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Abstract

Large Language Models (LLMs) have demon-
strated remarkable generalization capabilities
across tasks and languages, revolutionizing nat-
ural language processing. This paper inves-
tigates the naturally emerging representation
alignment in LLMs, particularly in the middle
layers, and its implications for disentangling
language-specific and language-agnostic infor-
mation. We empirically confirm the existence
of this alignment, analyze its behavior in com-
parison to explicitly designed alignment mod-
els, and demonstrate its potential for language-
specific manipulation without semantic degra-
dation. Building on these findings, we pro-
pose Inference-Time Language Control (ITLC),
a novel method that leverages latent injection
to enable precise cross-lingual language con-
trol and mitigate language confusion in LLMs.
Our experiments highlight ITLC’s strong cross-
lingual control capabilities while preserving
semantic integrity in target languages. Further-
more, we demonstrate its effectiveness in al-
leviating the cross-lingual language confusion
problem, which persists even in current large-
scale LLMs, leading to inconsistent language
generation. This work advances our under-
standing of representation alignment in LLMs
and introduces a practical solution for enhanc-
ing their monolingual and cross-lingual perfor-
mance.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing, demonstrating re-
markable generalization capabilities across diverse
tasks and languages (Brown et al., 2020; Le Scao
etal., 2023; Anil et al., 2023; Team et al., 2025; Co-
here et al., 2025; Singh et al., 2025). Their ability
to adapt to new tasks in few-shot and even zero-
shot settings highlights their efficiency and ver-
satility (Bang et al., 2023; Susanto et al., 2025).

“Equal contributions. See Appendix K for further details.
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Figure 1: We inspect the alignment in the middle layer
representation of LLMs, allowing us to disentangle the
language-specific and language-agnostic information.
By exploiting this behavior, we are able to achieve
Inference-Time Language Control (ITLC), alleviating
the language confusion problem in LLMs.

Prior works have identified a naturally emerging
representation alignment across layers in LLMs,
particularly in the middle layers of LLMs (Chang
et al., 2022; Zhao et al., 2024a). This emerging
alignment in LLMs is the key factor in their ability
to handle multiple languages (Cahyawijaya, 2024;
Tang et al., 2024; Wilie et al., 2025), which is piv-
otal for their cross-lingual capabilities. However,
several questions remain open, such as whether this
emerging alignment behaves similarly to alignment
in models trained with enforced alignment objec-
tives (Reimers and Gurevych, 2020; Yang et al.,
2019a; Feng et al., 2022; Limkonchotiwat et al.,
2022, 2024), how this alignment can be utilized to
further enhance LLMs, etc.

In this work, we investigate the phenomenon of
representation alignment in LLMs, focusing on its
occurrence, distinction, and potential applications.

438

Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025), pages 438—467
November 8-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/SEACrowd/itlc

We aim to confirm the presence of representation
alignment and contrast it with alignment in LLMs
with strictly designed alignment, such as multi-
lingual SentenceBERT (Reimers and Gurevych,
2019) or LaBSE (Feng et al., 2022). Our findings
highlight that, unlike LLMs with strictly designed
alignment, the naturally emerging alignment in re-
cent LLMs demonstrates a much stronger reten-
tion of language-specific information with much
smaller performance drop in the aligned represen-
tation compared to the unaligned layers which we
conjecture to be the minimum required language-
specific information required to perform do decod-
ing in the correct language.

To this end, we exploit the bottleneck of
language-specific information in the aligned rep-
resentation and develop a simple test-time inter-
vention method to control the decoding language,
namely inference-time language control (ITLC).
Specifically, we extracted a low-rank language vec-
tor from the aligned representations using linear
discriminant analysis (Balakrishnama and Ganap-
athiraju, 1998; Tharwat et al., 2017), aggregated
them per language to create language vectors, and
perform a simple vector translation to control the
decoding language as shown in Figure 1 . We
show the effectiveness of ITLC in mitigating the lan-
guage confusion problem (Marchisio et al., 2024).
Furthermore, we conduct an extensive evaluation to
test that, unlike other approaches, ITLC can control
the language with minimal loss of semantic.

Our contribution in this work is fourfold:

* We confirm the presence of representation
alignment in LLMs, providing empirical evi-
dence of this phenomenon (§3.2).

* We contrast natural alignment with strictly
designed alignment, highlighting their compa-
rable impact on cross-lingual generalization
while emphasizing their differences in align-
ment locations and the extent of language-
specific information retention (§3.2).

* We investigate a method to extract language-
specific information from aligned representa-
tions, showcasing the potential for language-
specific manipulation while preserving the se-
mantic integrity of the generation (§4.1).

¢ We introduce ITLC, a novel method that en-
ables cross-lingual language control and miti-

"Note that, during the inference step, we only need to per-
form a single vector addition operation to control the language
as everything else can be precomputed.

gates language confusion problems that retain
semantic integrity in target languages (§5).

2 Related Work

2.1 Representation Alignment in LLMs

Representation alignment refers to the process by
which semantically identical inputs expressed in
different languages are mapped to similar inter-
nal embeddings within LLMs (Park et al., 2024b;
Wu and Dredze, 2020; Chang et al., 2022). Origi-
nally, representation alignment is strictly embedded
into the modeling objective to ensure output con-
sistency across languages and to enable a better
cross-lingual transfer (Pires et al., 2019; Wu and
Dredze, 2019; Reimers and Gurevych, 2020; Feng
et al., 2022; Choenni et al., 2024). Wendler et al.
(2024); Zhao et al. (2024a); Mousi et al. (2024)
have observed a tendency for LLMs to align repre-
sentations across different languages by measuring
the similarity between embeddings of parallel sen-
tences across different languages (Ham and Kim,
2021; Gaschi et al., 2023; Cahyawijaya, 2024). In-
spired from previous studies, our work measures
the degree of alignment across various layers be-
tween strictly and naturally aligned models to con-
trast the two and understand its relation to language-
specific and language-agnostic capabilities (Kul-
shreshtha et al., 2020; Libovicky et al., 2020; Hua
et al., 2024; Wilie et al., 2025) of LLMs.

2.2 Latent Controllability in LLMs

LLMs controllability is crucial for ensuring that the
systems adhere with human intentions. Through
mechanisms such as adapter (Pfeiffer et al., 2020;
Hu et al., 2022), prompting (Lin et al., 2021; Bai
et al., 2022), latent manipulation (Madotto et al.,
2020; Ansell et al., 2021), etc, we aim to gain
control over the behavior of LLMs. Various as-
pects have been explored in LLM controllability,
including internal knowledge (Madotto et al., 2020;
Xu et al., 2022), styles & personas (Lin et al.,
2021; Wagner and Ultes, 2024; Cao, 2024), lan-
guages (Ustiin et al., 2020; Ansell et al., 2021),
human values (Bai et al., 2022; Cahyawijaya et al.,
2025a), etc. Li et al. (2023b); Duan et al. (2024);
Ji et al. (2024); Chen et al. (2024) show that latent
states in LLMs exhibit discernible patterns for dis-
tinguishing truthful outputs from hallucinated ones,
suggesting an intrinsic awareness of fabrication.
Similar methods are also introduced for stylistic
and safety control (Subramani et al., 2022; Kwak

439



LaBSE

First L.
0% irst Layer

60%

50%

S

Percentage
PR
g

<

10%

-0.4 -0.2 0.0 0.2 04 06 08
Cosine Similarity

10 -04 -0.2 0.0

Qwen2.5-0.5B
First Layer

-0.4 -0.2 0.0 0.2 04 06 08
Cosine Similarity

10 -04 -0.2 0.0

All pairs eng_Latn — * ind_Latn — * arb_Arab — *

0.2

Cosine Similarity

Qwen2.5-0.5B
Middle Layer

0.2

Cosine Similarity

LaBSE
Middle Layer

LaBSE
Last Layer

0.4 06 08 10 -04 -0.2 0.0 0.2 04 06 0.8 10

Cosine Similarity

Qwen2.5-0.5B
Last Layer

0.4 06 08 10 -04 -0.2 0.0 0.2 04 06 0.8 10

Cosine Similarity

zho_Hans — * spa_Latn —* hin_Deva — * rus_Cyrl —*

Figure 2: Cross-lingual similarity across different layers in LaBSE and Qwen2.5-0.5B. LaBSE exhibits high
cross-lingual similarity in its final layer, whereas Qwen2.5-0.5B shows this similarity in the middle layer. This
difference suggests that the alignment of representations occurs at distinct positions within the two models.

et al., 2023). These underscore the potential of
latent interventions for precise control over LLM
behavior. ITLC extends the latent manipulation
methods for controlling the generated language
in inference time, demonstrating how language-
specific information can be extracted and manipu-
lated without losing semantic meaning. This opens
new avenues for controlling language generation
and mitigating confusion problems.

3 Understanding Representation
Alignment in LLMs

Prior works (Chang et al., 2022; Zhao et al.,
2024a; Cahyawijaya, 2024; Wilie et al., 2025; Pay-
oungkhamdee et al., 2025) demonstrate the ex-
istence of emerging representation alignment in
LLMs. We take a step further to provide a deeper
understanding to this behavior by contrasting it
with alignment in strictly-aligned LLMs. Specifi-
cally, we observe the correlation between the de-
gree of alignment with the cross-lingual generaliza-
tion and language identification (LID) capability,
which are the proxies to their language-agnostic
and language-specific capabilities, respectively.

3.1 Experiment Settings

Model Settings As a measure of alignment, we
compute the average cosine similarity of the latent
representation of a sentence in one language with
the representation of parallel sentences in the other
languages. For the LLM with strictly designed
alignment, we employ LaBSE (Feng et al., 2022).

For the LLM with emerging representation align-
ment, we employ multilingual decoder-only LLM,
i.e., Qwen2.5 (Qwen et al., 2025). Specifically, we
employ Qwen2.5-0.5B with 500M parameters to
have a comparable scale with the LaBSE model
with 471M parameters. To measure the LID ca-
pability, we take the latent representation of both
models in the first, middle, and last layers. In this
case, we are interested in comparing the behav-
ior between the strictly aligned representation in
LaBSE and the emerging aligned representation
in Qwen2.5-0.5B. Following Cahyawijaya et al.
(2025b), we measure LID performance by linear
probing and kNN to measure linear separability
and cluster closeness within each language class.
More details about the experiment are presented in
Appendix B and Appendix C.

Datasets We employ a set of multilingual eval-
uation datasets. To measure the degree of align-
ment, we employ 7 datasets: FLORES-200 (Team
etal., 2022), NTREX-128 (Federmann et al., 2022),
NusaX (Winata et al., 2023), NusaWrites (Cahyaw-
jjaya et al., 2023), BUCC (Zweigenbaum et al.,
2017), Tatoeba (Tiedemann, 2020), and Bible Cor-
pus (McCarthy et al., 2020). For cross-lingual eval-
uation, we incorporate 4 datasets: SIB200 (Ade-
lani et al., 2024), INCLUDE-BASE (Sridhar et al.,
2020), XCOPA (Ponti et al., 2020), and PAWS-
X (Yang et al., 2019b). For LID evaluation, we
incorporate 3 datasets, i.e., FLORES-200, NTREX-
128, and NusaX. The detailed description of each
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LaBSE Qwen2.5-0.5B

Method Layer FLORES-200 NTREX-128 NusaX FLORES-200 NTREX-128 NusaX
Linear First 95.13 93.29 97.30 94.21 91.42 95.55
Probin Middle 94.18 92.68 94.51 91.76 90.04 87.09
& Last 70.89 74.36 65.44 92.46 90.27 88.77
First 88.35 90.43 81.78 83.69 86.06 65.79
KNN Middle 78.85 81.30 45.37 55.32 54.73 25.05
Last 3.92 1.63 0.00 71.73 81.86 29.39

Table 1: LID performance by layer and classification method for LaBSE and QWEN2.5-0.5B. Red bold text
highlights the LID scores on the layer where alignment occurs in each corresponding model. LID performance is
consistently lower in a layer where the representation is aligned across all models and classification methods.

dataset is shown in Appendix A.

3.2 Experiment Result

Strictly and Naturally Aligned LLMs LaBSE
and Qwen2.5-0.5B demonstrate distinct patterns in
cross-lingual representation alignment. As shown
in Figure 2, LaBSE demonstrates a distributed
alignment strength across deeper layers, with the
middle and last layers achieving high average simi-
larity scores (0.758 and 0.754, respectively). This
aligns with the training objective of LaBSE, which
aligns the representation on the last layer. In
contrast, Qwen2.5-0.5B exhibits a more localized
alignment pattern, with the middle layer showing
a strikingly higher average similarity (0.922) than
both the first (0.591) and last (0.375) layers. This
suggests that Qwen2.5-0.5B concentrates represen-
tation alignment sharply in the middle layer, achiev-
ing both higher and more stable cross-lingual rep-
resentation. See detailed analysis in Appendix B.1.
This result displays distinct layer-wise behaviors
in retaining the language-specific and language-
agnostic information within the two types of
LLMs. Specifically, for model with strict align-
ment, aligned representation is located in the layer
where the objective is applied to — the last layer in
the case of LaBSE —, while in LLMs with natural
alignment, the aligned representation is formed in
the middle layers and breaks as the representation
goes closer into the last layer. This aligns with prior
works (Chang et al., 2022; Tang et al., 2024; Wilie
et al., 2025) that show the representation alignment
naturally emerges in the middle layer of LLMs.

