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Abstract

This work investigates how a multilingual trans-
former model represents morphosyntactic prop-
erties of questions. We introduce the Ques-
tion Type and Complexity (QTC) dataset with
sentences across seven languages, annotated
with type information and complexity metrics
including dependency length, tree depth, and
lexical density. Our evaluation extends prob-
ing methods to regression labels with selectiv-
ity controls to quantify gains in generalizabil-
ity. We compare layer-wise probes on frozen
Glot500-m (Imani et al., 2023) representations
against subword TF-IDF baselines, and a fine-
tuned model. Results show that statistical fea-
tures classify questions effectively in languages
with explicit marking, while neural probes cap-
ture fine-grained structural complexity patterns
better. We use these results to evaluate when
contextual representations outperform statisti-
cal baselines and whether parameter updates
reduce availability of pre-trained linguistic in-
formation.

1 Introduction

Multilingual contextual embeddings show promise
for accessing fine-grained morphosyntactic prop-
erties across hundreds of languages. Probing how
transformer models encode certain linguistic prop-
erties has practical implications for language ty-
pology research, where systematic comparison of
structural features often relies on automated analy-
sis. Additionally, evaluations targeting specific lin-
guistic phenomena can test common architectural
assumptions about transformer models. Examples
include the often discussed layer-wise specializa-
tion from syntactic to semantic processing (Tenney
et al., 2019a) and the ability of shared embedding
spaces to effectively capture cross-linguistic pat-
terns.

Researchers rely on these assumptions in order
to describe the internals of the models when test-
ing on benchmarks (Conneau et al., 2020; Sahin
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Figure 1: Experimental pipeline from multilingual
datasets: TyDi QA (Clark et al., 2020), UD 2.15 (Zeman
et al., 2024), through annotation of question types and
complexity metrics to extraction of three representation
types used for model training.

et al., 2020), but also when evaluating their gen-
eral linguistic capabilities outside of specific tasks
(Brunato et al., 2020). However, comparisons with
appropriate baselines are often left out. Without
those, we cannot determine whether observed lin-
guistic capabilities reflect genuine structural pro-
cessing or are the result of patterns that simpler
statistical methods capture equally well.

This presents a challenge when investigating
universal sentence-level phenomena where the re-
lationship between surface form and underlying
structure varies extensively (Tenney et al., 2019b;
Ravishankar et al., 2019). We focus specifically
on interrogative sentences, which illustrate this
variation particularly well. For example, Arabic
uses explicit particles like “ J»” for polar (yes/no)
questions and overt subordinating conjunctions
for complex clauses. Alternatively, Japanese re-
lies on contextual cues for question interpretation
and implicit hierarchical embedding through case-
marking for structural complexity. The differences
in how languages encode both categorical distinc-
tions and continuous complexity metrics create a
natural setup for evaluating whether contextual rep-
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resentations capture structural patterns better than
surface-level statistical correlations obtained by,
for example, TF-IDF features.

We explore this question through controlled com-
parisons of neural representations with statistical
baselines across seven typologically diverse lan-
guages. Our framework extends probing methods
to continuous linguistic properties, including to-
ken count, lexical density, dependency length, tree
depth, verbal arity, and subordination patterns. Fig-
ure | illustrates our method: we start with existing
multilingual datasets, process and annotate these
for categorical (interrogative types) and continuous
labels, and we finally evaluate three representation
types (subword TF-IDF features, contextual em-
beddings, and a fine-tuned model) using our anno-
tated data in Arabic, English, Finnish, Indonesian,
Japanese, Korean, and Russian.

We present three key findings:

* Contextual embeddings outperform statisti-
cal baselines for question type classification,
particularly in languages requiring contex-
tual integration (Japanese, Korean, English,
Finnish).

* Regression performance varies significantly
across metrics, with distinct layer-wise pro-
files emerging for different structural proper-
ties.

* Fine-tuning compensates for unstable neural
encoding patterns but degrades performance
on metrics with stable layer-wise representa-
tions, revealing a trade-off between adapta-
tion and preservation of pre-trained linguistic
knowledge.

These results provide practical guidance for
model selection based on typological properties and
suggest that frozen representations may be prefer-
able for certain analytical tasks. Additionally, our
regression-based probing framework with selectiv-
ity controls opens new avenues for investigating
continuous linguistic properties in neural represen-
tations.

2 Related Work

Probing methods assess what linguistic knowledge
is encoded in neural representations by training
classifiers to predict specific properties in word em-
beddings (Adi et al., 2017; Conneau et al., 2018).
Early work demonstrated that contextualized and
static representations encode syntactic information
like part-of-speech categories, dependency rela-

tions, and word order variation (K6hn, 2015; Shi
etal., 2016).

Most probing studies focus on token-level prop-
erties, with fewer approaches looking at variation
in sentence-level regularities. Sahin et al. (2020);
Waldis et al. (2024) introduce comprehensive eval-
uation frameworks for sentence level probing tasks.
These reveal how models encode structural linguis-
tic properties such as morphological case marking,
agreement patterns, and syntactic hierarchies, as
well as functional properties including semantic
roles, discourse relations, and pragmatic features.
Question type classification represents a natural
extension of this work, as it requires models to inte-
grate both formal markers (interrogative particles,
auxiliary inversion) and functional understanding
(information-seeking intent, presupposition struc-
ture).

