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Abstract

With the release of new large language mod-
els (LLMs) like Llama and Mistral, zero-shot
cross-lingual transfer has become increasingly
feasible due to their multilingual pretraining
and strong generalization capabilities. How-
ever, adapting these decoder-only LLMs to new
tasks across languages remains challenging.
While parameter-efficient fine-tuning (PeFT)
techniques like Low-Rank Adaptation (LoRA)
are widely used, prefix-based techniques such
as soft prompt tuning, prefix tuning, and Llama
Adapter are less explored, especially for zero-
shot transfer in decoder-only models. We
present a comprehensive study of three prefix-
based methods for zero-shot cross-lingual trans-
fer from English to 35+ high- and low-resource
languages. Our analysis further explores trans-
fer across linguistic families and scripts, as well
as the impact of scaling model sizes from 1B to
24B. With Llama 3.1 8B, prefix methods out-
perform LoRA-baselines by up to 6% on the
Belebele benchmark. Similar improvements
were observed with Mistral v0.3 7B as well.
Despite using only 1.23M learning parameters
with prefix tuning, we achieve consistent im-
provements across diverse benchmarks. These
findings highlight the potential of prefix-based
techniques as an effective and scalable alter-
native to LoRA, particularly in low-resource
multilingual settings.

1 Introduction

Large language models (LLMs) exhibit strong mul-
tilingual and zero-shot generalization abilities due
to exposure to diverse pretraining data. Nonethe-
less, cross-lingual transfer remains challenging
given the linguistic diversity and complexity of
adapting large models efficiently without signifi-
cant computational overhead.

To address the high computational and mem-
ory costs of full model finetuning, recent ad-
vances in parameter-efficient finetuning (PeFT)

techniques focus on updating only a small sub-
set of model parameters while keeping the ma-
jority of the pretrained weights frozen. This de-
sign significantly reduces the adaptation cost and
makes large-scale models more practical for multi-
lingual and domain-specific applications. Methods
such as Low-Rank Adaptation (LoRA) (Hu et al.,
2022) and instruction-tuned adapters have shown
promising results in efficiently tailoring models to
new tasks without requiring extensive resources.
Among the various PeFT techniques, prefix-based
approaches like soft prompting (Lester et al., 2021;
Liu et al., 2024a) and prefix tuning (Li and Liang,
2021) are particularly compelling because they in-
troduce learnable components either at the input or
within the transformer stack, enabling flexible task
adaptation without altering the underlying architec-
ture of the model.

While these prefix-based techniques have been
shown to be effective in monolingual scenarios and
task-specific settings, their potential in facilitating
zero-shot cross-lingual transfer is under-explored.
This is especially relevant for decoder-only LLMs,
which are increasingly being deployed in multilin-
gual environments. Unlike encoder-decoder mod-
els that have been more thoroughly studied for
transfer across languages, decoder-only models
present unique challenges due to their reliance on
autoregressive decoding. Understanding whether
prefix-based PeFT methods can enhance zero-shot
cross-lingual performance in such models has not
been previously studied in detail.

In this work, we provide the first systematic
study of prefix-based PeFT methods for zero-shot
cross-lingual transfer in decoder-only LLMs. Our
contributions can be summarized as follows:

• We evaluate prefix-based adaptation on mod-
els ranging from 1B parameters to large-scale
24B models to show the effectiveness of prefix
tuning in multilingual transfer across models
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of varying sizes.

• Our study spans four well-recognized multilin-
gual benchmarks – XQUAD, XNLI, Belebele
and MGSM – to compare the performance of
LoRA and prefix-based tuning.

• We provide a detailed comparison of prefix-
based methods (soft prompts, prefix tun-
ing, LLaMA-Adapter) against LoRA and full
fine-tuning1, systematically analyzing their
strengths and limitations across tasks and 35+
high- and low-resource languages. Addition-
ally, we investigate transfer patterns across
linguistic families and scripts.

Together, our findings position prefix-based
adaptation as a lightweight yet powerful strategy
for cross-lingual and reasoning-oriented applica-
tions, particularly in resource-constrained multilin-
gual settings.

2 Related Work

Cross-lingual transfer is a key challenge in mul-
tilingual NLP. It is traditionally tackled through
full fine-tuning of multilingual models. However,
with large decoder-only LLMs like Llama and Mis-
tral, full fine-tuning is costly, leading to PeFT ap-
proaches. LoRA (Hu et al., 2022) introduces low-
rank trainable matrices into frozen weights to re-
duce training overhead. Alternatively, prefix-based
methods either add learnable tokens at the input
layer (Lester et al., 2021; Liu et al., 2024a) or to at-
tention keys and values at each layer (Li and Liang,
2021), enabling efficient task adaptation.

Soft prompt tuning has been extensively studied
for cross-lingual transfer in encoder and encoder-
decoder models, particularly in classification tasks.
For instance, (Philippy et al., 2024) demonstrated
that soft prompts can generalize better across lan-
guages with fewer parameters, following the “less
is more" principle. Similarly, (Philippy et al., 2025)
utilized multilingual verbalizers and contrastive
label smoothing to further enhance cross-lingual
classification. Recent work such as (Vykopal et al.,
2025) introduced language-specific soft prompts
specifically designed for transfer learning, show-
ing that combining language-specific and task-
specific prompts improves generalization. How-
ever, these prior works predominantly used multi-

1Due to computational limitations, full fine-tuning is re-
stricted to the SQuAD dataset on Llama 3.1 8B.

lingual encoder-only and encoder-decoder models,
and appended prefix tokens only to the input.