Representation Alignment and Language-
Specific Information As shown in Table 1, the
LID performance of LaBSE and Qwen2.5-0.5B
models evaluated using both KNN and linear prob-
ing reveals that the first layer consistently achieves
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the highest LID F1 scores across all datasets. For
LaBSE, the aligned representation in the last layer
exhibits notably weaker performance, particularly
for the FLORES-200 and NusaX datasets. Simi-
larly, in Qwen2.5-0.5B, the aligned representation
in the middle layer shows weaker LID performance
compared to the first and last layers. These em-
pirical findings highlight three key insights: (1)
language-specific information, such as surface-
level features and general linguistic patterns, is
more dominant in the early layers; (2) the degree of
alignment is negatively correlated with the amount
of language-specific information retained; and (3)
unlike strictly aligned LL.Ms, the aligned represen-
tation in LLMs with emerging alignment retains
more language-specific information, which poten-
tially serves as the basis for determining the lan-
guage of the generated sequence.

4 Inference-Time Language Control

Building on the insights presented in §3, we ex-
plore a method to control the language of the gener-
ated sequence with minimal semantic loss. Specif-
ically, we develop a method to extract language-
specific information at the layer where representa-
tion alignment occurs in LLMs. Using this infor-
mation, we gather language-specific vectors from
each language and use them to manipulate the
language-specific information during the inference
time. With this language-specific intervention, we
aim to steer the model toward utilizing language-
specific features, allowing us to perform Inference-
Time Language Control (ITLC).

ITLC offers two key advantages over exist-
ing intervention methods: Unlike existing inter-
vention methods that are limited to either cross-
lingual (Wang et al., 2024) or monolingual (Nie
et al., 2025) scenarios, and unlike approaches that



Method

Qwen2.5-0.5B  Qwen2.5-0.5B-Instruct

Qwen2.5-7B Qwen2.5-7B-Instruct

Llama-3.1-8B  Llama-3.1-8B-Instruct

Monolingual
Baseline 59.91 83.66 55.24 78.89 56.98 94.63
ICL (5-shot) 53.62 80.30 62.78 74.13 69.86 88.57
+ ITLC (ours) 74.38 86.28 69.55 81.01 82.18 93.21
PEFT 82.91 89.85 83.80 88.28 93.01 96.66
+ ITLC(ours) 86.17 90.51 85.60 90.12 96.03 97.19
ITLC (ours) 81.21 82.20 63.40 84.89 75.717 96.41

Cross-lingual
Baseline 35.36 57.69 60.61 78.81 26.13 83.25
ICL (5-shot) 50.63 69.70 69.37 78.51 62.38 86.68
+ ITLC (ours) 87.58 88.07 84.90 84.04 88.15 90.34
PEFT 77.55 84.34 82.66 83.56 89.73 91.13
+ ITLC (ours) 90.51 89.85 83.92 84.10 88.98 93.60
ITLC (ours) 85.61 86.79 74.40 84.73 81.68 89.06

Table 2: Main results for LPR metrics on LCB across different LLMs in monolingual and cross-lingual settings.
Blue rows denote methods combined with ITLC. Bold values represent the best result for each model. All results
have been applied with the QA/Chat template during inference.

Qwen2.5 Qwen2.5 Llama-3.1 Llama-3.1
Method 0.5B 0.5B Instruct 8B 8B Instruct
Baseline 34.97 52.28 25.05 80.68
INCLINE 43.82 56.54 34.69 80.63
ReCoVeR 88.43 84.21 88.79 90.29
ITLC (ours) 81.22 81.97 76.38 85.65

Table 3: Comparison of cross-lingual LPR metrics on
LCB across baseline and state-of-the-art methods for
6 languages (AR, ES, HI, ID, RU, ZH). Bold values
represent the best result for each model. All results
have been applied with the QA/Chat template during
inference.

require interventions across all layers (Sterz et al.,
2025; Yunfan et al., 2025), ITLC is effective in both
settings while intervening at only a single middle
layer.

4.1 Methods

Latent Extraction Latent extraction techniques
are employed to isolate language-specific informa-
tion from the model’s representations. Specifically,
we extract hidden states from various large lan-
guage models to capture language-specific features
at their middle representation layers. Given an in-
put sequence from the FLORES-200 dataset (Team
et al., 2022), we compute the hidden states h € R?
at a specified layer, where d represents the hidden
state dimension of the respective model. Finally,
we apply mean pooling to ensure that only mean-
ingful token embeddings contribute to the final rep-
resentation.

Linear Discriminant Analysis To disentangle
language-specific information, we apply Linear
Discriminant Analysis (LDA) to maximize class
separability and reduce dimensionality. We use

the Singular Value Decomposition (SVD) solver
in order to handle high-dimensional embeddings
efficiently and select the top k eigenvectors corre-
sponding to the largest eigenvalues to form W &
Rk Let D = {(h,1;)}}¥, denote a dataset
of hidden states h; € R? labeled with language
classes [; € {1,..., K}, this projects hidden states
to a lower-dimensional space z = h” W ¢ R*.

To validate the quality of the projection and
select the optimal number of components k, we
train a neural network classifier with a single linear
layer on the projected training data z. We exper-
iment with several k£ values and evaluate classi-
fication accuracy on a test set. Finally, we take
k = 100 because LID performance significantly
drops on higher components, indicating a major
loss of language-specific information. More details
on the LDA settings are shown in Appendix D

Language Vector Using the LDA-projected
space, we construct language vectors by leverag-
ing the neural network’s weights to identify active
dimensions for each language. For each language
| we extract the weight matrix U € RE** from
the neural network’s linear layer, where v, ; repre-
sents the contribution of dimension j € {1,...,k}
to language [. We define a threshold 7 = 0.01
and select active dimensions for language [ as
A = {j | Jw;| > 7}. The language vector
v; € R* for language [ is computed as the mean of
projected hidden states z; over samples of language
[, restricted to active dimensions:

N% Y omea Zili]s ifj €A,

vilJ| = .
) 0, otherwise,
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Figure 3: Comparison of LPR metrics on LCB between Qwen2.5-7B-Instruct with ITLC and Qwen2.5-7b-EAX
across 14 languages in monolingual and cross-lingual settings.

where V; is the number of samples for language
[, and z;[j] is the j-th component of the projected
hidden state.

Vector Injection To enable injection, we project
the language vector back to the original embedding
space using the pseudo-inverse: v;"¢ = v;WT €
R?. By applying this, we retain the original embed-
ding of the input and modify it with the language
vector inverse projection. For cross-lingual settings
with a source language x (e.g., English) and target
language y (e.g., Indonesian), we compute a shift
vector 2 ‘ '
d=—vie + vg“g.
For monolingual settings where source and tar-

get languages are identical (x = y), we treat the
shift vector as the language vector itself:

__ < orig
0=v, %

The shift vector is injected into the hidden states
at the middle layer during inference into both the
prompt and the generated tokens. Formally, we

apply:

h; =h;+ad, Vte [1, Ttotal]

where h; is the middle-layer hidden state at posi-
tion ¢, v is a scaling factor, h; is the corresponding
modified hidden state, and T, is the total num-
ber of tokens during inference covering both input
and generated tokens. We provide an ablation of
different language shift strategies in Appendix E.

>We demonstrate the importance of subtracting the source
language vector in Appendix G.4.
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Figure 4: Cross-lingual LPR performance on LCB, com-
paring base and instruct shift vector applications.

S Impact of ITLC

We demonstrate the effectiveness of ITLC on miti-
gating the language confusion problem (Marchisio
et al., 2024). We also compare our method with an-
other test-time intervention methods specifically de-
signed for language confusion (Sterz et al., 2025) 3.
Furthermore, we showcase that ITLC can also per-
form language control while being highly efficient
with minimal semantic loss compared to other ex-
isting test-time intervention methods (Wang et al.,
2024).

5.1 Experiment Setting

Dataset For language confusion evaluation,
we utilize the Language Confusion Benchmark
(LCB) (Marchisio et al., 2024), which contains
both monolingual and cross-lingual settings across
14 languages. For semantic retention assessment,
We utilize the Dolly multilingual dataset from Aya

3We also find another related test-time intervention (Yun-

fan et al., 2025), nonetheless the code is not published so we
could not empirically compare ITLC with their approach.
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Evaluation Suite (Singh et al., 2024) # by taking
200 QA sentences in nine various languages from
diverse regions and language families: Indone-
sian (ID), Thai (TH), Turkish (TR), Japanese (JA),
French (FR), Spanish (ES), Arabic (AR), Chinese
(ZH), and Korean (KO). The description of datasets
is shown in Appendix A.

Model Settings We experiment on two fami-
lies of multilingual LLMs: Qwen2.5 (0.5B and
7B), and Llama-3.1-8B, and their instruct variants.
Specifically, for cross-lingual control with the base
model, the model will start to generate by having
several target contexts, while in the instruct model,
we add a language-identified prompt (i.e., Please
answer in XX language) at the beginning of the
sentence. See Appendix F for more details on lan-
guage confusion and Appendix H for more details
on semantic retention.

Evaluation Our evaluation on language confu-
sion problem based on official metrics defined in
Marchisio et al. (2024): Line-level Pass Rate (LPR).
Meanwhile, we evaluate the cross-lingual genera-
tion performance based on chrF++ and multilingual
BERT F1 > metrics. Additionally, we conduct a
human evaluation with native annotators in both
EN—XX and XX—EN directions, focusing on 30
samples covering 3 aspects: naturalness, prompt-
completion relevance, and answer correctness us-
ing likert score ranging from [1...5]. The human
annotation guideline is presented in Appendix J.

5.2 Results

5.2.1 ITLC in Mitigating Language Confusion

As shown in Table 2, our proposed method, ITLC,
surpasses both baseline and in-context learning
(ICL) configurations across models of varying
parameter scales in cross-lingual settings. This
superior performance is consistent in monolin-
gual settings with only one exception, where the
Qwen2.5-0.5B-Instruct model performs slightly
worse than the baseline, demonstrating that ITLC
effectively shifts the model’s language output in
cross-lingual settings. For the base model, cross-
lingual performance improves progressively with
few-shot examples, as they utilize English inputs

4https://huggingface.co/datasets/CohereLabs/
aya_evaluation_suite/viewer/dolly_machine_
translated.

5https://huggingface.co/google—bert/
bert-base-multilingual-cased
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Figure 5: Generation performance for different target
languages on Qwen2.5 and Llama-3.1 Instruct models
based on chrF++ (Left) and BERT F1 (Right). Baseline
denotes the same model prompted in the same language
as the desired target language.

with explicit target-language instructions, reinforc-
ing input-output alignment. In contrast, the instruct
model exhibits minimal variation in few-shot set-
tings compared to ITLC, as its instruction-tuning
inherently supports multilingual prompting with-
out dependency on few-shot quantity. These re-
sults demonstrate that our approach enhances cross-
lingual language consistency while accommodat-
ing training objective differences between base and
instruct models. Moreover, ITLC achieves compet-
itive performance on instruct model compared to
parameter-efficient fine-tuning (PEFT): LoRA fine-
tuning method (Hu et al., 2022), without requiring
any changes to the LLM weights. Notably, our
method can further mitigate language confusion
when combined with ICL and PEFT. The combina-
tion of PEFT + ITLC consistently achieves the best
results in monolingual settings across all models,
while in cross-lingual settings, different combina-
tions prove optimal depending on the model, with
ICL + ITLC and PEFT + ITLC both achieving top
performance on various models. A detailed per-
language breakdown of the results is presented in
Table 26 and Table 27.

Comparison of ITLC with other test-time inter-
vention methods While INCLINE (Wang et al.,
2024) was originally designed to project repre-
sentations from various languages into English
to enhance LLM performance on low-resource
languages, we adapt and reverse this mechanism
to project from English into various target lan-
guages. Due to computational constraints, we
compare our method, ITLC, against INCLINE
and ReCoVeR (Sterz et al., 2025) using two
model families, Qwen2.5-0.5B and Llama-3.1-8B,
and their instruct variants across six target lan-
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guages. As shown in Table 3, ITLC outperforms
INCLINE across all model configurations. No-
tably, INCLINE shows limited improvement on
instruction-tuned models, with almost no perfor-
mance gain on Llama-3.1-8B-Instruct, suggesting
that methods relying solely on the last token may
be ineffective at mitigating language confusion in
instruction-following models. Although ReCoVeR
achieves the highest performance overall, ITLC
demonstrates competitive results on instruction-
tuned models while being considerably more ef-
ficient. This indicates that intervention at a single
middle layer is sufficient for mitigating language
confusion, compared to ReCoVeR’s approach of
intervening across all layers.

