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Abstract

How similar are model outputs across lan-
guages? In this work, we study this ques-
tion using a recently proposed model similar-
ity metric—r,—applied to 20 languages and
47 subjects in GlobalMMLU. Our analysis re-
veals that a model’s responses become increas-
ingly consistent across languages as its size
and capability grow. Interestingly, models ex-
hibit greater cross-lingual consistency within
themselves than agreement with other models
prompted in the same language. These results
highlight not only the value of , as a practical
tool for evaluating multilingual reliability, but
also its potential to guide the development of
more consistent multilingual systems.

1 Introduction

Users interact with large language models (LLMs)
in a variety of languages across families and re-
source availabilities (Nicholas and Bhatia, 2023).
As such, there is a need for LLMs to perform well
across languages. These models should provide
consistent responses—if switching languages re-
sults in incorrect answers to the same question, it
could potentially mislead users, especially in crit-
ical areas like medical advice or legal interpreta-
tion. However, current evaluations primarily focus
on per-language accuracy, with little attention to
consistency across languages (Koto et al., 2024;
Romanou et al., 2024; Singh et al., 2024).

To quantify this consistency, we study the func-
tional similarity of model outputs. We use Chance
Adjusted Probabilistic Agreement (CAPA or k),
a metric recently proposed by (Goel et al., 2025),
which incorporates model accuracy on a given
benchmark. We extend it to measure how similar
the mistakes are across different languages, giving
a view of multilingual functional similarity.
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Models are becoming similar across languages
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Figure 1: Our Main Findings: We use functional
similarity to measure the consistency of model outputs
across different languages. We find: (1) as language
models get bigger and more capable, their outputs be-
come more similar across languages; (2) models tend
to be more self-consistent across languages than when
comparing different models in a common language.

We use GlobalMMLU (Singh et al., 2024) - a
carefully translated version of MMLU across mul-
tiple languages - as our benchmark. It tests the
factual QA capabilities of models across a variety
of subjects, ranging from mathematics to philos-
ophy, in a multiple-choice format. Our choice of
this benchmark is motivated by its parallel nature,
which allows us to test whether models behave
consistently across languages on factual tasks.

Our study encompasses two dimensions of func-
tional similarity: intra-model (consistency across
languages for a given model) and inter-model
(consistency across models for a given language).
When considering intra-model similarity, we find
that with increasing size and accuracy, models are
becoming more functionally similar across lan-
guages. Notably, we observe that all models are
more consistent with themselves across languages
than they are with other LLMs for the same lan-
guage, indicating that intra-model similarity ex-
ceeds inter-model similarity for our task. Inter-
estingly, multilingual similarity further varies by
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domain and resource levels of the languages.

Primarily, we show that ,, a chance-adjusted
functional similarity metric, provides a power-
ful lens for analyzing multilingual consistency of
LLMs. We explore cross-lingual patterns that ac-
curacy and representational similarity alone cannot
capture, by combining the output behavior and per-
formance of the LLM. We find interesting patterns
about multilingual model behavior, including ef-
fects of scale, domain, and resources.

2 Related Work

Similarity Metrics: Prior work on model simi-
larity falls broadly into two classes: representa-
tional similarity and functional similarity. Rep-
resentational similarity metrics (Huh et al., 2024;
Klabunde et al., 2025) focus on the internal states
of models such as weights and activations, whereas
functional similarity metrics (Goel et al., 2025)
evaluate models based on their input—output behav-
ior, making them applicable across architectures.
Importantly, functional similarity better reflects the
user experience, since what ultimately matters is
whether models behave consistently across inputs,
rather than how their internal representations align.

Multilingual Evaluations: In representational
studies, researchers have identified language-
specific neurons (Tang et al., 2024) and language-
agnostic “semantic hubs” (Wu et al., 2024), and
even used steering interventions to demonstrate
their causal effects. While such work sheds light on
cross-lingual representations, it does not establish
quantitative trends in cross-lingual output consis-
tency as models scale. On the functional side, prior
work on multilingual factual consistency (Qi et al.,
2023), as well as classical agreement metrics (Scott,
1955; Cohen, 1960), do not account for model accu-
racy and can overestimate similarity. This leaves a
gap for metrics such as x,,, which explicitly account
for error consistency with agreement to provide a
more realistic view of multilinguality.

