers
and features LD: Language Diversity – number of train-
ing languages; LC: Language Coverage – The ratio of
test languages to training languages.

5.1 Usable Information

Figure 2 presents the layer-wise variation in us-
able information for predicting the source language
from activation vectors. The consistent upward
trends in the decoder-only models indicate that the
activation vectors progressively encode more in-
formation about the processing language in deeper
layers. The presence of this trend in the Unseen set-
tings suggests that the language-specific informa-
tion captured by the models generalizes beyond the
languages seen during training. However, the over-
all level of usable information is substantially lower
for unseen languages than for seen ones, highlight-
ing the influence of pre-training data coverage on
the emergence of coordinate learning.

The encoder-only models, on the other hand,
show a different pattern. The decreasing trajectory
after the second layer indicates that these models
quickly encode language-specific information in
their lower layers but gradually lose it until the top
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Figure 2: Usable information for language identifica-
tion.

layers, where reconstruction begins. This pattern
holds regardless of the model size, as we see for
both the XLMR-base and XLMR-large.

Overall, the results from both architectures sup-
port our hypothesis that encoder- and decoder-only
models tend to take a coordinate learning, as their
primary multilingual learning strategy, which in
the case of the decoder-only models develops in-
creasingly through the layers, while being conflated
with other learning strategies in the middle layers
of encoder-only models.

The progression of coordinate learning is further
illustrated by the t-SNE visualization of activation
vectors in Figure 3. In both mBERT (encoder-only)
and BLOOM (decoder-only), the lower layers show
substantial cross-lingual overlap, with limited lan-
guage separation. In BLOOM, the language over-
lap diminishes in the upper layers, where language
representations become almost entirely separated
into distinct feature spaces. The formation of such
language-specific feature spaces is also evident for
languages not included in the models’ pre-training
data. Notably, BLOOM tends to develop distinct
feature spaces for unseen languages such as Ger-
man, Finnish, and Swedish. In contrast, mBERT
exhibits more substantial cross-lingual overlap in
its middle layers, with representations becoming
relatively more separable at the second and last
layers. Both models show some degree of coordi-
nate learning in their lower layers, limited to typo-

logically distant languages such as Arabic, Czech,
Finnish, German, Hindi, Korean, and Russian, oc-
cupying separate regions in the feature space.

5.2 Language Differentiating Features

By computing layer differentiation rates in decoder-
only models, we identify language-specific features
crucial for token generation in each language. The
features are identified through their contribution to
token prediction in each of the Seen and Unseen
settings based on Equation 2. For each language,
we estimate feature contributions to next-token pre-
diction and compare them across languages using
statistical tests. The proportion of features that
differ significantly at each layer defines its differ-
entiation rate, providing a layer-wise measure of
language-specific processing. The experiment is
detailed in Appendix B and the results are sum-
marized in Figure 4. High differentiation rates
indicate distinct feature spaces for each language
group, supporting coordinate learning.

The results show that both models tend to dedi-
cate a substantial number of features to differentiate
between languages. These features are significantly
higher for Seen languages than Unseen ones. The
upward trend in mGPT indicates that the model
progressively isolates languages into increasingly
distinct feature spaces across all layers, regardless
of whether the languages were part of its training
data. BLOOM, however, follows a different strat-
egy. For Unseen languages, the differentiation rate
remains relatively stable around 40-50%, while for
Seen languages, it takes a smooth downward trend,
implying that BLOOM tends to share some features
between languages at the top layers, although it still
processes languages through a set of significantly
isolated features for each language.

6 Compound Learning

Compound learning involves constructing univer-
sal feature spaces shared among languages. Our
analysis of compound learning examines the exis-
tence of such shared spaces at the syntax level for
Universal Part-Of-Speech tags (UPOS). We probe
this phenomenon through the usable information
for UPOS tagging and the joint differentiation rate
of features for languages and syntactic categories.

6.1 Usable Information for UPOS Tagging

Figure 5 illustrates the variation of usable infor-
mation in the models’ intermediate activations for
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Figure 3: tSNE visualization of activation vectors. Top: mBERT, bottom: BLOOM.