Comparison of ITLC with Cross-lingual Opti-
mized Model Due to computational constraints,
we were unable to perform full parameter fine-
tuning. Instead, we use another model, Qwen2.5-
7b-EAX (Yang et al., 2025), which was fine-tuned
on Qwen2.5-7B and optimized for cross-lingual
translation ability. As shown in Figure 3, our
ITLC achieves similar results to the upperbound
on average monolingual LPR (84.89% vs 85.28%).
However, for cross-lingual settings, our method
achieves 84.73% on average LPR compared to
92.54% for the upperbound. Notably, there is a
substantial performance gap for Indonesian (ID),
Japanese (JA), and Chinese (ZH). We observe
that our ITLC exhibits code-switching to English
when handling these languages, indicating that our
method may not fully eliminate the source language
vector for these languages and might require further
language-specific tuning of the scaling factor o, or
that our ITLC cannot adequately disentangle the
language vector and capture the language-specific
information well for these languages. A detailed
per-language breakdown of the results is presented
in Table 24 and Table 25

Transferability of Language Vector to Post-
Trained Models Interestingly, as shown in Fig-
ure 4, applying language vectors gathered from the
base model to the instruct model achieves com-
parable performance to its native instruct vectors
which suggests the effectiveness of language shift
from the base model for cross-lingual control even
in the instruct model. This transferability indi-
cates that the relative distance between language-
specific and that the resulting language-specific
features from the pre-training phase is robust to
downstream adaptation, including tasks generaliza-

Model Lang Shift Nat. Rel. Cor.
Qwen2.5-7B-Instruct
ID—ID 3.66 443 346
Baseline TH—TH 3.13 263 2.23
ZH—ZH 430 420 4.13
EN—ID 4.00 490 3.96
ITLe EN—-TH 246 393 3.40
EN—ZH 4.63 4.80 4.53
Llama-3.1-8B-Instruct
ID—ID 450 4.46 3.86
Baseline TH—TH 3.20 236 2.36
ZH—7ZH 396 433 376
EN—ID 3.83 3.83 3.53
ITLC EN—TH 3.40 293 2.60
EN—ZH 476 4.66 4.53

Table 4: Human evaluation of ITLC response quality
in Qwen2.5 and Llama-3.1. Nat., Rel., and Cor. re-
spectively denote naturalness, relevance, and answer
correctness ranging from [1. .. 5]. Baseline denotes the
same model prompted in the monolingual setting.

tion from instruction-tuning and value alignment
in RLHF and preference-tuning. This evidence im-
plies that the cross-lingual symmetry —i.e., the geo-
metric alignment between language representations
— constructed during the fine-tuning is preserved
even after various downstream refinement of the
model. The preservation of these relationships im-
plies that language-specific cues are retained as in-
variant properties across model versions, enabling
consistent cross-lingual language control through
ITLC despite parameter updates during downstream
fine-tuning, instruction-tuning, preference-tuning,
and RLHF.

5.2.2 Semantic Retention in ITLC

Cross-lingual Semantic Retention We demon-
strated that the proposed ITLC method not only
improve the target language fidelity but is also able
to effectively control cross-lingual generation and
retain the semantic information, implying contextu-
ally accurate generation. As shown in Figure 5, sta-
tistically, our proposed ITLC method improved 2%
across the chrF++ and 3-5% in BERT F1 metrics in
the instruct model (refers to Table 14); the same in-
vestigation also occurred in the base models (refers
to Table 13). The highest performance shows on
Spain (ES), French (FR), and Indonesia (ID), it out-
performs its baseline by 1-2%, which is prompted
in the same language as the desired target language.
However, we found that in some languages, such
as Korean (KO), it retains less cross-lingual seman-
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Lang Shift ‘ Prompt (EN) Generated Output (XX) Literal Translation (EN)

EN — KO | Tell me whether each of these SEYLICH CIS224E BHEHL, S5h@EH. Of course! Next, each item purpose is in Chinese,
are animals or not: Alliga- #HEEEIEEHN FE: ALESS MHEFHIEZ" FIE  unrelated to the question. Continuing to answer
tor, Grass, Tree, Boat, Dolphin, B&” 0|2t 1RAFIZ, 15 *HNFML. - 20  your question: each item are all in Korean as ”
Shark, Fish, Fence, Dog, Car (Alligator ... ZIEE S, which is incorrectly expressed, please

correct it. - Alligator (Alligator ...

EN — ZH | Why do potato chip bags be- 13 chip REITAERLN, TERFEANTHE  Potato chip bags soften after opening, mainly be-
come stale after opening? ERWIFIERE T T, RAEHN, HETHIEY  cause the sealed packaging environment changes.

SEFETRENZR T URISBEEMFMEE ORI When unopened, chips stored in vacuum or inert
KEEIRBENEIINKRE B ... gas can maintain crispness and freshness longer
without oxidation affecting flavor and quality. ...

EN — JA | Suggest 5 horror films to me HBEBATT . BXJLRZRE M1 TFo MH1TLI  Of course. Oh, here it should be “I&.” When

CERLTH, sIhEEFORTEAMNAEDRE  used with “H” or “L,” if the previous part is

BERKE. EHHA T LK X FYL  negative and the following starts with a positive

... expression, then it connects with conjunctions like
“TH” L TR ete ...

Figure 6: Examples of the lowest generated outputs score from Qwen2.5-7B-Instruct on Korean, Chinese, and
Japanese in EN—XX, evaluated with the BERT F1 score. The literal translation column is translated from the

generated output, and it is done by using ChatGPT.

tics due to the unique challenges of distinct syntax
and semantics (Park et al., 2020, 2024a), which
happens across models. Further investigation re-
vealed that many overlaps or code switching occur
between these languages. For example, in Figure 6,
EN—KO direction, the generated output contains
Japanese tokens (denoted in blue), while the literal
output being disconnected from the context. Ad-
ditionally, in Japanese output generation, it seems
like answering out of context, while in Chinese
produced coherent and well-structured sentences.
See Appendix I for more detailed examples.

Human Evaluation We further conduct a hu-
man evaluation to validate our findings regarding
the semantic retention in ITLC. We recruit native
speakers to annotate 30 generation samples in In-
donesia (ID), Thai (TH), and Chinese (ZH). Based
on results presented in Table 4, we found that our
ITLC proposed method tends to have a similar level
of semantics compared to the monolingual base-
line (prompted in the same target language), with
Qwen2.5-7B-Instruct performing quite better in
terms of Relevance and Correctness metrics com-
pared to the Llama-3.1-8B-Instruct. Meanwhile,
our ITLC method performs much better than base-
line in Indonesia and Thai in Qwen2.5 models,
showed that our injection vector could improved
the semantic transferability across languages, en-
abling the model to retain both relevance and cor-
rectness. Overall, our results validate the capability
of ITLC to maintain relevance and correctness in
cross-lingual generation, highlighting its potential
for enhancing cross-lingual performance of LLMs.

6 Conclusion

Our work explores the phenomenon of representa-
tion alignment in LLMs, confirming its occurrence
and elucidating its behavior compared to strictly de-
signed alignment models. We have demonstrated
the potential for disentangling language-specific
and language-agnostic information, enabling effec-
tive language-specific manipulation without seman-
tic loss. Furthermore, we have shown the practical
applications of language control manipulation in
enhancing language control and mitigating confu-
sion problems. Our ITLC method demonstrates
significant gains on the language confusion bench-
mark, achieving an average improvement of 9% in
monolingual and 26.7% in cross-lingual settings.
It also achieves comparable performance to exist-
ing test-time intervention approaches, while being
much more efficient (requiring only a single middle
layer intervention). Ultimately, our work not only
advances the theoretical understanding of repre-
sentation alignment in LLMs but also introduces a
practical and effective solution for enhancing cross-
lingual capabilities, paving the way for more robust
and versatile LLL.Ms in multilingual contexts.

Limitations

The study has several limitations that should be
considered when interpreting the results. First, the
coverage of LLMs is limited to a specific set of
models for representation alignment, particularly
Qwen and LaBSE and only one model size (0.5B
parameters), which may not be representative of all
LLMs. The findings may not generalize to other
models with different architectures or training data,
as the behavior of representation alignment can
vary significantly across different LLMs. Future
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research should aim to include a more diverse range
of models to validate the generalizability of the
results.

Second, the evaluation is conducted on a lim-
ited number of languages, which may not capture
the full spectrum of linguistic diversity. The study
focuses on a subset of languages, and the results
may not extend to languages with different typo-
logical features or those that are underrepresented
in the training data. Expanding the evaluation to in-
clude a broader range of languages, especially low-
resource languages, would provide a more compre-
hensive understanding of the model’s capabilities
and limitations.

Moreover, The scaling factor « affects different
models differently, requiring careful adjustment
for optimal performance. Due to the nature of
Linear Discriminant Analysis (LDA), the number
of components (n_components) is constrained by
the number of target language classes. This con-
straint introduces a trade-off, the number of target
language hidden states that need to be extracted
depends on the chosen n_components, potentially
causing computational overhead, and vice versa.

Additionally, the human evaluation is based on
only 30 samples per language, which may not pro-
vide a comprehensive assessment of the model’s
performance. While the sample size is sufficient
for preliminary analysis, a larger dataset would be
necessary to draw more robust conclusions. In-
creasing the number of samples and involving a
more diverse group of evaluators could enhance
the reliability and validity of the findings.

Ethical Considerations

The research involves the use of LLMs, which
might raise ethical considerations regarding bias,
fairness, and transparency on the generated results.
To ensure ethical conduct, the study adheres to
the following principles: (1) Bias Mitigation: The
models used are evaluated for potential biases, and
efforts are made to mitigate any identified biases.
(2) Fairness: The evaluation is conducted across
multiple languages from diverse regions and lan-
guage families to ensure fairness and inclusivity.
(3) Transparency: The methodology and results are
presented transparently to allow for replication and
verification. (4) Privacy: No personal data is used
in the evaluation, and all data is anonymized to pro-
tect privacy. (5) Accountability: The researchers
take responsibility for the ethical implications of

the study and are committed to addressing any con-
cerns that may arise.

We also acknowledge that our research utilized
Al tools for writing, rewriting, and generating code.
Although these tools offer significant advantages
in terms of efficiency and productivity, their use
raises important ethical considerations. We recog-
nize the potential for bias and errors inherent in
Al-generated content and have taken steps to mit-
igate these risks through rigorous human review
and validation. Furthermore, we are mindful of
the potential impact on the broader software devel-
opment community, particularly regarding job dis-
placement and the need for upskilling. We believe
that responsible Al integration should prioritize
transparency, accountability, and the empowerment
of human developers, ensuring that these tools aug-
ment rather than replace human expertise. This
research aims to contribute to the ongoing dialogue
on ethical Al development and usage, advocating
for a future where Al tools are harnessed responsi-
bly to enhance human creativity and innovation in
the field of software engineering.
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A Details of All Evaluation Datasets

The following tables present the full details of
dataset sizes used in this study. Refer to Table 5,
Table 6, Table 7, Table 8 and Table 9.

B Detail Experiment for Understanding
Representation Alignment in LLMs

B.1 Cosine Similarity Distributions Across
Datasets

To better understand the representational behavior
of the models, we analyzed the distribution of co-
sine similarity scores across layers. For LaBSE, the
average cosine similarity increases from the first
layer (mean = 0.6335, std = 0.0920) to the middle
layer (mean = 0.7580, std = 0.1182), and remains
comparably high in the last layer (mean = 0.7544,
std = 0.1150). This trend suggests that semantic
alignment becomes stronger toward the middle and
final layers, with relatively low variability, indi-
cating consistent behavior across input samples.
These observations align with prior findings that
intermediate layers in multilingual encoders often
capture the most transferable features.

In contrast, Qwen2.5-0.5B exhibits a markedly
different pattern. While the middle layer achieves
the highest average similarity (mean = 0.9218, std
= 0.0871), the first layer has a lower mean and
higher variance (mean = 0.5913, std = 0.1650),
indicating less stable representations early in the
network. Notably, the last layer shows a substan-
tial drop in similarity (mean = 0.3745) and a sharp
increase in variability (std = 0.3988), suggesting a
divergence in representational behavior, potentially
due to task-specific tuning or greater representa-
tional fragmentation. This may help explain the
weaker correlations between cosine similarity and
task performance observed in Qwen’s final layers.

These findings reinforce the role of middle lay-
ers in capturing semantically meaningful and trans-
ferable representations, particularly in instruction-
tuned or general-purpose multilingual models. See
Figure 2 for the histogram plot and Figure 7 for the
bar chart per alignment dataset.

B.2 Additional Analysis For Alignment and
Downstream Correlation

As shown in Table 10, the correlation between co-
sine similarity and downstream performance varies
by dataset, layer, and model architecture. The fol-
lowing sections provide detailed interpretations.
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Dataset Train Test Total # Languages
SIB200 143,705 41,820 185,525 205
INCLUDE-BASE 890 22,638 23,528 44
XCOPA 1,100 5,500 6,600 11
PAWS-X 345,807 14,000 359,807 7

Table 5: Dataset sizes and number of languages for downstream tasks.
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Figure 7: Layer-wise cosine similarity distributions of LaBSE and Qwen2.5-0.5B models across different datasets.

Dataset Total # Languages
FLORES-200 1,012 204
NTREX-128 1,997 128
NusaX 400 12
NusaWrites 14,800 9 (language pairs)
BUCC 35,000 4 (language pairs)
Tatoeba 88,877 112 (language pairs)
BibleCorpus 85,533 828 (language pairs)

Table 6: Total example counts and number of languages
for alignment tasks. We only use test set for this align-
ment task.

