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Abstract

Large Language Models (LLMs) show strong
potential for reranking documents in informa-
tion retrieval (IR), but training with monolin-
gual data often leads to monolingual overfit-
ting and lexical bias, limiting generalization in
cross-lingual IR (CLIR). To overcome these is-
sues, we investigate instruction-tuning LLaMA-
3.1-8B-Instruct on English and multilingual
code-switched data, and evaluate on mMARCO
and XQuAD-R. Results show that instruction-
tuning on code-switched data substantially im-
proves CLIR performance, while monolingual
tuning remains more effective for monolingual
reranking. We introduce a novel measure to
analyze the relationship between lexical over-
lap and reranking performance, showing that
the two factors are correlated. We finally con-
duct a causal analysis using counterfactual ex-
amples, where we evaluate whether rewriting
passages that share overlapping keywords with
the query causes models to change their rele-
vance predictions. Overall, we find that code-
switching serves as an effective and lightweight
strategy to improve cross-lingual generalization
in LLM-based re-ranking, while our analyses
show that lexical overlap remains a major factor
that can mislead reranking models.

1 Introduction

Large Language Models (LLMs) such as LLaMA-3
(Dubey et al., 2024), GPT-4 (OpenAI et al., 2024),
Gemini (Team et al., 2025), and Mistral (Jiang
et al., 2023) have shown strong performance across
a wide range of NLP tasks. In information retrieval
(IR), which aims to return relevant documents from
large text collections given a user query, recent
advances have led to growing interest growing in-
terest in leveraging LLMs as rerankers. In par-
ticular, LLMs have been explored as pointwise
(Zhuang et al., 2023; Sun et al., 2023), pairwise
(Qin et al., 2024), or list-wise rerankers (Tang et al.,
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Figure 1: The first passage is semantically relevant to
the query but shares no lexical overlap. In contrast, the
second passage contains lexical overlap with the query
terms “population” and “Paris” but is topically unrelated.
Lexically biased LLM rerankers may incorrectly favor
the non-relevant passage.

2024; Chen et al., 2025; Parry et al., 2024; Ma
et al., 2023) under prompt-based inference settings,
where the model refines the order of documents
within the initial retrieval set. In parallel, many
LLMs have demonstrated their capability to pro-
cess and generate text in multiple languages (Dang
et al., 2024). This progress has further opened new
possibilities for the use of LLMs in cross-lingual
information retrieval (CLIR), where queries and
documents are written in different languages. Re-
cent work has begun to systematically evaluate the
performance of LLMs in cross-lingual retrieval set-
tings. For example, Zuo et al. (2025) benchmarked
a wide range of LLM rerankers under translated
and non-translated CLIR scenarios, analyzing list-
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wise and pairwise strategies as well as the interac-
tion between first-stage retrievers and second-stage
rerankers. However, they do not investigate how
LLMs make relevance judgments.

Understanding whether LLMs determine rele-
vance for the right reasons (i.e., semantic rele-
vance), or whether they are biased towards lexical
matches (i.e., shortcuts) is crucial for equitable in-
formation access and ensuring the trustworthiness
of LLM-based retrieval systems (Litschko et al.,
2023b). Biases in cross-lingual retrieval settings
have been well-studied in the context of multilin-
gual pre-trained language models (mPLMs). Prior
work includes studies on, e.g., language biases
in mPLM-based bi-encoders (Laosaengpha et al.,
2025; Huang et al., 2024; Yang et al., 2024; Roy
et al., 2020). Our work is closest to (Litschko et al.,
2023a), who study zero-shot cross-lingual trans-
fer of mPLM-based cross-encoders, where models
trained on English data have been found to exhibit
poor transfer performance to cross-lingual rerank-
ing tasks. The authors show that this monolingual
overfitting can be mitigated by training on code-
switched data instead, which naturally reduces the
lexical overlap between queries and documents.
However, it remains unclear whether LLMs ex-
hibit similar lexical biases when used as rerankers,
and whether instruction-tuning those models on
code-switched training data also leads to similar
improvements. Figure 1 illustrates this issue for
a single pairwise cross-lingual reranking step: the
model incorrectly prefers a lexically overlapping
but semantically irrelevant passage, suggesting that
relevance judgments may not always reflect gen-
uine semantic understanding. This motivates our
central question: Are LLM-based reranker outputs
relevant for the right reasons?

To address this, we investigate whether LLM-
based rerankers are affected by monolingual over-
fitting and lexical bias, and how instruction tuning
strategies change this behavior. Specifically, we
compare direct zero-shot reranking (without further
training) against instruction-tuning on monolingual
English data, multilingual code-switched data and
target language-pair data on both MoIR and CLIR.
In addition to our reranking experiments, we also
characterize the lexical bias through a correlation
and causal analysis. Our main contributions are:

• We show that instruction-tuning pair-wise
rerankers on code-switched data improves
their cross-lingual reranking performance.

However, unlike mPLM-based cross-
encoders, these gains come at the cost of a
worse monolingual reranking performance.

• We introduce two overlap-sensitive metrics,
ALOD and AP–LOD correlation, to quantify
the link between lexical overlap and rerank-
ing quality. Our results show that the two are
positively correlated. However, this correla-
tion is weak, underpinning that lexical overlap
are only one of multiple factors (and biases)
influencing what rerankers deem relevant.

• We evaluate the causal relationship between
lexical overlaps and reranking performance.
Specifically, we construct counterfactual ex-
amples from previously incorrectly classi-
fied instances (see Figure 1) and investigate
whether removing lexical overlap by rewriting
the passage causes rerankers to recover from
incorrect predictions.