0 2 4 6 8 10 12 14 16 18 20 22 24
LLM Intermediate Layer

0%

25%

50%

75%

100%

Fe
at

. D
iff

. R
at

ee

BLOOM-Seen
BLOOM-Unseen

mGPT-Seen
mGPT-Unseen

Figure 4: Language differentiation rates across layers.
Shaded areas show variation across languages; solid
lines show the mean.

predicting UPOS tags. The results show a consis-
tent pattern across all models: usable information
for UPOS prediction is low in early layers, peaks
around the middle layers, and declines in the upper
layers. This trend holds irrespective of architecture
and aligns with prior findings on syntactic localiza-
tion in transformers (Tenney et al., 2019).

Comparing Seen and Unseen languages reveals
that the decoder-only models encode more UPOS
information for languages included in their training
data. To examine whether models encode univer-
sal syntax through shared representations or within
language-specific spaces, we measure usable infor-
mation for the joint prediction of UPOS tags and
languages. As shown in Figure 6, decoder-only
models exhibit a clear upward trend, indicating that
higher layers become increasingly informative for
the joint task. This pattern is also observable in
tSNE visualization of BLOOM’s activation vectors
in Figure 7, where the UPOS activations are clus-
tered within the feature space of languages formed
at the top layers of the model. This indicates that
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Figure 5: Usable information for UPOS identification.

decoder-only models such as BLOOM represent
universal syntax within language-specific feature
spaces, reducing the likelihood of compound learn-
ing, particularly in the upper layers.

However, the process appears more complex in
the encoder-only models. The increasing trends in
the initial and top layers support coordinate learn-
ing, while the decreasing patterns in the middle lay-
ers indicate an additional mechanism, likely linked
to compound learning. Still, the fairly high values
of the usable information for the joint language
and UPOS identification are more in support of co-
ordinate learning, which suggests that the models
tend to process universal syntactic properties of the
languages within language-specific feature spaces.
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Figure 6: Usable information for joint prediction of
UPOS tags and languages.

7 Language–UPOS Differentiating
Features

To further examine how UPOS tags are processed
within language-specific feature spaces, we mea-
sure layer differentiation rates based on the predic-
tion of words belonging to a given syntactic cate-
gory in a target language. By testing whether the
same syntactic tag is processed differently across
languages, we compute a joint differentiation rate
that quantifies the extent to which syntactic cate-
gories are represented in language-specific versus
shared feature spaces. The details of this experi-
ment are provided in Appendix C.

Figure 8 shows that decoder-only models al-
locate a subset of features to distinguishing syn-
tactic categories within each language, irrespec-
tive of whether the language was included in pre-
training. The absolute values of the differentiation
rates, however, are consistently higher for Seen
languages, suggesting that universal syntactic cat-
egories are more strongly encoded in language-
specific feature spaces when the language is repre-
sented in training. In mGPT, the modest upward
trend for Seen languages further indicates that these
differentiating features become increasingly effec-
tive in the top layers.

8 Sub-coordinate Learning

Sub-coordinate learning implies a shift in interme-
diate feature vectors towards a dominant language
that filters and influences the representations of
other languages. The dominant language, which
is more represented in the pre-training data of our
test language models, is English.

If a language model employs sub-coordinate
learning internally, we would expect the represen-
tations of non-English languages to be enveloped
by or significantly overlap with English represen-
tations. To examine this, we measure the prox-
imity of language-specific activation vectors by
computing the Kullback-Leibler (KL) divergence
between the distribution of each non-English lan-
guage and English. If language models employ
internal filtering mechanisms consistent with sub-
coordinate learning, we expect a reduction in KL
divergence, indicating that representations of differ-
ent languages become more aligned with English.

Figure 9 presents the KL divergence between the
feature space of each language and English. For
decoder-only models, divergence begins relatively
small in the lower layers and peaks in the middle
layers, reflecting increased separation from English.
At the top layers, BLOOM shows a sharp diver-
gence, whereas mGPT instead converges strongly
toward English. These trends are consistent across
both Seen and Unseen settings: BLOOM’s be-
havior suggests a weakening of sub-coordinate
learning, while mGPT’s sharp convergence in the
top layers provides stronger evidence. Neverthe-
less, because sub-coordinate learning is expected
to manifest primarily in the middle layers, the de-
crease observed at the top layers of mGPT is less
likely to be explained by this mechanism alone.

The encoder-only models display a different pat-
tern. mBERT and XLM-R show only a modest
shift toward English, while in XLM-R-large, this
turns into a growing divergence after the middle
layers. Moreover, the absolute divergence values
are substantially smaller than in decoder-only mod-
els, peaking at around 80 compared to several thou-
sand, indicating that encoder-only feature spaces
are generally denser. The modest reduction in di-
vergence may reflect weak sub-coordinate learning,
or, in line with our earlier discussion, could instead
result from weak compound learning effects in the
middle layers.
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Figure 7: tSNE visualization of activation vectors. Top: mBERT, bottom: BLOOM.
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Figure 8: Joint Language-UPOS differentiation rates
across layers. Shaded areas show variation across lan-
guages; solid lines show the mean.

