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Abstract

We introduce ENTROPY2VEC, a novel frame-
work for deriving cross-lingual language repre-
sentations by leveraging the entropy of mono-
lingual language models. Unlike traditional
typological inventories that suffer from feature
sparsity and static snapshots, ENTROPY2VEC
uses the inherent uncertainty in language mod-
els to capture typological relationships between
languages. By training a language model on
a single language, we hypothesize that the en-
tropy of its predictions reflects its structural
similarity to other languages: Low entropy in-
dicates high similarity, while high entropy sug-
gests greater divergence. This approach yields
dense, non-sparse language embeddings that
are adaptable to different timeframes and free
from missing values. Empirical evaluations
demonstrate that ENTROPY2VEC embeddings
align with established typological categories
and achieved competitive performance in down-
stream multilingual NLP tasks, such as those
addressed by the LinguAlchemy framework.

1 Introduction

Linguistic typology provides a framework for clas-
sifying languages based on shared structural fea-
tures, offering insights into language universals and
diversity. Databases like the World Atlas of Lan-
guage Structures (WALS) (Haspelmath, 2005), AU-
TOTYP (Bickel and Nichols, 2002), URIEL (Littell
et al., 2017), and URIEL™ (Khan et al., 2025) cat-
alog these features, serving as valuable resources
for researchers and practitioners in the field of com-
putational linguistics and beyond. However, these
inventories face significant limitations: they often
cover only a subset of languages, leading to miss-
ing values, and they represent static snapshots of
linguistic knowledge, neglecting the dynamic and
evolutionary nature of languages.

Recent advancements in neural language model-
ing have enabled the extraction of continuous repre-
sentations of languages through pre-trained models.

PPL Matrix (NxN)

Figure 1: ENTROPY2VEC framework. Monolingual
LMs are trained per language, and cross-lingual perplex-
ity is used as an unsupervised signal to derive language
vectors and induce typological trees, aligning well with
expert-curated taxonomies.

These embeddings capture semantic and syntac-
tic properties, facilitating cross-lingual transfer in
various NLP tasks. Nonetheless, existing methods
primarily focus on monolingual or bilingual set-
tings and do not explicitly model the typological
relationships between languages. Moreover, they
often rely on manually curated features, which may
not generalize well across languages or over time.

To address these challenges, we propose EN-
TROPY2VEC, a framework that derives language
representations based on the entropy of monolin-
gual language models (LMs). Entropy, a measure
of uncertainty in information theory, reflects the
predictability of a language’s structure. By training
a language model on a single language and analyz-
ing its entropy when applied to other languages, we
can infer typological similarities and differences.
This approach offers several advantages: it is data-
driven, scalable, and inherently adaptable to new
languages and evolving linguistic features.

In this paper, we demonstrate that EN-
TROPY2VEC embeddings align with established
typological categories, such as phonological, mor-
phological, and syntactic features. We also show
that these embeddings outperform traditional ty-
pological inventories in downstream multilingual
NLP tasks, including language identification, typol-
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ogy prediction, and cross-lingual transfer. By in-
tegrating ENTROPY2VEC into the LinguAlchemy
framework (Adilazuarda et al., 2024), we achieve
competitive generalization across languages, espe-
cially those underrepresented in existing typologi-
cal resources.

2 Related Works

Typological Language Inventories Traditional
typological inventories, such as WALS (Haspel-
math, 2005), AUTOTYP (Bickel and Nichols,
2002), URIEL (Littell et al., 2017), and
URIELT (Khan et al., 2025), have been instru-
mental in documenting linguistic diversity and in-
forming computational models. However, these
resources are limited by their static nature and the
incomplete coverage of the world’s languages. For
instance, WALS provides typological data for only
a fraction of the estimated 7,000 languages, leading
to missing values that can hinder the performance
of NLP models . ENTROPY2VEC addresses these
limitations by deriving LMs from the entropy of
monolingual LMs. This approach is inherently dy-
namic, as it can adapt to new languages and evolv-
ing linguistic features without the need for manual
curation. Moreover, it provides dense, non-sparse
embeddings that capture the probabilistic structure
of languages, offering a more nuanced understand-
ing of typological relationships.