2 Related Work

Shortcut Learning in Language Models. Sev-
eral recent studies have investigated shortcut learn-
ing behavior in LLMs, where models rely on super-
ficial features in the input, such as lexical overlap
or specific keywords, instead of performing gen-
uine semantic reasoning. Du et al. (2021) focus on
BERT-based models and show that these models
tend to favor shortcut tokens early in training. Tang
et al. (2023) found that LLMs often rely on shal-
low cues from prompts during in-context learning,
rather than understanding the task itself. Sun et al.
(2024) showed that instruction tuning and reinforce-
ment learning with human feedback can increase
shortcut learning in LLMs across tasks such as
reasoning. Yuan et al. (2024) provided a system-
atic evaluation of shortcut biases, including lexical
overlap, in prompt-based inference. Hagstrom et al.
(2025) found that LM-based rerankers can be mis-
led by lexical similarities, often favoring candidates
with high surface overlap over semantically more
relevant passages on English-only retrieval tasks.
The study shows that these biases can lead to sig-
nificant drops in model accuracy. Taken together,
these studies suggest that shortcut learning remains
a major challenge for LLMs.

However, these works do not explore how short-
cut bias behavior changes when LLMs are fine-
tuned for monolingual and cross-lingual pairwise
reranking. We fill this gap and study shortcut learn-
ing behavior in prompt-based reranking tasks, and
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especially regarding the model’s sensitivity to lexi-
cal overlap.

Bias in Multilingual and Cross-lingual Contexts.
Gao et al. (2025) analyzed LLMs’ cross-lingual
context retrieval ability on cross-lingual machine
reading comprehension (xMRC). They observed a
significant performance gap between monolingual
and cross-lingual settings, and propose a two-phase
explanation: the model first encodes the question
and then retrieves the answer. This highlighted that
performance degradation in xMRC is not solely
due to output generation but is rooted in earlier
stages of processing. While their work identifies
where in the model such limitations arise, it does
not fully clarify whether relevance decisions are
based on semantic features or surface-level lexical
shortcuts, which is the focus of our work.

Beyond retrieval tasks, cross-lingual inconsisten-
cies have also been observed across a range of tasks
involving semantic understanding, reasoning, and
prompt sensitivity. Wang et al. (2024) found that
multilingual models fail to achieve balanced perfor-
mance across languages, with significant disparities
depending on the language used. Lai et al. (2023)
showed that ChatGPT performs better in English
than in other languages, particularly on tasks requir-
ing complex reasoning, with performance gaps es-
pecially notable in lower-resource languages. Fur-
thermore, Etxaniz et al. (2024) showed that LLMs
often fail to realize their full multilingual potential
when prompted in non-English languages, high-
lighting an implicit preference for English in rea-
soning processes.

However, these studies do not examine how dif-
ferent instruction tuning strategies affect LLM per-
formance in monolingual versus cross-lingual infor-
mation retrieval tasks, nor do they address whether
such biases differ under different training condi-
tions. Our work aims to fill this gap by systemati-
cally comparing reranking behavior under monolin-
gual and code-switched instruction tuning setups.

3 Methodology

We conduct three different types of analyses: First
we investigate how well LLM rerankers instruction-
tuned on English data generalize to other monolin-
gual reranking (MoIR) and cross-lingual reranking
(CLIR) tasks, or whether they suffer from mono-
lingual overfitting (Section 3.1). We then propose
a measure that captures the correlation between
lexical overlap and reranking performance (Sec-

tion 3.2). Finally, we introduce an evaluation pro-
tocol that facilitates a causal analysis of the impact
of lexical overlap on reranking performance at the
instance-level (Section 3.3).

3.1 Pair-wise Reranking
This pipeline consists of three steps. (1) We con-
vert monolingual and code-switched training sets
into a unified instruction–output format. (2) We
fine-tune the base LLM under different language
settings. (3) We evaluate the tuned models using
pairwise prompting with a sliding window, follow-
ing (Qin et al., 2024). Each prompting unit is de-
fined as u(q, d1, d2), where q is a query and d1,
d2 are two candidate documents. To obtain the
full ranking, we apply a sliding window approach:
starting from a randomly shuffled ranking, we iter-
atively traverse the list in reverse order, comparing
and potentially swapping adjacent document pairs
(stride = 1) based on model judgments. For each
query, we repeat this process ten times to obtain
the final top-10 reranked results. The prompting
template we use is provided in Appendix A.

For reranking evaluation, we report the results
using the metric MRR@10 implemented in the
ir_measures package (MacAvaney et al., 2022). To
further understand the impact of superficial token
overlap, we introduce two complementary metrics
to analyze the model’s reliance on lexical overlap,
as discussed next.

3.2 Correlation Analysis
The first metric captures the average lexical over-
lap difference (ALOD) in lexical overlap between
relevant and irrelevant documents (lexical overlap
difference, LOD) for a given query. For a query q,
we compute:

LODq =
1

|D+
q |

∑

d∈D+
q

Overlap(q, d)

− 1

|D−
q |

∑

d∈D−
q

Overlap(q, d)

where D+
q and D−

q denote the sets of relevant
and irrelevant documents for query q, respectively,
and Overlap(q, d) denotes the lexical overlap score
between q and d, computed as the number of shared
tokens (after normalization and stopword removal).
We opted for LODq instead of simple lexical over-
lap to ignore shared non-keyword tokens that can
be found in both relevant and non-relevant docu-
ments. On the dataset-level, ALOD is the average
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Figure 2: We conduct two types of causal analyses to understand how models determine relevance. Left: We use
retention rate to measure the extent to which LLMs still correctly prefer the relevant passages (true positives) after
removing lexical overlapping keywords. A high retention rate indicates a low lexical bias. Right: We use the
recovery rate to measure the extent to which errors made by LLMs are due to being misguided by lexical biases. A
high recovery rates indicate high lexical bias.

of LODq over all queries:

ALOD =
1

|Q|
∑

q∈Q
LOD(q)

ALOD quantifies the degree to which lexical bias
can be present in monolingual and cross-lingual
ranking datasets. This baseline version of ALOD
provides a simple and transparent measure of lexi-
cal bias. In our reranking setup, we compute LOD
based on the negative documents found in the top-k
input ranking. To assess its robustness, we addition-
ally experimented with alternative pre-processing
settings, including stopword removal, lemmatiza-
tion, and subword tokenization, as well as varying
the number of negative documents per query. We
find that while these variations changed the abso-
lute ALOD values, the relative trends remained con-
sistent with the comparisons above. This confirms
that the ALOD metric is robust to preprocessing
choices and evaluation settings. Detailed results
are provided in Appendix F, Table 11.

