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Abstract

Generic statements like “birds fly” or “lions
have manes” express generalizations about
kinds that allow exceptions, yet language mod-
els tend to overgeneralize them to universal
claims. While previous work showed that AS-
CENT KB could reduce this effect in English
by 30-40%, the effectiveness of broader knowl-
edge sources and the cross-lingual nature of this
phenomenon remain unexplored. We investi-
gate generic overgeneralization across English
and four South African languages (isiZulu,
isiXhosa, Sepedi, SeSotho), comparing the
impact of ConceptNet and DBpedia against
the previously used ASCENT KB. Our experi-
ments show that ConceptNet reduces overgener-
alization by 45-52% for minority characteristic
generics, while DBpedia achieves 48-58% for
majority characteristics, with combined knowl-
edge bases reaching 67% reduction. These im-
provements are consistent across all languages,
though Nguni languages show higher base-
line overgeneralization than Sotho-Tswana lan-
guages, potentially suggesting that morpholog-
ical features may influence this semantic bias.
Our findings demonstrate that commonsense
and encyclopedic knowledge provide comple-
mentary benefits for multilingual semantic un-
derstanding, offering insights for developing
NLP systems that capture nuanced semantics in
low-resource languages. We release the dataset
and code1

1 Introduction

Generic statements express generalizations about
kinds that tolerate exceptions, representing a fun-
damental aspect of how humans conceptualize and
communicate about the world. Statements such as
“birds fly” or “lions have manes,” express truths
about these categories despite the fact that pen-
guins cannot fly and female lions lack manes. This

1https://github.com/sello-ralethe/
Multilingual_Generics

linguistic phenomenon poses a significant chal-
lenge for natural language understanding systems,
as both humans and language models exhibit a bias
toward interpreting these statements as universal
claims; a phenomenon known as generic overgen-
eralization (GOG) (Leslie et al., 2011).

The tendency to overgeneralize from generic
statements to universal claims reflects cognitive
biases in how humans process categorical infor-
mation. When presented with a true generic like
“ducks lay eggs,” people and models tend to in-
correctly accept the universal statement “all ducks
lay eggs,” despite the obvious fact that only fe-
male ducks possess this capability (Khemlani et al.,
2007). This effect has been documented in cog-
nitive science literature (Hollander et al., 2002;
Cimpian, 2010) and represents an important test
case for evaluating whether language models truly
understand the nuanced semantics of natural lan-
guage.

Recent advances in multilingual representation
learning have shown notable success in transferring
knowledge across languages, yet the interaction
between these methods and language-specific phe-
nomena like genericity remains largely unexplored.
This gap is more pronounced for morphologically
rich, low-resource languages, where both training
data and linguistic resources are scarce (Nigatu
et al., 2023; Chang et al., 2024; Qin et al., 2025).

Languages such as isiZulu, isiXhosa, Sepedi,
and SeSotho face challenges due to limited digi-
tal corpora (Eiselen and Gaustad, 2023; Mesham
et al., 2021). These languages express generic-
ity and other pragmatic phenomena through mor-
phological mechanisms distinct from English, po-
tentially affecting how generic statements are in-
terpreted and overgeneralized. The analytic tools
developed for machine translation and representa-
tion (e.g. morphology-aware modeling methods)
demonstrate that explicit morphological structure
affects performance in these contexts (Nzeyimana,
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2024), yet empirical work on genericity is lacking.
In this paper, we present an investigation of

generic overgeneralization across multiple lan-
guages, examining how this phenomenon manifests
in typologically diverse languages and whether
knowledge enhancement can mitigate its effects.
We make several contributions that advance the
understanding of this semantic phenomena. First,
we demonstrate that generic overgeneralization is
indeed a cross-linguistic phenomenon that affects
languages with different morphological systems
for expressing genericity. Our experiments with
four South African languages show patterns in how
different language families exhibit this bias, with
Nguni languages displaying higher baseline over-
generalization than Sotho-Tswana languages.

Second, we show that knowledge enhancement
through carefully selected knowledge bases can
reduce overgeneralization effects. By comparing
ASCENT KB (Nguyen et al., 2020), ConceptNet
(Speer et al., 2016), and DBpedia (Auer et al.,
2007) as knowledge sources, we find that differ-
ent types of knowledge address different aspects
of the overgeneralization problem. ConceptNet’s
commonsense knowledge proves effective for mi-
nority characteristic generics, achieving 45-52%
relative reduction in overgeneralization, while DB-
pedia’s encyclopedic coverage excels at handling
majority characteristic generics with 48-58% re-
duction. The combination of both knowledge types
yields even stronger results, reaching up to 67%
reduction in overgeneralization.

In this paper, we present the first investigation
of generic overgeneralization across morphologi-
cally rich, low-resource languages, examining how
this phenomenon manifests in typologically diverse
settings and whether knowledge enhancement can
mitigate its effects across linguistic boundaries.
We make several contributions that advance un-
derstanding of this semantic phenomenon in multi-
lingual contexts.