As soft prompts have several limitations in effec-
tively adapting models to new tasks, prefix tuning
emerged as a promising approach. Cross-lingual
alignment through prompt-based pretraining, as
proposed by (Tu et al., 2024), further improved in-
tent classification and slot-filling performance but it
is not a zero-shot setting (as in our work). A recent
variant of prefix tuning is LLaMA Adapter (Dubey
et al., 2024) that introduced zero-initialized atten-
tion mechanisms for efficient prefix training and
achieved strong instruction-following capabilities;
however, they did not evaluate on any multilingual
benchmarks. A related line of work has focused on
extending prefix tuning to instance-specific adapta-
tion based on the input prompt for improved model
performance (Liu et al., 2024c; Jiang et al., 2022;
Liu et al., 2024b; Zhu et al., 2024).

Few comparative studies have examined
parameter-efficient tuning for multilingual settings,
and most have been restricted to encoder-only
models or small decoder-only models with only
a few million parameters. For instance, (Zhao
and Schütze, 2021) systematically compared dis-
crete prompting, soft prompting, and fine-tuning
on the few-shot multilingual NLI task using XLM-
RoBERTa-base. Similarly, (Tu et al., 2022) com-
pared prompt tuning with fine-tuning across di-
verse NLU tasks on XLM-R and mBERT. (Tu et al.,
2022) evaluate prefix tuning on the encoder-only
XLM-R model and showed its effectiveness over
full fine-tuning in zero-shot cross-lingual transfer.
Tu et al. (2022) investigated a decoder-based mul-
tilingual model (XGLM), but their analysis was
limited to a single small model. They showed that
prompt tuning can sometimes surpass fine-tuning,
particularly for low-resource languages, although
performance remained highly sensitive to the under-
lying tokenization scheme. Our work significantly
extends their analysis to large decoder-only LLMs
and presents a comprehensive comparison of mul-
tiple prefix-based methods, including soft prompts,
prefix tuning, and LLaMA Adapter.

3 Methodology

Low-Rank Adaptation (LoRA). LoRA (Hu
et al., 2022) is a parametric fine-tuning technique
that has become one of the most popular ap-
proaches to enable cross-lingual transfer in LLMs.
It introduces trainable low-rank matrices, typically
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Figure 1: Schematic representation of: (A) LoRA fine-tuning and prefix-based methods, (B) Llama Adapter, (C)
Prefix tuning, and (D) Soft prompt tuning.

in the query, key, and value projections, while keep-
ing the base model frozen. These learned matrices
are added to the original weights during inference.
Unlike prefix-based methods, LoRA directly modi-
fies the model parameters. A standard cross-lingual
transfer setup involves fine-tuning the model using
LoRA on task-specific English data and evaluat-
ing it on the target language of interest. Formally,
let W ∈ Rd×k be a pretrained weight matrix of a
projection layer (e.g., Wq,Wk,Wv). Instead of up-
dating W directly, LoRA parameterizes the weight
update as a product of two low-rank matrices:

∆W = BA, A ∈ Rr×k, B ∈ Rd×r, (1)

where r ≪ min(d, k) is the rank of the adaptation.
The modified projection becomes:

W ′ = W +∆W = W +BA. (2)

Given an input hidden state h ∈ Rk, the output
of the adapted projection layer is computed as:

y = W ′h = Wh+BAh. (3)

Here, only A and B are trainable, while W re-
mains frozen. This formulation enables efficient
fine-tuning by reducing the number of trainable
parameters and allowing task-specific adaptation
without updating the full weight matrices.

Prefix Tuning. Given an LLM, prefix tuning (Li
and Liang, 2021) introduces a set of learnable pre-
fix tokens to all layers of the transformer. In our
implementation, we only append the learnable pre-
fixes to the final L layers of the transformer. The

main intuition is that these prefix tokens act as addi-
tional context vectors that the model can attend to.
These vectors guide the model toward task-specific
behavior, while the pretrained parameters of the
LLM remain frozen.

Formally, let Pl ∈ RK×d denote the learnable
prefix tokens at layer l, where K is the number of
prefix tokens and d is the embedding dimension.
We consider the computation for the (M +1)-th to-
ken, denoted by tl ∈ R1×d.The layer’s input hidden
states (including the current token) are represented
as Hl ∈ R(M+1)×d. Each attention head operates
on these hidden states using projection matrices
Wq,Wk,Wv ∈ Rd×d.

The query vector corresponding to the current
token tl is computed using the frozen projection
matrix Wq:

Ql = tl Wq ∈ R1×d

The keys and values corresponding to the input
sequence (Hl) are also computed using the frozen
projection matrices Wk and Wv:

KH
l = Hl Wk, V H

l = Hl Wv

The key idea of prefix tuning is the concatenation
of the learnable prefix parameters with keys and
values derived from the input.