The second is AP–LOD Correlation, which
measures the Spearman correlation (Zar, 2005) be-
tween the average precision (AP) (Harman, 1992)
of each query and its LOD. This correlation cap-
tures the alignment between lexical bias and actual
ranking performance.

These metrics are applied to both MoIR and
CLIR outputs to compare lexical reliance across
language settings. Higher ALOD scores indicate
a larger potential for models falling back to a lexi-
cally bias, while a high AP–LOD correlation shows
that this is strongly related to the reranking perfor-
mance of different models.

3.3 Causal Analysis

Inspired by counterfactual explanations (Verma
et al., 2024) and adversarial robustness studies
on multilingual embedding models (Michail et al.,
2025), we design two types of counterfactual exper-
iments to test to what extent lexical overlap impacts
a model’s notion of relevance. Here, we conduct
our analysis at the instance level, where each sam-
ple consists of a query, a relevant passage, and a
non-relevant passage. We initially evaluate LLMs
on queries that share tokens with the relevant and
non-relevant passages, respectively. We then repeat
our experiments with perturbed passages, where
we remove the lexical overlap (intervention) and
measure how it affects the model performance. The
original dataset and perturbations are automatically
generated with GPT-5 (OpenAI, 2025) (see prompt
templates in Appendix D). Using synthetic exam-
ples allows us to disentangle the effects of semantic
relevance and lexical bias in a controlled way. As
shown in Figure 2, we investigate model predic-
tions from two complementary perspectives:

Right for the right reasons? Here, we construct
instances where the relevant passage shares key-
word tokens with the question, while the non-
relevant passage is lexically distinct from the query
(Figure 6). We focus on instances where LLMs cor-
rectly prefer the relevant passage (henceforth, True
Positives – TP), and test if removing lexical over-
lap (intervention; Figure 8) causes LLMs to change
their preferred passages. We compute the reten-
tion rate as the fraction of TP instances where the
intervention has no impact. High retention rates
indicate a low lexical bias, where models prefer the
relevant passage for the right (semantic) reasons.
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Wrong because of lexical overlaps? In this ex-
periment, we generate samples where only the non-
relevant passages share keyword tokens with the
query, while the relevant ones do not (Figure 7).
Here we ask the question whether errors made by
LLMs are due to an over-reliance on lexical cues.
We focus on errors where models incorrectly prefer
the non-relevant passage (henceforth, False Posi-
tives – FP), and compute the recovery rate, defined
as the proportion of FP errors that are corrected
after keyword overlap cues are removed (interven-
tion; Figure 9). A high recovery rate indicates a
high lexical bias and captures the extent to which
models judge documents as relevant for the wrong
reasons, specifically caused by lexical overlap.

To ensure the correctness of lexical–semantic
conditions (see Figure 2), we prompted GPT-5 mul-
tiple times, each time generating 20 candidate ex-
amples for a given condition, and accumulated 240
candidates per condition before applying filtering
criteria. In the lexical-semantic conflict dataset, the
irrelevant passages share lexical tokens with the
query while relevant passage do not, and vice versa
for the other dataset.After filtering, we obtained
204 conflict and 200 non-conflict instances for the
retention and recovery rate analyses.

4 Experimental Setup

4.1 Model and Baselines

We use Llama-3.1-8B-Instruct (Dubey et al.,
2024) as the base model for zero-shot reranking
(Zero-shot model) and instruction tuning. During
both training and inference, we adopt the official
LLaMA-3.1 chat template as the prompting for-
mat.1 We compare this model against different
models instruction-tuned on code-switched queries
(EN-XX-tuned) or code-switched queries and doc-
uments (XX-XX-tuned). Hyperparameters are pro-
vided in Appendix B. An example prompt using
the chat format is shown in Appendix C.

To assess the impact of instruction-tuning on lex-
ical overlap behavior, we construct several variants
of Llama-3.1-8B-Instruct.

The EN-EN-tuned model is instruction-tuned on
English monolingual data and serves as our primary
baseline. This setup corresponds to the standard
zero-shot cross-lingual transfer setting (Lauscher
et al., 2020).

1https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3_1/

The EN-XX-tuned and XX-XX-tuned models
are tuned on code-switched queries, and on both
code-switched queries and documents, respectively,
to evaluate the effect of multilingual and mixed-
language supervision.

As an upper bound, we include the Fine-tuned
model, which is directly instruction-tuned on the
target language pairs and evaluated on correspond-
ing reranking tasks. While this provides a per-
formance reference, it is important to note that
this baseline often cannot be reached in practice
due to limited language coverage of existing ma-
chine translation systems and lack of available
instruction-tuning training data.

4.2 Datasets

Following Litschko et al. (2023a), we use the mul-
tilingual MS MARCO dataset (mMARCO) dataset
(Bonifacio et al., 2022) for model training and eval-
uation.2 For instruction tuning, we reuse the public
training data provided by Litschko et al. (2023a)
in the HuggingFace repository,3 which was origi-
nally derived from the Train Triple Small set in
the multilingual mMARCO dataset.4 For the code-
switched training data. Specifically, we use the
multilingual code-switched data (EN-XX and XX-
XX code-switched data) with a translation probabil-
ity p = 0.5. From this pool, for each language pair,
we use a sampl of 1 million instances for training.