First, we demonstrate that generic overgeneral-
ization is indeed a cross-linguistic phenomenon,
providing empirical evidence across English and
four South African languages (isiZulu, isiXhosa,
Sepedi, and SeSotho) which represent two distinct
language families. Our experiments reveal system-
atic patterns in how different language families
exhibit this bias, with Nguni languages display-
ing 4-7% higher baseline overgeneralization than
Sotho-Tswana languages, suggesting that morpho-
logical features may modulate semantic biases.

Second, we compare three knowledge sources,
demonstrating that different types of knowledge
address different aspects of the overgeneralization
problem. We show that ConceptNet’s common-
sense knowledge proves effective for minority char-
acteristic generics, achieving 45-52% relative re-
duction in overgeneralization, while DBpedia’s en-
cyclopedic coverage excels at handling majority
characteristic generics with 48-58% reduction.

The combination of both knowledge types yields
even stronger results, reaching up to 67% reduc-
tion in overgeneralization. Importantly, these im-
provements remain consistent across all languages,
demonstrating that conceptual knowledge effec-
tively transfers across linguistic boundaries despite
significant morphological differences. Our find-
ings thus offer practical insights for developing
NLP systems that capture nuanced semantics in
low-resource multilingual settings while advancing
theoretical understanding of how semantic biases
interact with morphological systems.

2 Related Work

2.1 Generic Overgeneralization in Language
Models

The distinction between generic statements and
universally quantified statements represents a fun-
damental challenge in natural language semantics
that has implications for multilingual NLP. While
“tigers have stripes” holds true as a generic despite
albino tigers lacking stripes, the universal statement
“all tigers have stripes” is demonstrably false. This
subtle distinction shows how language encodes con-
ceptual knowledge about categories and their typi-
cal properties (pel, 2009).

The generic overgeneralization effect, first docu-
mented in cognitive science by Leslie et al. (2011)
and Khemlani et al. (2007), demonstrates a human
tendency to conflate these two types of statements.
This cognitive bias appears to be rooted in humans’
default processing mechanisms, where accepting
universal interpretations requires less cognitive ef-
fort than maintaining the nuanced understanding
that generics admit exceptions (Leslie et al., 2011).
Recent work by Ralethe and Buys (2022) extended
this investigation to pre-trained language models,
showing that when BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) were asked to predict
masked tokens in contexts like “[MASK] lions have
manes,” these models showed strong preferences
for universal quantifiers like “all” and “every.”
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Experiments by Ralethe and Buys (2022) demon-
strated that language models not only exhibit
human-like overgeneralization patterns but that this
bias could be partially mitigated through knowl-
edge injection. By incorporating factual knowledge
from ASCENT KB (Nguyen et al., 2020), they
achieved a 30-40% reduction in overgeneralization.
However, ASCENT KB’s limitations, including its
relatively sparse coverage of approximately 400k
animal-related triples and focus on specific factual
assertions rather than broader conceptual knowl-
edge, suggests that richer knowledge sources might
prove more effective.

2.2 Commonsense vs. Encyclopedic
Knowledge

The contrast between different types of knowledge
bases indicates complementary approaches to rep-
resenting world knowledge. ConceptNet (Speer
et al., 2016) encodes commonsense knowledge
that people typically know about the world, in-
cluding relations like “CapableOf,” “HasProperty,”
and “PartOf” that capture prototypical information
about concepts. This type of knowledge proves
valuable for generic reasoning because it encodes
default expectations about kinds, including infor-
mation about typical properties and capabilities that
align with how humans conceptualize categories
(Liu and Singh, 2004).

DBpedia (Auer et al., 2007), extracted from
Wikipedia, provides encyclopedic, factual knowl-
edge including specific information about in-
stances, detailed taxonomies, and factual proper-
ties. For generic reasoning, DBpedia’s strength
lies in its comprehensive coverage of exceptions
and variations (Mendes et al., 2011). It contains in-
formation about albino tigers, flightless birds, and
other edge cases that violate generic expectations,
making it particularly valuable for understanding
when universal generalizations fail.

The complementary nature of these knowledge
sources becomes apparent when considering their
coverage. While ASCENT KB focuses on spe-
cific faceted assertions like “young lions do not
have manes,” ConceptNet provides broader concep-
tual knowledge such as “mane is a characteristic
feature of male lions,” and DBpedia offers compre-
hensive factual coverage including specific infor-
mation about white lions, Barbary lions, and other
variations. This suggests that effective mitigation
of overgeneralization may require multiple types
of knowledge working in concert (Ilievski et al.,

2020).

2.3 Cross-Lingual Considerations
The expression of genericity varies significantly
across languages, raising important questions about
whether generic overgeneralization is universal or
language-specific (Dayal, 2004; Chierchia, 1998).
English uses bare plurals for generic reference,
while other languages use different morphosyn-
tactic strategies. In Nguni languages like isiZulu
and isiXhosa, the noun class system inherently
pluralizes nouns, with generic reference typically
achieved through class prefixes (Zeller, 2012;
Visser, 2008). For example, “amabhubesi” (lions)
in isiZulu uses the class 6 prefix ama-, which inher-
ently indicates plurality. Sotho-Tswana languages
like Sepedi and SeSotho use a different noun class
system with distinct morphological patterns for ex-
pressing genericity (Mojapelo, 2009).