Language Vector in NLP Language vectors, or
embeddings, have become foundational in mod-
ern NLP, enabling models to represent words, sen-
tences, and even entire languages as continuous
vectors in a high-dimensional space. Techniques
like Word2Vec, GloVe, and FastText have demon-
strated that such embeddings capture semantic and
syntactic properties, facilitating tasks like word
similarity, analogy reasoning, and machine trans-
lation. These embeddings are typically learned
from large corpora and reflect the statistical pat-
terns in language use. However, they often treat
languages as isolated entities, without explicitly
modeling the relationships between them. Recent
advancements, such as multilingual BERT and
XLM-R, have sought to address this by training
models on multiple languages simultaneously, cap-
turing shared structures and enabling cross-lingual
transfer. ENTROPY2VEC contributes to this land-
scape by offering a novel perspective on language
representation. Instead of relying solely on large-
scale pre-training on vast corpora, ENTROPY2VEC

leverages the entropy of monolingual LMs to in-
fer typological relationships between languages.
This approach not only aligns with existing lan-
guage representation models but also extends their
capabilities by incorporating typological insights,
thereby enhancing multilingual understanding and
transfer learning

3 ENTROPY2VEC

3.1 Unsupervised Language Modeling

Unsupervised language modeling uses an autore-
gressive approach, where the LM predicts the next
token based on the previous ones. Mathematically,
given a sequence of tokens [x1, x2, . . ., 2], the LM
defines a probability distribution over the next to-
ken x;41 conditioned on all previous tokens. This
can be formally expressed as:

Tt+1 = argmgxP(x | x1,m2,...,2¢;0)

where and 6 represents the parameters of
the model. The goal of training is to max-
imize the likelihood of the observed data,
which is equivalent to minimizing the cross-
entropy loss. Formally, given a dataset D =

(»Tgl)a e axgzll))a ceey (fb‘gN), ... ,x&ﬂvv)), the cross-

entropy loss is defined as:

N n;

1 i i i
£(0,D) = —NZZIOgP(m§> 12020 00)

=1 t=1

This encourages the model 8 to assign high prob-
ability to the actual next tokens in the training data.
The autoregressive nature of these models allows
them to generate coherent and contextually relevant
text by sequentially predicting tokens (Radford
et al., 2019; Brown et al., 2020; Cahyawijaya et al.,
2021), making them highly effective for building
strong language representations (Workshop et al.,
2023; Cohere et al., 2025).

3.2 LM Entropy as Language Vectors

Although having a strong language representa-
tion, LMs can only produce meaningful representa-
tion on languages that they have been pre-trained
on (Winata et al., 2023; Cahyawijaya et al., 2023c)
ans closely similar languages (Cahyawijaya et al.,
2023b, 2024). The cross-lingual generalization
often diminish when the corresponding model is
faced with languages that are low-resource (Bang
et al., 2023; Cahyawijaya et al., 2023a) and distant
from the languages it has been trained on (Lovenia
et al., 2024; Cahyawijaya, 2024; Bean et al., 2024).
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As the cross-lingual generalization of LMs
depends on the closeness of the language, we
argue that this limitation can actually be ex-
ploited to build a language vector which is a
vector that provides a global representation of
a certain language. More specifically, using
a set of monolingual LMs {0r,,0r,,...,01,}
each trained on a specific language L; and a
set of monolingual corpora {DX1, DLz .. DIn},
we build the vector representation of languages
{(Ztv zt2 . 7Y Zi € R™ by computing
the average cross-entropy of the corresponding lan-
guage model 0; on each corpus D;. Formally, we
define the language vector Z as:

Zli = [£(6;,D1), L(6;,D2), ..., L(6;,D,)]

We call our method of deriving language vec-
tor from the entropy of LMs as ENTROPY2VEC.
Unlike other existing language vectors like
URIEL (Littell et al., 2017) and URIEL™ (Khan
et al., 2025), which derive their language vec-
tors from various linguistic inventories, e.g.,
WALS (Dryer and Haspelmath, 2013), AUTO-
TYP (Bickel et al., 2023), etc., our method pro-
vides a fully unsupervised, data-driven approach
for building a language vector. Moreover, our vec-
tor can evolve following the actual evolution of
languages by updating each of the monolingual
LMs with more recent data on each of the corre-
sponding languages. ENTROPY2VEC leverages
the inherent patterns and structures within large-
scale textual data, eliminating the need for manual
feature engineering or reliance on predefined lin-
guistic inventories. By continuously updating the
models with new data, our approach ensures that
the language vectors remain dynamic and reflective
of the ever-changing nature of human language.

4 ENTROPY2VEC and Language
Typology

To assess the validity of ENTROPY2VEC, we com-
pare it against several established language vector
and tree baselines: URIEL (Littell et al., 2017) and
URIEL™T (Khan et al., 2025) vectors, as well as
the Glottolog tree (Nordhoff and Hammarstrom,
2011). For the first two, we derive a hierarchi-
cal clustering tree representing inter-language dis-
tances based on geographical and syntactic features.
We then evaluate how well the trees induced from
ENTROPY2VEC vectors replicate these known ty-
pological groupings, and whether they reveal novel
or diverging relationships.