Two assumptions motivate current probing ap-
proaches. First, the layer-wise specialization hy-
pothesis suggests lower layers encode syntax while
higher layers capture semantics (Tenney et al.,
2019a). This informs decisions about which lay-
ers to probe for different linguistic tasks. Second,
multilingual models develop shared embedding
spaces that capture cross-linguistic patterns (Con-
neau et al., 2020), enabling efficient transfer across
languages.

Probes mainly target categorical properties
through classification tasks (Tenney et al., 2019b;
Jawahar et al., 2019). However, Pimentel et al.
(2020) argue that complex linguistic phenomena
require more sophisticated probing architectures
that can approximate a wider range of informa-
tion content. Regression-based probing is a sim-
ple approach that investigates linguistic properties
like syntactic complexity, processing difficulty, and
structural density. Complexity measures derived
through dependency parsing allow us to generate
target labels that reveal how models encode syntac-
tic structure along continuous and discrete dimen-
sions. We investigate these to assess how accessible
structural features are from learned embeddings.

Determining whether probes capture genuine
structural encoding requires appropriate baselines.
Hewitt and Liang (2019) introduced selectivity con-
trols comparing performance on real versus shuf-
fled labels to distinguish linguistic encoding from
spurious correlations. Most studies, however, eval-
uate neural representations without statistical base-
lines, making it difficult to assess whether con-
textual embeddings offer genuine advantages over
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Language # % Polar % Content Avg. Score
Arabic 1,116 48.3 51.7 0.42
English 1,374 50.0 50.0 0.38
Finnish 1,368 49.9 50.1 0.34
Indonesian 1,136 48.2 51.8 0.39
Japanese 1,329 50.8 49.2 0.41
Korean 921 46.9 53.1 0.39
Russian 1,376 50.0 50.0 0.41
Total 8,620 50.6 49.4 0.39

Table 1: QTC dataset statistics by language. # shows
total annotated sentences per language. Polar/Content
percentages reflect question type distribution. Average
Complexity represents normalized composite scores of
individual complexity metrics (see Appendix A for de-
tails).

frequency-based methods.

Similarly, while probing typically uses frozen
representations extracted from a specific layer of
the encoder, the relationship between pre-trained
knowledge and task-specific optimization remains
underexplored. Understanding when end-to-end
optimization preserves or degrades pre-trained lin-
guistic knowledge requires direct comparison of
frozen probes and fine-tuned models, particularly
for structural properties that may be disrupted by
task-specific adaptation.

3 Dataset

We introduce the Question Type and Complex-
ity (QTC) dataset containing ~ 9, 000 annotated
questions across seven languages: Arabic, English,
Finnish, Indonesian, Japanese, Korean, and Rus-
sian. QTC combines TyDiQA-GoldP training data
(Clark et al., 2020) with Universal Dependency
treebank test data (Nivre et al., 2020; Zeman et al.,
2024) to balance natural language variation with
standardized syntactic annotation, with approxi-
mately 70% of sentences drawn from TyDiQA
and 30% from UD treebanks. The choice of lan-
guages was informed by different question forma-
tion strategies. Languages using explicit interrog-
ative marking include Arabic with * |»”, Finnish
with suffix “-ko/-k6”, and Russian with particle
“mu”. Languages using implicit strategies like con-
text or prosody include Japanese, Indonesian, and
Korean. Lastly, auxiliary inversion in English can
be seen as a mixed strategy.

Categorical and continuous labels were created
using parallel annotation pipelines. For question
type classification, TyDiQA data already contained
human annotations from three independent anno-
tators. We adopted annotations where all three an-

notators agreed and manually resolved disagree-
ments. UD treebank sentences were annotated for
question type using language-specific rule-based
systems targeting morphosyntactic patterns: inter-
rogative particles, wh-phrase positioning, and aux-
iliary structures. We label polar questions as ‘1’
and content questions as ‘0’.

For complexity metrics, we used UDPipe 2.0
(Straka, 2018) to parse all sentences, then applied
the Profiling-UD framework (Brunato et al., 2020)
to extract six raw complexity features capturing
processing difficulty (see Appendix A for details).
We validated complexity metrics through statistical
outlier detection and (partial) manual verification
of parse quality.!

4 Probing Tasks

4.1 Question Type Classification

Classifying questions as polar (yes-no) or content
(wh-) is an interesting test case for comparing neu-
ral representations against statistical baselines. As
mentioned, languages with explicit marking strate-
gies use dedicated particles or consistent transfor-
mations, like English auxiliary inversion (Dryer,
2013a). This makes classes identifiable through
surface patterns that frequency features can cap-
ture.

Languages with implicit strategies prove chal-
lenging because they rely on context and prosody.
Japanese polar questions like “Ashita kimasu ka?”
[Tomorrow come-polite Q] and content questions
“Itsu kimasu ka?” [When come-polite Q] have iden-
tical sentence-final particles, differing only in the
presence of wh-words that often appear in non-
initial positions (Dryer, 2013b). This variation al-
lows us to test when contextual embeddings pro-
vide genuine advantages over frequency-based ap-
proaches for capturing structural patterns that go
beyond readily available surface cues.