These typological differences have important im-
plications for how generic overgeneralization might
manifest across languages. The obligatory plural
marking in Nguni languages may create different
baseline expectations about universality compared
to languages with optional plural marking (Demuth,
2000). Furthermore, the morphological complexity
of these languages poses additional challenges for
knowledge projection and alignment, as the same
concept may be realized through different morpho-
logical forms depending on the syntactic context
(Kiparsky, 2001).

Previous work on cross-lingual knowledge pro-
jection has shown that conceptual knowledge can
transfer across languages (Chen et al., 2016, 2021;
Sun et al., 2019), but the interaction with language-
specific phenomena like genericity remains largely
unexplored. The success of multilingual models
like mT5 (Xue et al., 2021) in capturing cross-
lingual semantic similarities suggests that con-
ceptual knowledge about generics might transfer
across languages, but this hypothesis requires em-
pirical validation across typologically diverse lan-
guages.

While prior work has examined generic overgen-
eralization in English (Ralethe and Buys, 2022),
our work is the first to: (1) investigate this
phenomenon across morphologically rich, low-
resource African languages, (2) systematically
compare commonsense versus encyclopedic knowl-
edge sources for GOG mitigation, and (3) demon-
strate effective cross-lingual knowledge transfer for
this semantic task despite typological diversity.
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3 Methodology

3.1 Data and Languages

Our investigation encompasses a curated dataset of
generic statements and a diverse set of low-resource
languages representing different typological fea-
tures. We utilize the generic overgeneralization
datasets from Ralethe and Buys (2022), comprising
5884 minority characteristic generics that express
properties true of only a subset of a kind, such
as “lions have manes,” and 8750 majority char-
acteristic generics that express prevalent but not
universal properties, such as “tigers have stripes.”
Additionally, we use 60368 training generics cover-
ing diverse generic types to ensure comprehensive
coverage of the phenomenon.

For our cross-lingual study, we select English
as our baseline and four South African languages
representing two distinct language families. The
Nguni languages, isiZulu and isiXhosa, share sim-
ilar morphological structures including extensive
noun class systems with obligatory plural marking.
The Sotho-Tswana languages, Sepedi and SeSotho,
use different noun class systems and morphologi-
cal patterns. This selection allows us to investigate
how typological differences influence generic over-
generalization while controlling for potential areal
effects, as all four languages are spoken in South
Africa.

3.2 Translation and Quality Validation

To ensure high-quality cross-lingual data, we trans-
lated all datasets using the Google Translate API
with rigorous quality controls. Our validation pro-
cess included back-translation verification to iden-
tify potential translation errors, entity name valida-
tion to ensure proper nouns were correctly handled,
and manual checking of quantifier translations.

To quantify translation quality, we conducted
manual validation on a random sample of 200
generic statements per language. Each translation
was evaluated for semantic accuracy and grammat-
ical correctness. The validation demonstrated high
translation quality overall: isiZulu (88%), isiXhosa
(89%), Sepedi (91%), and SeSotho (93%). Com-
mon translation errors included:

IsiZulu: Incorrect handling of noun class agree-
ment, particularly with complex subjects. For in-
stance, “Young elephants play in water” was in-
correctly translated as “Izindlovu ezincane zidlala
emanzini” where the class prefix failed to maintain
consistency with age modifiers.

IsiXhosa: Confusion between inclusive and ex-
clusive plural forms. The generic “Lions hunt
at night” was rendered as “Iingonyama zizingela
ebusuku” which could be interpreted as referring
to specific lions rather than lions in general.

Sepedi: Misalignment of aspectual markers af-
fecting the generic interpretation. “Birds migrate
seasonally” translated to “Dinonyana di huduga ka
nako ya sehla” lost the habitual aspect important
for generic meaning.

SeSotho: Occasional loss of generic force
through inappropriate determiner insertion. “Cats
are independent” became “Dikatse tsena di ikemela”
where “tsena” (these) inadvertently introduced a
deictic element.

These error patterns informed our analysis, par-
ticularly regarding how morphological features in-
teract with generic interpretation across language
families.

Rationale for Translation Approach We use
translation rather than collecting native generic
statements because no existing generic overgen-
eralization datasets exist for these low-resource
languages, and creating new datasets would re-
quire extensive linguistic validation to ensure con-
sistent generic interpretation across cultures. Trans-
lation maintains exact parallel alignment across
languages, enabling controlled comparison of how
the same conceptual content is processed across
different morphological systems. Our high transla-
tion quality (88-93% accuracy) and detailed error
analysis demonstrate that this approach is sound
for investigating cross-linguistic patterns, though
we acknowledge translation may introduce some
noise.