For evaluation, we construct a reduced version of
the dataset, denoted as top100.dev from the orig-
inal top1000.dev set provided by mMARCO by
keeping all qrels-marked relevant documents from
top1000.dev, discarding queries without them,
and randomly sampling non-relevant ones to obtain
100 documents per query. For each query, the order
of its 100 documents is randomly shuffled.

To validate whether other findings generalize
to other datasets, we also include the XQuAD-
R (Roy et al., 2020) dataset. Here, too, we con-
struct for each query input rankings consisting of
top-100 documents. Following the original setup
in Roy et al. (2020), we train the model using

2The mMARCO dataset includes 14 languages with vary-
ing levels of resource availability and writing systems: Ara-
bic (AR), Chinese (ZH), Dutch (NL), English (EN), French
(FR), German (DE), Hindi (HI), Indonesian (ID), Italian (IT),
Japanese (JA), Portuguese (PT), Russian (RU), Spanish (ES),
and Vietnamese (VI).

3https://huggingface.co/datasets/rlitschk/
csclir/tree/main

4https://github.com/spacemanidol/MSMARCO/blob/
master/Ranking/README.md
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EN DE AR IT RU AVG AVGX-X ∆ZS ∆ZS
X-X

Zero-shot 51.14 38.73 29.57 38.58 36.42 38.89 35.83 - -
EN-EN-tuned 72.41 62.08 55.34 62.30 61.57 62.74 60.32 +23.85 +24.50
EN-XX-tuned 70.72 60.27 45.45 59.31 57.93 58.74 55.74 +19.85 +19.92
XX-XX-tuned 70.50 60.86 45.64 61.46 57.79 59.25 56.44 +20.36 +20.62
Fine-tuned - 64.79 57.91 65.28 62.35 64.55 62.58 +25.66 +26.76

Table 1: MoIR: Monolingual re-ranking results on mMARCO language pairs in terms of MRR@10. Results are
reported per language and averaged in two ways: (1) AVG includes all monolingual pairs, and (2) AVGX-X excludes
EN–EN. ∆ZS: Improvement over the zero-shot baseline, computed based on AVG. ∆ZS

X-X: Improvement over the
zero-shot baseline, computed based on AVGX-X. Bold: The best performance for each language (excluding the
fine-tuned baseline model).

EN-DE EN-IT EN-AR DE-IT DE-RU AR-IT AR-RU AVG AVGX-X ∆ZS ∆ZS
X-X

Zero-shot 46.14 46.22 40.64 35.72 34.19 25.52 25.78 36.31 30.30 - -
EN-EN-tuned 62.87 62.90 52.61 54.00 53.43 40.96 42.42 52.74 47.71 +16.43 +17.40
EN-XX-tuned 64.21 63.55 51.17 53.31 52.09 33.31 34.31 50.28 43.25 +13.96 +12.95
XX-XX-tuned 64.63 64.51 51.70 56.32 54.39 41.34 41.01 53.42 48.26 +17.10 +17.96
Fine-tuned 66.21 66.54 59.38 61.09 60.01 53.53 52.53 59.90 56.79 +23.58 +26.49

Table 2: CLIR: Cross-lingual re-ranking results on mMARCO in terms of MRR@10.

the English-only SQuAD dataset and its machine-
translated versions generated via Google Translate
(Wu et al., 2016). For the code-switched version
of the SQuAD-based training data, we implement
the same code-switching method with a transla-
tion probability p = 0.5 following the approach in
(Litschko et al., 2023a).

We evaluate our pairwise rerankers on a mix
of high- and low-resource languages, covering di-
verse scripts and language families. Specifically,
for mMARCO, we include monolingual re-ranking
in English (EN), German (DE), Arabic (AR), Ital-
ian (IT), and cross-lingual re-ranking in EN-{DE,
AR, IT}, DE-{IT, RU} and AR-IT. For XQuAD-R,
we select three languages for MoIR (EN, DE, AR)
and evaluate CLIR on the following language pairs:
EN-{DE, AR}, DE-RU.

We conduct the lexical overlap perturbation ex-
periment on the mMARCO dataset, focusing on
four language pairs that include English: one mono-
lingual pair (EN-EN) and three cross-lingual pairs
(EN-DE, EN-IT, and EN-AR).

5 Results and Discussion

In the following, we first measure the performance
gap of LLMs in monolingual reranking (MoIR) and
cross-lingual reranking (CLIR). We specifically
investigate how well different instruction-tuning
strategies impact the generalization performance.
We then validate our findings on XQuAD-R.

5.1 Overall Reranking Results

Cross-task Generalization Performance. Ta-
bles 1 and 2 report the MRR@10 scores on
five MoIR and seven CLIR language pairs on
mMARCO under different training conditions. We
also report the average across all language-pairs
and language-pairs that do not involve English.
Across all settings, models perform better on MoIR
than CLIR. For example, the Zero-shot model
achieves an average MRR@10 of 0.389 for MoIR
versus 0.363 for CLIR. When language-pairs in-
volving are excluded, the gap widens (MoIR: 0.358,
CLIR: 0.303). After EN–EN tuning, MoIR reaches
0.627, while CLIR falls behind with a MRR@10 of
0.527. This gap widens to 0.12 if language-pairs in-
volving English are excluded. Similar patterns hold
for EN-XX-tuned (0.587 vs. 0.503, gap: 0.084) and
XX-XX-tuned (0.593 vs. 0.534, gap: 0.059).

These results show that monolingual reranking
is generally easier for LLMs than cross-lingual
reranking. This is expected since rerankers do not
have to rely on interlingual semantics. Even under
instruction-tuning on code-switched data, which
improves overall CLIR performance, the gap be-
tween MoIR and CLIR remains substantial. This
could be due to mismatching vocabularies, where
models can rely less on lexical shortcuts in CLIR
compared to MoIR. We will explore their correla-
tion and causal relationships further in Section 6.