PK
l = Pl Wk, P V

l = Pl Wv

PK
l ∈ RK×d and P V

l ∈ RK×d denote the learn-
able prefix keys and values of layer l, respectively.
The final keys and values at layer l become:

Kl = [PK
l ;KH

l ], Vl = [P V
l ;V H

l ]
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Method en hi el vi sw bg th ar de es fr ru tr zh ur Avg

Base Model 53.8 48.0 51.0 49.7 45.9 52.0 48.0 48.6 50.4 51.8 49.6 50.8 50.0 50.1 48.7 49.9
LoRA4 90.3 70.1 74.5 77.5 60.2 73.0 72.4 71.5 77.8 79.2 80.2 73.6 73.2 77.9 65.0 74.4
Soft Prompts 84.3 67.9 54.2 72.7 51.4 51.4 66.1 63.2 52.3 57.2 59.0 59.4 58.4 41.4 62.6 60.1
Llama Adapter 93.4 74.5 79.8 79.2 59.6 78.4 76.0 76.5 83.8 83.7 84.6 79.6 75.9 81.2 71.8 78.5
Prefix Tuning 93.9 76.5 79.4 79.1 60.3 79.4 76.2 75.7 83.5 84.4 85.0 79.9 75.5 79.9 71.7 78.7

Table 1: LLaMA 3.1 8B performance (accuracy) on XNLI benchmark comparing LoRA and prefix based adaption
methods.The best performance for each language is shown in bold, and the second-best is underlined.

Method en hi el vi ar de es ro ru th tr zh Avg

Base Model 79.3 59.3 60.5 71.2 59.4 68.5 67.6 68.5 60.3 63.2 62.5 59.5 65.0
LoRA4 86.2 66.1 72.0 75.3 68.9 76.4 78.0 78.0 72.0 75.8 69.1 71.7 74.1
Soft Prompts 54.5 10.8 27.9 45.5 25.8 42.2 52.0 48.2 32.2 11.2 36.8 16.1 33.6
Llama Adapter 89.4 75.1 76.9 79.8 72.1 82.4 83.2 82.6 78.4 71.6 73.3 72.3 78.1
Prefix Tuning 90.2 75.7 78.4 79.3 70.4 82.8 84.2 83.5 76.9 70.9 72.6 72.5 78.1

Table 2: Llama 3.1 8B performance (F1 score) on XQUAD benchmark comparing LoRA and prefix based adaption
methods. The best performance for each language is shown in bold, and the second-best is underlined.

Kl and Vl are expanded matrices encompassing
both the learned prefixes and the input sequence.

The attention scores are obtained by comparing
the query Ql against the concatenated keys Kl:

Sl =
QlK

T
l√
d

∈ R1×(K+M+1). (4)

The attention distribution is computed by applying
the softmax function, which weights the contribu-
tions of both the prefix and the input tokens:

Al = softmax(Sl) =
[
AP

l , A
H
l

]
∈ R1×(K+M+1),

where AP
l represents the attention weights over

the learned prefixes and AH
l represents the weights

over the input sequence.
Finally, as is typically done in transformer mod-

els, the attended output representation at layer l is
computed as a weighted sum of the concatenated
values Vl, followed by an output projection:

tol = (AlVl)Wo ∈ R1×d, (5)

where Wo is the output projection matrix. In this
way, prefix tuning directly modifies the attention
mechanism by injecting learned keys and values
(PK

l , P V
l ), steering the model’s representations

without modifying the base model weights.

Llama Adapter. The Llama Adapter (Zhang
et al., 2024) builds upon the principles of prefix
tuning but introduces an important modification to
stabilize training in large-scale LLMs. Specifically,
it replaces the standard attention mechanism with a
zero-initialized variant. This mitigates instabilities
that often arise from randomly initialized prefix

tokens in the early stages of fine-tuning. To further
enhance stability, a learnable gating mechanism is
introduced, allowing the model to gradually scale
the influence of prefix tokens during optimization.
The gated attention scores are given by:

Ag
l =

[
softmax(SK

l ) · tanh(gl), softmax(SM+1
l )

]

(6)
where the attention scores can be split into con-
tributions from the learnable prefix SK

l and the
original sequence SM+1

l . gl is a learnable scalar
gating that adaptively controls the contribution of
the prefix tokens. Finally, the output representation
tol is obtained using the same formulation in Equa-
tion 5. By weighting the prefix contributions using
a learned gate, Llama Adapter ensures stable and
effective adaptation of decoder-only LLMs.

Soft Prompts. Soft prompts (Lester et al., 2021;
Liu et al., 2024a) involve prepending learnable con-
tinuous embeddings to the input, serving a similar
goal as manual prompts. However, instead of man-
ually selecting discrete prompts, soft prompting op-
timizes a continuous set of embeddings that serve
as the prompt. This allows the model to learn how
to best steer its behavior through gradient-based
updates to the soft prompts.