4.1 Experiment Setting

Dataset Our data source is the Glot500c cor-
pus (Imani et al., 2023), from which we gather
textual data for 33 distinct languages which are
also present in URIEL, URIEL™, and Glottolog.
For each language, we cap the data at a maximum
of 1M sentences and split this data into 7:2:1 (train,
validation, test) split after collating the sentence
to cap each instance to 1024 characters to support
model’s max ingestion length. The details of the
quantity and split per language can be observed in
Appendix A.

Training Strategy We choose GPT-2 as our pre-
trained language model for learning language rep-
resentations, where the model is configured with
an embedding dimension of 512, 4 transformer lay-
ers, and § attention heads. More details—including
tokenizer configurations, optimization parameters,
and the precise methodology for perplexity extrac-
tion—are elaborated further in Appendix B. Train-
ing is conducted by using the same settings for
all 33 languages to extract their perplexity, a mea-
sure of how well the language model predicts the
test data. This perplexity scores, reflecting the
model’s "surprise” by a language’s characteristics,
are used to derive language vectors denoted as
{Z81 ZzE2 . ZIn}, where each Z%i represents
a specific language. From now on, the entirety of
these vectors will be termed as ENTROPY2VEC.

Forming Typological Trees We generate hier-
archical language clusters from the learned vector
representations Z using the DBSCAN algorithm,
selected for its ability to discover clusters of arbi-
trary shape without requiring a predefined number
of clusters. This choice is motivated by the non-
uniform density and structure of real-world lan-
guage typologies, which traditional linkage-based
methods fail to capture due to its complexity (Ap-
pendix C). The resulting clusters are then trans-
formed into tree structures and post-processed to
ensure compatibility with downstream evaluation.
This includes standardizing hierarchical level la-
bels (e.g., family, subfamily, and language in
URIEL and URIEL™) to maintain parent-child re-
lationships naming convention consistency. We set
the same clustering hyperparameters for all exper-
iments to min_samples = 0.3 and epsilon = 0.1.
We apply these settings to all of our vector varia-
tions, including the pure ENTROPY2VEC and the
its concatenated variants with URIEL or URIEL ™.
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Figure 2: Tree comparison across methods: (a) Glottolog gold tree, (b) tree derived from URIEL syntax-knn
distances, and (c) our tree derived using ENTROPY2VEC representations with perplexity-based clustering.

We compare the similarity of the tree generated
from different language vectors with the ground
truth typological tree from Glottolog .

Evaluating Typological Tree We extract tree
subsets of the Glottolog and URIEL trees cor-
responding to only 33 languages present in our
evaluation. Then, we use them as the gold com-
parison against the created ENTROPY2VEC typo-
logical tree and evaluate them using two tree dis-
tance metrics: Robinson-Foulds (RF) (Robinson
and Foulds, 1981) distance and Lowest Common
Ancestor (LCA) (Aho et al., 1973). The RF dis-
tance quantifies the dissimilarity between two trees
based on the number of differing splits, while LCA
measures the structural proximity of node pairs by
comparing the depths of their lowest common an-
cestors. Together, these metrics assess both the
global and local alignment of the induced trees.

"Note that, there are other typological tree beside Glottolog
such as Ethnologue (Campbell and Grondona, 2008) which
have some differences on their typological clusters. How-
ever, as the general clusters are mostly similar, we only use
Glottolog as the ground truth within our study.

We also report results across multiple vector con-
catenation ENTROPY2VEC variations (denoted as
®), and conduct qualitative analysis to interpret the
effectiveness of each representation in capturing
linguistic typology.

4.2 Result and Analysis

Alignment with Language Typology Figure 2c
shows the reference typological tree from Glot-
tolog, the typological tree generated using URIEL
with syntax features, and the typological tree from
ENTROPY2VEC. Although there are several dif-
ferences, the constructed clusters within the tree
showcase the correct similarity between languages
where language that come from different language
families — i.e., English (eng), Tamil (tam), Chinese
(cmn), and Bishnupriya Manipuri (bpy) — form
their own branch on the top-level grouping, while
languages that are closely similar like the Malayic
language group (Hudson, 1970) —i.e., Indonesian
(ind), Malay (zIm), Balinese (ban), Banjarese (bjn),
and Minangkabau (min) — are grouped together.
Furthermore, similar to the typological tree from
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Language Vector ‘ Glottolog

| MAE (1) RF ()

Language Features

URIELge, 11.11 13.0
URIELsyntax 9.35 18.0
URIEL " e, 11.15 13.0
URIEL " syntax 11.15 13.0
ENTROPY2VEC 8.60 17.0
Concatenated Features

URIELge, + Ours 9.64 13.0
URIELsyntax + Ours 8.58 16.0
URIEL * e + Ours 7.88 19.0
URIEL *syntax + Ours 10.12 12.0

Table 1: Comparison of tree distance metrics between
various language vector configurations and the Glot-
tolog baseline tree. Lower MAE values and lower RF
scores indicate better tree reconstruction quality. Ours
refers to ENTROPY2VEC vectors, while “+ Ours” in-
dicates feature concatenation with min-max normaliza-
tion.