4.2 Linguistic Complexity Prediction

In addition to question type classification, we also
use continuous labels and predict complexity scores
derived from morphosyntactic properties. This
operationalizes the idea that structural density in-
creases processing difficulty (Hawkins, 2007). We
formulate this as a regression task, targeting six nor-
malized complexity metrics: token count, lexical

'The QTC dataset and code are available at
hf.co/rokokot/question-type-and-complexity
and github.com/rokokot/qtype-eval.
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density, average dependency length, maximum tree
depth, verbal arity, and subordinate chain length.
This tests whether different representations capture
quantitative aspects of linguistic structure. We also
evaluate performance on a combined complexity
score calculated as the normalized sum of all six
individual metrics, providing an abstract measure
of structural density.

Statistical models can effectively capture surface-
level complexity indicators. Token count correlates
with question length from simple “Who left?” to
complex “What did the committee decide about the
proposal?”, while subordination patterns manifest
through explicit conjunctions that TF-IDF features
can detect. However, hierarchical syntactic prop-
erties present greater challenges. A question like
“Who ate the cake that Alice brought?” shares the
same interrogative markers as the simple exam-
ple, but involves multiple dependency levels and
clauses that increase syntactic complexity.

Unlike categorical properties typically studied in
probing, continuous dimensions allow us to isolate
aspects of linguistic structure most effectively cap-
tured by different representation approaches. This
allows us to test competing hypotheses about how
neural and statistical models encode structural in-
formation. If contextual representations truly cap-
ture abstract syntactic hierarchies, they should out-
perform frequency-based methods on metrics like
tree depth and subordination complexity, which
require understanding of long-distance dependen-
cies and recursive structures. Conversely, if neural
advantages primarily reflect sophisticated pattern
matching, we expect statistical baselines to remain
competitive across all complexity dimensions.

4.3 Experimental Setup

Our setup addresses the core methodological chal-
lenge of distinguishing genuine linguistic encoding
from pattern memorization when comparing neu-
ral and statistical approaches. Following Hewitt
and Liang (2019), we create three shuffled-label
control variants per task that preserve label distri-
butions while destroying text-label relationships.
We define selectivity as normalized performance
differences:

aACCreal — aACCcontrol

Scls =

aCCcontrol ( 1 )
MSCcontrol — MSCreal

Sre =
g mSCcontrol

with (acc)uracy for the classification task and

mean squared error (mse) for regression task.

This approach enables direct comparison of rep-
resentational quality. Selectivity measures how
much better a model performs when linguistic struc-
ture is present versus absent. Higher values (e.g.,
> 0.5) mean the model exploits “genuine” lin-
guistic patterns, while low selectivity suggests the
model performs similarly regardless of whether
input-label relationships are meaningful or random.
Strong selectivity shows when models capture in-
formation rather than surface correlations.

5 Experiments

The experiments were carried out on Glot500-m
(Imani et al., 2023), a multilingual encoder-only
transformer. Glot500-m was created by extend-
ing the XLM-R-base architecture (Conneau et al.,
2020) using continued pre-training on a custom
multilingual corpus and expanding the vocabulary
from 250K to 401K tokens to cover 511 languages,
including all seven languages in our dataset.

5.1 Subword TF-IDF Baselines

First, we establish baselines using linear and nonlin-
ear predictors trained on TF-IDF features and corre-
sponding sentence labels. We use the Glot-500-m
tokenizer to generate TF-IDF representations for a
fair comparison.

We establish baselines using linear models (lo-
gistic regression for classification, ridge regression
for complexity prediction) and XGBoost (Chen
and Guestrin, 2016) for nonlinear feature inter-
actions. XGBoost provides an upper bound for
statistical baseline performance while maintaining
interpretability through feature importance scores.
Dummy baselines using majority class and mean
value prediction set floor performance.

5.2 Probes on Frozen Representations

We extract sentence-level embeddings from each
of the 12 layers of the frozen encoder using mean
pooling across token representations, resulting in
a fixed-size 768-dimensional vector for each sen-
tence. For every sentence embedding at every layer
we train neural probes to predict the target label.
This allows us to track where different kinds of
linguistic information are most accessible to the
probe.

We designed our probe architectures to capture
complex patterns while maintaining training effi-
ciency. Classification probes use two-layer MLPs
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TF-IDF TF-IDF _ Glot500 _ Glot500
Language Linear S XGBoost S Best Probe S Layer  Fine-tuned
a2 Arabic 909  0.92 97.4 0.83 85.7 0.20 2 74.1
"8 English 83.6 055 80.9 0.56 97.3 0.95 5 91.8
fin " Finnish 84.5  0.85 87.2 0.91 94.5 0.89 5 923
ind Indonesian ~ 67.3 0.41 65.5 0.23 80.9 0.62 6 73.6
ien Japanese 64.1 0.25 64.1 0.28 82.6 1.07 10 88.0
ker Korean 66.3 0.43 73.6 0.48 76.4 0.53 9 91.1
U Russian 864  0.85 77.2 0.5 97.3 0.95 11 96.4

Table 2: Question type classification accuracy (%) and mean selectivity (S) across approaches. Bold values indicate
the highest accuracy and selectivity scores achieved for each language. Layer denotes the index of the encoder layer

at which the probe achieved highest accuracy.

with 384 hidden units optimized using binary cross-
entropy loss. Regression probes use three-layer
MLPs with 128 hidden units and minimize the mean
squared error loss. All probes are trained sepa-
rately for each layer and task combination using
70/15/15 train/validation/test splits. While expres-
sive enough to capture complex patterns, this setup
ensures that performance differences reflect rep-
resentational properties rather than probe capacity
(Pimentel et al., 2020; Waldis et al., 2024).