Let S ∈ RK×d represent the learnable soft
prompt embeddings, where K denotes the number
of prompt tokens and d is the hidden dimension.
Given an input sequence T , the modified input T̃
is obtained by prepending the soft prompts:

T̃ = [S;T ] (7)

where [; ] denotes concatenation. The sequence T̃
is then passed through the transformer as usual,
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Method en th zh sw fr bn de te ja es ru Avg

Base Model 50.4 23.2 27.6 13.2 28 16.4 26 12.4 16.8 34.8 30 25.34
LoRA4 36.8 16.8 27.6 7.6 25.2 4.8 22.8 0.8 19.2 24 27.2 19.34
Llama Adapter 53.6 18.4 32.4 8 32.8 9.6 33.6 2 25.2 35.6 32 25.74
Prefix Tuning 52.8 26 37.6 10.8 34 12.8 41.2 6.4 25.6 37.6 39.2 29.45

Table 3: Llama 3.1 8B performance (maj@1) on MGSM benchmark comparing LoRA and prefix based adaption
methods. The best performance for each language is shown in bold, and the second-best is underlined.

with S updated via gradient-based optimization
during fine-tuning. Unlike prefix tuning, which
injects key-value pairs at every transformer layer,
soft prompting only modifies the input embeddings.

4 Experiments

Models. All experiments are conducted on Llama
3.1 (8B) (Dubey et al., 2024) and Mistral v0.3 (7B)
(Jiang et al., 2023).To study the effect of model
scaling, we additionally evaluate smaller and larger
variants - Llama 3.2 (1B) and Mistral Small (24B),
respectively. The Llama 3.1 and 3.2 series, de-
veloped by Meta, comprise multilingual large lan-
guage models. Mistral v0.3 (7B) is an updated re-
lease from Mistral AI with an extended vocabulary
compared to Mistral v0.1. Notably, Mistral Small
(24B) establishes a new benchmark in the “small"
LLM category (under 70B) by offering improved
multilingual capabilities and a larger vocabulary.
We have limited our experiment to the base model
variants only.

Datasets. We evaluate on three widely-used
cross-lingual benchmarks, each targeting a dis-
tinct aspect of language understanding: XQUAD
(Artetxe et al., 2019) for cross-lingual question
answering, XNLI (Conneau et al., 2018) for cross-
lingual natural language inference, and Belebele
(Bandarkar et al., 2024) for cross-lingual machine
reading comprehension. We also evaluate on the
MGSM (Shi et al., 2023) benchmark to assess the
reasoning capabilities of large language models in
multilingual settings.

Training Details We fine-tune prefix-based adap-
tation methods and LoRA with rank 4 using the
English SQuAD training set for XQUAD contain-
ing 87.6K samples and a subset of the English NLI
training data containing 100K samples for XNLI
evaluations. For Belebele, we use their suggested
training set containing 67.5K English samples. Fi-
nally, we use the GSM8K English training dataset
with 7.47K samples (Cobbe et al., 2021) and evalu-

ate on MGSM. All the datasets are publicly avail-
able; more training details are in Appendix A.

We experimented with learning rates (3e-3, 1e-
3 and 3e-4), epochs (2,3,5), and weight decay
(0.02,0.04,0.1), and report the best performance
for each model. We used a learning rate of 3e-3,
2 epochs, and a weight decay of 0.02. For XNLI,
we sampled 1,000 instances per language for eval-
uation due to computational constraints. Since
XQUAD does not provide a separate test set, we
evaluated on the full validation set, which includes
approximately 1.19K samples per language. Fi-
nally for Belebele, we evaluated on 23 languages,
where each language has 900 samples. All experi-
ments were conducted on a single NVIDIA A100
80GB GPU.

5 Analysis and Ablations

Comparison with LoRA Fine-Tuning. Tables
1 and 2 (and Tables 14 and 15 in the Appendix)
shows the performance of Llama 3.1 and Mistral
v0.3 models across various tuning strategies, in-
cluding LoRA, soft prompt tuning, prefix tuning,
and Llama adapters on the XNLI and XQUAD
datasets. To ensure fair comparisons, the num-
ber of trainable parameters in LoRA was matched
with those of the prompt-based methods by setting
r = 4 and α = 8. The results show that prefix-
based methods consistently outperform LoRA on
both LLama 3.1 8B and Mistral v0.3 7B with En-
glish as the source language. This highlights the
ability of prefix-based tuning for effective multilin-
gual adaptation, even with as little as 1.23M model
parameters being trained.

We observe consistent improvements from pre-
fix tuning across all benchmarks. Using Llama 3.1
(8B), prefix tuning achieves up to 28% higher ac-
curacy on XNLI, 13% higher F1 on XQUAD, and
18% higher accuracy on Belebele compared to the
base model. Moreover, it provides additional gains
of up to 4–6% over LoRA, as shown in Tables 1, 2,
4a, and 4b. Similar trends are observed for Mistral,
with consistent improvements reported in Tables,
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Table 4: Overall Llama 3.1 8B performance (accuracy) on the Belebele benchmark, grouped by script and family.
Best performance is in bold, second-best is underlined.