3.3 Knowledge Sources

Our experimental design compares three distinct
knowledge sources, each offering different types
and scales of information. Following Ralethe and
Buys (2022), we use ASCENT KB as our baseline,
which contains approximately 403k animal-related
triples with faceted information about properties
and subcategories. While ASCENT KB provides
valuable specific assertions, its coverage is limited
compared to larger knowledge bases.

We extend this baseline by incorporating Con-
ceptNet and DBpedia, both of which offer substan-
tially richer information. ConceptNet provides ap-
proximately 220k triples per language after projec-
tion into South African languages through LeNS-
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Align (Ralethe and Buys, 2025), encoding diverse
relation types including taxonomic relations like
“male_lion IsA lion,” property relations such as
“lion HasProperty mane,” capability relations like
“bird CapableOf fly,” and prototype relations such
as “tiger HasA stripes.” This commonsense knowl-
edge captures the conceptual structures that under-
lie generic statements.

DBpedia contributes approximately 450k triples
per language after projection (Ralethe and Buys,
2025), offering instance data such as “Cecil_(lion)
type Lion,” comprehensive taxonomic information
like “White_tiger subClassOf Tiger,” detailed prop-
erty data including “Albino_tiger colour White,”
and extensive geographic and demographic infor-
mation. This encyclopedic knowledge provides the
factual grounding necessary to understand excep-
tions to generic generalizations.

3.4 Model Architectures

Our experimental framework uses different archi-
tectures for English and multilingual experiments
to leverage the most appropriate models for each
setting. For English experiments, we implement
BERT-large and RoBERTa-large augmented with
knowledge bases using the KEPLER framework
(Wang et al., 2021), following the approach of
Ralethe and Buys (2022). KEPLER enables knowl-
edge integration by continuing pre-training on ver-
balized knowledge triples, where each triple is con-
verted to natural language using templates. This ap-
proach allows us to maintain compatibility with the
baseline while exploring richer knowledge sources.

For multilingual experiments, we adopt mT5-
large as our base model, leveraging its strong mul-
tilingual capabilities across all target languages.
We follow Ralethe and Buys (2025) in performing
knowledge injection of the projected knowledge
bases using an adaptation of the QA-GNN frame-
work (Yasunaga et al., 2021).

QA-GNN retrieves relevant subgraphs for each
generic statement and uses graph attention net-
works to reason over the structured knowledge,
enabling explicit traversal of knowledge graph con-
nections when interpreting generics across lan-
guages. This architecture proves well-suited for
working with projected knowledge bases in low-
resource languages, as it can leverage the graph
structure to compensate for potential noise in the
projections (See Appendix B for implementation
and training details).

3.5 Evaluation Framework

We use three complementary evaluation tasks to
assess model performance and the manifestation of
generic overgeneralization. The generic classifica-
tion task evaluates whether models can distinguish
between generic and non-generic statements, with
particular focus on universally quantified versions.
This task directly tests whether models understand
that statements like “all lions have manes” are not
true generics despite the truth of the unquantified
version.

Following the original work of Ralethe and Buys
(2022), the quantifier prediction task provides our
primary measure of overgeneralization. By mask-
ing the pre-nominal position in statements like
“[MASK] lions have manes,” we evaluate how
strongly models prefer universal quantifiers. We
calculate the Mean Reciprocal Rank (MRR), which
measures the inverse of the rank at which the first
correct answer appears, averaged across all test in-
stances. For this task, we consider universal quan-
tifiers (all, every, each) as the target predictions,
so lower MRR scores indicate better performance
as they suggest the model is less likely to predict
universal quantifiers. We also compute Precision
at 5 (P@5), which measures the proportion of test
instances where at least one universal quantifier
appears in the top 5 predictions. Lower scores on
both metrics indicate less overgeneralization, as
models that avoid predicting universal quantifiers
demonstrate better understanding of generic seman-
tics.

The quantifier interpretation probing task creates
statements with different quantifiers and masks the
property position, as in “all lions have [MASK].”
Models should assign higher probabilities to the
correct property for quantifiers that maintain truth
(some, most) than for those that create false uni-
versal statements. This task uses MRR to measure
how highly models rank the correct property, with
higher scores indicating better understanding when
the quantifier makes the statement true. This task
helps determine whether models genuinely under-
stand the semantic implications of different quanti-
fiers or merely exhibit surface-level patterns.

4 Results

4.1 Comparison with Previous Work: English
Results

Table 1 presents a comparison of our results on
English with the previous ASCENT KB baseline
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from Ralethe and Buys (2022). The improvements
achieved by ConceptNet and DBpedia are notable
across all evaluation metrics, showing important in-
sights about the types of knowledge most effective
for addressing generic overgeneralization.

For minority characteristic generics, Concept-
Net demonstrates notable effectiveness, achieving
45-52% relative reduction in overgeneralization
compared to 30-34% for using ASCENT KB. This
improvement stems from ConceptNet’s richer rep-
resentation of subcategory relationships and pro-
totypical properties. Where ASCENT KB might
only encode “male lions have manes,” ConceptNet
additionally provides conceptual relations such as
“mane IsA male characteristic” and “adult male lion
IsA lion with mane.” These additional layers of
conceptual knowledge help models understand that
properties like manes are inherently restricted to
subsets of a category.