5.3 Fine-tuned Model

To determine whether parameter updates preserve
pre-trained linguistic information, we train the com-
plete Glot500 model end-to-end on each task. The
fine-tuned model uses identical task-specific heads
as our probes but allows model updates (i.e., not
frozen).

We employ two-layer MLPs with binary cross-
entropy loss for classification and three-layer heads
with MSE loss for regression.

This configuration enables direct comparison
with frozen probes. If fine-tuning enhances lin-
guistic representations, the updated model should
consistently outperform probes across all metrics.

Conversely, degraded performance indicates that
task-specific optimization disrupts structural knowl-
edge encoded during pre-training.

We only report main task performance metrics
for fine-tuned models because selectivity controls
are less meaningful when the entire network adapts
to the specific label distribution, potentially reflect-
ing task-specific overfitting.

6 Results

Our statistical baselines employ logistic regression
for classification and ridge regression for complex-
ity prediction, with XGBoost capturing nonlinear
feature interactions.

Results across the two tasks reveal trade-offs
in the ability of our models to capture different
kinds of linguistic information. For question type
classification, neural probes consistently perform
the best, with the majority of highest accuracy and
selectivity scores. Regression results show more
variety, with different representation types leading
on different complexity metrics.

Arabic English Finnish Indonesian Japanese Korean Russian
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Figure 2: Question type classification across languages and methods. Probing results per layer of Glot500-m.
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TF-IDF _ TF-IDF Glot500 _ Glot500
Submetric Ridge XGBoost Best Probe Layer Fine-tuned
Token Count 0.042 046 0.032 0.60 2 0.004 0.68 "¢ 5 0.006 ™
Max. Tree Depth 0.013  0.60 °™ 0.013 0.58 °"® 0.002 0.57 ker 2 0.017 ™
Avg. Dependency Length 0.007 036 °*® 0.007  0.73 "™ 0.013 0.29 "™ 4 0.002 fin
Avg. Subordinate Chain Length ~ 0.015  0.52 " 0.055  0.29 ind 0.053 0.47 den 6 0.019 "
Avg. Verbal Edges 0.042 035 °® 0.066 0.32 fin 0.070 0.40 en 6 0.030
Lexical Density 0.033 0.48 0.082 0.27 kor 0.036 0.2] ind 3 0.023 °"
Combined Complexity 0.032 048 ‘™ 0.017 0.60 °"® 0.016 0.78 ien 4 0.020 °"

Table 3: Complexity submetric regression errors (mse) and mean selectivity (S) across approaches. Language codes

are shown next to every S value to indicate the corresponding language.

6.1 Surface Markers and Contextual
Classification Cues

Table 2 shows the classification accuracy and se-
lectivity scores across all languages and predictors.
Probes achieve the highest accuracy in four out of
seven languages and the best selectivity scores in
six. Arabic is the exception with XGBoost reach-
ing 97.4% accuracy (0.83 selectivity) compared to
85.7% accuracy (0.20 selectivity) with the best per-
forming probe. Linear models perform similarly
well (90.9% accuracy, 0.92 selectivity).

Figure 2 tracks how probes perform when trained
on representations from different encoder layers,
compared to baseline predictors and the fine-tuned
model. English, Finnish and Russian show similar
trends, with both probes and fine-tuning achiev-
ing accuracies > 90%, although at different depths
(layer 5 for English and Finnish, layer 11 for Rus-
sian).

Indonesian probes perform poorly until layer 5,
after which they consistently exceed all baseline
methods, dipping only at the final layer. Japanese
and Korean show oscillating scores across layers,
with fine-tuning achieving notably higher accuracy.

The benefits of contextual representations are
clearest in English, Japanese, and Korean, where
the performance gap between statistical baselines
and Glot500-m probes/fine-tuning ranges from 10
to 20 percentage points increases. Finnish shows a
more moderate contextual advantage of less than 10
percentage points, while Arabic, Indonesian, and
Russian exhibit much smaller gaps between repre-
sentation types.

6.2 Continuous Complexity Probing

Table 3 presents regression errors across six com-
plexity sub-metrics plus the combined complexity
score, limited to results for languages that achieved
the best performance on each metric.

Glot500-m probes achieve the lowest error rates
on three metrics: token count (0.004 MSE, 0.68
selectivity), tree depth (0.002 MSE, 0.57 selectiv-
ity), and combined complexity (0.016 MSE, 0.78
selectivity). Fine-tuning leads on three others: de-
pendency length (0.002 MSE), verbal edges (0.030
MSE), and lexical density (0.023 MSE). Ridge re-
gression achieves the best performance on subordi-
nate chain length (0.015 MSE, 0.52 selectivity).

In terms of selectivity, statistical approaches are
surprisingly competitive, with TF-IDF methods
achieving the highest selectivity on four out of
seven metrics. This contrasts with classification
results where probes consistently outperformed our
baselines.