Instruction-Tuning on English versus Code-
Switched Data. Across all MoIR and CLIR lan-
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MoIR CLIR

EN DE AR RU AVG EN-DE EN-AR DE-RU AR-RU AVG

Zero-shot 96.87 94.93 90.50 94.08 94.09 96.15 92.99 87.06 84.44 90.16
EN-EN-tuned 97.81 96.27 93.89 96.37 96.08 96.83 92.12 94.35 88.21 92.88
EN-XX-tuned 97.73 96.56 93.67 96.85 96.20 97.34 95.01 95.57 87.23 93.79
XX-XX-tuned 98.47 96.44 92.74 96.75 96.10 97.24 93.19 95.39 87.17 93.25
Fine-tuned 97.82 96.49 94.05 96.15 96.12 96.77 94.92 95.45 92.61 94.94

Table 3: MoIR and CLIR re-ranking results on XQuAD-R in terms of MRR@10.

guage pairs, models fine-tuned on the target lan-
guage pair (Fine-tuned) consistently achieves the
best performance, while the Zero-shot model
performs the worst. This is expected because
fine-tuning on cross-lingual data allows the model
to jointly align interlingual semantics and learn
ranking-specific features.

For all MoIR language pairs, the EN-EN-tuned
model consistently outperform models trained
on code-switched data, even on non-English
monolingual pairs. For example, it achieves a
MRR@10 score of 0.724 on English, outperform-
ing both the EN-XX-tuned model (0.707) and
XX-XX-tuned model (0.705). Similarly on Russian,
where it yields a performance 0.616 MRR@10,
also outperforming the EN-XX-tuned (0.579) and
XX-XX-tuned (0.578) variants. We find a con-
sistent trend of LLM rerankers performing worst
on monolingual reranking in Arabic and Russian
reranking tasks.

In contrast, CLIR performance generally bene-
fits more from instruction-tuning on code-switched
data. For example, on EN–DE, the XX-XX-tuned
model attains 0.646, outperforming EN-EN-tuned
(0.629). On AR–IT, it scores 0.413, slightly above
EN–EN tuning (0.410). The only exceptions
are EN–AR and AR–RU, where EN-EN-tuned
reranker remains superior (0.526 vs. 0.512/0.517,
and 0.424 vs. 0.343/0.410). The cross-lingual
reranking performance tends to improve when the
question and answer passage languages are typolog-
ically more similar. While the XX-XX-tuned model
performs well on EN–DE (0.646) and EN–IT
(0.645), it yields worse results on AR–IT (0.413)
and AR–RU (0.410).

Overall, our results indicate that instruction-
tuning on code-switched data improves cross-
lingual reranking performance. However, con-
trary to findings reported on mBERT-based cross-
encoders (Litschko et al., 2023a), we find a per-
formance trade-off, where code-switching train-
ing data improves CLIR at the expense of perfor-

mance drops in MoIR. We hypothesize that this
is related to the syntactic coherence, or the lack
thereof in code-switched data,5 of passages pro-
vided in context. The results also reveal a clear
English-centric bias: in MoIR, all rerankers achieve
the strongest performance on reranking English
passages; in CLIR, rerankers perform better on
language-pairs involving English queries. Exclud-
ing CLIR language-pairs involving English leads to
a sharp drops in CLIR performance, ranging from
-0.031 (Fine-tuned reranker) to -0.070 MRR@10
(EN-XX-tuned reranker). The consistently weaker
results on Arabic and Russian, and cross-lingual
language-pairs involving those languages, suggests
that LLM rerankers struggle to bridge the script
gap (Chari et al., 2025).

5.2 Evaluation on XQuAD-R

Table 3 presents the reranking performance of
models evaluated on XQuAD-R after instruction
tuning on the (code-switched) English SQuAD
dataset. The results generally follow similar trends
to those observed on mMARCO, especially re-
garding the benefits of code-switching CLIR data.
Consistent with our results on mMARCO, we find
on CLIR that instruction-tuning variants improve
upon the Zero-shot model (0.902), EN-XX-tuned
(0.938) and XX-XX-tuned models (0.933) outper-
form the EN-EN-tuned model (0.930), and the
model Fine-tuned on target the language-pairs
performs best (0.949). While the results are overall
much higher than those reported on mMARCO,
we find that the improvements on CLIR from code
switching are much smaller. Taken together, this
suggests that the benefits of reducing the lexical
overlap in instruction-tuning diminish as the rerank-
ing task become easier. In the rest of this paper we
focus our analysis on the mMARCO dataset.

5The dictionaries used for code switching were induced
from nearest cross-lingual neighbors in a multilingual word
embedding space. Because of this, there is no guarantee that
substituted words belong to the same word class.
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Figure 3: Results of the recovery rate analysis: Sankey diagrams illustrating model decisions on synthetic pairwise
reranking experiments before and after perturbation. Non-relevant passages share overlapping keyword tokens
with queries, while relevant passages have no overlap. Results are shown for the EN–EN-tuned, EN–XX-tuned, and
XX–XX-tuned models. The Zero-shot model (not shown) obtained perfect results without any false positives.

MoIR CLIR

ALOD ρAP-LOD ALOD ρAP-LOD

Zero-shot 0.90 22.10 0.20 10.49
EN-EN-tuned 0.90 28.16 0.20 18.19
EN-XX-tuned 0.90 25.61 0.20 14.46
XX-XX-tuned 0.90 21.85 0.20 14.81

Table 4: ALOD: Average lexical overlap difference com-
puted separately for MoIR and CLIR on mMARCO.
ρAP-LOD: Spearman correlation (in %) between the aver-
age precision of each query and its LOD across MoIR
and CLIR on mMARCO.