DBpedia shows its greatest strength with ma-
jority characteristic generics, achieving 48-58%
reduction versus ASCENT KB’s 40%. This advan-
tage arises from DBpedia’s comprehensive cover-
age of exceptions and edge cases. While ASCENT
KB might note that albino tigers exist, DBpedia
provides detailed information about white tigers,
melanistic tigers, golden tigers, and numerous spe-
cific individuals. This exhaustive coverage of vari-
ations gives models concrete evidence against uni-
versal generalizations.

The combined ConceptNet+DBpedia approach
achieves up to 67% reduction in overgeneraliza-
tion, nearly doubling ASCENT KB’s best perfor-
mance. This synergy suggests that commonsense
and encyclopedic knowledge provide fundamen-
tally complementary benefits. ConceptNet helps
models understand the conceptual structure of cat-
egories and why certain properties might be re-
stricted to subsets, while DBpedia provides the
specific counterexamples that definitively rule out
universal generalizations.

4.2 Cross-Lingual Results
Table 2 presents the results of the quantifier pre-
diction task in all five test languages, demonstrat-
ing both universal patterns and language-specific
variations in generic overgeneralization across lan-
guages. The results show that knowledge enhance-
ment provides consistent benefits across typologi-
cally diverse languages, though interesting patterns
emerge related to language family and morphologi-
cal structure.

The most notable finding is the consistency of
knowledge enhancement effects across languages.
ConceptNet provides 43-47% reduction for minor-
ity generics across all languages, while DBpedia
achieves 52-56% reduction for majority generics.
This suggests that the conceptual knowledge en-
coded in these resources transfers effectively across
languages through the LeNS-Align projection pro-
cess, despite the significant morphological differ-
ences between English and the target languages.

A pattern emerges when comparing language
families. Nguni languages (isiZulu and isiXhosa)
exhibit higher baseline overgeneralization than
Sotho-Tswana languages (Sepedi and SeSotho) and
English. The baseline MRR for universal quanti-
fiers is 4-7% higher in Nguni languages. We hy-
pothesize that this may be related to the obligatory
plural marking in the Nguni noun class system,
which could prime speakers and models toward
universal interpretations of generic statements.

The pattern of ConceptNet excelling at minority
generics while DBpedia excels at majority generics
holds across all languages, confirming that different
types of overgeneralization (overgeneralizing from
“some” to “all” versus overgeneralizing from “most”
to “all”) require different types of knowledge to ad-
dress effectively. This cross-linguistic consistency
suggests that the cognitive and semantic factors
underlying generic overgeneralization are largely
universal, even as their surface manifestations vary
across languages.

4.3 Classification Results

The generic classification results presented in Ta-
ble 3 provide additional evidence for both the perva-
siveness of overgeneralization and the effectiveness
of knowledge enhancement. When asked to clas-
sify universally quantified statements as generic or
non-generic, baseline models fail, achieving only
around 10% accuracy. This near-chance perfor-
mance indicates that without additional knowledge,
models treat statements like “all lions have manes”
as equivalent to the generic “lions have manes.”

Knowledge enhancement provides improve-
ments, with the combined approach achieving 34-
39% accuracy across languages. While still far
from perfect, this represents a three- to four-fold
improvement over the baseline. This improvement
across languages reinforces our finding that knowl-
edge injection helps models develop more nuanced
understanding of generic semantics.
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Model Minority Majority

MRR Reduction MRR Reduction

BERT 0.326 - 0.337 -
+ASCENT† 0.228 30.1% 0.202 40.1%
+ConceptNet 0.179 45.1% 0.185 45.1%
+DBpedia 0.186 42.9% 0.175 48.1%
+Both KBs 0.142 56.4% 0.138 59.1%

RoBERTa 0.329 - 0.428 -
+ASCENT† 0.217 34.0% 0.257 40.0%
+ConceptNet 0.158 52.0% 0.221 48.4%
+DBpedia 0.171 48.0% 0.180 57.9%
+Both KBs 0.108 67.2% 0.141 67.1%

Table 1: English results for the quantifier prediction task comparing knowledge sources (MRR for universal
quantifiers - lower is better). † indicates results from Ralethe and Buys (2022).