Layer-wise regression patterns come in three dis-
tinct profiles. Most combinations show flat per-
formance curves where all approaches converge
around similar values, with the difference between
highest and lowest error remaining below 0.01.
Cases with moderate layer-to-layer variation (error
differences between 0.01 and 0.03) suggest partial
encoding of relevant information across the model’s
depth. More pronounced oscillations, where error
differences exceed 0.03, are usually coupled with
low probe performance and point to failures of the
contextual embeddings to encode the targeted in-
formation.

Fine-tuning achieves the lowest error rates on
three metrics: dependency length, verbal edges, lex-
ical density. These advantages appear concentrated
on metrics that show relatively flat layer-wise pro-
files, suggesting that the linguistic properties may
be better captured through end-to-end optimization
rather than frozen representations. Conversely, met-
rics where probes excel (token count, tree depth,
combined complexity) tend to show more pro-
nounced layer preferences, with fine-tuning per-
forming relatively poorly.
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Figure 3: Layer-wise regression trends show three distinct encoding profiles.

7 Discussion

7.1 Classification Performance Analysis

Classification results show that neural approaches
generally perform better than statistical baselines.
Arabic is the only exception, possibly reflecting the
widespread and unambiguous use of question parti-
cles. However, explicit marking does not uniformly
favor TF-IDF features. For example, Russian uses
particles which follow similar transformations, yet
benefit more from Glot500 embeddings. This con-
firms that the nature of marking strategy matters
more than its presence or absence.

English and Finnish further confirm this pattern.
English auxiliary inversion (“Is it raining?” / “It is
raining”) and Finnish suffixes ("-ko/-kd”’) represent
complex morphosyntactic transformations rather
than simple particles, yet both show strong neural
advantages (97.3% and 94.5% respectively) over

statistical baselines. This suggests that transfor-
mational marking strategies require contextual pro-
cessing to identify the relevant structural changes,
even when the markers themselves are explicit.
Selectivity scores reveal that these representation
types capture distinct aspects of question formation.
Statistical methods excel when surface distributions
provide reliable cues, while neural representations
become necessary when question identification re-
quires integration of distributed contextual infor-
mation that goes beyond simple frequency patterns.
Differences in processing stability across lan-
guages can be seen in Figure 2. These patterns
appear related to how question type information
is distributed through the transformer architecture.
Arabic exhibits the highest variability with 0.25
accuracy difference between layers following its
overall lower neural performance. Russian has the
opposite tendency with minimal variation (< 0.1)
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while maintaining consistently high performance.
English, Korean, and Finnish show moderate vari-
ability (0.1), while Indonesian and Japanese display
higher fluctuations (> 0.2) that correspond with
the oscillations visible in their layer-wise profiles.

7.2 Regression Profiles

Despite Glot500 representations achieving consis-
tently low errors in complexity regression tasks,
TF-IDF approaches show higher selectivity scores
on tree depth, dependency length, subordinate chain
length, and lexical density metrics. Table 3 shows
the variety in the ability of transformers to encode
different morphosyntactic properties.

Regression probes have a clear advantage on
token count and combined complexity, but they
do not consistently outperform our baselines on
most of the metrics. Selectivity scores reveal that
statistical methods lead on four of seven complex-
ity metrics, demonstrating that frequency features
can distinguish meaningful structural patterns from
spurious correlations more reliably than contextual
representations.

Figure 3 shows a selection of layer-wise error
trends highlighting the three most common perfor-
mance profiles. Flat probe trends were observed
most often, meaning that certain structural proper-
ties are tied to surface features and that contextual
processing rarely provides additional benefit. High
probe oscillations and poor performance are more
interesting. They imply that rather than building
increasingly sophisticated representations of struc-
tural complexity, the transformer may be losing
and regaining access to relevant information as we
move through successive layers.

The differences between fine-tuning and frozen
probes point towards a trade-off between the two
neural approaches. Fine-tuning performs well al-
most exclusively on metrics characterized by high
oscillations and unstable layer-wise trends, sug-
gesting that parameter updates may compensate
for inconsistencies. On the other hand, low perfor-
mance on metrics with flat profiles demonstrates
that task-specific training may prevent access to
or even destroy pre-trained information. In other
words, when structural information is clearly en-
coded at specific layers, the parameter updates re-
quired for task optimization appear to interfere with
these patterns.

However, the success of fine-tuning on predict-
ing dependency length, verbal edges, and lexical
density suggests that some properties are not read-

ily available in frozen transformer representations,
requiring parameter updates to achieve reliable per-
formance on these metrics.

8 Conclusion

We investigated how multilingual transformers en-
code question patterns by comparing contextual em-
beddings against statistical baselines across seven
typologically diverse languages. Glot500 probes
show advantages in question type classification,
particularly for languages requiring contextual inte-
gration (Japanese, Korean, English, Finnish), while
Arabic’s unambiguous particles favor statistical
methods. For complexity regression, statistical
baselines show better selectivity on most individ-
ual metrics, though neural methods excel at token
count and verbal arity.

Different complexity metrics exhibit distinct
layer-wise encoding patterns. Fine-tuning com-
pensates for unstable neural encoding (high oscilla-
tions) but struggles on metrics with otherwise stable
layer-wise representations, suggesting task-specific
optimization can disrupt pre-trained knowledge.

