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Abstract

This work investigates how amultilingual trans-

former model represents morphosyntactic prop-

erties of questions. We introduce the Ques-

tion Type and Complexity (QTC) dataset with

sentences across seven languages, annotated

with type information and complexity metrics

including dependency length, tree depth, and

lexical density. Our evaluation extends prob-

ing methods to regression labels with selectiv-

ity controls to quantify gains in generalizabil-

ity. We compare layer-wise probes on frozen

Glot500-m (Imani et al., 2023) representations

against subword TF-IDF baselines, and a fine-

tuned model. Results show that statistical fea-

tures classify questions effectively in languages

with explicit marking, while neural probes cap-

ture fine-grained structural complexity patterns

better. We use these results to evaluate when

contextual representations outperform statisti-

cal baselines and whether parameter updates

reduce availability of pre-trained linguistic in-

formation.

1 Introduction

Multilingual contextual embeddings show promise

for accessing fine-grained morphosyntactic prop-

erties across hundreds of languages. Probing how

transformer models encode certain linguistic prop-

erties has practical implications for language ty-

pology research, where systematic comparison of

structural features often relies on automated analy-

sis. Additionally, evaluations targeting specific lin-

guistic phenomena can test common architectural

assumptions about transformer models. Examples

include the often discussed layer-wise specializa-

tion from syntactic to semantic processing (Tenney

et al., 2019a) and the ability of shared embedding

spaces to effectively capture cross-linguistic pat-

terns.

Researchers rely on these assumptions in order

to describe the internals of the models when test-

ing on benchmarks (Conneau et al., 2020; Şahin
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Figure 1: Experimental pipeline from multilingual

datasets: TyDi QA (Clark et al., 2020), UD 2.15 (Zeman

et al., 2024), through annotation of question types and

complexity metrics to extraction of three representation

types used for model training.

et al., 2020), but also when evaluating their gen-

eral linguistic capabilities outside of specific tasks

(Brunato et al., 2020). However, comparisons with

appropriate baselines are often left out. Without

those, we cannot determine whether observed lin-

guistic capabilities reflect genuine structural pro-

cessing or are the result of patterns that simpler

statistical methods capture equally well.

This presents a challenge when investigating

universal sentence-level phenomena where the re-

lationship between surface form and underlying

structure varies extensively (Tenney et al., 2019b;

Ravishankar et al., 2019). We focus specifically

on interrogative sentences, which illustrate this

variation particularly well. For example, Arabic

uses explicit particles like “ له ” for polar (yes/no)

questions and overt subordinating conjunctions

for complex clauses. Alternatively, Japanese re-

lies on contextual cues for question interpretation

and implicit hierarchical embedding through case-

marking for structural complexity. The differences

in how languages encode both categorical distinc-

tions and continuous complexity metrics create a

natural setup for evaluating whether contextual rep-
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resentations capture structural patterns better than

surface-level statistical correlations obtained by,

for example, TF-IDF features.

We explore this question through controlled com-

parisons of neural representations with statistical

baselines across seven typologically diverse lan-

guages. Our framework extends probing methods

to continuous linguistic properties, including to-

ken count, lexical density, dependency length, tree

depth, verbal arity, and subordination patterns. Fig-

ure 1 illustrates our method: we start with existing

multilingual datasets, process and annotate these

for categorical (interrogative types) and continuous

labels, and we finally evaluate three representation

types (subword TF-IDF features, contextual em-

beddings, and a fine-tuned model) using our anno-

tated data in Arabic, English, Finnish, Indonesian,

Japanese, Korean, and Russian.

We present three key findings:

• Contextual embeddings outperform statisti-

cal baselines for question type classification,

particularly in languages requiring contex-

tual integration (Japanese, Korean, English,

Finnish).

• Regression performance varies significantly

across metrics, with distinct layer-wise pro-

files emerging for different structural proper-

ties.

• Fine-tuning compensates for unstable neural

encoding patterns but degrades performance

on metrics with stable layer-wise representa-

tions, revealing a trade-off between adapta-

tion and preservation of pre-trained linguistic

knowledge.

These results provide practical guidance for

model selection based on typological properties and

suggest that frozen representations may be prefer-

able for certain analytical tasks. Additionally, our

regression-based probing framework with selectiv-

ity controls opens new avenues for investigating

continuous linguistic properties in neural represen-

tations.

2 Related Work

Probing methods assess what linguistic knowledge

is encoded in neural representations by training

classifiers to predict specific properties in word em-

beddings (Adi et al., 2017; Conneau et al., 2018).

Early work demonstrated that contextualized and

static representations encode syntactic information

like part-of-speech categories, dependency rela-

tions, and word order variation (Köhn, 2015; Shi

et al., 2016).

Most probing studies focus on token-level prop-

erties, with fewer approaches looking at variation

in sentence-level regularities. Şahin et al. (2020);

Waldis et al. (2024) introduce comprehensive eval-

uation frameworks for sentence level probing tasks.

These reveal how models encode structural linguis-

tic properties such as morphological case marking,

agreement patterns, and syntactic hierarchies, as

well as functional properties including semantic

roles, discourse relations, and pragmatic features.

Question type classification represents a natural

extension of this work, as it requires models to inte-

grate both formal markers (interrogative particles,

auxiliary inversion) and functional understanding

(information-seeking intent, presupposition struc-

ture).