Dataset Train Test Total # Languages
FLORES-200 997 1012 2,009 204
NTREX-128 - 1,997 1,997 128

NusaX 500 400 400 12

Table 7: Total example counts per language and number
of languages for for LID tasks.

SIB200 For LaBSE, correlation values are con-
sistently strong and statistically significant across
all layers. The first (Pearson r = 0.323), middle
(Pearson r = 0.309), and last (Pearson » = 0.210)
layers all demonstrate meaningful positive corre-
lations with performance (p ~ 0), indicating that

Dataset Train Test Total # Languages
FLORES-200 997 1012 2,009 204
Dolly - 1,800 -9

Table 8: Total example counts per language and number
of languages for Language Control.

Dataset Total # Languages
Monolingual

Aya 100 5
Dolly 100 5
Okapi 100 10
Native prompts 100 4
Cross-lingual

Okapi 100 14
shareGPT 100 14
Complex prompts 99 14

Table 9: Total example counts per language and number
of languages for Language Confusion tasks, taken from
Language Confusion Benchmark. Only test set is avail-
able.

cosine similarity is well-aligned with task accu-
racy throughout the network. This suggests that
SIB200 benefits from LaBSE’s cross-lingual rep-
resentations, especially in the earlier and middle
layers. In contrast, Qwen2.5-0.5B shows very weak
but statistically significant correlations (r < 0.12
across all layers). While the trends are consistent,
the effect sizes are negligible, suggesting that co-
sine similarity has limited practical influence on
performance for Qwen2.5-0.5B on this dataset.

INCLUDE-BASE For LaBSE, correlations be-
tween cosine similarity and performance are neg-
ligible and statistically non-significant across all
layers, with Pearson r values close to zero (—0.041,
0.005, —0.021). This suggests no meaningful
alignment between representational similarity and
task accuracy. In contrast, Qwen2.5-0.5B exhibits
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Dataset Model Layer Pearsonr  R? p-value
First 0323 0.104 <1073
LaBSE Middle 0309  0.096 <1073
—205
SIB200 Last 0210 0044 <10
First 0.060 0004 <1017
Qwen2.5-0.5B Middle  0.123 0015 <107%
Last 0.043 0002 <107
First -0.041 0002  0.233
LaBSE Middle ~ 0.005  0.000  0.884
INCLUDE.BASE Last -0.021 0000  0.545
First 0.183 0034 <1077
Qwen2.5-0.5B Middle  0.142  0.020 <10~*
Last 0.168 0028 <1076
First -0.115 0013 0458
LaBSE Middle  -0.026  0.001  0.867
XCOPA Last 0.144 0021 0352
First 0292  0.085  0.055
Qwen2.5-0.5B Middle  -0.139 0019  0.368
Last 0.538 0289 <0.001
First 0.141 0020 0484
LaBSE Middle 0270  0.073  0.173
PAWS.X Last 0.146  0.021 0467
First 0228  0.052 0252
Qwen2.5-0.5B Middle  0.532  0.283  0.004
Last 0369  0.136  0.059

Table 10: Pearson correlation coefficients (1), R2, and
p-values for the relationship between cosine similarity
and task performance across different transformer layers
on LaBSE and Qwen2.5-0.5B.

weak but statistically significant positive correla-
tions (Pearson 7 range: 0.14-0.18), indicating that
higher cosine similarity is marginally associated
with improved performance. Despite the small ef-
fect sizes, these results highlight a slight but con-
sistent behavioural alignment in Qwen2.5-0.5B on
this dataset.

XCOPA For LaBSE, correlation values across
layers are weak and statistically insignificant, sug-
gesting minimal alignment between representa-
tional similarity and model performance. In con-
trast, Qwen2.5-0.5B exhibits a strong and statis-
tically significant positive correlation in the last
layer (Pearson r = 0.538, p < 0.001), implying
that deeper representations may be more predictive
for XCOPA.

PAWS-X LaBSE shows weak, non-significant
positive correlations across layers. However,
Qwen2.5-0.5B demonstrates a strong positive cor-
relation in the middle layer (Pearson r = 0.532,
p =~ 0.004), suggesting that intermediate represen-
tations capture more alignment-relevant features
for paraphrase detection.

Downstream Performance Relative to Ran-
dom Baselines To provide a clearer picture
of cross-lingual generalization and behavior
alignment, we present a set of bar charts

comparing the performance of LaBSE and
Qwen2.5-0.5B across four downstream evaluation
datasets—SIB200, INCLUDE-BASE, XCOPA,
and PAWS-X—relative to their respective random
baselines.

On XCOPA and PAWS-X, LaBSE yields near-
random or below-random performance, indicating
that its fixed representations struggle with cross-
lingual commonsense reasoning and paraphrase
detection. For SIB200, LaBSE performs slightly
above the random baseline, suggesting limited task
sensitivity in multilingual sentence similarity set-
tings. However, its performance on INCLUDE-
BASE remains weak, staying near or below the
random baseline and highlighting deficiencies in
broader multilingual alignment.

In contrast, Qwen2.5-0.5B demonstrates
stronger generalization on both SIB200 and
INCLUDE-BASE, significantly outperforming
its baseline and showing evidence of better
cross-lingual task adaptation. However, it faces
challenges on XCOPA and PAWS-X, where
its performance hovers around or falls below
baseline, pointing to possible limitations in
zero-shot commonsense reasoning and paraphrase
understanding across languages.

These comparisons highlight the differing
strengths and weaknesses of encoder-only and
decoder-only multilingual models across select
zero-shot evaluation tasks. See Figure 8.

B.3 Additional Analysis For Alignment and
LID Correlation

As shown in Table 11, the correlation between
alignment (as measured by cosine similarity) and
downstream LID performance varies notably across
datasets, model architectures, and transformer lay-
ers. The following sections provide detailed inter-
pretations for each dataset to contextualize these
trends.

FLORES-200 On the FLORES-200 dataset, we
observe a moderate negative correlation between
cosine similarity and LID performance for both
LaBSE and Qwen2.5-0.5B. The strength of the
correlation increases in deeper layers, with the
last layer showing the strongest correlation (r =
—0.707, p < 1073) for LaBSE. Qwen2.5-0.5B,
however, exhibits its strongest negative correlation
in the middle layer (r = —0.432, p < 107?), indi-
cating that as the embeddings become more aligned
(i.e., higher cosine similarity), the language identity
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(a) Performance of LaBSE across downstream tasks compared
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(b) Performance of Qwen2.5-0.5B across downstream tasks
compared to random baselines.

Figure 8: Comparison of LaBSE and Qwen2.5-0.5B performance across various downstream tasks and their

corresponding random baselines.

Pearson” R

Dataset Model Layer p-value
First 0.024 0.001 0.732
LaBSE Middle -0.122 0.015 0.084
—31
FLORES-200 Last -0.707 0.500 <10
First -0.142 0.020 0.043
Qwen2.5-0.5B  Middle -0.432 0.186 <107°
Last 0278 0077 <107*
First 0.254 0.065 0.012
LaBSE Middle -0.173 0.030 0.089
—11
NTREX-128 Last -0.621 0385 <10
First -0.232 0.054 0.021
Qwen2.5-0.5B  Middle -0.476 0226 <10°°
Last -0.340 0.115 0.001
First -0.566 0.320 0.112
LaBSE Middle -0.872 0.760 0.002
NusaX Last - - -
First -0.455 0.207 0.218
Qwen2.5-0.5B  Middle -0.873 0.763 0.002
Last -0.045 0.002 0.910

Table 11: Pearson correlation coefficients (r), B2, and p-
values for the relationship between KNN LID F1 score
using mean-pooled embedding and alignment cosine
similarity across different transformer layers on LaBSE
and Qwen2.5-0.5B.

signal tends to weaken, potentially due to semantic
abstraction. The statistically significant p-values
across all layers confirm the robustness of this rela-
tionship. These findings reinforce the idea that high
alignment may come at the cost of LID separabil-
ity, especially in final layers for LaBSE and middle
layer for Qwen2.5-0.5B, where representations are
more semantically homogenized.

NTREX-128 For NTREX-128, the correlation
trends diverge between the two models. LaBSE
exhibits its strongest negative correlation in the
the last layer (Pearson r = —0.621, p < 1071,
with a positive correlation in the first layer (Pear-
son r = 0.254, p = 0.012) and weak negative
correlation in the middle (Pearson r = —0.173,
p = 0.089). This suggests that early representa-
tions in LaBSE may still retain relatively distinct
language features that diminish with depth. In con-

trast, Qwen2.5-0.5B shows more consistent nega-
tive correlations across all layers, particularly in
the middle layer (Pearson r = —0.476, p < 107%).
These results highlight a more uniform degradation
of LID-relevant information in Qwen’s architecture
compared to LaBSE.

NusaX For NusaX, alignment-LID correlations
exhibit distinct patterns. LaBSE shows a weak cor-
relation in the first layer (Pearson » = —0.566,
p = 0.112), a highly negative correlation in the
middle layer (Pearson » = —0.872, p = 0.002),
and no measurable correlation in the last layer (—),
which we assume reflects a perfect inverse rela-
tionship (Pearson  ~ —1) due to complete LID
failure. Qwen2.5-0.5B follows a similar pattern,
with its most negative correlation in the middle
layer (Pearson » = —0.873, p = 0.002) and negli-
gible correlations in the first (Pearson » = —0.455,
p = 0.218) and last layers (Pearson r = —0.045,
p = 0.910). The correlations for both models are
the most negative observed across all datasets, sug-
gesting alignment disproportionately degrades lan-
guage signals in low-resource settings. This ex-
treme inverse relationship likely stems from the
models’ lack of prior exposure to NusaX languages
during training, limiting their ability to retain lan-
guage identity in aligned embeddings.

C LID Methods and Results
C.1 Methods

To investigate language-specific information in
multilingual representations, we analyze two dis-
tinct paradigms: (1) frozen embeddings from
pretrained decoder-only LLMs (Qwen-2.5) and
(2) specialized multilingual sentence encoders
(LaBSE). We evaluate whether linguistic identity
is recoverable from their hidden states and how
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FLORES-200  NTREX-128 NusaX

Model Method Layer CLS Mean CLS Mean CLS Mean
First 80.65 8835 87.02 9043 6412 81.78

KNN Middle 65.11 78.85 7137 8130 33.89 4537

LaBSE Last 765 392 345 163 054 0.0
Linear First 93.47 9513 9221 9329 89.16 97.30

b E’i‘ Middle 92.99 94.18 9233 9268 88.00 9451

robing Last 30.03 70.89 2291 7436 56.00 6544

First - 83.69  — 8606 - 6579

KNN Middle - 5532 - 5473 - 2505

Owen2.5-0.5B Last - 7173 - 81.86 - 2939
L First — 9421 - 9142 - 9555

P“‘E‘.‘r Middle - 91.76 - 90.04 - 87.09

robing Last . 92.46 . 90.27 . 88.77

Table 12: F1 score for KNN and linear classifiers by layer and pooling on FLORES-200, NTREX-128, and NusaX.

pooling strategies affect clusterability (via non-
parametric KNN retrieval) and linear separability
(via supervised classification heads).

KNN-based Language Identification We hy-
pothesize that language identity manifests as sep-
arable clusters in the hidden space, which can be
detected via non-parametric nearest-neighbor re-
trieval.

For both Qwen-2.5 and LaBSE, hidden states
are extracted from the first (¢ = 1), middle (¢ =
m), and final (/ = L) layers. Let H ¢ RT*¢
denote the hidden states at layer ¢ for a sequence of
length T'. Sentence-level embeddings are derived
as follows:

* Qwen-2.5: Only mean pooling is applied:

T
1
Y4 § : l d
€mean — f Ht € R"
t=1

* LaBSE: Both CLS and mean pooling are com-
pared:

T
1
¢ ¢ ¢ ¢ md
ects = Hiopgy €mean = 7 > HjeR”
=1

For each layer ¢ € {1, m, L} and pooling strategy
pool € {mean, CLS}, we construct reference sets:
¢ GGg) () | 200,204
where yU) is the language label for the j-th lan-
guage in FLORES-200, and ¢ indexes the examples
within each language. This results in a total of
200 x 204 = 40, 800 reference embeddings. For
Qwen-2.5, only RE s used, while LaBSE em-

mean

ploys both RéLS and RY ean-

We evaluate on three test sets: Flores-200,
NTREX-128, and NusaX. To ensure fair compari-
son, we retain only languages overlapping with the
FLORES-200 train set:

'Coverlap = Etest N EFLORES—trainv

where L is the language set of the test dataset,
and LrroRrES-train cOntains the 204 languages in
the FLORES-200 train set. For a test embedding

efest’pool, we compute its L2 distance to all refer-

. . Y4 .
ence embeddings in R :

Z7 47 j
d (efest,pool’eregp‘iz)l) = ‘
Vi e {1,...,200},
Vi e {1,...,204}.

0,Gig) ||?

ref,pool

14
etest,pool - 9 )

The predicted language e is obtained via ma-
jority vote over the k = 256 nearest neighbors:

Urest = arg max Z 1(y) =1),
lecovcr]ap (%])EN]C

where N, denotes the set of indices for the top-k
neighbors, and 1 is the indicator function.