Model Minority Characteristic Generics

English isiZulu isiXhosa Sepedi SeSotho Avg Reduction

mT5 0.318 0.347 0.352 0.324 0.319 -
+ConceptNet 0.175 0.189 0.193 0.181 0.177 45.0%
+DBpedia 0.184 0.198 0.201 0.186 0.182 42.1%
+Both KBs 0.139 0.151 0.154 0.144 0.141 55.7%

Model Majority Characteristic Generics

English isiZulu isiXhosa Sepedi SeSotho Avg Reduction

mT5 0.412 0.436 0.441 0.411 0.407 -
+ConceptNet 0.216 0.231 0.235 0.218 0.214 47.3%
+DBpedia 0.189 0.201 0.205 0.187 0.184 54.8%
+Both KBs 0.136 0.148 0.152 0.135 0.133 67.0%

Table 2: Cross-lingual results for the quantifier prediction task: MRR for universal quantifiers across all languages
(lower is better)

4.4 Probing Experiments

To investigate whether knowledge-enhanced mod-
els truly understand the injected knowledge, we
conducted two probing experiments adapted from
Ralethe and Buys (2022) for our multilingual mT5
setup.

4.4.1 Quantified Statement Classification
Probing

We fine-tuned the knowledge-enhanced mT5 on
the generic classification task and tested whether
quantified statements are correctly classified as
non-generic. We quantified minority characteris-
tic generics with “many” and “most,” and major-
ity characteristic generics with “few” and “some”
to create false generic statements. For example,
“most lions have manes” should be classified as
non-generic since only a minority of lions have
manes.

Table 4 shows that knowledge injection improves
the models’ ability to recognize false quantified
statements, though accuracy remains low. The

combined KB approach achieves 21.3% accuracy
for minority characteristics and 28.6% for major-
ity characteristics, suggesting that models partially
learn the conceptual distinctions but struggle to
apply them consistently. Detailed per-language re-
sults in Appendix A show that Nguni languages
underperform Sotho-Tswana languages in this task,
mirroring the overgeneralization patterns.

4.4.2 Quantifier Interpretation Probing
We evaluated whether models correctly interpret
different quantifiers by masking the property in
quantified statements. For each generic, we created
probing instances with four quantifiers (few, some,
many, most) and masked the final token. Models
should rank the correct property higher for quanti-
fiers that make the statement true.

The results in Table 5 show that knowledge-
enhanced models display improved quantifier in-
terpretation. For minority characteristic generics,
models correctly assign higher MRR to properties
when quantified with “few” or “some” compared
to “many” or “most.” The pattern reverses appro-
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Model English isiZulu isiXhosa Sepedi SeSotho Average

Baseline 10.8 9.7 8.3 12.1 11.4 10.5
+ConceptNet 23.4 21.2 19.6 24.5 23.7 22.5
+DBpedia 24.9 22.8 21.1 25.3 24.6 23.7
+Both KBs 38.7 36.4 34.2 39.1 38.3 37.3

Table 3: Generic classification accuracy (%) on universally quantified variants

Model Classification Accuracy (%)

Minority Majority

mT5 8.3 10.1
+ConceptNet 14.7 18.2
+DBpedia 13.9 19.4
+Both KBs 21.3 28.6

Table 4: Accuracy of classifying falsified quantified
generics as non-generic (averaged across languages; see
Appendix A for per-language results)

priately for majority characteristic generics. The
combined KB approach shows the strongest dif-
ferentiation between appropriate and inappropriate
quantifiers, with the gap between true and false
quantifiers widening from 0.21 to 0.41 for minority
characteristics and from 0.27 to 0.43 for majority
characteristics. Per-language analysis (Appendix
A) shows that Nguni languages achieve the largest
differentiation gaps despite higher baseline over-
generalization.

However, the relatively high MRR scores even
for false quantifiers (e.g., 0.31 for “most” with mi-
nority generics) indicate that models still strug-
gle with complete understanding. The quantifier
“some” proves particularly challenging across all
languages (Appendix A), maintaining relatively
high scores across both generic types, suggesting
models interpret it as a hedge rather than a specific
quantity indicator.

5 Discussion

Our results provide several insights into generic
overgeneralization, the role of knowledge in ad-
dressing it, and the cross-lingual nature of this phe-
nomenon.

5.1 Why ConceptNet and DBpedia
Outperform ASCENT KB

The effectiveness of ConceptNet and DBpedia over
ASCENT KB reflects their complementary knowl-
edge coverage. ConceptNet’s strength for minority
characteristic generics emerges from its encoding
of conceptual relationships that help models un-

derstand the logical structure of subset properties.
When a model needs to understand that “lions have
manes” does not mean “all lions have manes,” Con-
ceptNet provides the conceptual framework: manes
are a male characteristic, male lions are a subset of
lions, and characteristics can be subset-specific.

DBpedia’s advantage for majority characteristic
generics stems from its encyclopedic coverage of
exceptions. While ASCENT KB might note that
albino tigers exist, DBpedia provides detailed in-
formation about white tigers, golden tigers, and
stripeless tigers, giving models concrete evidence
against universal generalizations.

The combined approach achieving up to 67%
reduction demonstrates that generic reasoning re-
quires both conceptual understanding and factual
grounding. Neither pure commonsense nor pure
factual knowledge alone suffices; models need to
understand both the conceptual possibility of ex-
ceptions and specific instances of those exceptions.