Two assumptions motivate current probing ap-

proaches. First, the layer-wise specialization hy-

pothesis suggests lower layers encode syntax while

higher layers capture semantics (Tenney et al.,

2019a). This informs decisions about which lay-

ers to probe for different linguistic tasks. Second,

multilingual models develop shared embedding

spaces that capture cross-linguistic patterns (Con-

neau et al., 2020), enabling efficient transfer across

languages.

Probes mainly target categorical properties

through classification tasks (Tenney et al., 2019b;

Jawahar et al., 2019). However, Pimentel et al.

(2020) argue that complex linguistic phenomena

require more sophisticated probing architectures

that can approximate a wider range of informa-

tion content. Regression-based probing is a sim-

ple approach that investigates linguistic properties

like syntactic complexity, processing difficulty, and

structural density. Complexity measures derived

through dependency parsing allow us to generate

target labels that reveal how models encode syntac-

tic structure along continuous and discrete dimen-

sions. We investigate these to assess how accessible

structural features are from learned embeddings.

Determining whether probes capture genuine

structural encoding requires appropriate baselines.

Hewitt and Liang (2019) introduced selectivity con-

trols comparing performance on real versus shuf-

fled labels to distinguish linguistic encoding from

spurious correlations. Most studies, however, eval-

uate neural representations without statistical base-

lines, making it difficult to assess whether con-

textual embeddings offer genuine advantages over
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Language # % Polar % Content Avg. Score

Arabic 1,116 48.3 51.7 0.42
English 1,374 50.0 50.0 0.38
Finnish 1,368 49.9 50.1 0.34
Indonesian 1,136 48.2 51.8 0.39
Japanese 1,329 50.8 49.2 0.41
Korean 921 46.9 53.1 0.39
Russian 1,376 50.0 50.0 0.41

Total 8,620 50.6 49.4 0.39

Table 1: QTC dataset statistics by language. # shows

total annotated sentences per language. Polar/Content

percentages reflect question type distribution. Average

Complexity represents normalized composite scores of

individual complexity metrics (see Appendix A for de-

tails).

frequency-based methods.

Similarly, while probing typically uses frozen

representations extracted from a specific layer of

the encoder, the relationship between pre-trained

knowledge and task-specific optimization remains

underexplored. Understanding when end-to-end

optimization preserves or degrades pre-trained lin-

guistic knowledge requires direct comparison of

frozen probes and fine-tuned models, particularly

for structural properties that may be disrupted by

task-specific adaptation.

3 Dataset

We introduce the Question Type and Complex-

ity (QTC) dataset containing ∼ 9, 000 annotated

questions across seven languages: Arabic, English,

Finnish, Indonesian, Japanese, Korean, and Rus-

sian. QTC combines TyDiQA-GoldP training data

(Clark et al., 2020) with Universal Dependency

treebank test data (Nivre et al., 2020; Zeman et al.,

2024) to balance natural language variation with

standardized syntactic annotation, with approxi-

mately 70% of sentences drawn from TyDiQA

and 30% from UD treebanks. The choice of lan-

guages was informed by different question forma-

tion strategies. Languages using explicit interrog-

ative marking include Arabic with “ له ”, Finnish

with suffix “-ko/-kö”, and Russian with particle

“ли”. Languages using implicit strategies like con-

text or prosody include Japanese, Indonesian, and

Korean. Lastly, auxiliary inversion in English can

be seen as a mixed strategy.

Categorical and continuous labels were created

using parallel annotation pipelines. For question

type classification, TyDiQA data already contained

human annotations from three independent anno-

tators. We adopted annotations where all three an-

notators agreed and manually resolved disagree-

ments. UD treebank sentences were annotated for

question type using language-specific rule-based

systems targeting morphosyntactic patterns: inter-

rogative particles, wh-phrase positioning, and aux-

iliary structures. We label polar questions as ‘1’

and content questions as ‘0’.

For complexity metrics, we used UDPipe 2.0

(Straka, 2018) to parse all sentences, then applied

the Profiling-UD framework (Brunato et al., 2020)

to extract six raw complexity features capturing

processing difficulty (see Appendix A for details).

We validated complexity metrics through statistical

outlier detection and (partial) manual verification

of parse quality.1

4 Probing Tasks

4.1 Question Type Classification

Classifying questions as polar (yes-no) or content

(wh-) is an interesting test case for comparing neu-

ral representations against statistical baselines. As

mentioned, languages with explicit marking strate-

gies use dedicated particles or consistent transfor-

mations, like English auxiliary inversion (Dryer,

2013a). This makes classes identifiable through

surface patterns that frequency features can cap-

ture.

Languages with implicit strategies prove chal-

lenging because they rely on context and prosody.

Japanese polar questions like “Ashita kimasu ka?”

[Tomorrow come-polite Q] and content questions

“Itsu kimasu ka?” [When come-polite Q] have iden-

tical sentence-final particles, differing only in the

presence of wh-words that often appear in non-

initial positions (Dryer, 2013b). This variation al-

lows us to test when contextual embeddings pro-

vide genuine advantages over frequency-based ap-

proaches for capturing structural patterns that go

beyond readily available surface cues.