Linear Classification Head To complement our
non-parametric analysis, we probe the linear sep-
arability of language identity in Qwen-2.5 and
LaBSE embeddings. This evaluates whether lin-
guistic boundaries are geometrically aligned with
hyperplanes in the hidden space, which would sug-
gest that language control can be achieved through
simple affine transformations.

Similar to the KNN-based approach, embed-
dings are extracted identically. For each dataset
D € {FLORES-200, NTREX-128, NusaX} and
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each layer ¢ € {1, m, L} representing early, mid-
dle, and last layers respectively, we train a separate
linear layer to map embeddings e/ € R to lan-
guage logits z‘ € RY, where C' is the number of
languages. The classifier for each layer is defined
as:

z' = We! +bf, W' e RO bl e RC,

with cross-entropy loss minimized during training.

C.2 Results

Our analysis reveals distinct layer-wise behav-
iors in language identification (LID) performance
across LaBSE and Qwen2.5-0.5B models, focus on
mean-pooled embedding.

KNN-based Language Identification The KNN
method highlights significant performance vari-
ations across layers. As shown in Table 1, for
LaBSE, the first layer achieves robust results,
with mean F1 scores of 88.35% on FLORES-200,
90.43% on NTREX-128, and 81.78% on NusaX.
Performance declines moderately in the middle
layer, yielding 78.85% for FLORES-200, 81.30%
for NTREX-128, and 45.37% for NusaX. The last
layer exhibits catastrophic degradation, collapsing
to 3.92%, 1.63%, and 0.00% on the respective
datasets. This suggests that deeper LaBSE lay-
ers lose language-discriminative features critical
for KNN classification.

For Qwen2.5-0.5B, the first layer similarly out-
performs middle layers, with mean F1 scores of
83.69% on FLORES-200, 86.06% on NTREX-128,
and 65.79% on NusaX. The middle layer shows
the weakest results across all datasets: 55.32%,
54.73%, and 25.05%, respectively, while the last
layer partially recovers to 71.73%, 81.86%, and
29.39%. This non-monotonic trend suggests lim-
ited retention of language-specific signals in the
middle layer of Qwen2.5-0.5B.

LaBSE, trained for semantic alignment, shows
severe degradation in its final layer, with near-zero
F1 scores across datasets, as deeper layers erase
language-specific signals required for KNN classi-
fication. In contrast, Qwen2.5-0.5B, a standard pre-
trained LLM, experiences a performance dip in its
middle layer but recovers partially in the final layer,
retaining sufficient linguistic discriminability. This
divergence underscores a key architectural trade-
off: contrastive models like LaBSE discard lexical
or syntactic patterns in deeper layers to prioritize
semantic invariance, while standard LLLMs preserve

partial language-identifying features across layers
despite progressive abstraction.

Linear-probing-based Language Identification
For LaBSE, the First Layer consistently achieves
the highest LID F1 scores across all datasets, with
a significant drop in performance observed in
the Last Layer. The NusaX dataset delivers the
best overall results, particularly in the First Layer,
where it reaches 97.30% F1 score. However, the
Last Layer shows notably weaker performance, es-
pecially for the FLORES-200 and NusaX datasets.
These findings suggest that earlier layers of LaBSE
retain more language-identification-relevant fea-
tures, such as surface-level linguistic cues, com-
pared to deeper layers (see Table 1).

Similarly, in the Qwen2.5-0.5B model, the First
Layer consistently outperforms the Middle Layer
in LID F1 scores across all datasets. The NusaX
dataset again produces the best results, with 95.55%
F1 score, while NTREX-128 exhibits the lowest
performance across all layers. These results indi-
cate that the shallow First Layer of Qwen2.5-0.5B
is more effective for language identification tasks
than deeper layers, such as the Middle Layer, which
shows weaker performance (refer to Table 1).

Overall, both models show that their highest
LID performance occurs in the First Layer, with
F1 scores declining as the layers get deeper. The
NusaX dataset consistently yields the best perfor-
mance, while the Last Layer in LaBSE and the
Middle Layer in Qwen2.5-0.5B exhibit the weak-
est results. These trends suggest that shallow layers
retain more language-specific information, which
is crucial for language identification, likely due to
their greater focus on surface-level features and
general linguistic patterns. Table 12 further il-
lustrate the comparative performance across lay-
ers and pooling techniques for both LaBSE and
Qwen2.5-0.5B models.

Classifier Comparison: KNN vs. Linear Head
As shown in Table 12, linear classifiers achieve
superior F1 scores compared to KNN across lay-
ers, suggesting their ability to identify language-
discriminative features within linearly separable
subspaces. However, linear methods exhibit at-
tenuated performance gaps between layers, for in-
stance, the difference between first and middle lay-
ers in Qwen2.5-0.5B is less than 5% with linear
classifiers, while KNN reveals differences exceed-
ing 30%. Similarly, LaBSE’s linear classifier re-
duces the last-layer performance gap to under 25%,
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whereas KNN shows near-complete degradation.
This contrast implies that parametric linear meth-
ods, while more accurate overall, may obscure
layer-specific language information degradation
due to their reliance on learned projections. In
contrast, KNN’s non-parametric nature might more
directly reflect the geometric structure of embed-
dings, amplifying sensitivity to layer-wise shifts in
language information quality.

Pooling Method Comparison: CLS Token vs.
Mean As shown in Table 12, the effectiveness
of pooling strategies varies across layers. In first
and middle layers, mean pooling achieves superior
performance, with F1 margins exceeding 10% over
CLS token pooling under KNN. However, in last
layers, CLS token pooling shows limited resilience
under KNN, marginally outperforming mean pool-
ing in isolated cases despite near-random overall
performance. Linear classifiers amplify mean pool-
ing’s advantage across all layers, suggesting its
robustness to layer-specific degradation.

This suggests that mean pooling better pre-
serves language-discriminative signals across lay-
ers, likely due to its aggregation of token-level
features. In contrast, the CLS token, optimized
for semantic tasks, exhibits sharper performance
declines in deeper layers, particularly under non-
parametric methods like KNN. These observations
highlight the interplay between pooling strategy,
layer depth, and classification method in language
identification tasks.

D Language Vector Setting

Linear Discriminant Analysis (LDA) (Balakrish-
nama and Ganapathiraju, 1998; Tharwat et al.,
2017) is utilized to construct language vectors
by extracting language-specific features from the
Qwen2.5-0.5B model’s scaled hidden states, opti-
mizing cross-lingual control through class separa-
bility. We evaluate various component sizes (20,
40, 50, 100, 150, 203) to balance LID accuracy and
unused variance, fitting an LDA model and training
a linear neural network (with 10 epochs, Adam op-
timizer, and CrossEntropyLoss) to achieve a peak
accuracy of approximately 90.63% at 100 compo-
nents. The unused variance is minimized, ensuring
retained discriminative information for injection (&)
with pruning, which enhances language targeting
while the Figure 10 visually confirms this optimal
trade-off.

E Ablation on Language Shift Strategy

Language Shift Strategy We assess various
strategies for injecting the language vector in ITLC.
Specifically, we explore three strategies based on
the temporal scope of the latent intervention: (1)
prompt only, (2) generated tokens only, and (3)
both phases. Let hgm) € R? denote the hidden
state at position ¢ in the middle layer m, and hgm)/
denotes its language-shifted counterpart:

* Prompt-Only (prompt-only): Applies injec-

tion exclusively to input prompt processing:

™, Yt > Thupu

* Generated-Only (gen-only): Restricts injec-
tion to autoregressive generation:

h(m)' —_ hgm)a vt € [LTinput]
t hgm) + ad, Vt e [Tinput + 1, Trotal]

* Prompt and Generated (prompt-and-gen):
Applies injection throughout both phases:

h%m)/ — hgm) + b, Vte [17 Ttotal]

where Tinpy is the input prompt length and
Tiotat = Tinput + N the total sequence length af-
ter generating IV tokens.

Ablation Result All three language shift strate-
gies are compared in cross-lingual setting using
the Qwen2.5-0.5B and Qwen2.5-0.5B-Instruct, as
shown in Figure 9. The prompt-and-gen strategy
consistently achieves the strongest performance,
followed by gen-only and then prompt-only. This
indicates that while the prompt-only approach may
aid the model in understanding the input context
in the target language, and the gen-only strategy
directly shifts the generation process into target
language, while the prompt-and-gen method ef-
fectively combines both advantages via injecting
the shift language vector into all timesteps.

F Experiement Settings for Language
Confusion

F.1 Baseline

The results discussed is focus on Line-level Pass
Rate (LPR). Word-level Pass Rate (WPR) is mostly
excluded in discussion because WPR for Latin-
script languages is compromised by its funda-
mental reliance on Unicode character ranges, a

458



Lang ‘

Qwen2.5-0.5B

Qwen2.5-7B

Llama-3.1-8B

Baseline

ITLC

‘ Baseline

ITLC

‘ Baseline

ITLC

| chiF++ BERTFI | chrF++ BERTFI | chiF++ BERTFI | chiF++ BERTFI | chrF++ BERTFI | chiF++ BERTFI

ID | 771 6138 | 846 6374 | 821 6298 | 926 6519 | 863 6058 | 891  64.94
TH | 339 6212 | 342 6378 | 362 6255 | 388 6390 | 296  59.02 | 428  64.37
TR | 642 5936 | 678  60.67 | 694 6131 759 6296 | 837 5820 | 862 6376
JA | 190 5998 | 211  6L53 | 208  60.14 184  6LI5 152 5326 | 2.60 6294
FR | 753 6163 | 889 6403 | 811 6303 | 951 6524 | 797 5986 | 890  64.51
ES | 851 6266 | 943 6490 | 930 6424 | 1001 6565 | 869 6114 | 984  65.65
AR | 511 6189 | 568 6431 | 535 6239 | 678 6598 | 428 5970 | 645 6559
KO | 186 6093 | 208 6190 | 209 6167 | 214 6235 | 214 546l 331 6519
ZH | 261 6226 | 297 6485 | 273 6293 | 333 6518 | 200 5514 | 267 6398
AVG | 501 61.36 | 5.53 63.30 | 538 6236 | 6.04 64.18 | 539 5839 | 6.76 64.29

Table 13: Generation performance for different target languages on Qwen2.5 and Llama-3.1 base version. Baseline
denotes the same model prompted in the same language as the desired target language. Bold values indicate the best

score for each metric across all models and settings.

Lang ‘

Qwen2.5-0.5B-Instruct

Qwen2.5-7B-Instruct

Llama-3.1-8B-Instruct

Baseline

ITLC

‘ Baseline

ITLC

‘ Baseline

ITLC

| chiF++ BERTFI | chrF++ BERTFI | chiF++ BERTFI | chrF++ BERTFI | chrF++ BERTFI | chiF++ BERTFI

ID | 771 6138 | 846 6374 | 821 6298 | 926 6519 | 967 6458 | 1L55  66.97
TH | 339 6212 | 342 6378 | 362 6255 | 388 6390 | 542 6468 | 6.67  67.82
TR | 642 5936 | 678  60.67 | 694 6131 | 759 6296 | 937 6337 | 1049  65.15
JA | 190 5998 | 211 6153 | 208  60.14 184 6L15 | 333 6329 | 411 6623
FR | 753 6163 | 880 6403 | 811 6303 | 951 6524 | 944 6428 | 1140  67.52
ES | 851 6266 | 943 6490 | 930 6424 | 1001 6565 | 1032 6478 | 1224  67.68
AR | 511 6189 | 568 6431 | 535 6239 | 678 6598 | 688 6482 | 866  67.55
KO | 186 6093 | 208 6190 | 209 6167 | 214 6235 | 374 6452 | 459 6699
ZH | 261 6226 | 297 6485 | 273 6293 | 333 6518 | 258 6426 | 370  66.82
AVG | 541 6179 | 611 6374 | 582 6324 | 648 6496 | 697 6480 | 849  67.19

Table 14: Generation performance for different target languages on Qwen2.5 and Llama-3.1 Instruction version.
Baseline denotes the same model prompted in the same language as the desired target language. Bold values
indicate the best score within each model, and the overall best across models.

90

—e— Qwen2.5-0.5B
Qwen2.5-0.5B-Instruct
85 {

80 1

751

LPR Metric

701

65

prompf—only gen—'only prompt—énd—gen

Figure 9: Cross-lingual LPR performance across differ-
ent vector injection strategies.

limitation highlighted in (Marchisio et al., 2024).
For Latin-script WPR evaluation, we use the
following Unicode ranges: Basic Latin, Latin-
1 Supplement, Latin Extended-A through Latin

Extended-G, and Latin Extended Additional °.
We use the following generation hyperparameters:
max_new_tokens=256 and top_k=50. We apply
nucleus sampling with top_p=0.9 and use a mod-
erate temperature of 0.7.