6 Further Analysis

In Section 6.1, we first establish to what degree
the reranking performance is correlated to the lex-
ical overlap between queries and documents. We
then investigate the reranking results at the instance
level by inspecting individual pair-wise classifi-
cation results (Section 6.2). Here, we evaluate
whether removing lexical overlap causes models to
recover from incorrect predictions.

6.1 Correlation Between Lexical Overlaps
and Reranking Performance

Table 4 summarizes the ALOD and AP–LOD cor-
relation across MoIR and CLIR on mMARCO. As
expected, relevant documents exhibit higher lexical
overlap with the query, and this signal is stronger in
MoIR (0.90) than CLIR (0.20). Across all models,
the AP–LOD correlation is consistently higher in
MoIR than CLIR, confirming that MoIR reranking
relies more heavily on surface-level overlap. In
CLIR, due to vocabulary mismatch between query
and document languages, lexical overlap is weak
and often limited to named entities, forcing models
to rely more on semantic relatedness features.

Among all models, EN-EN tuning shows the

strongest correlation between AP and lexical over-
lap, which means it relies heavily on surface word
matching. Instruction-tuning on code-switched
data also increases this reliance, though to a lesser
extent, suggesting more semantic-driven decisions.

6.2 Causal Effect of Removing Lexical
Overlap

Figure 3 and Table 5 summarize the results
of models that have been instruction-tuned on
the mMARCO dataset. For examples with lex-
ical–semantic conflicts, the EN-EN-tuned model
shows a recovery rate of 0.500, i.e., half of its false-
positive predictions were corrected once lexical
overlap cues were removed. This suggests a causal
dependence on surface-level keyword overlap. By
contrast, the two Code-switched-tuned models
(EN-XX-tuned and XX-XX-tuned) show smaller re-
covery rates (0.300 and 0.455), suggesting that
training rerankers on code-switched data indeed
mitigates their lexical bias. However, it is impor-
tant to interpret the results with caution, as the total
number of false positives is relatively small.

For the examples without lexical–semantic
conflicts, the Zero-shot achieves perfect re-
tention (1.00), whereas the EN-EN-tuned and
Code-switched-tuned models show slightly
lower scores (0.975–0.995). This indicates that
instruction-tuned models still exhibit a slight ten-
dency to rely on lexical overlaps when correctly
identifying the relevant passage. This observa-
tion aligns with our AP–LOD correlation analy-
sis, where instruction-tuned models show stronger
positive correlations between lexical overlap and
relevance scores. Different from our reranking
results (Section 5), we find that the Zero-shot
model outperforms instruction-tuned models. This
may be explained by domain differences: Both the
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Model
Retention Rate Analysis Recovery Rate Analysis

Accuracy True Positives Retention Rate Accuracy False Positives Recovery Rate

Zero-shot 1.000 204 / 204 1.000 1.000 0 / 200 –
EN-EN-tuned 1.000 204 / 204 0.976 0.690 62 / 200 0.500
EN-XX-tuned 1.000 204 / 204 0.995 0.900 20 / 200 0.300
XX-XX-tuned 0.995 203 / 204 0.995 0.945 11 / 200 0.455

Table 5: Summary of causal analysis. Left: Results in terms of classification accuracy, number of instances where
models correctly prefer relevant document (true positives; TP), and the fraction of TP instances where models still
identify relevant passage after removing lexical overlap (retention rate). Right: Results in terms of classification
accuracy, number of instances where models incorrectly prefer non-relevant document with lexical overlap (False
Positives; FP), and the fraction of FP instances where the preferred passage changes after removing lexical overlap.

EN-EN-tuned and Code-switched-tuned models
were fine-tuned on the mMARCO and XQuAD-R
datasets, which improved their in-domain perfor-
mance but reduced robustness when evaluated on
our synthetic data.

Overall, our findings provide causal evidence
that lexical overlap directly influences relevance
judgments. Compared to the EN-EN-tuned model,
instruction-tuning on code-switched data reduces
but does not fully removes lexical bias.

7 Conclusion

In this study, we investigate to what extent LLM-
based rerankers suffer from lexical biases as op-
posed to semantic relevance. Our results on MoIR
and CLIR show that instruction-tuning on English
data is most effective for monolingual retrieval,
whereas code switching provides the largest ben-
efits in CLIR. We also show that the correlation
between reranking performance and lexical overlap
is stronger for models trained on monolingual data
compared to those trained on code-switched data.
Our causal analysis reveals that spurious lexical
cues can mislead the model, but their removal often
restores correct semantic judgments. These find-
ings highlight both the promise of code-switched
data for improving cross-lingual generalization and
the need to address lexical bias to ensure that LLMs
are “relevant for the right reasons.”

8 Limitation and Future Work

Due to the high computational costs of instruction-
tuning LLMs, we limit our study to the widely-used
Llama-3.1-8B-Instruct model. In addition, the mul-
tilingual code-switched data was generated with a
fixed translation probability of 0.5, leaving open
how different translation probability might affect
cross-lingual generalization and lexical bias. In
future work, we plan to (1) detect lexical biases

at the model-internal level, in order to better un-
derstand how lexical overlap reliance and cross-
lingual alignment are shaped by different training
data, and (2) investigate methods for steering mod-
els away from undesired shortcut behavior. Finally,
our causal analysis is limited to monolingual exam-
ples. We plan to extend this framework to cross-
lingual settings in future work.
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A Pairwise Re-ranking Prompt Template

System Prompt
You are an expert in multilingual
information retrieval. Your task is to
determine which of the two passages is more
relevant to the given query.
Strict instructions:
- Do NOT provide any explanation.
- Do NOT include any additional words,
punctuation, or formatting.
- Answer with only Passage A or Passage B
(without quotes).

User Prompt
Query: {query}
Passage A: {doc1}
Passage B: {doc2}
Which passage is more relevant to the query?
Respond with exactly one of the following
options:
Passage A
Passage B
Your answer:

Figure 4: Prompt for pairwise re-ranking.