Script Language Base LoRA4 Soft Llama Prefix
Model Prompt Adapter tuning

Cyrillic
Kyrgyz 37.2 52.9 59.3 60.5 64.2
Russian 50.4 81.0 86.1 87.7 88.1
Serbian 48.7 71.7 81.1 81.9 81.5

Burmese
Burmese 30.9 36.2 43.3 45.1 48.4
Shan 31.1 28.0 30.0 29.0 33.0

Latin
Swati 30.2 34.3 33.4 34.3 34.5
Sundanese 35.3 47.1 52.3 56.4 57.8
Bambara 28.4 34.3 33.1 32.2 32.2

Arabic
Sindhi 36.9 46.4 51.1 53.3 55.8
Egyptian Arabic 40.1 57.6 65.2 68.4 68.7
Western Persian 47.5 72.9 79.6 81.4 82.2

Ethiopic
Amharic 30.5 34.7 37 34.9 37.8
Tigrinya 24 29.2 29.7 28.1 29.8

(a) Grouped by language script.

Family Language Base LoRA4 Soft Llama Prefix
Model Prompting Adapter tuning

Turkic
Kazakh 38 53.8 61.8 63.9 64.2
Kyrgyz 37.2 52.9 59.3 60.5 64.2
North Azerbaijani 39.9 58.4 65.4 68.3 68.5

Dravidian
Kannada 35.2 46.0 59.3 59.5 61.1
Malayalam 35.5 49.3 56.9 60.0 63.9
Tamil 36.9 52.3 60.1 60.8 65.3

Afro-Asiatic
Amharic 30.5 34.7 37.0 34.9 37.8
Tigrinya 24 29.2 29.7 28.1 29.8
Tsonga 32.7 36.3 37.3 36.1 39

Indo-Aryan
Sindhi 36.9 46.4 51.1 53.3 55.9
Odia 33.1 38.2 54.7 55.3 59.1
Sinhala 34.2 47.8 54.8 53.8 60.8

Balto-Slavic
Russian 50.4 81.0 86.1 87.7 88.1
Serbian 48.7 71.7 81.1 81.9 81.5
Slovak 46.5 73.8 80.6 83.5 84.3

(b) Grouped by language family.

16 and 17 in Appendix D.

Effectiveness of prefix-based methods across
high and low-resource languages. We further
evaluate the effectiveness of prefix-based meth-
ods on languages categorised as high and low re-
source. Since XNLI and XQUAD benchmarks
primarily span high-resource languages, we rely on
the Belebele benchmark to assess performance on
low-resource languages. We select 23 languages
for our analysis, of which 19 are considered low-
resource and 4 high-resource, as per the FLORES

dataset classification. Across both the Mistral and
Llama architectures, prefix-based adaptation meth-
ods yield significant performance gains while re-
quiring only 1.23M parameters to be tuned. Among
low-resource languages, absolute improvements
range from a minimum of 2% for Shan to a maxi-
mum of 37% for Western Persian using Llama 3.1
8B.

Prefix tuning and LLaMA adapters typically
yield better cross-lingual transfer than soft prompts,
likely due to more tunable parameters. However, in
low-resource scenarios like those in the Belebele
benchmark, soft prompting performs comparably
or better as shown in Tables 4 and Tables 16, 17 in
Appendix D. This is likely due to their lightweight
design that helps preserve pretrained multilingual
knowledge. Overall, prefix based methods appear
to leverage inherent language knowledge better
than LoRA.

Influence of script and language family. From
Tables 4a and 4b, we observe that while both
script-wise and family-wise groupings reveal per-
formance gains with prefix-based methods, lan-
guage family appears to be a reliable indicator of

Method Params Acc.

Full Fine-tuning ∼ 8B 37.74
LoRA4 75.50M 75.99

Llama Adapter 1.23M 78.09
Prefix tuning 1.23M 78.11

Table 5: Comparison of full fine-tuning and parameter-
efficient methods on the XQUAD dataset using LLama 3.1 8B,
reported in terms of average F1 score across all languages.

adaptation success. Languages within the same
family tend to benefit similarly. Script-based trends
show more variability, likely influenced by resource
availability and linguistic diversity within a script
group. The languages in our analysis span a diverse
range of families such as Turkic, Dravidian, Afro-
Asiatic, Balto-Slavic, and Indo-Aryan. The scripts
span Cyrillic, Burmese, Arabic, Ethiopic, and Latin.
Many of these languages are typologically and mor-
phologically distant from our source language En-
glish. Prefix-based methods show strong cross-
lingual performance even across distant languages,
suggesting that typological similarity to English
is not essential for effective adaptation. Similar
trends are observed with Mistral as well, as shown
in Table 16 and 17 in Appendix D.

Prefix-based adaptation vs. full fine-tuning.
Table 5 presents a comparison of LoRA, prefix-
based methods, and full fine-tuning. Detailed
language-wise results are provided in Table 11 in
Appendix D. We observe that while full fine-tuning
leads to improvements in English, it negatively im-
pacts the performance of target languages when
applied to decoder-only models such as Llama-3.1
8B. Due to computational constraints, we were un-
able to extensively tune hyperparameters to achieve
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Method LLaMA Mistral LLaMA Mistral
3.2 1B v0.3 7B 3.1 8B 24B

Base Model 27.51 56.1 65.0 72.57
LoRA4 56.80 59.12 74.1 70.19
Llama Adapter 64.26 65.1 78.1 79.70
Prefix Tuning 64.46 67.2 78.1 79.94

Table 6: Average Performance across all languages on
XQUAD (F1 score) benchmark across all models compar-
ing LoRA and prefix based adaption methods.The best perfor-
mance for each language is shown in bold, and the second-best
is underlined.

the best possible results. Overall, our findings indi-
cate that LoRA and prefix-based methods are more
effective and efficient choices for zero-shot cross-
lingual transfer compared to full fine-tuning. We
hypothesize that this could primarily be due to full-
finetuning (on English data) leading to catastrophic
forgetting in other languages.