F.2 In-context learning (ICL)

We follow all the original settings for ICL in the
LCB benchmark. For the Q/A template, we use the
Q: A: format, while the chat template adopts the
model-specific instruction-tuning structure. Cross-
lingual few-shot prompts follow the benchmark’s
original setup, where English inputs include in-
structions such as Respond in <TARGET_LANG>.
For monolingual few-shot prompts, both inputs and
outputs are in the same language.It is important to
note that the few-shot demonstrations are provided
in languages distinct from the target language of
the current task. This design aims to guide the

®Taken from Wikipedia:
org/wiki/Unicode_block.

https://en.m.wikipedia.
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Figure 10: Controlling the number of language feature representations by using LDA performance accuracy (Left)
and unused variance (Right) across number of components.

Lang Shift ‘ Prompt (XX) Generated Output (EN)

Translation (XX)

KO — EN | Al = 57X 22ALnta?

Here are five common ways to enjoy apples: 1.
Raw and fresh : Eating an apple straight from the
fruit bowl is a simple yet delicious way of enjoying
it. 2. Juiced or blended into smoothies: Apples
can be ju ...

What are 5 ways to eat apples?

ES -+ EN | ; Cémo escapar de un he-
licoptero atrapado en el agua?

Si usted encuentra si mismos stuck inside a he-
licopter that has crashed into the water: 1. Re-
main calm: Panic can cloud your judgment and
increase risk of injury or drowning. 2. Verify ev-
eryone’s safety first before attempting to escape
from any. ..

How to escape from a helicopter trapped in water?

BFERNEENBNANERFS
FEDUZ M EABLTRE
L\

JA — EN

Here are some ways that a musician can earn
1 70307Live Perfor-
gigs and shows at var-

income from their music:
mances: Playing concerts,
ious venues such as clubs, festivals or events.
2Recording Music Sales : Selling albums through
digital platforms like ...

Provide a list of ways musicians can earn income
from their music craft. ...

Figure 11: Examples of generated outputs from Llama-3.1-8B-Instruct with injection in XX—EN.

model in understanding the task semantics rather
than identifying the appropriate output language.

F.3 Inference-Time Language Control (ITLC)

We use the following scaling factor « values: for
Qwen2.5-0.5B and Qwen2.5-0.5B-Instruct, o =
0.5; for Qwen2.5-7B and Qwen2.5-7B-Instruct,
a = 1.3. For Llama-3.1-8B, a = 0.15; and
for Llama-3.1-8B-Instruct, & = 0.10. See Ap-
pendix G.1 for details on the selection of scaling
factor.

F.4 Parameter-Efficient Fine-Tuning (PEFT)

For training data preparation, we use the Alpaca
subset from the Bactrian-X dataset (Li et al.,
2023a). Specifically, we extract the first 1,000 rows
per language across the 14 languages included in
the LCB benchmark (500 for monolingual and 500
for cross-lingual), resulting in a total of 14,000
samples. For monolingual data, we directly use the
same samples as in Bactrian-X. For cross-lingual
data, we replace the inputs with their corresponding

English variants in Bactrian-X and append the in-
struction "Please respond in <TARGET_LANG>"
to the prompt. For training data of the base model,
we concatenate the inputs and outputs and treat the
result as the output sequence without applying the
Q/A template.

The model is trained for one epoch us-
ing the LoRA fine-tuning technique (Hu
et al., 2022) with the following settings:
warmup_ratio = 0.05, batch_size =
1, gradient_accumulation_steps = 16,
learning_rate = 1le-4, lora_rank = 8, and
lora_alpha = 32. We employ the MS-SWIFT
framework (Zhao et al., 2024b) for model training,
with all other hyperparameters kept at their default
values.

F.5 Combination of ICL and ITLC

We apply ITLC only to the current input prompt us-
ing the scaling factor specified in Appendix F.3, but
not to the few-shot examples, since the languages
used in the few-shot examples differ from that of
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Lang Shift

Prompt (EN)

Generated Output (XX)

Literal Translation (EN)

EN — TR

How can you open a can without
using your hands?

Bir kagit parcasini, delikten gegir ve tutacak sek-
ilde yerlestir. Kapagn tizerine basmgh bir cisimle
vurun (6rnegin bicak). Bu sayede metalin ¢arka
girmesiyle ...

Pass a piece of paper through the hole and place
it so that it holds. Strike the cover with a pres-
surized object (for example, a knife). In this way,
with the metal entering the wheel... ...

EN — ES

Can you help me avoid credit
card debt?

iClaro que si, puedo ayudarte a evitar deudas con
tarjetas crédito. Aqui te presento algunas conse-
jos: 1) Crea un presupuesto y controla tus gastos
para saber cuantos ingresos tienes. . .

Of course! I can help you avoid credit card debt.
Here are some tips: 1) Create a budget and track
your expenses. This will help you understand how
much income you have and where your money is
going.

EN — TR

What shapes are made up of
straight lines?

Evinizin degerini artirmak icin baz yollar sun-
lardir: 1. Dekorasyon: Evi modern ve sik bir sek-
ilde dekore etmek, evin gérintimiinii iyilegtirir. 2.
Ren ...

Here are some ways to increase the value of your
home: 1. Decoration: Decorating the house in a
modern and stylish way improves its appearance.
2. Paint *--...

Figure 12: Examples of generated outputs from Llama-3.1-8B-Instruct with injection in EN—XX.

the current task (see Appendix F.2).

F.6 Combination of PEFT and ITLC

The LDA is trained based on hidden states extracted
from the pre-trained model. We do not retrain
the LDA using new hidden states after PEFT. For
other details, please refer to Appendix F.4 and Ap-
pendix F.3

F.7 INCLINE

We extract sentence representations from the
FLORES-200 dataset (Team et al., 2022) and
use the same scaling factor « as defined in Ap-
pendix F.3 during inference.

F.8 ReCoVeR

We extract sentence representations from the
FLORES-200 dataset (Team et al., 2022) and apply
a scaling factor of a@ = 0.2 for Llama-3.1-8B and
its instruct variant, and o = 0.3 for Qwen2.5-0.5B
and its instruct variant.

G Language Confusion Result

G.1 Ablation Study of Scaling for Different
Language Vector Injection Strategies

As shown in Table 15, Table 16 and Table 17 Our
analysis reveals distinct optimal scaling factors
for cross-lingual LCPR across injection strategies:
prompt-only achieves peak performance at scaling
0.8 (65.71), gen-only at 0.6 (71.35), and prompt-
and-gen at 0.5 (78.93). Notably, prompt-and-gen
outperforms other strategies, suggesting combined
injection better preserves cross-lingual alignment.
The scaling factor for the Qwen2.5-0.5B model
family is adopted from our ablation study. How-
ever, due to computational constraints, a similar
study was not feasible for the Qwen2.5-7B and

Scaling Monolingual Cross-lingual
LCPR LPR WPR LCPR LPR WPR
prompt-0.1 64.86 81.01 65.67 3397 2375 74.74
prompt-0.2 6639 82.14 66.75 38.88 2891 75.37
prompt-0.3  65.59 82.86 65.78 46.03 37.86 72.56
prompt-0.4 6545 8279 6553 5720 5197 7227
prompt-0.5 65.87 8273 6250 6293 61.63 73.43
prompt-0.6  64.92 82.64 6524 6391 63.83 73.20
prompt-0.7 64.78 81.03 65.52 64.63 66.09 71.74
prompt-0.8  63.69 80.40 6528 6571 6641 74.24
prompt-0.9 6125 7581 64.15 6459 64.79 73.30
prompt-1.0  60.39 7498 63.87 6297 6335 72.79

Table 15: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B on LCB under the prompt-only setting
with base shift vector, evaluated across different lan-
guage vector scaling factors, a.

Scaling Monolingual Cross-lingual
LCPR LPR WPR LCPR LPR WPR
gen-0.1 6475 8399 63.85 3507 2479 7492
gen-0.2 6535 85.09 65.01 3993 2896 75.92
gen-0.3  62.61 86.55 59.29 48.08 38.97 71.16
gen-0.4  59.61 86.23 5495 5749 57.82 64.37
gen-0.5 59.61 86.85 54.76 67.00 74.04 66.07
gen-0.6  60.05 87.49 58.14 7135 8046 67.67
gen-0.7 58.01 87.41 5572 69.39 80.73 66.57
gen-0.8 5245 8278 5235 6584 7574 6593
gen-0.9 47.07 7583 50.58 58.61 68.51 63.73
gen-1.0 4044 71.15 5491 5125 61.85 61.83

Table 16: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B on LCB under the generated-only set-
ting with base shift vector, evaluated across different
language vector scaling factors, a.

Llama3.1-8B families. For these models, we in-
stead conducted a limited manual evaluation, we
randomly generated outputs for a range of scal-
ing factors across different target languages and
selected the best-performing value based on human
assessment.
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Scaling Monolingual
LCPR LPR WPR

64.21 8427 63.77
86.34 61.76

Cross-lingual
LCPR LPR WPR

39.48 28.69 75.74
50.04 41.18 75.07
6422 64.18 7253

prompt-and-gen-0.1
prompt-and-gen-0.2  63.25
prompt-and-gen-0.3  62.94 88.24 60.85
prompt-and-gen-0.4  60.79 88.06 59.09 7588 80.58 75.78
prompt-and-gen-0.5 59.98 87.11 5941 78.93 85.08 77.15
prompt-and-gen-0.6  57.01 86.37 5590 77.21 84.13 74.90
prompt-and-gen-0.7  53.56 8291 53.63 72.57 8198 71.51
prompt-and-gen-0.8  49.00 77.27 5133 68.22 76.80 70.08
prompt-and-gen-0.9  40.41 70.51 48.16 60.97 69.07 66.44
prompt-and-gen-1.0  36.60 70.01 51.30 5251 61.07 63.82

Table 17: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B on LCB under the prompt-and-generated
setting with base shift vector, evaluated across different
language vector scaling factors, «.

G.2 Impact of In-context learning (ICL) on
Monolingual and Cross-lingual
Performance

As shown in Table 18, Table 19, Table 20, Ta-
ble 21, Table 22 and Table 23, in the monolin-
gual setting, the impact of few-shot prompting
varies inconsistently across models. Qwen2.5-0.5B
and Qwen2.5-0.5B-Instruct exhibit decreased LPR,
while Qwen2.5-7B and Llama-3.1-8B show in-
creased LPR. For instruction-tuned models, both
Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct
demonstrate reduced LPR. This unstable and un-
predictable behavior may stem from the design of
monolingual few-shot prompts, which introduce
conflicting linguistic signals that models with lim-
ited capacity struggle to resolve effectively ’.

In the cross-lingual setting, few-shot prompt-
ing consistently improves performance across all
base models (Qwen2.5-0.5B, Qwen2.5-7B, and
Llama-3.1-8B). This improvement can be attributed
to the few-shot examples, which utilize English
inputs paired with explicit target-language direc-
tives, thereby reinforcing the desired input-output
alignment. These results indicate that English-
centric prompting effectively stimulates cross-
lingual adaptation in base models. However, the
effect differs for instruction-tuned models: while
smaller models like Qwen2.5-0.5B-Instruct benefit
from few-shot examples, larger models (Qwen2.5-
7B-Instruct and Llama-3.1-8B-Instruct) show mini-
mal gains. This stability suggests that instruction-
tuning pre-aligns their multilingual capabilities,
rendering additional in-context examples largely
redundant.

The divergent impact of ICL across models in-

"Please refer to Appendix F.2.

Method Monolingual

LCPR LPR WPR LCPR LPR WPR

Cross-lingual

Qwen2.5-0.5B 65.27 81.58 65.15 2941 19.75 7345
+ Q/A template (0-shot) 59.26 5991 7335 44.68 3536 75.94
+ PEFT 75.96 8291 7830 76.15 77.55 80.56
+ I-shot 56.12 5538 73.70 4742 3795 7542
+ 2-shot 51.59 49.70 70.98 4936 41.64 75.03
+ 3-shot 5252 51.51 72.07 53.16 46.65 77.07
+ 4-shot 54.16 5295 74.15 55.03 4823 77.60
+ 5-shot 5447 53.62 7040 56.78 50.63 76.16
+ ITLC (apply base shift vector)

+ prompt-only (o = 0.8) 63.69 8040 6528 6571 6641 7424
+ gen-only (o« = 0.6) 60.05 8749 58.14 7135 8046 67.67
+ prompt-and-gen (o = 0.5) 59.98 87.11 5941 7893 8508 77.15
+ Q/A template 62.50 81.21 64.60 81.30 85.61 80.84
+PEFT 73.68 86.17 73.26 87.66 90.51 86.15
+ 5-shot 57.65 7438 61.13 81.51 87.58 79.01

+ ITLC (apply instruct shift vector)
+ prompt-only (@ = 0.8) 63.11 7995 64.18 63.08 63.77 73.04
+ gen-only (o« = 0.6) 55.89 86.38 5532 68.70 7899 65.36
+ prompt-and-gen (o = 0.5) 5848 87.24 5721 76.06 8231 7574

Table 18: Performance (LCPR / LPR / WPR) of
Qwen2.5-0.5B on LCB under monolingual and cross-
lingual settings.

dicates that the effectiveness of few-shot prompt-
ing might contingent upon the model’s instruction-
following aptitude, contextual understanding, pre-
existing upper-bound capability, and the depth of
alignment achieved during its instruction-tuning
process 5.