3 Methodology

The accuracy of LLMs differ greatly across lan-
guages and their performance is particularly in low-
resource languages (Li et al., 2025). This can artifi-
cially inflate similarity scores for some languages
as high performance leaves little room for disagree-
ment (as explained further in Appendix A). Given
that x, addresses these issues, we use it to com-
pare similarity of model outputs in light of variable

performance across languages. Our work comple-
ments studies on representational similarity across
languages such as (Wu et al., 2024).
kp computes observed agreement cgbs as the pro-
portion with which the same option is selected
across samples. To account for agreement by
chance, k), introduces an expected agreement cfy,,
derived from the marginal distribution of each set

of predictions. The r,, score is given by:

P _Cgbs_chp
p — )
1_c€xp

We use the discrete variant of «, as described in
(Goel et al., 2025). As r,, increases, models make
more similar mistakes, and their errors become
more correlated, making them functionally more
similar. Henceforth, we compute the average «,, us-
ing micro-averaging by concatenating all datasets
in the group and then computing the x,, across the
combined set. Since k), is non-linear, the technique
of micro-averaging is preferred as it smooths out
extremes and operates directly at the per-sample
level to better understand «,, across a dataset.

We use Gemma-3 (1B, 4B and 12B variants)
(Team et al., 2025) and Qwen-3 (1.7B, 4B, 8B
and 14B variants) (Yang et al., 2025) in our exper-
iments, as they are some of the latest models as
of August 2025 which have undergone multilin-
gual pretraining. We also use the older Gemma-7B
(Team et al., 2024) as a sanity check. We evaluate
these models on a subset of 20 languages of the
GlobalMMLU dataset (Singh et al., 2024) with our
choice of languages justified in Appendix B. Build-
ing on our evaluation methodology, we leverage
the LM Evaluation Harness (Gao et al., 2024), a
unified framework for testing generative language
models on a wide variety of benchmarks known for
its reproducibility and extensive adoption.

4 Experimentation

4.1 Intra-Model Multilingual Similarity

RQ1: Are LLMs becoming similar across lan-
guages? Motivated by the findings of (Huh et al.,
2024) which shows that model representations tend
to converge with an increase in size and perfor-
mance of models, we investigate whether a simi-
lar convergence occurs in the output space across
languages. A clear trend is observed — as the
model size increases, the average ;, score across
languages also increases. k), also positively corre-
lates with model accuracy. These findings suggest
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that outputs become more consistent across lan-
guages for larger and more accurate LLMs. The
statistically significant results are illustrated in Fig-
ure 2. A possible reason for this could be that
bigger models are trained on a greater volume of
data including from low resource languages allow-
ing for greater similarity. But it is not possible to
confirm this hypothesis as we do not have access
to their exact training data.
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Figure 2: k,, correlates positively with model size and
accuracy. (a) k, averaged over languages positively
correlates with model size (b) Similarly, «,, averaged
over languages positively correlates with model perfor-
mance. This indicates that models grow similar across
languages with their capability and size.

RQ2: Does the domain of questions asked
matter? Prior work shows that the language of
prompting shapes LLM outputs, influencing both
cultural preferences and ethical judgments (Vida
et al., 2024; Agarwal et al., 2024; Aksoy, 2025).
We thus hypothesize that models will be more in-
consistent for subjects like ethics, morality, and
sociology, which tend to be heavily influenced by
sociocultural norms, as opposed to topics with rel-
atively fewer cultural priors, such as mathemat-
ics and computer science. The questions in Glob-
alMMLU are divided into four domains- STEM,
Humanities, Social Sciences and Other. We further
subdivide these categories to provide a more de-
tailed analysis. r,, tends to be greater for STEM in
all the models as opposed to the other subjects (see
Figure 3). This affirms our hypothesis about lan-
guage sensitivity for culturally sensitive domains.
Looking at the fine-grained categories (refer Ta-
ble 6) in Figure 4 we continue to see a substantial
difference between «,, of the subjects.
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Figure 3: Models answer more similarly across lan-
guages for STEM than other domains. Each heatmap
cell represents the «, and accuracy averaged over lan-
guages. For example, a cell value of (0.3 1 0.4) for a
given model and category would represent an average
kp of 0.3 and an average accuracy of 40%, both aver-
aged over all the languages.
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Figure 4: Intra-model &, scores are higher for categories
belonging to STEM (Mathematics, Physics, Computer
Science) than the Humanities (Philosophy, Psychology,
Sociology). (a) Family of Gemma models (b) Family of
Qwen Models.