4.2 Linguistic Complexity Prediction

In addition to question type classification, we also

use continuous labels and predict complexity scores

derived from morphosyntactic properties. This

operationalizes the idea that structural density in-

creases processing difficulty (Hawkins, 2007). We

formulate this as a regression task, targeting six nor-

malized complexity metrics: token count, lexical

1The QTC dataset and code are available at
hf.co/rokokot/question-type-and-complexity
and github.com/rokokot/qtype-eval.
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density, average dependency length, maximum tree

depth, verbal arity, and subordinate chain length.

This tests whether different representations capture

quantitative aspects of linguistic structure. We also

evaluate performance on a combined complexity

score calculated as the normalized sum of all six

individual metrics, providing an abstract measure

of structural density.

Statistical models can effectively capture surface-

level complexity indicators. Token count correlates

with question length from simple “Who left?” to

complex “What did the committee decide about the

proposal?”, while subordination patterns manifest

through explicit conjunctions that TF-IDF features

can detect. However, hierarchical syntactic prop-

erties present greater challenges. A question like

“Who ate the cake that Alice brought?” shares the

same interrogative markers as the simple exam-

ple, but involves multiple dependency levels and

clauses that increase syntactic complexity.

Unlike categorical properties typically studied in

probing, continuous dimensions allow us to isolate

aspects of linguistic structure most effectively cap-

tured by different representation approaches. This

allows us to test competing hypotheses about how

neural and statistical models encode structural in-

formation. If contextual representations truly cap-

ture abstract syntactic hierarchies, they should out-

perform frequency-based methods on metrics like

tree depth and subordination complexity, which

require understanding of long-distance dependen-

cies and recursive structures. Conversely, if neural

advantages primarily reflect sophisticated pattern

matching, we expect statistical baselines to remain

competitive across all complexity dimensions.

4.3 Experimental Setup

Our setup addresses the core methodological chal-

lenge of distinguishing genuine linguistic encoding

from pattern memorization when comparing neu-

ral and statistical approaches. Following Hewitt

and Liang (2019), we create three shuffled-label

control variants per task that preserve label distri-

butions while destroying text-label relationships.

We define selectivity as normalized performance

differences:

Scls =
accreal − acccontrol

acccontrol

Sreg =
msecontrol −msereal

msecontrol

(1)

with (acc)uracy for the classification task and

mean squared error (mse) for regression task.

This approach enables direct comparison of rep-

resentational quality. Selectivity measures how

much better a model performs when linguistic struc-

ture is present versus absent. Higher values (e.g.,

> 0.5) mean the model exploits “genuine” lin-

guistic patterns, while low selectivity suggests the

model performs similarly regardless of whether

input-label relationships are meaningful or random.

Strong selectivity shows when models capture in-

formation rather than surface correlations.

5 Experiments

The experiments were carried out on Glot500-m

(Imani et al., 2023), a multilingual encoder-only

transformer. Glot500-m was created by extend-

ing the XLM-R-base architecture (Conneau et al.,

2020) using continued pre-training on a custom

multilingual corpus and expanding the vocabulary

from 250K to 401K tokens to cover 511 languages,

including all seven languages in our dataset.

5.1 Subword TF-IDF Baselines

First, we establish baselines using linear and nonlin-

ear predictors trained on TF-IDF features and corre-

sponding sentence labels. We use the Glot-500-m

tokenizer to generate TF-IDF representations for a

fair comparison.

We establish baselines using linear models (lo-

gistic regression for classification, ridge regression

for complexity prediction) and XGBoost (Chen

and Guestrin, 2016) for nonlinear feature inter-

actions. XGBoost provides an upper bound for

statistical baseline performance while maintaining

interpretability through feature importance scores.

Dummy baselines using majority class and mean

value prediction set floor performance.

5.2 Probes on Frozen Representations

We extract sentence-level embeddings from each

of the 12 layers of the frozen encoder using mean

pooling across token representations, resulting in

a fixed-size 768-dimensional vector for each sen-

tence. For every sentence embedding at every layer

we train neural probes to predict the target label.

This allows us to track where different kinds of

linguistic information are most accessible to the

probe.

We designed our probe architectures to capture

complex patterns while maintaining training effi-

ciency. Classification probes use two-layer MLPs
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Language
TF-IDF

Linear S
TF-IDF

XGBoost S
Glot500

Best Probe S Layer
Glot500

Fine-tuned

Arabic 90.9 0.92 97.4 0.83 85.7 0.20 2 74.1

English 83.6 0.55 80.9 0.56 97.3 0.95 5 91.8

Finnish 84.5 0.85 87.2 0.91 94.5 0.89 5 92.3

Indonesian 67.3 0.41 65.5 0.23 80.9 0.62 6 73.6

Japanese 64.1 0.25 64.1 0.28 82.6 1.07 10 88.0

Korean 66.3 0.43 73.6 0.48 76.4 0.53 9 91.1

Russian 86.4 0.85 77.2 0.5 97.3 0.95 11 96.4

Table 2: Question type classification accuracy (%) and mean selectivity (S) across approaches. Bold values indicate
the highest accuracy and selectivity scores achieved for each language. Layer denotes the index of the encoder layer

at which the probe achieved highest accuracy.

with 384 hidden units optimized using binary cross-

entropy loss. Regression probes use three-layer

MLPswith 128 hidden units andminimize themean

squared error loss. All probes are trained sepa-

rately for each layer and task combination using

70/15/15 train/validation/test splits. While expres-

sive enough to capture complex patterns, this setup

ensures that performance differences reflect rep-

resentational properties rather than probe capacity

(Pimentel et al., 2020; Waldis et al., 2024).