G.3 Chat/QA Template Efficacy Across

Settings

The findings are consistent with those observed
in the in-context learning (ICL) setting for LPR
performance, with one key exception: applying
the chat template to instruction-tuned models con-
sistently yields better performance, as shown in
Table 19.

G.4 Effect of Source Language Shift Vector

As shown in Figure 13, subtracting the source lan-
guage shift vector reduces the model’s bias toward
the source language (English) and guides the model
to generate content in the target language more ef-
fectively, compared to directly adding the target
language shift vector.

H Experiment setting for semantic
retention and human evaluation

H.1 Generation Hyperparameter

The generation process for the language control
and language confusion results uses specific hyper-
parameter to balance creativity and control. We
set max_new_tokens=50, and set top_k to 50. We

8All discussed results are based on experiments that apply
the official chat/QA templates during inference.
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Method Monolingual Cross-lingual
LCPR LPR WPR LCPR LPR WPR
Qwen2.5-0.5B-Instruct 7479 82.61 7794 3875 2722 78.40
+ Chat template (0-shot) 7452 83.66 77.12 63.00 57.69 79.50
+ PEFT 80.13 89.85 77.77 79.46 8434 80.01
+ 1-shot 7294 7883 7179 66.82 6142 82.12
+ 2-shot 7395 7841 7943 68.19 6421 80.99
+ 3-shot 7461 7888 7699 6943 6594 81.42
+ 4-shot 7582 80.89 80.07 69.56 67.28 79.62
+ 5-shot 75.44 8030 79.36 7143 69.70 79.74
+ ITLC (apply base shift vector)
+ prompt-only (o = 0.8) 6733 7482 7635 76.05 77.68 8l1.11
+ gen-only (o = 0.6) 67.00 84.07 65.83 7556 8242 74.51
+ prompt-and-gen (a = 0.5) 67.73 81.70 6896 81.51 8532 80.55
+ ITLC (apply instruct shift vector)
+ prompt-only (a = 0.8) 66.78 7496 73.08 73.26 76.37 79.20
+ gen-only (o = 0.6) 67.42 83.64 6546 7395 84.06 71.40
+ prompt-and-gen (a = 0.5) 6820 8220 68.05 80.96 86.79 78.84
+ 5-shot 68.93 8628 6647 83.98 88.07 82.00
+ PEFT 68.16 90.51 62.58 8538 89.85 82.83

Table 19: Performance (LCPR / LPR / WPR) of
Qwen?2.5-0.5B-Instruct on LCB under monolingual and
cross-lingual settings.

100

mmm without Subtract
With Subtract

901 85.08

80

86.79

70+

601 54.80

504

LPR Metric

40.61
40

30-

Qwen2.5-0.5B Qwen2.5-0.5B-Instruct

Figure 13: Cross-lingual LPR performance on LCB with
and without subtracting the source language shift vector
across Qwen2.5-0.5B and Qwen2.5-0.5B-Instruct, using
prompt-and-gen injection strategy with a = 0.5.

Method Monolingual Cross-lingual
LCPR LPR WPR LCPR LPR WPR
Qwen2.5-7B 68.15 7771 7140 41.03 29.72 75.33
+ Q/A template (0-shot) 53.97 5524 7384 6568 60.61 76.88
+ PEFT 73.46 83.80 72.80 7893 82.66 79.51
+ 5-shot 63.23 6278 7577 7215 69.37 79.45

+ ITLC (apply base shift vector)
+ prompt-and-gen (o = 1.3) ~ 67.05 80.07 67.33 61.70 59.84 70.84

+ Q/A template 58.10 6340 7236 7071 7440 7272
+ PEFT 73.12 85.60 7240 7825 83.92 7839
+ 5-shot 65.24 69.55 7342 79.60 84.90 77.13

Table 20: Performance (LCPR / LPR / WPR) of
Qwen2.5-7B on LCB under monolingual and cross-
lingual settings.

apply nucleus sampling with top_p=0.9, and use a
moderate temperature of 0.7 to encourage focused
yet varied outputs. To reduce repetitive phrases,
we apply a repetition_penalty of 1.5. We keep
all other hyperparameters at their model-specific
default values and use each instruct model’s native

Method Monolingual
LCPR LPR WPR LCPR LPR WPR

Qwen?2.5-7B-Instruct (with chat template)  60.83 78.89 58.78 66.16 7881 62.37

Cross-lingual

+ 5-shot 5446 7413 5393 65.79 7851 61.44
+ PEFT 75.03 8828 73.19 7832 8356 7793
+ ITLC (apply base shift vector)
+ prompt-and-gen (a = 1.3) 6244 8589 56.76 6691 8345 60.34
+ ITLC (apply instruct shift vector)
+ prompt-and-gen (a = 1.3) 61.35 84.89 5697 66.89 84.73 60.02
+ 5-shot 57.75 81.01 5373 6626 84.04 5897
+ PEFT 75.62 90.12 7233 77.50 84.10 76.70
Table 21: Performance (LCPR / LPR / WPR) of

Qwen2.5-7B-Instruct on LCB under monolingual and
cross-lingual settings.

Method Monolingual Cross-lingual
LCPR LPR WPR LCPR LPR WPR
Llama-3.1-8B 4352 44.07 59.66 146 0.74 88.10
+ Q/A template (0-shot) 63.68 5698 82.26 39.01 26.13 87.27
+ PEFT 79.16 93.01 72.80 82.04 89.73 77.83
+ 5-shot 7224 69.86 79.13 70.67 6238 83.91

+ ITLC (apply base shift vector)
+ prompt-and-gen (o = 0.15)  50.97 60.77 57.07 60.69 69.69 57.74

+ Q/A template 73.13 7577 77.28 8129 81.68 82.78
+ PEFT 78.50 96.03 72.08 83.74 88.98 81.21
+ 5-shot 7643 8218 7647 83.14 88.15 8047

Table 22: Performance (LCPR / LPR / WPR) of Llama-
3.1-8B on LCB under monolingual and cross-lingual
settings.

Method Monolingual
LCPR LPR WPR LCPR LPR WPR

Llama-3.1-8B-Instruct (with chat template)  83.05 94.63 76.11 79.34 8325 77.01

Cross-lingual

+ 5-shot 82.27 88.57 79.88 84.32 86.68 82.77
+ PEFT 79.00 96.66 71.00 81.26 91.13 7529
+ ITLC (apply base shift vector)
+ prompt-and-gen (o = 0.10) 8250 95.68 75.68 8348 8852 80.37
+ ITLC (apply instruct shift vector)
+ prompt-and-gen (o = 0.10) 81.76 9641 7451 8291 89.06 78.99
+ 5-shot 8525 93.21 79.82 86.60 90.34 83.95
+PEFT 79.04 97.19 71.36 83.44 93.60 77.05

Table 23: Performance (LCPR / LPR / WPR) of Llama-
3.1-8B-Instruct on LCB under monolingual and cross-
lingual settings.

chat template.

H.2 Monolingual & Crosslingual Prompting

Our experiments on the baseline (monolingual) and
ITLC (cross-lingual) settings use slightly different
prompt strategies. Specifically, for the baseline,
we aim to measure the upper bound of perfor-
mance within a particular language, whereas ITLC
involves different input and target languages.

To ensure fairness and consistency in model out-
put generation, we designed distinct input prompts
for the base model, Qwen2.5, and Llama-3.1. In the
base version, to control the contextual generation
in cross-lingual settings, we prepend an early por-
tion of the target language output—approximately
30% of the sentence length—as a guidance signal
for the model to continue generating coherent text.
This approach helps ensure that the language vector
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receives sufficient signal to produce linguistically
and semantically coherent outputs.

Additionally, for non-Latin scripts such as
Japanese and Chinese, we adopt a different seg-
mentation strategy. Instead of splitting based on
newlines, as in Latin-script languages, we apply
language-specific tokenizers such as PyThaiNLP
(Phatthiyaphaibun et al., 2023), Nagisa’, and
Jieba!®. The proportional segment length is then de-
termined based on the number of tokens or phrases
produced by these tokenizers.

I Additional Examples of Cross-lingual
Generation

Figure 11 and Figure 12 present several exam-
ples of generated outputs across multiple source
languages targeting English. Overall, our ITLC
method successfully shifts to the desired target lan-
guage and demonstrates effective cross-lingual gen-
eration.

J Annotation Guidelines

J.1 Context of the Annotation Task

The annotation task involves evaluating the qual-
ity of cross-lingual language generation, where a
model generates responses in a target language
based on input prompts in a source language. The
goal is to assess how well the model performs in
terms of naturalness, relevance, and answer correct-
ness. This evaluation is crucial for understanding
the model’s capabilities and identifying areas for
improvement.

J.2 Detailed Scoring Guidelines
J.2.1 Naturalness (1-5):

* 1: The response sounds very unnatural,
robotic, or translated. It lacks fluency and typ-
ical language patterns of the target language,
making it sound artificial and unnatural.

* 2: The response is somewhat unnatural, with
noticeable awkwardness or unnatural word
choices. It may sound stilted or forced.

* 3: The response is moderately natural, with
some minor awkwardness but generally un-
derstandable. It flows reasonably well but has
room for improvement.

* 4: The response is mostly natural, with only
slight deviations from typical language use. It

9https ://github.com/taishi-i/nagisa
Ohttps://github.com/fxsjy/jieba

sounds almost native-like but may have minor
imperfections.

* 5: The response is completely natural, in-
distinguishable from text written by a native
speaker. It flows smoothly and uses language
patterns typical of the target language.

J.2.2 Relevance (1-5):

* 1: The response is completely irrelevant to the
input prompt. It fails to address the topic or
question posed.

» 2: The response is somewhat relevant but
misses key points or goes off-topic. It may
touch on related ideas but does not fully ad-
dress the prompt.

* 3: The response is moderately relevant, ad-
dressing some aspects of the prompt but lack-
ing completeness. It covers some key points
but omits important details.

* 4: The response is highly relevant, addressing
most key points of the prompt. It provides a
comprehensive answer but may miss minor
details.

* 5: The response is completely relevant, fully
addressing all aspects of the prompt. It covers
all key points and provides a thorough answer.

J.2.3 Correctness (1-5):

* 1: The response contains major factual errors
or inaccuracies. It provides incorrect informa-
tion or contradicts known facts.

 2: The response contains some factual errors
or inaccuracies. It may be partially correct but
includes misleading or incorrect details.

* 3: The response is mostly correct but may
have minor inaccuracies or omissions. It is
generally accurate but requires minor correc-
tions.

* 4: The response is highly accurate, with only
minor details potentially incorrect. It is reli-
able and trustworthy but may have small er-
rors.

* 5: The response is completely accurate and
factually correct. It provides precise and reli-
able information without any errors.

J.3 Additional Notes

* Contextual Understanding: Annotators
should consider the context of the input
prompt and the intended audience when eval-
uating naturalness and relevance. A response
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that is natural and relevant in one context may
not be in another.

¢ Consistency: Annotators should strive for
consistency in their annotations across differ-
ent examples. This helps ensure that the eval-
uation is fair and reliable.

* Examples: Providing clear examples of each
rating level for each category can help anno-
tators understand the expected standards and
make consistent judgments.

* Feedback: Encourage annotators to provide
feedback on ambiguous cases or areas where
the guidelines could be improved. This can
help refine the annotation process and improve
the quality of the evaluations.
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Cross-lingual

Model AVG AR ES HI ID RU ZH

Qwen2.5-0.5B 3497 31.72 48.12 3.03 4244 48.77 3574
+ INCLINE 4382 3494 7417 658 5638 59.22 31.63
+ ReCoVeR 88.43 99.66 97.02 64.67 84.88 98.99 85.38
+ ITLC (ours) 81.22 9832 94.61 3232 83.17 97.65 81.25
Llama-3.1-8B  25.05 10.60 37.63 25.71 38.13 17.61 20.59
+ INCLINE 34.69 19.61 39.25 38.92 4046 3236 37.56
+ReCoVeR 88.79 100.00 84.30 93.44 7097 98.69 8537

+ ITLC (ours) 76.38 90.41 83.57 7643 6237 97.29 4824

Table 24: LPR metrics for the base model on LCB
across baseline and state-of-the-art methods, with a de-
tailed language-wise breakdown for cross-lingual set-
tings. All results have been applied with the QA/Chat
template during inference.