4.2 Inter-Model Multilingual Similarity

RQ3: Do models agree more on high-resource
languages? When we average the x,, scores for a
given language across all unique model pairs - a
clear trend emerges - high-resource languages tend
to have greater inter-model functional similarity,
implying that the results are more consistent for
languages like English than Amharic across all the
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Figure 5: Frequency density distribution of the intra-model (across 20 language pairs) and inter-model (1 model vs
remaining 7) x,, scores along with the p-values of the Mann-Whitney U Test. Intra-Model similarity is greater for
all models than Inter-Model similarity with high significance.

models. We confirm this by using the number of
Wikipedia articles for a given language as a proxy
for their resource availability. Figure 6 indicates a
significant positive correlation between the count
of Wikipedia articles and inter-model functional
similarity &, score.
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Figure 6: Higher-resource languages exhibit more
model agreement. We observe a high correlation be-
tween k, and number of wiki articles (Pearson correla-
tion = 0.923).

RQ4: Is cross-lingual similarity within the
same model stronger than cross-model similar-
ity in the same language? For each model, we
find the distribution of the r,, scores for two cases-
Intra-Model (across all unique language pairs) and
Inter-Model (across all models for each language).
For the most part, models tend to be more similar
to themselves for different languages than other
models for the same language (see Figure 5). We
employ the Mann-Whitney U test (Nachar et al.,

2008) - a non-parametric statistical test commonly
used to compare two independent samples - for this
purpose. The null hypothesis of this test is that ran-
domly selected values from two populations have
the same distribution. The p-values (< 0.001) indi-
cate that all tests are statistically significant, con-
firming that the intra-model and inter-model simi-
larity distributions are significantly different, with
intra-model scores tending to be higher. We fur-
ther conduct an ablation using English, the highest-
resource language, as a pivot. The results (see
Appendix D) remain consistent: intra-model simi-
larity scores are higher than inter-model similarity
scores, reinforcing our main findings. Additionally,
we find that the functional and representational sim-
ilarity correlate to a certain degree in Appendix E.

5 Conclusion

We introduced «,, as a functional similarity metric
for evaluating multilingual consistency in LLMs.
Across GlobalMMLU, we found that larger and
more capable models are more consistent across
languages, with intra-model similarity exceeding
inter-model similarity. Consistency also varies by
domain — being higher in STEM than in cultur-
ally sensitive subjects — and by resource availabil-
ity, with high-resource languages showing stronger
inter-model agreement. Together, these results es-
tablish x,, as a practical tool for analyzing multilin-
gual functional behavior beyond accuracy alone.
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6 Future Work

We advocate for x, to be used as a tool for ana-
lyzing multilinguality. We find interesting obser-
vations on the GlobalMMLU dataset, and feel that
using this approach would be beneficial to the field
of multilingual NLP in addition to the substantial
work already being done in the representational
space. There is also a great scope to explore if
the two notions of similarity have any fundamental
connection.

Although we hypothesize that having more data
could help in improving multilingual consistency,
it is also possible that it is inherently easier to learn
one language from a greater capacity in another
language if their underlying structures are similar.
Is the cause of high functional similarity between
two languages a function of their training (multi-
lingual or parallel corpus), a natural alignment or a
common syntactic structure of the two languages,
or something different altogether? Establishing
causality to our observations using interpretability
techniques would be challenging but worthwhile.

Besides our current use case, we can see it being
valuable in several applications. Higher functional
similarity between two languages can have conse-
quences on downstream tasks. For example, if a
model with high x, between Hindi and English ex-
ists, it might become easier to translate between the
two languages. Furthermore, it might allow such
models to interpret Hindi-English code mixed text
samples more easily than another pair with a lower
score.