9 Conclusion

Our analysis of multilingual large language mod-
els reveals differences in how encoder-only and
decoder-only architectures handle multilingual rep-
resentation. We examined the intermediate repre-
sentations of these models to determine whether
they follow coordinate, sub-coordinate, or com-
pound learning strategies.

We show that coordinate learning is the dom-
inant mechanism, with decoder-only models de-
veloping strongly separated feature spaces for
each language, while encoder-only models ex-
hibit a more complex interplay of coordinate and
compound learning in their middle layers. Sub-
coordinate learning plays little to no role. More-
over, training data coverage substantially affects
the strength of language separation, with Seen lan-
guages consistently exhibiting higher usable infor-
mation and differentiation rates.

Our findings show that both architecture and pre-
training data shape multilingual representations in
LLMs. Decoder-only models appear better suited

0 2 4 6 8 10 12 14 16 18 20 22 24
LLM Intermediate Layer

0

2000

4000

6000

8000

10000

K
L 

D
iv

er
ge

nc
e

BLOOM-Seen
BLOOM-Unseen

mGPT-Seen
mGPT-Unseen

(a) decoder-only

0 2 4 6 8 10 12 14 16 18 20 22 24
LLM Intermediate Layer

0

20

40

60

80

K
L 

D
iv

er
ge

nc
e

mBERT XLMR-large XLMR-base

(b) encoder-only

Figure 9: KL Divergence between English and non-
English activation vectors. Shaded areas show variation
across languages; solid lines show the mean.

for tasks that require maintaining clear language-
specific boundaries, while encoder-only models
may be more advantageous for cross-lingual trans-
fer, as their denser and partially shared representa-
tions facilitate knowledge sharing. More broadly,
our results suggest that multilingual generalization
in LLMs is not a single mechanism but a balance be-
tween language separation and cross-lingual shar-
ing, which emerges differently across architectures
and training regimes.

In future work, we will extend the analysis
of compound learning to a broader set of cross-
linguistic features, including semantic and prag-
matic aspects. Additionally, we aim to explore the
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impact of training data diversity from a linguistic
typology perspective on the balance between co-
ordinate and compound learning, as well as how
language models generalize to unseen and low-
resource languages. Expanding our study to a wider
range of language models will help assess the in-
fluence of model scale on multilingual processing
strategies.

Limitations

The limitations of this study are as follows: First,
our analysis of compound learning primarily fo-
cuses on Universal POS (UPOS) tags, which re-
stricts the exploration of higher-level linguistic
properties such as syntax, semantics, and pragmat-
ics. Second, we evaluate a limited set of language
models, mBERT, XLMR, mGPT, and BLOOM, po-
tentially constraining the generalizability of our
findings to larger or differently trained models.
Third, the influence of pre-training data availabil-
ity may introduce biases in our cross-linguistic
comparisons, as certain languages are underrep-
resented. Fourth, while we draw parallels between
LLM multilingualism and human language acqui-
sition, our study lacks direct psycholinguistic eval-
uations to substantiate these comparisons. Finally,
our experiments focus on next-token prediction
and language identification, leaving other multi-
lingual tasks, such as cross-lingual transfer and
code-switching, unexplored.

Acknowledgments

We thank the anonymous reviewers for their valu-
able feedback on this paper. We are also grateful
to Bolette Sandford Pedersen, Costanza Navarretta,
Joakim Nivre, and Patrizia Paggio for their insight-
ful comments. Additionally, we acknowledge the
Danish e-Infrastructure Consortium (DeiC) for pro-
viding computational resources through UCloud,
supported under the Linguistic Universals in Lan-
guage Models project.

References
Nora Belrose, Igor Ostrovsky, Lev McKinney, Zach Fur-

man, Logan Smith, Danny Halawi, Stella Biderman,
and Jacob Steinhardt. 2025. Eliciting latent predic-
tions from transformers with the tuned lens. Preprint,
arXiv:2303.08112.