Our QTC dataset and regression-based probing
setup using selectivity controls provide tools for
investigating continuous linguistic properties. We
find that understanding when and why neural mod-
els capture linguistic structure requires careful com-
parison with principled baselines. Future work
should examine applications to other architectures,
investigate why certain complexity metrics resist
neural encoding, and develop training procedures
that preserve linguistic information while improv-
ing task performance.

Limitations

This study is limited to seven languages for which
high-quality treebanks and interrogative sentence
data were available. Our dataset focuses exclu-
sively on questions, so the findings do not gen-
eralize to other clause types. While we carefully
selected the languages to cover different interroga-
tive patterns, we do not cover all typological varia-
tion between target languages. Complexity metrics
are computed from automatic dependency parses,
which can introduce parser-specific biases and re-
duce comparability. However, the cross-linguistic
consistency of our findings suggests that genuine
structural differences emerge despite potential pars-
ing noise.
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A Metric Definitions

Token Count is a straightforward way to measure
sentence complexity. It refers to the number of pro-
cessed segments in a sentence, |T|. In languages like
English, tokens are words and punctuation marks.
In Japanese or Korean, which do not use spaces be-
tween words, tokens are aligned with grammatical
morphemes rather than orthographic words. Gener-
ally, the more tokens a sentence has, the more likely
it is to require greater processing efforts (Iavarone
etal., 2021).

Lexical density is the ratio of content words
(nouns, verbs, adjectives, adverbs) to the total num-
ber of tokens excluding punctuation. This metric
captures the information density of a sentence and
often serves as evidence of register difficulty due
to its variation across domains.

[content words| _ 3 _ ) 105 (2

LD = =
|T| — |punct| 7

Average Dependency Length is the linear dis-
tance between words and their syntactic heads,
across all dependency links in a sentence. This mea-
sure directly reflects cognitive processing load, as
longer dependencies require holding more informa-
tion during processing. Futrell et al. (2015) provide
compelling evidence in 37 languages, showing that
all human languages maintain shorter dependency
lengths than would occur by random chance.

N-1

1
token(1)

|dep(i) — head(i)| = 2 =2 (3)
Where N is the number of tokens (i.e., words)
without any punctuation and excluding the root of
the sentence (N — 1).
Maximum Tree Depth measures the longest
path from root to leaf in a dependency structure,
revealing how deeply embedded linguistic elements
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What do you think of Air France ?
PRON AUX PRON VERB ADP PROPN PROPN PUNCT
1 2 3 4 5 6 7 8
Token o | ) | @ | @ | @ | e | = |
Tree Depth 0 1 1 1 1 1 2 2
Dependency Length | 0 1 2 3 3 4 2 1

Figure 4: Dependency parse diagram showing grammatical relations, token indices (1-8) and POS tags, with dashed

arcs highlighting verbal edges, function words in gray, and

are within a sentence. For token index ¢ in sentence
S, Max Depth is defined as:

MTD = max Depth(i) = 2

token(7)€S

4)

Average Verbal Edges, sometimes called ver-
bal arity, is a measure of direct dependents (argu-
ments and modifiers) attached to each verb in a
sentence. In a dependency structure, these corre-
spond to edges from a verb to its governing words,
such as objects, subjects, or adjuncts, but exclud-
ing punctuation and auxiliary verbs (Brunato et al.,
2020).

1
c =
|verbs|

Z dependent(v) =3 (5)

vEverbs

Average Subordinate Chain Length is calcu-
lated as the ratio of the combined length of all sub-
ordinate clauses and the total number of clauses in
a sentence. It reflects the level of propositional em-
bedding and recursion. Although the dependency
structure in Figure 4 contains no subordination, it
remains crucial for capturing the clausal hierarchy
of nested sentences.

ASC — Sum of sub. chain lengths

(6)

number of sub. chains

B Experimental Details

All experiments were conducted using NVIDIA
A100 80GB GPUs. Each probing experiment
took approximately 5-10 minutes of training time,
while fine-tuning experiments took one hour per
language-task combination. The complete exper-
imental suite (including baselines) involved over
3300 individual runs across 7 languages, 12 trans-
former layers, and multiple tasks with control con-
ditions. This includes experiments with linear al-
gorithms, ensembles, and the fine-tuned model.
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a table listing dependency distance and tree depth.

Training was carried out with batch sizes of 16,
gradient accumulation steps of 2-4, and automatic
mixed precision. All experiments used fixed ran-
dom seeds to ensure reproducibility. The total com-
putational cost was approximately 80 GPU hours
on A100 hardware.

For fine-tuning experiments, learning rates were
set to le-5 for the encoder and le-3 for the task
head, with early stopping based on validation per-
formance monitored over a patience window of 5
epochs. Probe training used Adam optimizer with
learning rate 1e-3 with early stopping when valida-
tion loss plateaued.

C Additional Results

This appendix provides additional per-language
and per-metric performance data to supplement the
main analysis. Table 4, Table 5, and Table 6 present
detailed results for all seven languages across both
classification and regression tasks, including selec-
tivity scores for baseline methods and layer-specific
performance indicators for optimal and weakest
probe configurations. Figure 5 shows layer-wise
error curves for all complexity metrics across lan-

guages.