Effect of model size on prefix-based adaptation
vs. LoRA. In Figures 2b and 2a, we compare
the performance of prefix-based methods against
LoRA on XQUAD for Spanish and Hindi across
different model sizes. We observe that both pre-
fix tuning and LLaMA Adapter consistently out-
perform LoRA across all model size variations in
both languages. Table 6 shows that prefix-based
adaptations scale more effectively with model size,
maintaining their advantage even as the underlying
model grows larger. In particular, prefix tuning
yields consistent improvements, thus highlighting
the robustness of prefix-based approaches for mul-
tilingual transfer.

Effectiveness of prefix-based methods on
MGSM. Table 3 presents results on the MGSM
benchmark with Llama-3.1 8B. LLaMA Adapter
and prefix tuning consistently outperform LoRA,
with prefix tuning achieving the best average score
(+4% over the base model). However, perfor-
mance degraded for very low-resource languages
like Swahili, Telugu, and Bengali. This suggests
that while effective, prefix-tuning may not transfer
well for complex reasoning and generation tasks
without some language-specific data.

Varying temperature/top-p during prefix-tuning.
For XQUAD, we have calculated both EM (Exact
match) and F1 score. From figure 3, we find that
while higher temperatures and top-p values can im-
prove F1 scores on XQUAD, they often lead to
a noticeable drop in EM. This highlights a trade-
off between generating more diverse predictions
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LLaMA 3.2 1B

Mistral v0.3 7B
LLaMA 3.1 8B

Mistral Small 24B
0

10
20
30
40
50
60
70
80

F1
 S

co
re

Base (hi) LoRA (hi) LLaMA-Adapter (hi) Prefix Tuning (hi)

(b) Comparison for Hindi.

Figure 2: Comparison of prefix-based methods across model
sizes against LoRA fine-tuning on XQUAD (F1 score).

Method Params XNLI Acc. XQUAD F1 Score

LoRA4 2.36M 74.4 74.1
LoRA128 75.50M 76.7 76.0

Llama Adapter 1.23M 78.5 78.1
Prefix tuning 1.23M 78.7 78.1

Table 7: Higher Lora rank vs prefix based methods perfor-
mance on XNLI and XQUAD for Llama 3.1 8B

(captured by F1) and producing exact matches (cap-
tured by EM). The best overall trade-off is obtained
at our chosen setting of temperature=0.1 and top-
p=0.75.

Performance comparison of LoRA4, LoRAr128

with prefix tuning and Llama Adapters. Ta-
ble 7 provides a comparative analysis of LoRA fine-
tuning under two rank configurations, r = 4 and
r = 128, against prefix tuning and Llama adapters.
While increasing the LoRA rank from 4 to 128
substantially increases the number of trainable
parameters, the resulting performance improve-
ments are relatively modest. More importantly,
our results show that parameter-efficient prefix-
based approaches namely prefix tuning and Llama
adapters consistently outperform LoRA, even at
higher ranks. This trend is evident in both the
XNLI and XQUAD benchmarks, emphasizing the
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Figure 3: Varying temperature (left) and top-p (right) values
using Llama 3.2 (1B) on the XQUAD task.

effectiveness of prefix-based adaptation for cross-
lingual transfer. These findings suggest that simply
scaling LoRA with larger ranks does not necessar-
ily close the performance gap with prefix-based
methods, and the latter remains a more efficient
choice for multilingual scenarios.

Impact of hyperparameter tuning on prefix-
based adaptation. Prefix-based approaches are
governed by two critical hyperparameters: the pre-
fix length and the number of transformer layers
in which the prefixes are inserted. In soft prompt
tuning, the adaptation is constrained to the input
layer, whereas in prefix tuning, prefixes can be in-
jected across multiple layers of the model. To better
understand the effect of these design choices, we
systematically varied both hyperparameters. Our
experiments reveal that adapting 30 out of 32 lay-
ers with a prefix length of 10 tokens provides the
strongest gains across benchmarks, as summarized
in Tables 8 and 9. These results highlight the sensi-
tivity of prefix-based methods to hyperparameter
configurations, and emphasize the importance of
carefully selecting the number of adapted layers
and prefix length to maximize performance.(For
results on other models, refer to Appendix C.)

6 Conclusion

We show that prefix-based adaptation methods are a
practical and efficient mechanism for cross-lingual
transfer in decoder-only LLMs. Methods like soft
prompting, prefix-tuning, and Llama adapters in-
troduce learnable prefixes at different layers, while
using relatively small numbers of trainable param-
eters. This leads to highly efficient, task-specific
cross-lingual learning.