5.2 Cross-Lingual Universality and Variation

The consistency of knowledge enhancement effects
across languages provides evidence that generic
overgeneralization reflects a deep semantic chal-
lenge rather than a surface linguistic phenomenon.
Despite different morphological systems for ex-
pressing genericity, all languages benefit similarly
from the same types of knowledge, supporting the
view that overgeneralization stems from conceptual
biases in how categories and properties are related.

However, the higher baseline overgeneralization
in Nguni languages could be related to obliga-
tory plural marking creating a stronger bias toward
universal interpretation, suggesting that language-
specific features can potentially amplify or dampen
universal cognitive biases. The fact that knowledge
enhancement reduces but does not eliminate these
cross-linguistic differences indicates a complex in-
teraction between universal conceptual tendencies
and language-specific morphosyntactic features.
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Model Minority Generics Majority Generics

Few Some Many Most Few Some Many Most

mT5 0.62 0.71 0.48 0.41 0.52 0.68 0.73 0.79
+ConceptNet 0.68 0.74 0.42 0.35 0.48 0.64 0.78 0.83
+DBpedia 0.65 0.72 0.44 0.37 0.45 0.61 0.81 0.85
+Both KBs 0.72 0.77 0.38 0.31 0.41 0.58 0.84 0.88

Table 5: Mean Reciprocal Rank of masked properties under different quantifiers (averaged across languages; see
Appendix A for per-language breakdowns). Higher scores for appropriate quantifiers indicate better understanding.

5.3 Implications for Multilingual NLP

Our findings demonstrate that knowledge resources
developed for one language can effectively trans-
fer to others when properly projected, suggest-
ing that conceptual knowledge is largely language-
independent. However, the type of knowledge mat-
ters as much as its quantity; simply adding more
factual assertions provides limited benefits com-
pared to incorporating diverse knowledge types.
The persistent differences between language fam-
ilies even after knowledge enhancement indicate
that effective multilingual systems must account
for typological variation while leveraging universal
conceptual knowledge. While knowledge enhance-
ment provides consistent benefits, the residual dif-
ferences between Nguni and Sotho-Tswana lan-
guages suggest that language-specific adaptations
may be necessary to achieve optimal performance.

6 Conclusion

We demonstrate that generic overgeneralization is a
universal semantic challenge that manifests across
typologically diverse languages, with language-
specific morphological features potentially mod-
ulating its expression. Our experiments show that
combining ConceptNet’s commonsense knowledge
with DBpedia’s encyclopedic coverage achieves up
to 67% reduction in overgeneralization. Our cross-
lingual analysis uncovers systematic variation be-
tween language families, with Nguni languages
exhibiting 4-7% higher baseline overgeneraliza-
tion than Sotho-Tswana languages, possibly due
to obligatory plural marking. Manual validation
of translations shows that morphological errors di-
rectly impact generic interpretation, yet knowledge
enhancement partially compensates for these arti-
facts. These findings advance multilingual NLP
by demonstrating that conceptual knowledge trans-
fers effectively across languages while highlighting
the need for morphology-aware methods in low-
resource settings.

Limitations

While our results demonstrate significant progress
in addressing generic overgeneralization, several
limitations point toward important future research
directions. The classification accuracy on univer-
sally quantified statements, while improved, re-
mains below 40% even with comprehensive knowl-
edge enhancement. This suggests that the models
still struggle with the fundamental distinction be-
tween generic and universal statements, indicating
a need for more sophisticated approaches to se-
mantic representation. The reliance on translated
generics introduces potential noise and errors that
may limit the effectiveness of knowledge enhance-
ment. Our study focuses on four South African
languages from two language families, which lim-
its generalizability to other language families and
morphological systems.
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A Detailed Probing Results by Language

This appendix presents the complete per-language
results for our probing experiments, which are aver-
aged in the main text. These detailed breakdowns
show language-specific patterns in how models
interpret quantifiers and generic statements after
knowledge enhancement.

A.1 Quantified Statement Classification
Probing

Table 6 shows the accuracy of classifying falsi-
fied quantified generics as non-generic for each
language. Minority characteristic generics were
quantified with “many” and “most” (creating false
statements), while majority characteristic generics
were quantified with “few” and “some.”

Notably, Nguni languages (isiZulu and isiXhosa)
show lower accuracy than Sotho-Tswana languages
(Sepedi and SeSotho) and English, mirroring the

overgeneralization patterns in the main results. The
gap persists across all knowledge configurations
but narrows with knowledge enhancement.

A.2 Quantifier Interpretation Probing

Tables 7 and 8 present the Mean Reciprocal Rank
of masked properties under different quantifiers
for each language. Models should rank properties
higher when paired with appropriate quantifiers
(few/some for minority generics, many/most for
majority generics).

A.3 Language-Specific Patterns

Several language-specific patterns emerge from the
results:

Nguni Languages (isiZulu, isiXhosa): These
languages show the strongest differentiation be-
tween appropriate and inappropriate quantifiers af-
ter knowledge enhancement, despite having higher
baseline overgeneralization. For majority generics
with combined KBs, the gap between “most” (0.90-
0.91) and “few” (0.38-0.39) reaches 0.52-0.53, the
largest among all languages.