Glottog, most of the Phillipine languages (Reid
and Liao, 2004) — i.e, Tagalog (tgl), Cebuano (ceb),
Waray Waray (war), Pampanga (pam), and Pan-
gasinan (pag) —, also clustered together with the
Malayic due to the shared morphosyntactic features
between the two groups.

We further quantify the similarity distance be-
tween these typological trees and the Glottolog
ground truth typological tree as described in §4.1.
The distance measures from the hierarchical clus-
tering trees generated= from different language vec-
tors are shown in Table 1. These metrics indicate
how well the generated typological trees align with
the typological tree from Glottolog. Overall, the
results demonstrate that tree from ENTROPY2VEC,
URIEL, and URIEL™ have similar alignment to
Glottolog, where ENTROPY2VEC yields best LCA
MAE with slightly lower RF scores in comparison
to URIEL and URIEL ™ vectors, indicating that EN-
TROPY2VEC captures key linguistic relationships
similar to these vectors without supervision.

Combination of Language Features We also
compare the base representation (Z%) with con-
catenated features (®(A, B)). Across MAE and
RF, we observe that concatenation does not consis-
tently yield improvements. Although some com-

Language 1S0639-3 Family Script Resource
Seen Languages
English* eng Indo-European  Latn HRL
Vietnamese™ vie Austroasiatic Latn HRL
Indonesian* ind Austronesian Latn HRL
Thai* tha Kra-Dai Thai HRL
Tamil* tam Dravidian Taml LRL
Burmese™® mya Sino-Tibetan ~ Mymr LRL
Ilocano ilo Austronesian Latn LRL
Javanese’ jav Austronesian Latn LRL
Minangkabau min Austronesian Latn LRL
Sundanese sun Austronesian Latn LRL
Cebuano ceb Austronesian Latn LRL
Tagalog! tgl Austronesian Latn LRL
Standard Malay® zsm Austronesian Latn LRL

Unseen Languages

German* deu Indo-European  Latn HRL
French* fra Indo-European  Latn HRL
Hindi* hin Indo-European  Deva HRL
Italian* ita Indo-European  Latn HRL
Spanish* spa Indo-European  Latn HRL
Lao lao Kra-Dai Laoo LRL
Khmer* khm Austroasiatic ~ Khmr LRL
Banjar bjn Austronesian Latn LRL
Balinese ban Austronesian Latn LRL
Mizo (Lushai) lus Sino-Tibetan Latn LRL
Waray war Austronesian Latn LRL
Buginese bug Austronesian Latn LRL
Pangasinan pag Austronesian Latn LRL
Acehnese ace Austronesian Latn LRL
Sanskrit san Indo-European  Deva LRL
Fijian fij Austronesian Latn LRL
Telugu* tel Dravidian Telu LRL
Tok Pisin tpi Creole Latn LRL
Marathi mar Indo-European  Deva LRL

Table 2: Detailed list of languages used in the seen
and unseen evaluation in SIB-200. * the language is
used in MASSIVE in the corresponding subset. | the
languages is used as part of unseen language evaluation
in MASSIVE.

binations show slight gains, others show worse
performance. For example, the combined EN-
TROPY2VEC and URIEL " Geo variant achieves the
lowest MAE (7.88), indicating a closer approxi-
mation to the reference tree in terms of distances
between the edges. Conversely, the combined
ENTROPY2VEC and URIEL*Syntax variant pro-
duces the best RF score (12.0), reflecting fewer
topological errors. However, these improvements
are not synergic across both metrics, suggesting
that combining features may introduce redundancy
or conflicting signals rather than complementarity.

Dissimilarity to Language Typology Despite
the similarity, there are still some inconsistencies
between trees and measurement of the distance be-
tween the expected ground truth typological tree
from Glottolog and comparing the similarities and
differences between different typological trees gen-
erated from different language features are not
straightforward. While our ENTROPY2VEC tree
broadly reflects syntactic and geographical relation-
ships, several misalignments persist, as shown in
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{ { STB-200 { MASSIVE

| | Seen Unseen | Seen Unseen
Language Vectors | OVRAvg. | HRL LRL HRL LRL | Avg. | HRL LRL HRL LRL | Avg.