Ethan A. Chi, John Hewitt, and Christopher D. Man-
ning. 2020. Finding universal grammatical relations
in multilingual BERT. In Proceedings of the 58th

Annual Meeting of the Association for Computational
Linguistics, pages 5564–5577, Online. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Maria Rosaria D’Acierno. 1990. Three types of bilin-
gualism. In The 24th Annual Meeting of the Interna-
tional Association of Teachers of English as a Foreign
Language, Ireland.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2022. Understanding dataset
difficulty with V-usable information. In Proceedings
of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine
Learning Research, pages 5988–6008. PMLR.

Elizabeth M. Hou and Gregory Castanon. 2023. De-
coding layer saliency in language transformers. In
Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
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Hlaváčová, Václava Kettnerová, Zdeňka Urešová,
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A The Implementation of Usable
Information

To compute V-usable information for a given func-
tion family V , we estimate the conditional entropy
terms H(Y |Φ) and H(Y |X) using a simple clas-
sifier to prevent overfitting, following Xu et al.
(2020). The classifier is a two-layer perceptron
with Layer Normalization applied after each lin-
ear layer, a ReLU activation between layers, and
a softmax activation at the output. For a given
task X → Y , we compute H(Y |X) as the cross-
entropy loss of a classifier trained on real samples
X and Y , and H(Y |Φ) is estimated using a sepa-
rate classifier that predicts Y based only on a zero
vector Φ.

In our experiments, Y corresponds to one of the
following: UPOS tags, language IDs, or a com-
bination of UPOS tags and language IDs, and X
represents a set of hidden activations. Accordingly,
for each task and a language model with l layers,
we train l classifiers to estimate H(Y |X), along
with an additional classifier to compute H(Y |Φ).
The classifiers are trained on the PCA-reduced rep-
resentations in H̃ for one epoch, using an 80/20%
split for training and testing. We employ the Adam
optimizer with a learning rate of 0.01 to minimize
the cross-entropy loss. The reported V-usable in-
formation values in this paper are based on the test
split.

B Layer Differentiation Rates for
Languages

For language differentiation, we extract the hidden
activations and logit gradients for predicting the
next token while processing sentences from a tar-
get language through a language model. Feature
contributions are then estimated by computing the
element-wise product of the activation and gradi-
ent tensors, followed by a ReLU activation. This
results in a contribution tensor of size l×n× d for
a target language, where l and d are the number of
layers and features of the language model, and n is
the number of tokens in the language.
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To assess differentiation, we repeat this process
for all other languages present in the pre-training
data of the language model (Seem languages), re-
sulting in a set of contribution tensors. A two-tailed
statistical test is applied to compare corresponding
elements in the contribution tensors of the target
language and each of the other languages. Specif-
ically, we perform the test on the arrays [i, :, j]
extracted from each tensor to measure the differen-
tiating rate of feature j at the layer i. This results in
a binary tensor of size l × d for each language pair
(i.e., a target language paired by each of the Seen
languages), where each element indicates whether
the corresponding feature in each layer contributes
differently across the two languages.

To identify differentiating features for the tar-
get language, we apply a logical AND operation
across all binary tensors, producing a final tensor
of size l × d. The mean value of this tensor along
the second dimension (d) represents the language
differentiation rate of each layer.

This procedure is applied to all languages, treat-
ing each as the target language in each of the Seen
and Unseen settings in turn. By doing so, we ob-
tain a comprehensive measure of how distinctively
the model processes each language relative to the
others.

C Layer Differentiation Rate for Joint
Language and UPOS Tags

For joint language–UPOS differentiation, we ex-
tend the procedure described in Appendix B to
account for universal syntactic categories within
languages. For a given language and UPOS tag, we
compile contribution tensors for all tokens assigned
to the tag. Each tensor, of size l × n× d, encodes
the contribution of each feature to next-token pre-
diction for words in that language–UPOS category,
where l is the number of layers, n the number of
tokens, and d the number of features.

We then assess feature-wise differences across
languages for each UPOS tag. Specifically, for a
feature j in layer i, we perform a two-tailed t-test
comparing the contribution arrays [i, :, j] from the
target language–UPOS pair with the corresponding
arrays from the same UPOS tag in other languages.
The target language may be any language under the
Seen or Unseen setting, while the comparison is
always made against Seen languages.

The resulting binary decisions are aggregated to
estimate the proportion of differentiating features

at each layer, yielding the layer differentiation rate
for the joint language–UPOS category. A high dif-
ferentiation rate indicates that the model processes
tokens of a given UPOS tag in distinct, language-
specific feature spaces, rather than in a universal
syntactic space.
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