7 Limitations

Although our findings establish statistically signifi-
cant correlations across languages and models, we
cannot establish causality for the observed phe-
nomena as this would require extensive mechanis-
tic interventions. k), is limited to multiple-choice
benchmarks, and there is a lack of free-form func-
tional similarity metrics that take error consistency
into account. This restricts our study to multilin-
gual MCQ benchmarks. Additionally, there is also
a lack of parallel multilingual MCQ benchmarks,
and most existing ones, such as (Xuan et al., 2025),
are variants of MMLU. Hence, we limit our analy-
sis to the largest of these, GlobalMMLU.
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A £, vs Other Metrics

We choose , as it has clear advantages over other
metrics which have been theoretically and empiri-
cally validated in (Goel et al., 2025). x,, metric is
chance-adjusted, meaning it is not inflated when
model accuracy is high. An example to help un-
derstand this is A model with 95% accuracy in
English and Spanish answers 95/100 questions cor-
rectly in both. Raw agreement appears high, but
this is trivial—it reflects correctness. r, down-
weighs such expected agreement. In contrast, with
50% accuracy in two low-resource languages, if
the model makes similar mistakes, «,, captures this
meaningful functional similarity as agreement be-
yond chance. When we compare it to other metrics
Cohen’s x and Scott’s 7, we observe the difference
in inflation due to accuracy.

Note that in our analysis we are using the dis-
crete variant of x, which converts probability logits
to their softmax labels. Consider two raters with
predictions [0, 0, 0, 1, 2, 1] and [0, O, O, 1, 2, 0]
respectively with ground truths [0, 0, 0, 1, 2, 2].

e Cohen’s
PP 5B
I-P 1-1
0.833 — 0.417
=— =x~0.714
0.583
e Scott’s 7
P,— P,
T=——"
1-P,

where P, = 2 = 0.833,

P. = (0.583)2 + (0.250)2 + (0.167)?
=0.431



thus
0.833 — 0.431
= ————— ~0.707
1-0.431
[ ] Kp
E,M E,M
jo = Cobs T Cexp
P EM
1 - Cexp
where cfb’y = %’
CeEx,pM:accl Xacc2:%><%:§%
thus

kp ~ 0.45

Since both models are highly accurate (83.3%),
the similarity scores as measured by traditional met-
rics are inflated. This is not the case with &, as it
takes model accuracy into account.

All the results we have presented for remains
consistent for other metrics. These results substan-
tiate our findings, indicating their robustness and
generalizability beyond the confines of the x, met-
ric. Computed values are in tables 2, 3 and 4.

Here we showcase a numerical example of the
advantage of probabilistic x, over RankC (Qi et al.,
2023). Consider two raters with probabilistic pre-
dictions

0.50 0.45 0.05
Ry = {050 0.05 0.45
0.05 0.45 0.50
0.50 0.05 0.45
Ry = [0.50 0.45 0.05

0.45 0.05 0.50

Finding the maximum probabilities from R; and
Ro, the hard labels are

r1 =10,0,2], 7o =10,0,2].
Thus P, = 1.
* Cohen’s k¥
Rater marginals: p( ) = p( ) [%, 0, %] ,

P, = sz p = (2)?

* Scott’s 7

Pooled counts over both raters: [4, 0, 2]
2 1
b= [57 07 §j| )

e RankC

For each item, let r(l), 72 be class rankings
from Ry, Ro.Forj =1,2,3

| Top-j (")) N Top-j(r®)|

P@; — :
j
Weigh e
€1 ts: w; = ————
¢ Y AL

= (wi,ws, w3) ~ (0.665, 0.245, 0.090).

From the matrices:
(P@1,P@2,P@3) = (1, 0.5, 1).
3
= item score = Z w; - P@j
j=1
=0.665-1+0.245-0.5+0.090 -1
~ (0.878.

Averaging over all three items (identical here)
gives
RankC =~ 0.878.

=1 c=1
_ 5 (2)
(1) (2 (1 p ) ( )
=0.375
thus
kp = —0.128.

Collapsing to hard labels yields perfect agreement
(k = m = 1.0). RankC, which compares top-j sets
from the probability rankings, shows high but non-
perfect agreement (= 0.878). r,, which directly
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evaluates the full probability distributions, detects
conflicting uncertainty allocations across classes
and therefore yields a negative chance-corrected
agreement (—0.128). This is intuitive, as when the
models are incorrect, they give very different (and
in fact, opposite) predictions which is not captured
by the other metrics.