5.3 Fine-tuned Model

To determine whether parameter updates preserve

pre-trained linguistic information, we train the com-

plete Glot500 model end-to-end on each task. The

fine-tuned model uses identical task-specific heads

as our probes but allows model updates (i.e., not

frozen).

We employ two-layer MLPs with binary cross-

entropy loss for classification and three-layer heads

with MSE loss for regression.

This configuration enables direct comparison

with frozen probes. If fine-tuning enhances lin-

guistic representations, the updated model should

consistently outperform probes across all metrics.

Conversely, degraded performance indicates that

task-specific optimization disrupts structural knowl-

edge encoded during pre-training.

We only report main task performance metrics

for fine-tuned models because selectivity controls

are less meaningful when the entire network adapts

to the specific label distribution, potentially reflect-

ing task-specific overfitting.

6 Results

Our statistical baselines employ logistic regression

for classification and ridge regression for complex-

ity prediction, with XGBoost capturing nonlinear

feature interactions.

Results across the two tasks reveal trade-offs

in the ability of our models to capture different

kinds of linguistic information. For question type

classification, neural probes consistently perform

the best, with the majority of highest accuracy and

selectivity scores. Regression results show more

variety, with different representation types leading

on different complexity metrics.
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Figure 2: Question type classification across languages and methods. Probing results per layer of Glot500-m.
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Submetric
TF-IDF

Ridge S
TF-IDF

XGBoost S
Glot500

Best Probe S Layer
Glot500

Fine-tuned

Token Count 0.042 0.46 0.032 0.60 0.004 0.68 5 0.006

Max. Tree Depth 0.013 0.60 0.013 0.58 0.002 0.57 2 0.017

Avg. Dependency Length 0.007 0.36 0.007 0.73 0.013 0.29 4 0.002

Avg. Subordinate Chain Length 0.015 0.52 0.055 0.29 0.053 0.47 6 0.019

Avg. Verbal Edges 0.042 0.35 0.066 0.32 0.070 0.40 6 0.030

Lexical Density 0.033 0.48 0.082 0.27 0.036 0.21 3 0.023

Combined Complexity 0.032 0.48 0.017 0.60 0.016 0.78 4 0.020

Table 3: Complexity submetric regression errors (mse) and mean selectivity (S) across approaches. Language codes
are shown next to every S value to indicate the corresponding language.

6.1 Surface Markers and Contextual

Classification Cues

Table 2 shows the classification accuracy and se-

lectivity scores across all languages and predictors.

Probes achieve the highest accuracy in four out of

seven languages and the best selectivity scores in

six. Arabic is the exception with XGBoost reach-

ing 97.4% accuracy (0.83 selectivity) compared to

85.7% accuracy (0.20 selectivity) with the best per-
forming probe. Linear models perform similarly

well (90.9% accuracy, 0.92 selectivity).

Figure 2 tracks how probes performwhen trained

on representations from different encoder layers,

compared to baseline predictors and the fine-tuned

model. English, Finnish and Russian show similar

trends, with both probes and fine-tuning achiev-

ing accuracies > 90%, although at different depths

(layer 5 for English and Finnish, layer 11 for Rus-

sian).

Indonesian probes perform poorly until layer 5,

after which they consistently exceed all baseline

methods, dipping only at the final layer. Japanese

and Korean show oscillating scores across layers,

with fine-tuning achieving notably higher accuracy.

The benefits of contextual representations are

clearest in English, Japanese, and Korean, where

the performance gap between statistical baselines

and Glot500-m probes/fine-tuning ranges from 10

to 20 percentage points increases. Finnish shows a

more moderate contextual advantage of less than 10

percentage points, while Arabic, Indonesian, and

Russian exhibit much smaller gaps between repre-

sentation types.

6.2 Continuous Complexity Probing

Table 3 presents regression errors across six com-

plexity sub-metrics plus the combined complexity

score, limited to results for languages that achieved

the best performance on each metric.

Glot500-m probes achieve the lowest error rates

on three metrics: token count (0.004 MSE, 0.68

selectivity), tree depth (0.002 MSE, 0.57 selectiv-

ity), and combined complexity (0.016 MSE, 0.78

selectivity). Fine-tuning leads on three others: de-

pendency length (0.002 MSE), verbal edges (0.030

MSE), and lexical density (0.023 MSE). Ridge re-

gression achieves the best performance on subordi-

nate chain length (0.015 MSE, 0.52 selectivity).

In terms of selectivity, statistical approaches are

surprisingly competitive, with TF-IDF methods

achieving the highest selectivity on four out of

seven metrics. This contrasts with classification

results where probes consistently outperformed our

baselines.

Layer-wise regression patterns come in three dis-

tinct profiles. Most combinations show flat per-

formance curves where all approaches converge

around similar values, with the difference between

highest and lowest error remaining below 0.01.

Cases with moderate layer-to-layer variation (error

differences between 0.01 and 0.03) suggest partial

encoding of relevant information across themodel’s

depth. More pronounced oscillations, where error

differences exceed 0.03, are usually coupled with

low probe performance and point to failures of the

contextual embeddings to encode the targeted in-

formation.