XLM-R

URIELgGeo 77.71 79.3 78.3 79.8 777 | 78.8 | 80.48 76.11 75.09 7494 | 76.7
URIELsyntax 77.19 78.9 77.9 78.5 772 | 78.1 | 80.19 75.56 74.68 74.48 | 76.2
URIEL " geo 77.56 79.9 78.6 80.7 779 793 | 79.89 75.15 7425 74.03 | 75.8
URIEL+Syntax 79.07 82.4 81.3 82.8 80.7 | 81.8 | 80.16 7571 7485 7470 | 76.4
ENTROPY2VEC (Ours) 79.06 82.3 81.0 82.6 80.4 | 81.6 | 80.31 76.16 75.00 74.73 | 76.6
URIELge, + Ours 76.72 78.2 77.2 77.6 76.4 773 | 80.12 7536 7446 7442 | 76.1
URIELsyntax + Ours 78.85 82.1 80.7 82.3 79.9 | 81.3 | 80.50 75.84 7486 74.67 | 76.5
URIEL g0 + Ours 77.47 80.5 79.0 81.3 78.1 79.7 | 79.34 74.69 7344 7332 | 75.2
URIEL+3ynmx + Ours 78.78 81.7 80.7 82.1 80.2 81.2 | 80.30 75.84 7480 7457 | 764

Table 3: Accuracy comparison of different language vectors for LinguAlchemy regularization on the XLM-R
backbone, using SIB and MASSIVE benchmark averages. Bold numbers indicate the best average performance,
while underlined numbers indicate the second-best. We report overall performance across different settings,
including seen and unseen languages during training, as well as High- vs. Low-resource languages. For XLM-R,
we observe that vector concatenation does not increase performance compared to their standalone counterparts, as

discussed detail in subsection 5.2

Figure 2c. For example, in the predicted tree, 1ao
is grouped with tam and tha under Unsplit_L3_1

cluster node rather than with its expected Mainland
Southeast Asian cluster (vie, khm) as appears in the
gold-standard Unsplit_L1_2. Regarding the clus-
ter sensitivity, bpy appears in a broad mixed group
(Cluster_L1_5) with jav, bsb, and war, rather
than with Tibeto-Burman-influenced languages like
lus and mya as in the gold-standard Unsplit_L1_3.
Similarly, the Malayic languages min, z1m, and zsm
are dispersed across different branches instead of
being tightly grouped under a single parent, as in
Unsplit_L1_1. These suggest that there still lies
a challenge in maintaining the persistence yntacti-
cal or geographical relationships between language
groups at more granular level.

5 ENTROPY2VEC as Language Vectors

In the previous section, we demonstrate that EN-
TROPY2VEC is able to represent meaningful lin-
guistic properties such as language family relation,
syntax similarity, and geographical distance. In
this section, we establish the applicability of EN-
TROPY2VEC and compare it to other existing lan-
guage vectors such as URIEL (Littell et al., 2017)
and URIEL™ (Khan et al., 2025). We compare
the effectiveness of ENTROPY2VEC and other lan-
guage vectors by measuring the LMs performance
when applying the vectors on downstream tasks.
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5.1 Experiment Setting

Training Strategy To evaluate the downstream
effectiveness of ENTROPY2VEC, we utilize EN-
TROPY2VEC as a language vector to regular-
ize the LMs during the fine-tuning process with
LinguAlchemy (Adilazuarda et al., 2024). Lin-
guAlchemy utilize language vectors to bring better
cross-lingual generalization for low-resource and
unseen languages. In this case, the downstream
improvement on the low-resource and unseen lan-
guages with LinguAlchemy can be attributed to the
quality of the language vector.

Dataset We incorporate SIB-200 (Adelani et al.,
2024) and MASSIVE (FitzGerald et al., 2023) as
our evaluation dataset. In our evaluation, we filter
out the training and evaluation data to only cover
the languages that are related to our 33 supported
languages. This yields 13 languages for training
and seen-language evaluation with additional of 19
languages for unseen evaluations for SIB-200; and
6 languages for training and seen-language evalu-
ation with additional of 10 languages for unseen
evaluations for MASSIVE. The list of languages
covered for training and unseen evaluations are
shown in Table 2.

5.2 Result and Analysis

Performance Across Different Settings This
section discusses the impact of different language
vectors to the quality of LMs across different lan-
guage resource levels. The XLLM-R results in Table



{ { STB-200 { MASSIVE

| | Seen Unseen | Seen Unseen
Language Vectors | OVRAvg. | HRL LRL HRL LRL | Avg. | HRL LRL HRL LRL | Avg.