Crucially, this performance was achieved using
only English training data. We hypothesize this
success stems from learning language-agnostic be-
haviors. By adding context vectors while keeping
the base model frozen, these methods preserve the

Layers Params Acc.

20 0.82M 74.5
30 1.23M 78.7
32 1.31M 78.0

Table 8: XNLI perfor-
mance accuracy by varying
number of Llama 3.1 8B
layers in which prefixes are
inserted.

Tokens Params Acc.

5 0.61M 77.8
10 1.23M 78.7
20 2.46M 76.0

Table 9: XNLI perfor-
mance accuracy by varying
number of prefix tokens in
30 Llama 3.1 8B layers.

LLM’s inherent multilingual capabilities. In con-
trast, methods that alter full model weights (e.g.,
full fine-tuning and LoRA) suffer from catastrophic
forgetting when adapted monolingually, degrading
performance in unseen languages. These findings
advocate for prefix-based adaptation as a robust
strategy for zero-shot cross-lingual transfer.

Limitations

Our study shows that prefix-based methods yield
strong zero-shot cross-lingual performance, but it
has several limitations. First, due to computational
constraints, our experiments were limited to 24B
models; extending to larger models is a promising
direction for future work. Second, our evaluations
used only English as the source language. Ana-
lyzing other source languages could offer deeper
insights into the methods’ cross-lingual capabili-
ties. Finally, due to computational constraints, we
were unable to perform an extensive hyperparam-
eter search for full fine-tuning. We would like to
emphasize this limitation more explicitly and clar-
ify that our intention is not to claim full fine-tuning
is inherently weaker, but rather to highlight that
parameter-efficient methods provide strong alterna-
tives under realistic computational constraints. In
future work, we plan to explore improving response
generation for low-resource languages as seen in
the MGSM benchmark and also explore more di-
verse response generation tasks (e.g. summariza-
tion and translation). We also plan to investigate
why prefix-tuning is effective through attention vi-
sualization and representation probing.
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A Prompt Templates

Training and inference prompts for all the three
benchmarks we have evaluated. For MGSM, we
use the 8-shot chain-of-thought prompt as in (Wei
et al., 2022) (maj@1) to evaluate.

XQUAD

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.
### Instruction:
You will answer reading comprehension
questions using information from a provided
passage. Extract the exact answer from the
passage without modification and present it
in the following structured format:
{’answer’ : <Extracted Answer>}
### Input:
Context:
<context>
Question:
<question>

### Response:
{’answer’:

Belebele

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.
### Instruction:
The task is to perform a reading compre-
hension task. Given the following passage,
question, and answer choices, output the
number corresponding to the correct answer
only.
### Input:
Passage:
<passage>
Question:
<question>
Choices:
<choices>

### Response: The correct choice number
is
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Benchmark Languages
XNLI en, hi, el, vi, sw, bg, th, ar,

ar, de, es, fr, ru, tr, zh, ur
XQUAD en, hi, el, vi, ar, de, es, ro,

ru, th, tr, zh

Table 10: Languages used in the XNLI and XQUAD bench-
marks.

XNLI

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.
### Instruction:
The task is to solve Natural Language In-
ference (NLI) problems. NLI is the task of
determining whether the inference relation
between the second sentence (Hypothesis)
with respect to the first sentence (Premise)
is one of the following:
1. Entailment
2. Neutral
3. Contradiction
Output the relation number only.
### Input:
Premise:
<premise>
Hypothesis:
<hypothesis>

### Response: The relation number is

B Languages details

Evaluation language details included in the bench-
marks are given in Tables 10, 12 and 13.

C Hyperparameter details

We insert 10 prefix tokens across 30 layers for
LLaMA 3.1 8B, Mistral 7B, and Mistral 24B, while
for LLaMA 3.2 1B, the tokens are inserted across
all layers as it is small.For full fine-tuning, we used
a batch size of 8, a learning rate of 1e-5 with a
cosine learning rate scheduler, a warm-up ratio of
0.1, and trained the model for 2 epochs.Finally for
LoRA fine tuning, we applied it to the Q, K, and V
projection matrices across all layers.

D Complete elaborated experiment
results

Language F1 EM
ar 14.43 9.83
de 61.95 43.36
el 22.63 17.98
en 84.69 72.10
es 62.08 41.34
hi 15.23 11.76
ro 58.57 40.76
ru 18.65 10.42
th 16.13 12.35
tr 42.38 26.72
vi 43.47 25.88
zh 12.66 9.50
Avg 37.74 26.83

Table 11: Full fine tuning performance of Llama 3.1 8B on
XQUAD

Language Family

Kazakh Turkic
Kyrgyz Turkic
North Azerbaijani Turkic
Kannada Dravidian
Malayalam Dravidian
Tamil Dravidian
Amharic Afro-Asiatic
Tigrinya Afro-Asiatic
Tsonga Afro-Asiatic
Sindhi Indo-Aryan
Odia Indo-Aryan
Sinhala Indo-Aryan
Russian Balto-Slavic
Serbian Balto-Slavic
Slovak Balto-Slavic