B Hyperparameters and Infrastructure

Hyperparameter Value

Maximum sequence length 1024
Learning rate 2e-5
Batch size 32
Warm-up ratio 0.03
Optimizer AdamW (Loshchilov and

Hutter, 2017)
Re-ranking Model Llama-3.1-8B-Instruct
LLM Parameters 8 Billion

Table 6: Hyperparameter values for re-ranking models
used in our experiments.

Setup Value

GPU NVIDIA H100 SXM5-GPUs (94 GB)
Avg. Training Dura-
tion (per model)

45 h

Avg. Test Duration
(per language pair)

87 h

Table 7: Computational environment. We use the
Huggingface framework to train our models (von
Werra et al., 2020), ir-measures for computing
MRR@10 (MacAvaney et al., 2022), and Spearman
correlation coefficients for correlation analysis.

C Prompting Format

<|begin_of_text|><|start_header_id|>system<|
end_header_id|>
You are an expert in multilingual
information retrieval. Your task is to
determine which of the two passages is more
relevant to the given query.
<|eot_id|><|start_header_id|>user<|
end_header_id|>
Query: ....
Passage A: ....
Passage B: ....
Which passage is more relevant to the query?
Your answer:<|eot_id|><|start_header_id|>
assistant<|end_header_id|>

Figure 5: A simplified example of a chat-formatted
prompt using the official LLaMA-3.1 chat template.
This example is only for illustration and does not reflect
the full prompt used in our experiments. For the com-
plete prompt we use, see Appendix A.

D GPT-5 Synthetic Data Generation
Prompts

This appendix provides the exact GPT-5 prompt
templates used for generating and perturbing the
synthetic data described in Section 3.3. All prompts
are shown in their natural-language form for repro-
ducibility.

Prompt 1: Lexical-Semantic Non-Conflict
Candidate Generation
Please generate 20 samples in jsonl
format for pairwise semantic relevance
reranking task. Each sample must follow
the content requirements and format
requirements below.

**Content requirements:**
(1) The query should be a "wh"-question
and keywords in the questions must have
synonyms.
(2) Passage A must always be semantically
relevant to the query. Passage B must

always be semantically irrelevant to the
query.
(3) Passage A and the query must share at
least one overlapping non-stopword

keyword. Passage B must not contain any
overlapping token with the query.
(4) Passage A and Passage B should be
about similar or related topics, so that
the pair forms a hard example (difficult
to judge at first glance, but with a
unique correct answer).

**Format requirements:**
(1) Output must be in jsonl format.
(2) Each entry must include: qid, query,
passage_A, passage_B, and output.
(3) Each qid and pid must be unique and
assigned in order.
(4) Always set "output": "Passage A".
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Now, please directly generate 20 new
samples that strictly follow the above
rules.

Figure 6: GPT-5 prompt used for generating lexi-
cal–semantic non-conflict (TP) examples.

Prompt 2: Lexical-Semantic Conflict Candidate
Generation
Please generate 20 samples in jsonl
format for pairwise semantic relevance
reranking task. Each sample must follow
the content requirements and format
requirements below.

**Content requirements:**
(1) The query should be a "wh"-question
and keywords in the questions must have
synonyms.
(2) Passage A must always be semantically
relevant to the query. Passage B must
always be semantically irrelevant to the
query.
(3) Passage B and the query must share at
least one overlapping non-stopword token.
**Passage A** must not contain any
overlapping token with the query.
(4) Passage A and Passage B should be
about similar or related topics, so that
the pair forms a hard example (difficult
to judge at first glance, but with a
unique correct answer).

**Format requirements:**
(1)Output must be in JSONL format.
(2)Each entry must include: qid, query,
passage_A, passage_B, and output.
(3)Each qid and pid must be unique and
assigned in order.
(4)Always set "output": "Passage A".

Now, please directly generate 20 new
jsonl samples that strictly follow the
above rules.

Figure 7: GPT-5 prompt used for generating lexi-
cal–semantic conflict (FP) examples.

Prompt 3: Lexical-semantic Non-Conflict True
Positive Example Perturbation
Please perturb each of the following
triples (original examples) used for
pairwise semantic relevance reranking.
These examples all satisfy the following
conditions:
(1) "gold_output" Passage is always
semantically relevant to the query. the
other passage is always semantically
irrelevant to the query.
(2) the **relevant passage** and the
query share at least one overlapping non-
stopword token.

**Perturbation requirements:**
(1) Replace ALL OVERLAPPING TOKENS in the
**Relevant Passage** that also appears

in the query (i.e., all overlapping
tokens) with suitable synonyms, while
keeping the overall sentence semantics
unchanged.
(2) Do not modify any other part of
relevant passage except the overlapping
tokens, and make sure all overlapping
tokens are replaced. Do not modify
irrelevant passage.
(3) The output must be in JSONL format,
consistent with the structure of the
original examples.

Following the above instructions, please
perturb those original examples provided
below and return the results in JSONL
format.

Figure 8: GPT-5 prompt used for perturbing lexi-
cal–semantic non-conflict (TP) examples.

Prompt 4: Lexical-semantic Conflic False Positive
Example Perturbation
Please perturb each of the following
triples (original examples) used for
pairwise semantic relevance reranking.
These examples all satisfy the following
conditions:
(1) "gold_output" Passage is always
semantically relevant to the query. the
other passage is always semantically
irrelevant to the query.
(2) the **irrelevant passage** and the
query share at least one overlapping non-
stopword token.

**Perturbation requirements:**
(1) Replace all overlapping tokens in **
irrelevant passage** that also appears in
the query (i.e., all overlapping tokens)
with suitable synonyms, while keeping

the overall sentence semantics unchanged.
(2) Do not modify any other part of
irrelevant passage except the overlapping
tokens, and make sure all overlapping

tokens are replaced. Do not modify
relevant passage.
(3) The output must be in JSONL format,
consistent with the structure of the
original examples.