mBERT

URIELgGeo 67.61 69.4 70.9 72.7 70.2 | 70.8 | 72.40 65.24 60.25 59.77 | 64.9
URIELsyntax 67.49 68.8 70.2 72.5 69.6 | 703 | 72.63 65.53 60.56 60.14 | 64.7
URIEL " geo 66.67 68.3 69.6 72.2 68.7 69.7 | 71.76 6432 59.36 59.06 | 63.6
URIEL™ Syntax 67.51 69.1 70.6 72.0 69.8 | 704 | 72.63 65.38 60.55 60.12 | 64.7
ENTROPY2VEC (Ours) 67.59 68.9 70.2 72.1 694 | 70.2 | 7298 65.85 6098 6037 | 65.1
URIELge, + Ours 68.16 70.2 71.6 73.1 709 | 71.5 | 72.80 65.73 60.74 60.14 | 65.3
URIELsyntax + Ours 68.29 70.2 71.5 73.2 70.6 | 714 | 72.92 66.09 61.09 60.59 | 65.7
URIEL g0 + Ours 67.87 69.9 71.0 72.9 70.1 71.0 | 7272 65.57 60.64 60.12 | 65.3
URIEL+3ynmx + Ours 68.59 70.1 71.1 73.2 70.2 712 | 7371 67.01 62.05 61.36 | 66.5

Table 4: Accuracy comparison of different language vectors for LinguAlchemy regularization on the mBERT
backbone, using SIB and MASSIVE benchmark averages. Bold numbers indicate the best average performance,
while underlined numbers indicate the second-best. We report overall performance across different settings,
including seen and unseen languages during training, as well as High- vs. Low-resource languages. For mBERT, we
observe that vector concatenation is able to boost performance compared to standalone counterparts, as discussed

detail in subsection 5.2,

3 indicate that ENTROPY2VEC provides compet-
itive accuracy (81.3) compared to URIEL™ (81.5,
the best baseline). The improvement is even more
pronounced when compared to URIEL’s Geo fea-
ture (78.5) and Syntax feature (78.1). The perfor-
mance difference between HRL and LRL follows
the trend observed in the baselines, both in seen
and unseen languages.

Although the trend similarity between URIEL,
URIEL™" and ENTROPY2VEC used with mBERT
still persists, ENTROPY2VEC does not show any
significant improvement (only resonating around
67. accuracy) compared to all baselines, as shown
in Table 4. Furthermore, there is lack of differ-
ence in accuracy between HRL and LRL. This
can be attributed to the limited representational
understanding capability of mBERT compared to
XLM-R, which results in minimal distinctions
between different standalone language vectors
(ENTROPY2VEC and baselines) and between lan-
guages with varying resource levels. Overall, our
results highlight that ENTROPY2VEC represents
a competitive or even superior vector regularizer
compared to baseline performance.

Significance of Combining Vectors We also ex-
plore the potential of combining ENTROPY2VEC
with baseline vectors to examine whether this leads
to any amplifying effect. By concatenating EN-
TROPY2VEC with baseline vectors (e.g. URIEL g,
or URIELsyntax), we hypothesize that the com-
bined vector may enrich the representation space:
ENTROPY2VEC contributes information about lan-

guage perplexity patterns, while the baseline vec-
tors provide structural or typological cue.

In XLLM-R, the combination does not provide ad-
ditional benefit. For example, concatenating Ours
+ URIELg, reduces the average accuracy to 77.2,
which is below the standalone ENTROPY2VEC
(81.3) and URIELge, (78.5). A similar result is
observed with the Ours + URIELgyntax concate-
nated vectors, yielding 80.9, which is less than
ENTROPY2VEC (81.3) and URIELsyntax (81.5).
Concatenations with URIEL™ variants also show
similar trends. These results suggest that in XLM-
R, combining vectors may introduce redundancy
or even conflicting signals rather than complemen-
tary or synergistic gains, analogous to an overfit
scenario.

In contrast, concatenation improves the per-
formance in mBERT. The combination with
URIELg,, increases the average accuracy to 68.16
compared to the standalone counterparts (67.61
for URIELge, only and 67.59 for ENTROPY2VEC
only). This trend is also observed in other combina-
tions with URIEL™ baselines across all language
features, as shown in Table 4. Our findings indicate
that mBERT benefits from vector concatenation
because the combined vectors provide stronger rep-
resentations to compensate for the weaker language
understanding of mBERT, as discussed in Subsec-
tion 5.2. Thus, ENTROPY2VEC can also be used
to improve language representation by leveraging a
weak multilingual model to improve performance.
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. Missing Features Dynamic
Dataset #Langs Sparsity ingDa ta Last Update Inz"en tory
WALS 260 Sparse v 2003 X
AUTOTYP 1004 Sparse v 2013 X
SSWL 178 Sparse v 2015 X
PHOIBLE 2186 Sparse v 2019 X
BDPROTO 257 Sparse v 2020 X
Grambank 2467 v 2023 X
APiICS 76 Dense v 2013 X
eWAVE 77 Dense v 2020 X
ENTROPY2VEC | 33T Dense X 2025 v

Table 5: Comparison between linguistic inventories in WALS, AUTOTYP, URIEL, and URIEL™ and EN-
TROPY2VEC. T ENTROPY2VEC can be extended to 1000+ languages with open-access corpora (See §6).