Sotho-Tswana Languages (Sepedi, SeSotho):
These languages demonstrate more balanced im-
provements across both minority and majority char-
acteristics. They maintain better classification accu-
racy for falsified generics, suggesting more robust
understanding of quantifier semantics.

English: Shows the highest absolute accuracy
in classification tasks but moderate MRR differ-
entiation, suggesting that the multilingual model
may not fully leverage English’s richer training
data when processing generic semantics.

Quantifier “Some”: Across all languages, this
quantifier remains problematic, maintaining rela-
tively high MRR scores (0.55-0.61) even for major-
ity characteristic generics where it should receive
low scores. This universal challenge suggests a fun-
damental limitation in how current models process
scalar implicatures cross-linguistically.

B Training and Computational Details

All experiments were conducted on a Google Cloud
Compute Engine instance with an a2-ultragpu-2g
machine type, equipped with 2 x NVIDIA A100
80GB GPUs and 340GB memory.

For English BERT-large and RoBERTa-large ex-
periments, we used the KEPLER framework (Wang
et al., 2021) with a batch size of 32, learning rate
of 2e-5, and trained for 5 epochs on the knowledge-
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Model Minority Characteristic Generics (%)

English isiZulu isiXhosa Sepedi SeSotho Avg

mT5 9.2 7.3 6.8 9.7 8.5 8.3
+ConceptNet 16.3 12.8 11.9 16.1 16.4 14.7
+DBpedia 15.4 12.1 11.2 15.3 15.5 13.9
+Both KBs 23.7 18.4 17.2 23.8 23.4 21.3

Model Majority Characteristic Generics (%)

English isiZulu isiXhosa Sepedi SeSotho Avg

mT5 11.1 9.2 8.7 11.3 10.2 10.1
+ConceptNet 20.1 16.3 15.8 20.4 18.4 18.2
+DBpedia 21.4 17.5 16.9 21.6 19.6 19.4
+Both KBs 31.6 25.8 24.3 31.2 30.1 28.6

Table 6: Accuracy of classifying falsified quantified generics as non-generic, broken down by language. Higher
scores indicate better understanding that inappropriate quantifiers make statements non-generic.

Model English isiZulu isiXhosa Sepedi SeSotho

Few Some Many Most Few Some Many Most Few Some Many Most Few Some Many Most Few Some Many Most

mT5 .63 .72 .49 .42 .60 .69 .51 .44 .59 .68 .52 .45 .64 .73 .45 .38 .65 .74 .44 .37
+CN .69 .75 .43 .36 .66 .72 .45 .38 .65 .71 .46 .39 .70 .76 .39 .32 .71 .77 .38 .31
+DB .66 .73 .45 .38 .63 .70 .47 .40 .62 .69 .48 .41 .67 .74 .41 .34 .68 .75 .40 .33
+Both .73 .78 .39 .32 .70 .75 .41 .34 .69 .74 .42 .35 .74 .79 .35 .28 .75 .80 .34 .27

Table 7: MRR for minority characteristic generics under different quantifiers by language. Higher scores for
few/some vs. many/most indicate correct interpretation. CN=ConceptNet, DB=DBpedia.

enhanced corpus. Knowledge triples were verbal-
ized using templates such as “X is capable of Y” for
ConceptNet’s CapableOf relation and “X has prop-
erty Y” for DBpedia property assertions, following
the approach of Ralethe and Buys (2022).

For multilingual mT5-large experiments, we
adopted the QA-GNN framework (Yasunaga et al.,
2021) as adapted by Ralethe and Buys (2025), us-
ing batch size 16, learning rate 1e-4, and 10 train-
ing epochs. Knowledge graph subgraphs were re-
trieved using a 2-hop neighborhood around entities
mentioned in each generic statement, with graph
attention networks processing up to 50 nodes per
subgraph. Training time was approximately 8 hours
for BERT/RoBERTa models and 12 hours for mT5
models per knowledge configuration.
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Model English isiZulu isiXhosa Sepedi SeSotho

Few Some Many Most Few Some Many Most Few Some Many Most Few Some Many Most Few Some Many Most

mT5 .53 .69 .72 .78 .50 .66 .75 .81 .49 .65 .76 .82 .54 .70 .71 .77 .55 .71 .70 .76
+CN .49 .65 .77 .82 .46 .62 .80 .85 .45 .61 .81 .86 .50 .66 .76 .81 .51 .67 .75 .80
+DB .46 .62 .80 .84 .43 .59 .83 .87 .42 .58 .84 .88 .47 .63 .79 .83 .48 .64 .78 .82
+Both .42 .59 .83 .87 .39 .56 .86 .90 .38 .55 .87 .91 .43 .60 .82 .86 .44 .61 .81 .85

Table 8: MRR for majority characteristic generics under different quantifiers by language. Higher scores for
many/most vs. few/some indicate correct interpretation. CN=ConceptNet, DB=DBpedia.
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