B Choice of Languages Used

We choose to do our analysis over twenty lan-
guages as listed in Table 1. The languages cho-
sen belong to a wide range of groups, including
the Afro-Asiatic (Amharic, Arabic, Hebrew), Dra-
vidian (Telugu), Germanic (English, German), and
Indo-Iranian (Persian, Hindi, Bengali) language
families/branches, among others. The subset of
GlobalMMLU was curated to represent a spec-
trum of resource availability, where high-resource
languages refer to those with abundant linguistic
data, such as large corpora, annotated datasets, and
digital tools (e.g., English, Spanish), while low-
resource languages lack such resources and infras-
tructure (e.g., Amharic, Telugu). This selection
allows us to assess model behavior across typolog-
ically and resource-diverse settings. All the lan-
guages have an equal number of questions, and we
have chosen the subset among these which have
consistent answers among all the languages leading
to a total of 13844 questions in each language.

C Sub-Categorization of GlobalMMLU

We sub-categorized the existing categories of Glob-
alMMLU to make better and fine-grained infer-
ences. We follow the standard GlobalMMLU setup
in Im-evaluation-harness (Gao et al., 2024) to con-
duct the evaluations. The tables 5 and 6 show the
categorization based on the four domains and fur-
ther split 14 categories, respectively. The tables
also show the distribution of the samples for each
category. Each numerical value in the Samples
columns of the table corresponds to the number
of resulting samples for a given model for a given
language.

D Ablations for Inter-model vs
Intra-model Similarity

We explore an alternate way to plot inter-model
similarity by removing potential confounders from
cross-size comparisons. Initially, the computation
for the inter-model similarity was plotting the dis-
tribution of the computed x,, values for each model

with the remaining seven models across 20 lan-
guages. For intra-model similarity, we compute,
for each model, the distribution of x,, values across
20 unique language pairs. For this ablation, we
compute the x, values for inter-model similarity
to be a single x, value for each model with the
model of the other family with the closest num-
ber of parameters (model size). We then plot two
distributions for intra-model similarity. In Figure
8a, the intra-model similarity computation remains
the same, calculation x,, across 20 unique language
pairs. In Figure 8b, the intramodel similarity dis-
tribution has been revised to include only pairs
of English-non-English languages (en — {lang}).
The results remain consistent with previous results,
showing that intra-model similarity is still greater
than inter-model similarity.

E Some Correlation Between Functional
and Representational Similarity

Following the procedure in (Wu et al., 2024), we
compute the representation cosine similarity and
use the last token position as the sentence repre-
sentation over a subset of the translation dataset,
FLORES-101 (Goyal et al., 2022). We subtract
these scores by a baseline of non-matching sen-
tences and find that when two languages have a
greater k, score, i.e. they have high functional
similarity, they also tend to have a greater represen-
tational similarity as measured by the increase over
the baseline. We do it over limited layers of the
Qwen model (Qwen3-4B and Qwen3-8B) due to
compute constraints. This experiment is carried out
to establish some degree of correlation between the
two notions of similarity, the existence of which
has been debated before in (Klabunde et al., 2025).

4B Model
0.265 88 Model
(2.16e-04)

0.156
(3.19e-02)

0.736
(9.90e-34)

0652
(2.27e-24)

0.689
(4.07e-28)

0619

(1.66e-21)

00 0.1 02 03 04 05 086 07 08
Pearson Correlation

Figure 7: Languages with higher functional similar-
ity (k) also exhibit greater representational similarity.
Representation cosine similarity is computed using the
last token position from FLORES-101 sentence pairs.
Scores are baseline-adjusted using non-matching sen-
tence pairs.
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Code Language Code Language Code Language Code Language