6 Discussion

As highlighted in Table 5, a significant limitation of
WALS, AUTOTYP, and other linguistic databases
is their inherently static nature of inventories. They
are the result of manual curation by linguistic ex-
perts, which process is both time-consuming and
resource-intensive. As a result, they represent a
fixed snapshot of the linguistic knowledge at that
point in time and suffer from incomplete cover-
age of the world’s languages. This static repre-
sentation doesn’t take into account that languages
are dynamic and constantly evolving through grad-
ual shift in syntax and the influence of language
contact (Christiansen and Kirby, 2003; Fairclough,
2009; Corballis, 2017; Grenoble, 2021; Brochha-
gen et al., 2023). ENTROPY2VEC directly ad-
dresses this problem by providing a fully unsu-
pervised data-driven framework. Since its lan-
guage vectors are derived from the entropy of lan-
guage models, they can change along with the lan-
guage they represent. If a language community
develops a new slang or undergoes a grammati-
cal shift, those changes will be reflected in the
new text corpora. This update can be performed
using continual learning, where models are incre-
mentally refined with new data rather than being
fully retrain from scratch. ENTROPY2VEC allevi-
ates the time-consuming process associated with
manual database updates and allows for the rapid
inclusions of newly documented or low-resource
languages. It is also worth noting that, the cur-
rent ENTROPY2VEC is only a prototype cover-
ing 33 languages. This however can be easily
extended to thousands of languages, by incorpo-

rating large-scale corpora such as CommonCrawl 2,
mC4 (Xue et al., 2021), Glot-500 (Imani et al.,
2023), FineWeb 2 (Penedo et al., 2025), etc.

7 Conclusion

ENTROPY2VEC represents a significant advance-
ment in the field of NLP, offering a novel, min-
imal human-derived knowledge and intervention
approach to language representation that captures
linguistic characteristics and achieves competi-
tive cross-lingual generalization compared to base-
lines. By leveraging existing language models, EN-
TROPY2VEC is able to derive features with dy-
namic inventory without having to restart manual
baseline-like typology studies and is free from the
missing values that plague traditional typological
language inventories. This adaptability and com-
pleteness make ENTROPY2VEC a powerful tool for
representing languages, as demonstrated by its abil-
ity to mirror patterns observed in linguistic studies
and enhance downstream NLP applications. The ef-
fectiveness of ENTROPY2VEC in improving cross-
lingual generalization—both as its sole vector and
when integrated with baselines—highlights its dy-
namic nature and compatibility with other repre-
sentations. ENTROPY2VEC holds strong promise
for advancing linguistic inclusion and supporting
language documentation and preservation efforts,
making it a valuable contribution to the field with
significant implications for future research in lan-
guage representation learning.

2https://commoncrawl .org/
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Limitations

While ENTROPY2VEC offers several advantages,
it is not without limitations. The quality of the em-
beddings depends on the availability and quality of
monolingual corpora for each language. For lan-
guages with limited textual resources, the resulting
embeddings may be less accurate or informative.
Additionally, the entropy-based approach may not
capture linguistic aspects, particularly those that
are less predictable or more variable.

Secondly, Figure 2c shows that similar lan-
guages, such as thai and lao, are separated at
an early stage of hiearchical cluster splitting, de-
spite their expected common language ancestry
relationship. This suggests that the representa-
tion is influenced by the encoding, causing sim-
ilar languages to split due to differing encodings.
This may not be ideal in a certain use case, as de-
spite having different scripts, languages like Thai,
Khmer, Lao, Burmese shared many vocabular-
ies due to a closely similar geopolitical and socio-
cultural background (Bradley, 2009; Siebenbhiitter,
2019; Bradley, 2023).

Future work could integrate additional linguistic
features or shared encoding structures to better cap-
ture underlying etymological relationships. Despite
these challenges, ENTROPY2VEC holds promise
for promoting linguistic inclusion and supporting
language documentation and preservation efforts,
making it a valuable contribution to the field with
significant implications for future research and ap-
plications in NLP.

Ethical Consideration

The development of ENTROPY2VEC has signif-
icant implications for the field of computational
linguistics and NLP. By providing a more compre-
hensive and adaptable representation of linguistic
diversity, ENTROPY2VEC can contribute to the de-
velopment of more inclusive and equitable NLP
models. This can help address issues related to
underrepresentation and bias in existing models,
promoting fairness and accessibility in NLP appli-
cations.