Following the above instructions, please
perturb the 20 original examples provided
below and return the results in JSONL

format.

Figure 9: GPT-5 prompt used for perturbing lexi-
cal–semantic conflict (FP) examples.
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EN-EN EN-DE EN-IT EN-AR

0 [1, 3) [3, +∞) 0 [1, 3) [3, +∞) 0 [1, 3) [3, +∞) 0 [1, 3) [3, +∞)

Zero-shot 83.1 87.9 83.5 88.4 87.9 85.1 88.2 88.1 90.9 87.2 86.5 86.5
EN-EN-tuned 95.3 95.1 90.3 91.2 91.1 79.3 92.1 89.9 82.6 87.5 86.2 73.0
EN-XX-tuned 96.6 97.4 92.2 93.6 94.0 86.2 93.8 93.3 87.6 89.9 91.0 82.4
XX-XX-tuned 94.6 96.5 94.2 94.0 94.0 93.1 94.5 93.8 90.9 90.7 91.1 83.8

Table 8: Accuracy of pairwise relevance classification on the mMARCO dataset, where models are prompted to
judge which of two passages is more relevant to a query. The relevant passage is lexically disjoint from the query,
while the irrelevant passage exhibits varying degrees of lexical overlap. Irrelevant passages are grouped into three
categories based on their overlap count with the query: 0 (no overlap), [1, 2) (low overlap), and [3, +∞) (high
overlap). The table reports classification accuracy across language pairs and overlap levels. Bold indicates the
overlap group with the lowest accuracy for each model–language-pair pair.

EN-EN EN-DE EN-IT EN-AR

Zero-shot 32.4 23.1 36.4 70.0
EN-EN-tuned 55.0 50.0 38.1 35.0
EN-XX-tuned 50.0 33.3 46.7 46.2
XX-XX-tuned 50.0 16.7 36.4 25.0

Table 9: Accuracy (recovery rate) of different models on the subset of triple samples where the irrelevant document
originally had ≥3 lexical overlaps with the query and was incorrectly predicted as relevant. Results shows the
proportion of cases in which models correctly identified the relevant document after removing the overlapping
tokens.

E Causal Analysis with Word2Vec-based
Perturbation

Overlap EN-EN EN-DE EN-IT EN-AR

0 296 32,157 31,457 53,664
[1, 3) 1,759 7,218 6,262 4,652
[3,+∞) 206 87 121 74

Table 10: Number of pair-wise classification instances
extracted from mMARCO, grouped by how many to-
kens overlap between the query and non-relevant docu-
ment.

In an earlier version of our causal analysis, we
used real examples from the mMARCO dataset
and applied word2vec-based perturbations. we
first identify triplets u(q, dr, dnr) where the rele-
vant document dr shares no overlap with the query,
while the non-relevant document dnr contains vary-
ing degrees of overlap. Inspired by (Litschko et al.,
2023a), we partition samples into those where dnr
has no overlap (0 tokens), low overlap (1–2 tokens),
and high overlap (≥3 tokens) with q (see Table 10).
For these high-overlap samples, we replaced over-
lapping tokens in the non-relevant document with
their nearest neighbors in the word2vec embedding
space and re-evaluated model predictions.

Table 8 shows the classification accuracy of all
four models across the four language pairs (dubbed

clean run). Among the 16 combinations of 4 lan-
guage pairs and 4 models, we observed a consistent
pattern: in 12 of these settings, classification accu-
racy is lowest when the number of overlapping to-
kens between the query and non-relevant document
was greater than or equal to three. For example, for
the XX-XX-tuned model on the EN-AR pair, the
accuracy falls to 0.838 in the high-overlap group,
while reaching 0.907 in the no-overlap group and
0.911 in the low-overlap group. The only excep-
tions were the zero-shot model applied to the EN-
EN and EN-IT language pairs. These drops suggest
that models are more likely to over-rely on lexical
overlap signals, leading to misclassification when
the overlap is misleading.

When comparing models within the same lan-
guage pair, we find that in cases where the ir-
relevant document shares at least one token with
the query, the models trained on code-switched
data generally outperformed the EN-EN-tuned
model. For example, for the CLIR pair EN-IT,
the EN-XX-tuned and XX-XX-tuned models reach
accuracies of 0.876 and 0.909, respectively, ex-
ceeding the EN-EN-tuned model’s performance of
0.826.

In the second part of the experiment, we focus on
misclassified samples from each language pair in
the [3,∞) group and measure if substituting over-
lapping tokens causes the predictions to change.
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stopword
removal

lemmati-
zation

subword
tok-
enizer

without
nega-
tives

top-5
nega-
tives

top-10
nega-
tives

top-20
nega-
tives

top-50
nega-
tives

MoIR ALOD 0.847 1.083 2.042 2.508 0.902 0.903 0.904 0.904
CLIR ALOD 0.242 0.235 0.460 0.406 0.197 0.197 0.196 0.197

Table 11: Robustness analysis of the ALOD metric under different preprocessing alternatives and varying number
of negative documents extracted top the top-k documents in the input ranking.

Table 9 quantifies this recovery effect by report-
ing the proportion of misclassified high-overlap
samples that were corrected after corruption. We
observe that all four models show improved accu-
racy on these modified samples across all language
pairs.

However, upon closer inspection, we found that
this setup had several limitations. Many overlap-
ping tokens corresponded to named entities or fixed
expressions whose substitution could not preserve
meaning, and word2vec neighbors sometimes in-
troduced semantic drift. To ensure more controlled
perturbations and consistent semantics, we there-
fore replaced this analysis with the synthetic GPT-
5–generated data described in Section 3.3, which
allows for precise manipulation of lexical overlap
while maintaining contextual coherence.

F ALOD Robustness: Experimental
Results

This appendix reports the robustness evaluation
results for the ALOD metric, as summarized in
Table 11.
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