Fine-tuning achieves the lowest error rates on

three metrics: dependency length, verbal edges, lex-

ical density. These advantages appear concentrated

on metrics that show relatively flat layer-wise pro-

files, suggesting that the linguistic properties may

be better captured through end-to-end optimization

rather than frozen representations. Conversely, met-

rics where probes excel (token count, tree depth,

combined complexity) tend to show more pro-

nounced layer preferences, with fine-tuning per-

forming relatively poorly.
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Figure 3: Layer-wise regression trends show three distinct encoding profiles.

7 Discussion

7.1 Classification Performance Analysis

Classification results show that neural approaches

generally perform better than statistical baselines.

Arabic is the only exception, possibly reflecting the

widespread and unambiguous use of question parti-

cles. However, explicit marking does not uniformly

favor TF-IDF features. For example, Russian uses

particles which follow similar transformations, yet

benefit more from Glot500 embeddings. This con-

firms that the nature of marking strategy matters

more than its presence or absence.

English and Finnish further confirm this pattern.

English auxiliary inversion (“Is it raining?” / “It is

raining”) and Finnish suffixes (”-ko/-kö”) represent

complex morphosyntactic transformations rather

than simple particles, yet both show strong neural

advantages (97.3% and 94.5% respectively) over

statistical baselines. This suggests that transfor-

mational marking strategies require contextual pro-

cessing to identify the relevant structural changes,

even when the markers themselves are explicit.

Selectivity scores reveal that these representation

types capture distinct aspects of question formation.

Statistical methods excel when surface distributions

provide reliable cues, while neural representations

become necessary when question identification re-

quires integration of distributed contextual infor-

mation that goes beyond simple frequency patterns.

Differences in processing stability across lan-

guages can be seen in Figure 2. These patterns

appear related to how question type information

is distributed through the transformer architecture.

Arabic exhibits the highest variability with 0.25

accuracy difference between layers following its

overall lower neural performance. Russian has the

opposite tendency with minimal variation (< 0.1)
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while maintaining consistently high performance.

English, Korean, and Finnish show moderate vari-

ability (0.1), while Indonesian and Japanese display

higher fluctuations (> 0.2) that correspond with

the oscillations visible in their layer-wise profiles.

7.2 Regression Profiles

Despite Glot500 representations achieving consis-

tently low errors in complexity regression tasks,

TF-IDF approaches show higher selectivity scores

on tree depth, dependency length, subordinate chain

length, and lexical density metrics. Table 3 shows

the variety in the ability of transformers to encode

different morphosyntactic properties.

Regression probes have a clear advantage on

token count and combined complexity, but they

do not consistently outperform our baselines on

most of the metrics. Selectivity scores reveal that

statistical methods lead on four of seven complex-

ity metrics, demonstrating that frequency features

can distinguish meaningful structural patterns from

spurious correlations more reliably than contextual

representations.

Figure 3 shows a selection of layer-wise error

trends highlighting the three most common perfor-

mance profiles. Flat probe trends were observed

most often, meaning that certain structural proper-

ties are tied to surface features and that contextual

processing rarely provides additional benefit. High

probe oscillations and poor performance are more

interesting. They imply that rather than building

increasingly sophisticated representations of struc-

tural complexity, the transformer may be losing

and regaining access to relevant information as we

move through successive layers.

The differences between fine-tuning and frozen

probes point towards a trade-off between the two

neural approaches. Fine-tuning performs well al-

most exclusively on metrics characterized by high

oscillations and unstable layer-wise trends, sug-

gesting that parameter updates may compensate

for inconsistencies. On the other hand, low perfor-

mance on metrics with flat profiles demonstrates

that task-specific training may prevent access to

or even destroy pre-trained information. In other

words, when structural information is clearly en-

coded at specific layers, the parameter updates re-

quired for task optimization appear to interfere with

these patterns.

However, the success of fine-tuning on predict-

ing dependency length, verbal edges, and lexical

density suggests that some properties are not read-

ily available in frozen transformer representations,

requiring parameter updates to achieve reliable per-

formance on these metrics.

8 Conclusion

We investigated how multilingual transformers en-

code question patterns by comparing contextual em-

beddings against statistical baselines across seven

typologically diverse languages. Glot500 probes

show advantages in question type classification,

particularly for languages requiring contextual inte-

gration (Japanese, Korean, English, Finnish), while

Arabic’s unambiguous particles favor statistical

methods. For complexity regression, statistical

baselines show better selectivity on most individ-

ual metrics, though neural methods excel at token

count and verbal arity.

Different complexity metrics exhibit distinct

layer-wise encoding patterns. Fine-tuning com-

pensates for unstable neural encoding (high oscilla-

tions) but struggles onmetrics with otherwise stable

layer-wise representations, suggesting task-specific

optimization can disrupt pre-trained knowledge.

Our QTC dataset and regression-based probing

setup using selectivity controls provide tools for

investigating continuous linguistic properties. We

find that understanding when and why neural mod-

els capture linguistic structure requires careful com-

parison with principled baselines. Future work

should examine applications to other architectures,

investigate why certain complexity metrics resist

neural encoding, and develop training procedures

that preserve linguistic information while improv-

ing task performance.