Question Type Classification Combined Complexity Regression

Acc. control AAcc. S MSE control AMSE S

, ar 714 71.4 0 0 0.059 0.059 0 0
£ en 500 50.0 0 0 0.038 0.039 0 0
g fi 500 50.0 0 0 0.040 0.040 0 0
z id 500 50.0 0 0 0.040 0.040 0 0
D% ja 500 50.0 0 0 0.063 0.063 0 0
ko  50.0 50.0 0 0 0.036 0.036 0 0
ru  50.0 50.0 0 0 0.059 0.059 0 0
—ar 909 472 437  0.92| 0.045 0.064  0.019 029
S en 836 53.9 297 055| 0.023 0.043  0.020 0.46
T fi 845 46.1 083 085 | 0.037 0.043  0.006 0.14
= oid 673 475 19.8 041 | 0028 0.046  0.018  0.39
2 ja 64l 51.1 13.0  025| 0.039 0.064  0.015 023
“ ko 664 46.3 20.1 043 | 0.023 0.039  0.016 041
w864 46.7 085 085 | 0.032 0.069  0.037 0.53

L ar 974 53.2 444 0.83 | 0.034 0.063  0.029 0.46
S en 809 51.8 29.1 056 | 0.018 0.043  0.025 0.58
g fi 872 45.7 415 091 | 0.032 0.042 001 024
=z id 655 53.3 122 023 | 0.026 0.043  0.017 0.39
T ja 641 50.0 141 028 | 0.037 0.061  0.024 0.39
S ko 736 49.7 239 048 | 0.031 0.038  0.007 0.18
w772 48.8 284 051 | 0.039 0.061  0.022 0.36

ar 85.7(2) 714 143 020 0.0304) 0.067 0.037 0.5

2 en 973() 500 473 0.95| 0.017¢) 0.048 0031 0.64
£ fi 945(5) 500 445  0.89 | 0.025¢1) 0.050  0.025 0.50
g id 8096 500 309 062 | 00244 0047 0023 049
& ja 8260 398 428 107 | 00164  0.073 0057 0.78
ko 76409  50.0 264 053] 0.0433) 0.093 0050  0.53

w 97371 500 473 095 | 0.039(46) 0.069  0.030 0.43

ar 62.5(12) 714 89  0.12|0.057(12) 0.061  0.004 0.07

2 en 8942 500 39.4 079 | 0.043(12) 0.045  0.002  0.04
& fi 83.63) 500 33.6 067 | 0.042(12) 0.043  0.001  0.03
£ id 670y 500 12.7 025 0.042(12) 0.046  0.004  0.09
2 ja 6300 402 228 057 | 0.05812 0.061  0.003  0.05
ko 63.6(1)  50.0 13.6 027 | 00412 0.053 0012 022

ru 90.02  50.0 40.0 0.80 | 0.067 (10) 0.075  0.008 0.1

o ar 74.1 - - - 0.042 - - -
T en 918 : : - | 0.020 . - :
5 fi 923 - - - 0.030 - - -
'«"g id 736 ; ; ; 0.030 - - -
£ ja 880 - - - 0.029 - - -
£ ko 911 - ; - 0.031 ] - -
w964 ; ; . 0.045 ; . ;

Table 4: Performance metrics for question type classification (accuracy) and combined complexity regression (MSE)
tasks across seven languages.
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Dependency Length Max. Tree Depth Sub. Chain Length

MSE S MSE S MSE S
ar 0.065 0 0.052 0 0.077 0
©  en 0.009 0 0.029 0 0.027 0
g fi 0.026 0 0.031 0 0.054 0
S id 0.036 0 0.033 0 0.069 0
£ ja 0.108 0 0.083 0 0.092 0
A ko 0.027 0 0.037 0 0.054 0
ru 0.017 0 0.025 0 0.054 0
ar 0.045 0.29 0.028 0.48 0.054 0.34
2 en 0.007 0.3 0.013 0.60 0.015 0.51
5 fi 0.024 0.17 0.036 0 0.041 0.27
2 i 0.037 0.01 0.024 0.33 0.053 0.30
5 a 0.09 0.18 0.065 0.22 0.076 0.25
5 ko 0.022 0.23 0.025 0.36 0.044 0.31
ru 0.022 0 0.019 0.29 0.035 0.42
ar 0.057 0.15 0.028 0.44 0.059 0.24
@ en 0.007 0.3 0.014 0.55 0.025 0.10
Z  fi 0.027 0.03 0.022 0.29 0.051 0.11
2 i 0.04 0 0.026 0.21 0.055 0.29
5 ja 0.105 0.04 0.063 0.24 0.081 0.14
£ ko 0.029 0.05 0.032 0.18 0.063 0.01
ru 0.019 0 0.017 0.35 0.044 0.22
ar  0.045 (6) 0.42 0.0286) 048  0.069(6)  0.12
g en 009 0.23 00168 046  0.022@6) 025
g fi 00250 0.18 0.016 (7 052  0.047(12) -0.01
= id  0.030(12) 0 0.024(1) 034  0.049(1)  0.46
§ ja  0.087 (1) 0.10 0.072(9  0.10  0.053()  0.47
S ko 00238 0.18 0.0202 057  0.047¢) 0.6
ru  0.013 @4) 0.29 0.016(6) 041  0.049()  0.14
ar  0.073(12 -0.13  0.053(12) 0.05 0.080(12) -0.04
g en 001510 029 0029012 006  0.031() 006
g fi 00300 0.07  0.037(12 -0.05 0.073(10) 0.08
z id 004911 0.6 0033712 005 008111  0.06
< ja 01220 0.06  0.103(10) -0.10 0.094(12) -0.03
Z ko 004203 0.18  0.037(12 0.02 00707  -0.05
ru  0.020(11)  0.07  0.028 (12) 0 0.058 6)  0.03
ar 0.056 - 0.038 _ 0.069 _
2 en 0.008 : 0.022 ; 0.019 -
i 0.002 ; 0.023 ; 0.045 -
T id 0.031 : 0.028 ; 0.043 -
5§ ja 0.105 ; 0.068 ; 0.061 -
2 ko 0.025 - 0.029 - 0.046 -
Y 0.015 ; 0.017 ; 0.046 -