am  Amharic fr French it Italian es Spanish

ar Arabic de  German ja Japanese sw  Swahili

bn  Bengali he  Hebrew ko  Korean te Telugu

zh  Chinese hi Hindi fa Persian tr Turkish

en  English id Indonesian ru Russian vi Vietnamese

Table 1: Language codes and their corresponding language names used in our experiments.
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(a) Frequency distribution of the intra-model (across 20 language pairs) and inter-model (1 model vs closest family model).
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(b) Frequency distribution of the intra-model (across English-non-English pairs) and inter-model (1 model vs closest family
model).
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Metric Pearson correlation for Size Pearson correlation for Pearson correlation for
Accuracy Resource (log no. of Articles)
0.7864 0.7884 0.9230
Kp (0.02062) (0.02009) (6.82¢-09)
0.8862 0.9714 0.9321
Cohen’s x (0.003376) (5.694e-05) (2.28¢-09)
0.8861 0.9714 0.9313
Scott’s 7 (0.003385) (5.728e-05) (2.53e-09)
Table 2: Pearson correlation coefficients (top) with p-values in parentheses (bottom).
Metric Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B
12150 16686 17278 15148
Kp (1.95e-21) (6.8%¢-11) (8.60e-10) (4.89¢-14)
23750 21710 17992 14766
Cohen’s k  (6.08e-02) (1.29¢-03) (1.48e-08) (6.90e-15)
22358 21644 17542 14460
Scott’s T (5.26e-03) (1.11e-03) (2.53e-09) (1.38e-15)

Table 3: Mann—Whitney U statistics for Qwen models (p-values in parentheses).

Metric gemma-3-1b-it gemma-3-4b-it gemma-7b gemma-3-12b-it
180 3050 4556 5148
Kp (1.10e-67) (3.73e-54) (1.14e-47) (3.08e-45)
5660 11650 16394 7316
Cohen’s K (3.46e-43) (7.83e-23) (1.88e-11) (6.87e-37)
4364 11176 15598 7228

Scott’s 7 (1

.79e-48) (3.37e-24) (4.53e-13) (3.27e-37)

Table 4: Mann—Whitney U statistics for Gemma models (p-values in parentheses).

Domain

Subjects # Samples

STEM

College Chemistry, High School Computer Science, College Biology, Abstract Algebra,
High School Mathematics, Computer Security, Machine Learning, College Physics, Con-
ceptual Physics, Astronomy, High School Biology, High School Physics, Anatomy, College
Mathematics, Electrical Engineering, College Computer Science, High School Chemistry,
High School Statistics, Elementary Mathematics

3153

Humanities

Philosophy, World Religions, Professional Law, Moral Scenarios, High School European
History, Moral Disputes, Jurisprudence, Formal Logic, High School US History, Prehistory,
High School World History, International Law, Logical Fallacies

4511

Social Sciences

High School Microeconomics, High School Geography, US Foreign Policy, Professional
Psychology, Security Studies, High School Government and Politics, High School Psychol-
ogy, Econometrics, Sociology, High School Macroeconomics, Public Relations, Human
Sexuality

3076

Other

Professional Accounting, Professional Medicine, College Medicine, Marketing, Nutrition,
Global Facts, Clinical Knowledge, Human Aging, Virology, Miscellaneous, Business Ethics,
Management, Medical Genetics

3104

Table 5: Original Grouping of GlobalMMLU subjects into 4 domains with corresponding sample counts.
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Category Subjects # Samples

Mathematics Abstract Algebra, College Mathematics, Elementary Mathematics 1064
High School Mathematics, High School Statistics, Formal Logic
Logical Fallacies

Logic Formal Logic, Logical Fallacies 289

Physics College Physics, Conceptual Physics, High School Physics, Astronomy 640

Biology College Biology, High School Biology, Human Aging 971
Human Sexuality, Virology

Chemistry College Chemistry, High School Chemistry 303

Medicine Anatomy, Clinical Knowledge, College Medicine 1251
Medical Genetics, Nutrition, Professional Medicine

Computer Science College Computer Science, High School Computer Science 412
Computer Security, Machine Learning

Economics and Business Econometrics, High School Macroeconomics, High School Microeconomics 1461
Business Ethics, Management, Marketing
Professional Accounting

Psychology and Sociology High School Psychology, Professional Psychology, Sociology 1358

Geography and Global Affairs  Global Facts, High School Geography, US Foreign Policy 643
Security Studies

History High School US History, High School European History 741
High School World History, Prehistory

Government and Law High School Government and Politics, International Law, Jurisprudence 1951
Professional Law

Philosophy and Ethics Philosophy, Moral Disputes, Moral Scenarios 1552

Miscellaneous World Religions, Public Relations, Electrical Engineering, Miscellaneous 1208

Table 6: Fine-grained categorization of GlobalMMLU subjects used in our ablation.
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