Limitations

This study is limited to seven languages for which

high-quality treebanks and interrogative sentence

data were available. Our dataset focuses exclu-

sively on questions, so the findings do not gen-

eralize to other clause types. While we carefully

selected the languages to cover different interroga-

tive patterns, we do not cover all typological varia-

tion between target languages. Complexity metrics

are computed from automatic dependency parses,

which can introduce parser-specific biases and re-

duce comparability. However, the cross-linguistic

consistency of our findings suggests that genuine

structural differences emerge despite potential pars-

ing noise.
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A Metric Definitions

Token Count is a straightforward way to measure

sentence complexity. It refers to the number of pro-

cessed segments in a sentence, |T|. In languages like

English, tokens are words and punctuation marks.

In Japanese or Korean, which do not use spaces be-

tween words, tokens are aligned with grammatical

morphemes rather than orthographic words. Gener-

ally, the more tokens a sentence has, the more likely

it is to require greater processing efforts (Iavarone

et al., 2021).

Lexical density is the ratio of content words

(nouns, verbs, adjectives, adverbs) to the total num-

ber of tokens excluding punctuation. This metric

captures the information density of a sentence and

often serves as evidence of register difficulty due

to its variation across domains.

LD =
|content words|
|T| − |punct| =

3

7
= 0.428 (2)

Average Dependency Length is the linear dis-

tance between words and their syntactic heads,

across all dependency links in a sentence. This mea-

sure directly reflects cognitive processing load, as

longer dependencies require holding more informa-

tion during processing. Futrell et al. (2015) provide

compelling evidence in 37 languages, showing that

all human languages maintain shorter dependency

lengths than would occur by random chance.

ADL = 1
N−1

N−1∑
token(1)

|dep(i)− head(i)| = 12
6 = 2 (3)

Where N is the number of tokens (i.e., words)

without any punctuation and excluding the root of

the sentence (N− 1).
Maximum Tree Depth measures the longest

path from root to leaf in a dependency structure,

revealing how deeply embedded linguistic elements
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What do you think of Air France ?

PRON AUX PRON VERB ADP PROPN PROPN PUNCT

1 2 3 4 5 6 7 8

root

obj

aux

nsubj case

compound

obl

punct

Token root nsubj aux obj obl punct case compound

Tree Depth 0 1 1 1 1 1 2 2

Dependency Length 0 1 2 3 3 4 2 1

Figure 4: Dependency parse diagram showing grammatical relations, token indices (1-8) and POS tags, with dashed

arcs highlighting verbal edges, function words in gray, and a table listing dependency distance and tree depth.

are within a sentence. For token index i in sentence
S, Max Depth is defined as:

MTD = max
token(i)∈S

Depth(i) = 2 (4)

Average Verbal Edges, sometimes called ver-

bal arity, is a measure of direct dependents (argu-

ments and modifiers) attached to each verb in a

sentence. In a dependency structure, these corre-

spond to edges from a verb to its governing words,

such as objects, subjects, or adjuncts, but exclud-

ing punctuation and auxiliary verbs (Brunato et al.,

2020).

ve =
1

|verbs|
∑

v∈verbs
dependent(v) = 3 (5)

Average Subordinate Chain Length is calcu-

lated as the ratio of the combined length of all sub-

ordinate clauses and the total number of clauses in

a sentence. It reflects the level of propositional em-

bedding and recursion. Although the dependency

structure in Figure 4 contains no subordination, it

remains crucial for capturing the clausal hierarchy

of nested sentences.

ASC =
sum of sub. chain lengths

number of sub. chains
= 0 (6)

B Experimental Details

All experiments were conducted using NVIDIA

A100 80GB GPUs. Each probing experiment

took approximately 5-10 minutes of training time,

while fine-tuning experiments took one hour per

language-task combination. The complete exper-

imental suite (including baselines) involved over

3300 individual runs across 7 languages, 12 trans-

former layers, and multiple tasks with control con-

ditions. This includes experiments with linear al-

gorithms, ensembles, and the fine-tuned model.

Training was carried out with batch sizes of 16,

gradient accumulation steps of 2-4, and automatic

mixed precision. All experiments used fixed ran-

dom seeds to ensure reproducibility. The total com-

putational cost was approximately 80 GPU hours

on A100 hardware.

For fine-tuning experiments, learning rates were

set to 1e-5 for the encoder and 1e-3 for the task

head, with early stopping based on validation per-

formance monitored over a patience window of 5

epochs. Probe training used Adam optimizer with

learning rate 1e-3 with early stopping when valida-

tion loss plateaued.

C Additional Results

This appendix provides additional per-language

and per-metric performance data to supplement the

main analysis. Table 4, Table 5, and Table 6 present

detailed results for all seven languages across both

classification and regression tasks, including selec-

tivity scores for baseline methods and layer-specific

performance indicators for optimal and weakest

probe configurations. Figure 5 shows layer-wise

error curves for all complexity metrics across lan-

guages.
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Question Type Classification Combined Complexity Regression