Table 5: Performance metrics for linguistic complexity sub-metric regression tasks across seven languages (Part 1:
Dependency Length, Tree Depth, Subordinate Chain Length).
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Verbal Edges Lexical Density N Tokens

MSE S MSE S MSE S
ar 0.060 0 0.067 0 0.078 0
2 en 0.060 0 0.028 0 0.029 0
3 fi 0.060 0 0.055 0 0.014 0
S id 0.065 0 0.053 0 0.039 0
£ ja 0.107 0 0.063 0 0.061 0
A ko 0.041 0 0.107 0 0.078 0
ru 0.044 0 0.071 0 0.012 0
ar 0.09 0.32 0.057 0.15 0.042 0.46
2 en 0.041 0.36 0.027 0.17 0.034 0.59
S fi 0.068 0.34 0.070 0.12 0.015 0.05
2 i 0.070 0.06 0.033 0.47 0.037 0.11
5 a 0.108 0.10 0.09 -0.36 0.045 0.26
5 ko 0.045 0.02 0.070 0.37 0.056 0.30
ru 0.047 0.10 0.049 0.33 0.013 0.08
ar 0.107 0.13 0.067 0.02 0.032 0.59
@ en 0.104 0.23 0.028 0.10 0.013 0.56
% fi 0.070 0.32 0.069 0.11 0.009 0.33
2 id 0.090 0.25 0.046 0.26 0.022 0.47
5 ja 0.104 0.08 0.080 -0.33 0.040 0.33
£ ko 0.046 -0.04 0.082 0.26 0.077 0.06
ru 0.044 0.08 0.061 0.14 0.007 0.47
ar  0.103(1) 023  0.0543) 0.10 0.037@  0.59
. en 00431) 035 00250 011 00103 063
E fi  0.080(12) -0.01 0.039@2 014  0006()  0.59
T id  0046) 035 00363 021 00253 032
£ ja 00070 040  0.071() 0 0.023(5)  0.66
S ko 0.034(12) 0 00628  0.13  0.073¢)  0.18
ru 00419 018  0037(7)  0.14  0.004¢)  0.68
ar  0.140 (7) 0 0.065(5) -0.02  0.079 (12) 0
gz en  0076@) 004 003012 002 0023312 017
£ fi  0112¢) -0.13 005112 -0.03 0016712 -0.03
Zz id  0.062(12 004 0.046(12) 0.04  0.034(7  0.08
%  ja 009412 006 0.093(0) -0.14 0.063(12)  0.03
Z ko 003611 -0.04 00740 -0.07 0.1043)  0.12
ru  0.057@® -0.08 0.051(12 -0.07 0.016(12 -0.09
ar 0.030 ; 0.055 ; 0.056 _
g en 0.039 ; 0.023 _ 0.020 ;
g fi 0.079 ; 0.044 ; 0.011 :
T i 0.045 _ 0.038 _ 0.027 ;
£ ja 0.078 ; 0.071 _ 0.035 ;
2 ko 0.034 - 0.074 - 0.070 -
=t 0.038 - 0.043 - 0.006 -

Table 6: Performance metrics for linguistic complexity sub-metric regression tasks across seven languages (Part 2:
Verbal Edges, Lexical Density, N Tokens).
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N Tokens Tree Depth Avg Dep Len Sub Chain Len Avg Verbal Edges Lexical Density

0.14
0.12
0.10
o 0.08
0.06
0.04
0.02
0.00

Arabic
MSE

0.14
0.12
0.10
o 0.08
0.06
0.04 -
0.02
0.00

English
MSE

0.14
0.12
0.10
0.08
0.06
0.04
0.02 |-
0.00 Lt

Finnish
MSE

0.14
0.12
0.10
@ 0.08
0.06
0.04 =
0.02
0.00

Indonesian
MSE

0.14
0.12
0.10
@ 0.08
0.06
0.04 -
0.02
0.00

Japanese
MSE

0.14
0.12
0.10
o 0.08
0.06 |~
0.04
0.02
0.00

Korean
MSE

0.14
0.12
0.10
o 0.08
0.06
0.04
0.02
0.00

Russian
MSE

I
3

Transformer Layer

— Probe Performance =~ —— Dummy Regressor —— Ridge Regression ——— Gradient Boosting —— Fine-tuned Glot500
Figure 5: Performance metrics across languages and transformer layers
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