Table 12: Languages grouped by family included in Belebele

Language Script

Kyrgyz Cyrillic
Russian Cyrillic
Serbian Cyrillic
Burmese Burmese
Shan Burmese
Swati Latin
Sundanese Latin
Bambara Latin
Sindhi Arabic
Egyptian Arabic Arabic
Western Persian Arabic
Amharic Ethiopic
Tigrinya Ethiopic

Table 13: Languages grouped by script included in Belebele
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Method en hi el vi sw bg th ar de es fr ru tr zh ur Avg

Base Model 34.3 34.7 33.8 33.6 33.4 33.8 32.8 33.6 34.1 33.8 33.5 33.6 34.2 33.9 33.6 33.8
LoRA4 47.3 42.2 42.1 44.8 43.5 47.3 44.0 45.0 41.6 42.1 40.0 48.3 40.0 43.9 40.6 43.5
Soft Prompts 79.4 41.8 46.7 67.6 44 70.5 48.8 56.5 73.2 75.3 75.9 67.0 60.9 69.4 49.5 61.7
Llama Adapter 92.0 58.1 64.8 69.3 46.9 73.9 61.3 61.7 79.0 79.3 80.6 76.0 65.2 76.7 55.6 69.4
Prefix Tuning 90.8 56.7 61.9 69.3 43.4 75.7 62.8 61.5 78.8 80.3 79.5 76.7 63.9 78.3 54.5 69.0

Table 14: Mistral v0.3 7B performance (accuracy) on XNLI benchmark comparing LoRA and prefix based adaption methods.The
best performance for each language is shown in bold, and the second-best is underlined.

Method en hi el vi ar de es ro ru th tr zh Avg

Base Model 77.7 35.4 47.9 62.7 46.9 65.4 66.4 64.3 53.8 47.4 48.0 57.8 56.1
LoRA4 82.5 41.37 53.52 48.0 54.1 67.1 68.2 66.7 58.8 53.2 51.1 64.9 59.12
Soft Prompts 72.1 1.6 19.4 42.2 18.4 61.6 62.3 59.6 49.3 10.1 48.1 18.4 38.6
Llama Adapter 88.5 42.5 53.4 69.1 51.1 75.9 80.0 78.6 72.3 41.3 58.3 71.0 65.1
Prefix Tuning 88.4 49.3 60.4 69.5 55.4 77.4 80.0 78.2 71.7 46.1 60.9 69.1 67.2

Table 15: Mistral v0.3 7B performance (F1 score) on XQUAD benchmark comparing LoRA and prefix based adaption
methods.The best performance for each language is shown in bold, and the second-best is underlined.

Script Language Base LoRA4 Soft Llama Prefix
Model Prompt Adapter tuning

Cyrillic
Kyrgyz 31.7 29.2 35.8 34.1 35.5
Russian 57.3 62.2 83.1 83.8 82.3
Serbian 55.5 60.2 79.0 79.8 76.5

Burmese
Burmese 28.3 23.0 33.0 30.8 30.7
Shan 26.0 21.5 26.1 25.3 27.0

Latin
Swati 28.6 27.3 29.6 30.0 32.0
Sundanese 32.1 30.5 37.4 35.7 35.4
Bambara 29.3 28.3 31.3 31.2 32.8

Arabic
Sindhi 31.3 24.3 31.4 29.2 30.8
Egyptian Arabic 39.3 35.0 48.6 45.1 43.7
Western Persian 41.2 35.1 55.4 49.8 52.5

Ethiopic
Amharic 29.3 22.7 31.1 29.2 30.7
Tigrinya 28.3 23.0 25.7 26.1 27.0

Table 16: Performance (accuracy) of Mistral v0.3 7B on the
Belebele benchmark, grouped by language script, comparing
LoRA and prefix-based adaptation methods.The best perfor-
mance for each language is shown in bold, and the second-best
is underlined.

Family Language Base LoRA4 Soft Llama Prefix
Model Prompting Adapter tuning

Turkic
Kazakh 33.7 29.4 38.0 34.3 35.6
Kyrgyz 31.7 29.2 35.8 34.1 35.5
North Azerbaijani 34.7 35.2 45.5 42.3 42

Dravidian
Kannada 34.3 25.7 38.1 34.2 36
Malayalam 31.8 25.7 36.7 31.8 31.4
Tamil 34.1 29.0 39.8 36.5 40.0

Afro-Asiatic
Amharic 29.3 22.7 31.1 29.2 30.7
Tigrinya 28.3 23.0 25.7 26.1 27.0
Tsonga 28.4 28.5 34.7 33.3 33.8

Indo-Aryan
Sindhi 31.3 24.3 31.4 29.2 30.8
Odia 30.5 23.6 30.3 30.7 30.5
Sinhala 32.2 27.1 34.5 29.4 34.5

Balto-Slavic
Russian 57.3 62.2 83.1 83.8 82.3
Serbian 55.5 60.2 79.0 79.8 76.5
Slovak 52.9 58.2 73.1 72.8 72.3

Table 17: Performance (accuracy) of Mistral v0.3 7B on the
Belebele benchmark, grouped by language family, comparing
LoRA and prefix-based adaptation methods.The best perfor-
mance for each language is shown in bold, and the second-best
is underlined.
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