Acc. control ∆Acc. Ŝ MSE control ∆MSE Ŝ
D
u
m
m
y
b
as
el
in
e

ar 71.4 71.4 0 0 0.059 0.059 0 0

en 50.0 50.0 0 0 0.038 0.039 0 0

fi 50.0 50.0 0 0 0.040 0.040 0 0

id 50.0 50.0 0 0 0.040 0.040 0 0

ja 50.0 50.0 0 0 0.063 0.063 0 0

ko 50.0 50.0 0 0 0.036 0.036 0 0

ru 50.0 50.0 0 0 0.059 0.059 0 0

L
in
ea
r
p
re
d
ic
to
rs

ar 90.9 47.2 43.7 0.92 0.045 0.064 0.019 0.29

en 83.6 53.9 29.7 0.55 0.023 0.043 0.020 0.46

fi 84.5 46.1 0.83 0.85 0.037 0.043 0.006 0.14

id 67.3 47.5 19.8 0.41 0.028 0.046 0.018 0.39

ja 64.1 51.1 13.0 0.25 0.039 0.064 0.015 0.23

ko 66.4 46.3 20.1 0.43 0.023 0.039 0.016 0.41

ru 86.4 46.7 0.85 0.85 0.032 0.069 0.037 0.53

G
ra
d
ie
n
t
b
o
o
st
in
g

ar 97.4 53.2 44.4 0.83 0.034 0.063 0.029 0.46

en 80.9 51.8 29.1 0.56 0.018 0.043 0.025 0.58

fi 87.2 45.7 41.5 0.91 0.032 0.042 0.01 0.24

id 65.5 53.3 12.2 0.23 0.026 0.043 0.017 0.39

ja 64.1 50.0 14.1 0.28 0.037 0.061 0.024 0.39

ko 73.6 49.7 23.9 0.48 0.031 0.038 0.007 0.18

ru 77.2 48.8 28.4 0.51 0.039 0.061 0.022 0.36

O
p
ti
m
al
P
ro
b
e

ar 85.7 (2) 71.4 14.3 0.20 0.030 (4) 0.067 0.037 0.55

en 97.3 (5) 50.0 47.3 0.95 0.017 (1) 0.048 0.031 0.64

fi 94.5 (5) 50.0 44.5 0.89 0.025 (1) 0.050 0.025 0.50

id 80.9 (6) 50.0 30.9 0.62 0.024 (4) 0.047 0.023 0.49

ja 82.6 (10) 39.8 42.8 1.07 0.016 (4) 0.073 0.057 0.78

ko 76.4 (9) 50.0 26.4 0.53 0.043 (3) 0.093 0.050 0.53

ru 97.3 (11) 50.0 47.3 0.95 0.039 (6) 0.069 0.030 0.43

W
ea
k
es
t
P
ro
b
e

ar 62.5 (12) 71.4 8.9 0.12 0.057 (12) 0.061 0.004 0.07

en 89.4 (2) 50.0 39.4 0.79 0.043 (12) 0.045 0.002 0.04

fi 83.6 (3) 50.0 33.6 0.67 0.042 (12) 0.043 0.001 0.03

id 62.7 (12) 50.0 12.7 0.25 0.042 (12) 0.046 0.004 0.09

ja 63.0 (5) 40.2 22.8 0.57 0.058 (12) 0.061 0.003 0.05

ko 63.6 (1) 50.0 13.6 0.27 0.041 (2) 0.053 0.012 0.22

ru 90.0 (2) 50.0 40.0 0.80 0.067 (10) 0.075 0.008 0.11

F
in
e-
tu
n
ed

G
lo
t5
0
0 ar 74.1 - - - 0.042 - - -

en 91.8 - - - 0.020 - - -

fi 92.3 - - - 0.030 - - -

id 73.6 - - - 0.030 - - -

ja 88.0 - - - 0.029 - - -

ko 91.1 - - - 0.031 - - -

ru 96.4 - - - 0.045 - - -

Table 4: Performance metrics for question type classification (accuracy) and combined complexity regression (MSE)

tasks across seven languages.
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Dependency Length Max. Tree Depth Sub. Chain Length