However, it is essential to consider the ethical im-
plications of using entropy-based measures to infer
typological relationships. While entropy provides
a quantitative measure of uncertainty, it may not
fully capture the complexity and nuance of linguis-
tic diversity. Therefore, it is crucial to complement
entropy-based approaches with qualitative analy-

ses and to remain mindful of the limitations and
potential biases inherent in the data and models.
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A Dataset Split

ISO 639-3 ‘ Total Sentences ‘ Train Val Test
ace 29,495 20,614 5,935 2,946
asm 1,446,686 1,012,860 289,415 144,411
ban 48,960 34,271 9,793 4,896
bel 82,370 57,721 16,444 8,205
bew 226,176 158,323 45235 22,618
bjn 47,158 32,997 9,425 4,736
bpy 164,807 115,282 32,999 16,526
bsb 61,759 43,228 12,350 6,181
ceb 1,433,543 1,003,516 286,718 143,309
cmn 57,500 40,250 11,500 5,750
deu 1,431,072 1,001,726 286,195 143,151
eng 1,431,047 1,001,710 286,203 143,134
fil 1,452,085 1,016,632 290,292 145,161
fra 1,430,341 1,001,232 286,082 143,027
gor 24,962 17,487 4,984 2,491
ilo 148,377 103,846 29,680 14,851
ind 1,430,227 1,001,157 286,058 143,012
ita 1,431,076 1,001,706 286,201 143,089
jav 449,862 314,774 90,134 44,954
khm 571,343 399,868 114,315 57,160
lao 56,924 39,838 11,395 5,691
lus 114,461 80,136 22,880 11,445
mad 9,055 6,055 1,500 1,500
min 593,618 415,559 118,724 59,335
mya 997,193 697,982 199,403 99,808
pag 11,812 8,268 2365 1,179
pam 308,828 216,328 61,655 30,845
por 1,430,401 1,001,290 286,086 143,025
spa 1,430,138 1,001,097 286,027 143,014
sun 1,452,873 1,016,965 290,539 145,369
tam 1,465,996 1,026,120 293,394 146,482
tdt 7,028 4,028 1,500 1,500
tgl 1,430,721 1,001,500 286,145 143,076
tha 1,462,635 1,023,707 292,544 146,384
vie 1,436,327 1,005,431 287,358 143,538
war 1,430,401 1,001,302 286,056 143,043
zlm 30,475 21,332 6,095 3,048
zsm 849,043 594,323 169,806 84,904

Table 6: Language-wise sentence statistics with dataset
splits (Train / Validation / Test). We maintain a ratio of
7:2:1 for the split, with minimum amount of 1,500 for
val and test split.

B ENTROPY2VEC Training Detail

Tokenization We employ a custom character-
level tokenizer. This tokenizer can either be loaded
if previously trained for an experiment or trained
anew on the specific language’s dataset. It sup-
ports a byte_fallback mechanism, which, if en-
abled, represents characters not in the vocabulary
as a sequence of their UTF-8 byte codes (e.g.,
"Oxef"); otherwise, out-of-vocabulary characters
are mapped to a [UNK] token. A [PAD] token is
also utilized. During data preparation, texts are tok-
enized with truncation enabled, a max length of
1024 tokens, and padding applied to the maximum
length.

More on Training Validation Evaluation is per-
formed every 100 steps, model checkpoints are
saved every 1000 steps, and a maximum of 2 check-
points are kept. The best model, determined by the
lowest eval loss, is loaded at the end of training.
Both training and evaluation utilize a per-device
batch size of 8, and models are trained for up to
150 epochs. Metrics are logged every 100 steps.
An EarlyStoppingCallback with a patience of
3 evaluations is used to prevent overfitting, and
a custom PerplexitylLoggingCallback logs per-
plexity during training. Data is collated for causal
language modeling (i.e., mlm=False).

C Failure of Linkage-based Clustering

Traditional linkage-based clustering methods, such
as agglomerative clustering with different linkage
criteria (ward, complete, average) build trees by
iteratively merging or splitting clusters based on
simple distance metric. While effective with data
with a clear, sphere-like structure, these methods
fail in the context of generating language clusters
due to several foundational assumptions that do not
hold true for this data, which are:

Predefined Number of Clusters To derive a flat
set of clusters from a linkage-based hierarchy, the
number of clusters £ must be specified to cut the
dendogram. This requires the priori knowledge
of the data’s structure, which is often unavailable
when exploring typological relationships. This
methodological requirement can force an unnat-
ural structure onto the data, potentially leading to
linguistically invalid groupings.

Sensitivity to Noise and Density Variation The
performance of linkage-based methods can be sig-
nificantly degraded by the presence of noise and
outliers. For example, single-linkage is suscep-
tible to a “chaining" effect, where it incorrectly
merges distinct clusters if a series of intermedi-
ate noise points connects them. Complete-linkage,
conversely, is sensitive to outliers and may fail to
merge clusters that are otherwise close.
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