Cross-lingual

Model AVG AR ES HI ID RU ZH

Qwen2.5-0.5B-Instruct  52.28 65.41 72.65 3.02 5435 77.12 41.14
+ INCLINE 56.54 68.35 8035 1.13 52.19 68.08 69.16
+ReCoVeR 84.21 100.00 97.66 60.36 58.86 99.31 89.04
+ ITLC (ours) 81.97 98.97 9531 49.03 6439 98.98 85.13
Llama-3.1-8B-Instruct  80.68 87.12 89.27 82.76 73.89 87.93 63.14
+INCLINE 80.63 86.80 89.60 81.10 70.21 86.58 69.51
+ ReCoVeR 90.29 100.00 93.30 9524 67.96 99.32 85.92
+ ITLC (ours) 85.65 95.60 9296 93.97 7255 9598 62.84

Table 25: LPR metrics for the instruct model on LCB
across baseline and state-of-the-art methods, with a de-
tailed language-wise breakdown for cross-lingual set-
tings. All results have been applied with the QA/Chat
template during inference.
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Monolingual
Model AVG AR DE EN ES FR HI ID IT JA. KO PT RU TR VI ZH

Qwen2.5-0.5B 5991 45.84 7879 97.00 7520 64.67 0.00 57.00 76.00 32.00 54.55 64.00 64.29 30.00 81.82 77.50
+ICL (5-shot)  53.62 56.12 84.00 9644 64.86 54.53 4.17 6400 6566 19.19 4040 4500 73.74 25.00 6837 4281
+ ITLC (ours) 7438 77.94 9400 9949 9433 89.67 0.00 78.00 77.00 55.56 74.75 79.50 87.00 55.00 74.00 79.50
+ PEFT 8291 9400 99.00 70.50 93.00 94.67 0.00 90.00 98.00 64.00 86.00 91.00 95.00 92.00 94.00 82.50
+ ITLC (ours) 86.17 99.33 100.00 77.00 99.33 99.33 8.25 94.00 100.00 57.00 81.82 98.00 98.00 99.00 90.00 91.50
+ ITLC (ours) 81.21 91.00 96.00 97.98 98.67 98.00 0.00 84.00 100.00 58.00 81.00 95.00 81.00 75.00 70.00 92.50

Qwen2.5-7B 5524 2943 73.00 9848 70.04 66.17 1.01 63.00 78.00 39.00 22.68 65.00 36.08 26.80 83.00 76.85
+ICL (5-shot)  62.78 43.26 79.00 96.39 71.84 74.02 1596 73.74 82.00 59.00 44.79 50.36 65.66 56.25 82.00 47.50
+ ITLC (ours) 69.55 51.22 86.87 97.94 77.44 8225 870 86.00 91.00 64.00 53.54 64.50 77.55 56.25 89.00 57.00
+ PEFT 83.80 95.00 99.00 49.58 94.00 94.00 6.06 91.00 97.98 75.00 85.00 91.94 96.00 94.00 100.00 88.50
+ ITLC (ours) 85.60 98.67 99.00 5297 97.67 95.67 8.00 95.00 94.00 76.00 89.00 95.00 97.00 97.00 100.00 89.00
+ ITLC (ours) 63.40 5279 76.00 98.99 84.71 77.53 0.00 75.00 78.00 4592 31.00 77.44 60.61 21.65 85.86 85.50

Llama-3.1-8B  56.98 39.57 55.00 95.38 69.56 59.43 30.21 57.58 5556 2551 4330 7129 67.37 81.82 61.00 42.19
+ICL (5-shot)  69.86 67.53 75.00 9547 69.33 63.67 63.64 73.00 73.00 67.00 49.00 67.82 70.00 70.00 76.00 67.50
+ ITLC (ours) 82.18 79.26 90.00 99.50 92.67 84.00 65.00 66.00 90.00 87.00 68.37 86.92 89.00 70.00 87.00 78.00
+ PEFT 93.01 98.00 98.00 69.50 94.67 92.00 92.00 84.00 99.00 94.00 93.00 93.50 97.00 95.00 98.00 97.50
+ ITLC (ours) 96.03 100.00 97.00 91.50 97.67 97.33 96.00 91.00 99.00 95.00 97.00 92.50 99.00 99.00 98.00 90.50
+ ITLC (ours) 7577 62.08 78.00 99.00 89.29 84.02 50.00 66.67 81.00 58.76 76.84 8578 93.81 86.73 7551 49.00

Cross-lingual

Model AVG AR DE EN ES FR HI ID IT JA. KO PT RU TR VI ZH
Qwen2.5-0.5B 3536 31.72 43.27 — 4812 4645 3.03 4244 4033 1440 10.12 45.11 48.77 3423 5128 35.74
+ICL (5-shot)  50.63 54.79 63.97 - 5462 63.02 12.07 6197 63.05 24.74 29.57 5590 67.84 61.61 69.21 26.38
+ ITLC (ours) 87.58 99.66 97.99 - 96.62 9733 39.07 8552 9526 7291 8895 9095 98.99 91.96 92.63 78.24
+ PEFT 77.55 89.25 90.26 — 9094 9094 11.04 7541 8825 6852 6532 8223 9094 83.53 90.26 68.84
+ ITLC (ours) 90.51 100.00 99.67 - 96.65 9732 63.78 85.61 98.99 69.22 8897 90.97 99.67 96.99 96.99 82.26
+ ITLC (ours) 85.61 9832 96.97 — 9461 9563 3232 83.17 99.00 6120 82.55 8828 97.65 92.96 94.60 81.25
Qwen2.5-7B 60.61 62.24 67.82 - 71.07 68.68 24.87 60.80 6731 51.90 50.29 68.40 69.21 5940 72.07 54.42
+ICL (5-shot)  69.37 70.22 7742 - 75.04 7520 3645 70.53 81.43 59.16 59.26 70.02 8424 77.05 7920 55.94
+ ITLC (ours) 84.90 88.57 95.50 - 9040 92.14 65.67 84.03 9037 57.86 85.17 88.74 9448 91.58 9092 73.18
+ PEFT 82.66 93.62 93.23 - 89.27 8993 2420 83.16 8625 76.87 80.56 86.84 9529 91.57 9093 75.53
+ ITLC (ours) 83.92 97.65 97.95 - 9699 9531 30.78 87.60 9397 35.09 7447 9259 97.65 96.99 9698 80.89
+ ITLC (ours) 7440 83.00 89.49 - 89.51 8743 27.12 76.65 87.42 32.80 5881 8735 91.49 8297 8593 61.61
Llama-3.1-8B 26.13 10.60 28.03 - 37.63 36.09 2571 38.13 37.14 18.88 1649 31.77 17.61 20.14 27.05 20.59
+ICL (5-shot)  62.38 65.02 60.66 - 66.88 56.64 6572 71.81 6546 4649 68.77 56.07 69.50 73.40 63.12 43.83
+ ITLC (ours) 88.15 8524 96.97 - 87.62 8440 7623 76.51 87.56 93.79 96.94 89.34 99.66 92.87 92.58 74.44
+ PEFT 89.73 93.61 9227 - 91.28 93.64 93.62 76.16 89.60 85.57 8550 89.22 9424 9228 9430 84.90
+ ITLC (ours) 88.98 98.99 96.96 - 8621 7521 98.65 67.22 89.96 88.95 95.61 84.58 9933 9531 9296 75.86
+ ITLC (ours) 81.68 90.41 96.13 - 8357 71.68 7643 6237 89.12 7572 89.11 82.56 97.29 87.75 93.09 48.24

Table 26: LPR metrics for the base model on LCB, with a detailed language-wise breakdown for both monolingual
and cross-lingual settings. All results have been applied with the QA/Chat template during inference.
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Monolingual

Model AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH
Qwen2.5-0.5B-Instruct  83.66 96.33 94.00 99.50 89.67 9533 0.00 70.00 94.00 82.00 83.51 87.00 95.00 89.00 87.63 92.00
+ ICL (5-shot) 80.30 93.56 9500 97.50 87.67 89.67 2.04 69.00 9400 67.00 7872 83.50 89.90 86.00 87.88 83.00
+ ITLC (ours) 86.28 9833 98.00 9850 97.67 96.67 13.00 82.00 98.00 80.00 77.00 94.00 89.00 96.00 95.00 81.00
+ PEFT 89.85 99.00 99.00 96.50 95.67 97.67 14.43 87.00 100.00 83.00 93.94 95.50 100.00 95.00 99.00 92.00
+ ITLC (ours) 90.51 100.00 98.00 100.00 98.67 100.00 29.00 94.00 100.00 80.00 81.00 98.00 88.00 99.00 99.00 93.00
+ ITLC (ours) 82.20 100.00 99.00 100.00 98.67 9833 7.00 74.00 100.00 80.00 72.00 95.50 39.00 95.00 82.00 92.50
Qwen2.5-7B-Instruct ~ 78.89 81.03 96.00 9549 87.17 8797 31.58 72.00 91.00 55.00 61.54 84.50 8132 88.89 87.88 82.00
+ ICL (5-shot) 74.13 70.08 91.92 9091 77.12 83.72 38.46 64.65 84.85 50.00 68.66 79.72 7128 77.66 86.87 76.00
+ ITLC (ours) 81.01 80.85 92.00 9288 86.68 86.45 51.61 68.00 87.88 7500 81.32 8327 71.58 9043 84.21 83.00
+ PEFT 88.28 97.66 92.00 99.00 9330 9456 13.40 883.00 97.00 84.00 84.38 9500 9495 99.00 99.00 93.00
+ ITLC (ours) 90.12  99.33  98.00 98.49 96.99 96.00 2020 89.00 96.00 80.00 91.75 96.50 97.00 97.00 99.00 96.50
+ ITLC (ours) 84.80 89.29 96.00 9550 9191 9428 4211 76.77 92.00 72.00 81.32 87.00 82.47 92.78 89.90 90.00
Llama-3.1-8B-Instruct  94.63 97.00 99.00 98.00 95.67 9533 90.00 82.00 97.00 95.00 89.00 91.00 98.00 100.00 100.00 92.50
+ ICL (5-shot) 88.57 9333 99.00 1650 95.67 9633 92.00 89.00 97.00 86.00 96.00 89.50 94.00 94.79 100.00 89.50
+ ITLC (ours) 9321 97.00 98.00 46.74 96.00 98.00 99.00 90.00 99.00 95.00 98.00 95.00 99.00 92.86 100.00 94.50
+ PEFT 96.66 98.67 97.00 97.50 9533 98.00 96.00 95.00 99.00 91.00 91.00 97.00 9596 100.00 100.00 98.50
+ ITLC (ours) 97.19 100.00 100.00 98.99 97.67 97.67 95.00 89.00 100.00 93.00 94.00 96.50 98.00 100.00 100.00 98.00
+ ITLC (ours) 96.41 99.33  99.00 99.00 96.33 98.00 94.00 83.00 99.00 92.00 97.00 94.50 100.00 98.00 100.00 92.00
Cross-lingual
Model AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH
Qwen2.5-0.5B-Instruct  57.69 6541  72.12 - 72.65 71.82 3.02 5435 6395 4509 39.18 6847 77.12 6279 70.60 41.14
+ ICL (5-shot) 69.70 81.82 83.57 - 79.01 80.73 838 67.25 80.70 61.51 63.66 7339 8397 79.14 7593 56.71
+ ITLC (ours) 88.07 100.00 97.98 - 9593 9327 6493 6585 9529 79.26 87.21 87.81 99.00 96.63 97.99 71.78
+ PEFT 8434 91.72 9275 - 93.50 93.16 1445 8575 94.12 85.07 77.16 90.56 9555 90.59 96.50 79.85
+ ITLC (ours) 89.85 100.00 98.65 - 9595 9395 61.88 76.10 9694 77.24 86.95 92.65 9898 9629 98.30 84.00
+ ITLC (ours) 86.79 9897 97.64 - 9531 9227 49.03 6439 9731 7324 7927 9198 9898 9325 9832 85.13
Qwen2.5-7B-Instruct ~ 78.81 81.96  88.38 - 83.92 8449 5264 73.14 8292 71.04 79.19 85.16 80.32 8854 7773 7385
+ ICL (5-shot) 7851 7933  92.24 - 84.59 86.68 58.27 66.12 87.17 67.86 78.04 80.94 85.12 8447 7378 7452
+ ITLC (ours) 84.04 86.46 96.95 - 87.60 91.83 6221 7094 9190 69.84 87.71 87.16 90.19 9239 8586 75.53
+ PEFT 83.56 94.54 91.04 - 91.73 91.22 27.18 82.67 87.85 79.03 82.33 87.08 9529 88.69 9148 79.72
+ ITLC (ours) 84.10 98.65 98.26 - 94.55 96.23 2655 8420 9629 37.19 80.42 92.61 96.64 9522 96.31 84.23
+ ITLC (ours) 84.73 86.71 9521 - 90.56 91.19 57.03 75.07 9423 63.87 88.74 87.56 92.88 9292 90.95 79.27
Llama-3.1-8B-Instruct  83.25 87.12  89.92 - 89.27 8558 8276 73.89 89.25 71.51 80.10 8257 8793 90.52 9194 63.14
+ ICL (5-shot) 86.68 86.24 91.60 - 89.60 91.94 86.17 74.53 90.26 81.89 90.80 80.90 92.18 90.26 9429 72.83
+ ITLC (ours) 90.34 92.62 97.32 - 93.63 90.88 9530 71.87 9427 8995 9596 8553 9631 94.63 93.63 72.86
+ PEFT 91.13 9522 94.18 - 9530 9496 9222 79.09 9420 87.18 89.06 86.86 93.82 91.28 93.57 88.84
+ ITLC (ours) 93.60 97.54 96.96 - 94.64 9459 96.93 80.14 9391 9396 9454 9129 96.94 96.26 96.27 86.46
+ ITLC (ours) 89.06 95.60 97.99 - 9296 93.64 93.97 7255 92.62 83.60 9198 8394 9598 9395 9530 62.84

Table 27: LPR metrics for the instruct model on LCB, with a detailed language-wise breakdown for both monolingual
and cross-lingual settings. All results have been applied with the QA/Chat template during inference.
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