MSE Ŝ MSE Ŝ MSE Ŝ

D
u
m
m
y
b
as
el
in
e

ar 0.065 0 0.052 0 0.077 0

en 0.009 0 0.029 0 0.027 0

fi 0.026 0 0.031 0 0.054 0

id 0.036 0 0.033 0 0.069 0

ja 0.108 0 0.083 0 0.092 0

ko 0.027 0 0.037 0 0.054 0

ru 0.017 0 0.025 0 0.054 0

L
in
ea
r
p
re
d
ic
to
rs

ar 0.045 0.29 0.028 0.48 0.054 0.34

en 0.007 0.3 0.013 0.60 0.015 0.51

fi 0.024 0.17 0.036 0 0.041 0.27

id 0.037 0.01 0.024 0.33 0.053 0.30

ja 0.09 0.18 0.065 0.22 0.076 0.25

ko 0.022 0.23 0.025 0.36 0.044 0.31

ru 0.022 0 0.019 0.29 0.035 0.42

G
ra
d
ie
n
t
b
o
o
st
in
g

ar 0.057 0.15 0.028 0.44 0.059 0.24

en 0.007 0.3 0.014 0.55 0.025 0.10

fi 0.027 0.03 0.022 0.29 0.051 0.11

id 0.04 0 0.026 0.21 0.055 0.29

ja 0.105 0.04 0.063 0.24 0.081 0.14

ko 0.029 0.05 0.032 0.18 0.063 0.01

ru 0.019 0 0.017 0.35 0.044 0.22

O
p
ti
m
al
P
ro
b
e

ar 0.045 (6) 0.42 0.028 (6) 0.48 0.069 (6) 0.12

en 0.090 (6) 0.23 0.016 (8) 0.46 0.022 (6) 0.25

fi 0.025 (8) 0.18 0.016 (7) 0.52 0.047 (12) -0.01

id 0.030 (12) 0 0.024 (1) 0.34 0.049 (1) 0.46

ja 0.087 (1) 0.10 0.072 (9) 0.10 0.053 (6) 0.47

ko 0.023 (8) 0.18 0.020 (2) 0.57 0.047 (5) 0.26

ru 0.013 (4) 0.29 0.016 (6) 0.41 0.049 (5) 0.14

W
ea
k
es
t
P
ro
b
e

ar 0.073 (12) -0.13 0.053 (12) 0.05 0.080 (12) -0.04

en 0.015 (10) -0.29 0.029 (12) 0.06 0.031 (3) 0.06

fi 0.030 (2) 0.07 0.037 (12) -0.05 0.073 (10) 0.08

id 0.049 (11) 0.16 0.033 (12) 0.05 0.081 (11) 0.06

ja 0.122 (3) 0.06 0.103 (10) -0.10 0.094 (12) -0.03

ko 0.042 (3) 0.18 0.037 (12) 0.02 0.070 (7) -0.05

ru 0.020 (11) 0.07 0.028 (12) 0 0.058 (6) 0.03

F
in
e-
tu
n
ed

G
lo
t5
0
0

ar 0.056 - 0.038 - 0.069 -

en 0.008 - 0.022 - 0.019 -

fi 0.002 - 0.023 - 0.045 -

id 0.031 - 0.028 - 0.043 -

ja 0.105 - 0.068 - 0.061 -

ko 0.025 - 0.029 - 0.046 -

ru 0.015 - 0.017 - 0.046 -

Table 5: Performance metrics for linguistic complexity sub-metric regression tasks across seven languages (Part 1:

Dependency Length, Tree Depth, Subordinate Chain Length).
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Verbal Edges Lexical Density N Tokens

MSE Ŝ MSE Ŝ MSE Ŝ

D
u
m
m
y
b
as
el
in
e

ar 0.060 0 0.067 0 0.078 0

en 0.060 0 0.028 0 0.029 0

fi 0.060 0 0.055 0 0.014 0

id 0.065 0 0.053 0 0.039 0

ja 0.107 0 0.063 0 0.061 0

ko 0.041 0 0.107 0 0.078 0

ru 0.044 0 0.071 0 0.012 0

L
in
ea
r
p
re
d
ic
to
rs

ar 0.09 0.32 0.057 0.15 0.042 0.46

en 0.041 0.36 0.027 0.17 0.034 0.59

fi 0.068 0.34 0.070 -0.12 0.015 0.05

id 0.070 0.06 0.033 0.47 0.037 0.11

ja 0.108 0.10 0.09 -0.36 0.045 0.26

ko 0.045 0.02 0.070 0.37 0.056 0.30

ru 0.047 0.10 0.049 0.33 0.013 0.08

G
ra
d
ie
n
t
b
o
o
st
in
g

ar 0.107 0.13 0.067 0.02 0.032 0.59

en 0.104 0.23 0.028 0.10 0.013 0.56

fi 0.070 0.32 0.069 -0.11 0.009 0.33

id 0.090 -0.25 0.046 0.26 0.022 0.47

ja 0.104 0.08 0.080 -0.33 0.040 0.33

ko 0.046 -0.04 0.082 0.26 0.077 0.06

ru 0.044 0.08 0.061 0.14 0.007 0.47

O
p
ti
m
al
P
ro
b
e

ar 0.103 (1) 0.23 0.054 (3) 0.10 0.037 (4) 0.59

en 0.043 (1) 0.35 0.025 (6) 0.11 0.010 (3) 0.63

fi 0.080 (12) -0.01 0.039 (2) 0.14 0.006 (1) 0.59

id 0.046 (9) 0.35 0.036 (3) 0.21 0.025 (3) 0.32

ja 0.007 (6) 0.40 0.071 (7) 0 0.023 (5) 0.66

ko 0.034 (12) 0 0.062 (8) 0.13 0.073 (9) 0.18

ru 0.041 (9) 0.18 0.037 (7) 0.14 0.004 (5) 0.68

W
ea
k
es
t
P
ro
b
e

ar 0.140 (7) 0 0.065 (5) -0.02 0.079 (12) 0

en 0.076 (8) 0.04 0.030 (12) 0.02 0.023 (12) 0.17

fi 0.112 (5) -0.13 0.051 (12) -0.03 0.016 (12) -0.03

id 0.062 (12) 0.04 0.046 (12) 0.04 0.034 (7) 0.08

ja 0.094 (12) 0.06 0.093 (10) -0.14 0.063 (12) 0.03

ko 0.036 (11) -0.04 0.074 (6) -0.07 0.104 (3) 0.12

ru 0.057 (8) -0.08 0.051 (12) -0.07 0.016 (12) -0.09

F
in
e-
tu
n
ed

G
lo
t5
0
0

ar 0.030 - 0.055 - 0.056 -

en 0.039 - 0.023 - 0.020 -

fi 0.079 - 0.044 - 0.011 -

id 0.045 - 0.038 - 0.027 -

ja 0.078 - 0.071 - 0.035 -

ko 0.034 - 0.074 - 0.070 -

ru 0.038 - 0.043 - 0.006 -

Table 6: Performance metrics for linguistic complexity sub-metric regression tasks across seven languages (Part 2:

Verbal Edges, Lexical Density, N Tokens).
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Figure 5: Performance metrics across languages and transformer layers
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