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Abstract

Fine-tuning multilingual foundation models
on specific languages often induces catas-
trophic forgetting, degrading performance on
languages unseen in fine-tuning. While this
phenomenon is widely-documented, the liter-
ature presents fragmented results about when
forgetting occurs. To address this ambiguity,
we conduct a systematic empirical study using
machine translation as a testbed to identify the
conditions that trigger catastrophic forgetting
in multilingual fine-tuning. Through controlled
experiments across different model architec-
tures, data scales, and fine-tuning approaches,
we reveal that the relative scale between model
and data size is a primary determinant of forget-
ting. Moreover, we demonstrate that a model’s
instruction-following ability is more critical for
retaining multilingual knowledge than its archi-
tecture. Contrary to assumptions, parameter-
efficient fine-tuning offers no clear advantage
over full fine-tuning in mitigating forgetting.
Lastly, we show that cross-lingual alignment
can mitigate forgetting while also facilitating
positive transfer to unseen target languages.

1 Introduction

Foundation models pretrained on vast amounts of
multilingual data have become the standard back-
bone for modern natural language processing sys-
tems. To achieve optimal performance, however,
these models typically require fine-tuning on down-
stream tasks. This specialization introduces a criti-
cal trade-off: while performance on the target task
improves, the model may suffer from catastrophic
forgetting (McCloskey and Cohen, 1989), a sub-
stantial degradation of capabilities on tasks or lan-
guages not present in the fine-tuning data.

A common use case is to fine-tuning multilingual
models to focus on specific languages or language
pairs. Ideally, this process would not harm, and
might even improve, performance on unseen lan-
guages through positive transfer, as illustrated on
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Figure 1: Selectively fine-tuning on some languages or
translation directions may lead to positive transfer (left)
or catastrophic forgetting (right).

the left of Figure 1. However, empirical evidence
often shows the opposite. Models frequently lose
proficiency in languages they were not fine-tuned
on (Vu et al., 2022b; Sun et al., 2023; Winata et al.,
2023), as shown on right of Figure 1.

Machine translation (MT) serves as a compelling
testbed for studying multilingual catastrophic for-
getting. First, a model supporting n languages
encompasses n(n − 1) directed translation pairs,
offering a large and structured space to analyze
forgetting patterns. Second, languages can be “un-
seen” in different roles. For example, a language
may be present only as a source language, only as
a target language, or in specific source-target pairs
that were never explicitly trained. This enables fine-
grained analysis of how different types of exposure
during fine-tuning affect retention. Moreover, for-
getting can occur asymmetrically, where a model
may retain the ability to translate from language A
to B while losing the reverse direction.

Despite its practical importance, the literature
presents a fragmented and sometimes contradictory
picture of when catastrophic forgetting occurs in
MT. On one hand, studies on traditional NMT mod-
els trained from scratch (Berard, 2021) and some
large pretrained models (Vu et al., 2022a; Liu and
Niehues, 2022; Liu et al., 2023; Lai et al., 2023)
report severe forgetting after standard fine-tuning,
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where the ability to translate unseen directions is
almost entirely lost. These findings suggest that
catastrophic forgetting is an inevitable consequence
of selective specialization. On the other hand,
recent works on large language models (LLMs)
provided mixed evidence. Richburg and Carpuat
(2024) demonstrated that fine-tuning Llama 2 (Tou-
vron et al., 2023) and Tower (Alves et al., 2024)
models on specific language pairs could improve
performance on unseen pairs, indicating positive
transfer. Conversely, Zan et al. (2024) found that
their fine-tuned Llama 2 models performed very
poorly on unseen directions, again indicating issues
with forgetting.

These conflicting results raise fundamental ques-
tions about the factors leading to catastrophic for-
getting. Has the emergence of large language mod-
els altered the dynamics of catastrophic forgetting?
To what extent do model architecture (encoder-
decoder versus decoder-only), scale, or fine-tuning
methodology determine whether a model forgets
or generalizes? How do factors like the volume
of fine-tuning data, the use of parameter-efficient
fine-tuning (PEFT), or instruction-following capa-
bilities influence the retention of multilingual abil-
ities? To resolve these ambiguities, we conduct a
systematic study to identify the conditions that trig-
ger catastrophic forgetting in multilingual MT. We
systematically control for key variables, including
model architecture and size, fine-tuning data com-
position and scale, full-parameter vs. parameter-
efficient fine-tuning, and instruction-following ver-
sus standard fine-tuning approaches. With a series
of controlled experiments, we demonstrate that:
• The relative scale between pre-trained model pa-

rameters and fine-tuning data volume is a criti-
cal factor in catastrophic forgetting, with smaller
models fine-tuned on larger datasets being most
vulnerable (§4.1).

• Whether a model supports instruction-following,
rather than its underlying architecture (encoder-
decoder versus decoder-only), is a primary factor
impacting catastrophic forgetting (§4.2).

• Contrary to common assumptions, parameter-
efficient fine-tuning with LoRA (Hu et al., 2022)
provides no significant advantage over full fine-
tuning in preventing catastrophic forgetting under
our experimental conditions (§4.4).

• Besides mitigating forgetting, cross-lingual align-
ment methods may facilitate positive transfer,
with improvements observed on translation direc-
tions with unseen target languages (§5).

2 Related Work

Catastrophic Language Forgetting in MT
Catastrophic forgetting in machine translation has
been extensively studied. Dakwale and Monz
(2017); Thompson et al. (2018, 2019) established
that domain-specific fine-tuning degrades perfor-
mance on previously learned domains with specific
subject areas or text styles. Many subsequent works
have investigated the underlying mechanisms and
mitigation strategies for domain forgetting in MT,
e.g., Gu and Feng (2020); Saunders and DeNeefe
(2024); Eschbach-Dymanus et al. (2024); Wu et al.
(2024); Hu et al. (2024). Compared to domain for-
getting, the multilingual dimension of forgetting
has received less attention. Berard (2021) demon-
strated severe language forgetting in conventional
encoder-decoder-based MT models during standard
fine-tuning on selected languages, while Vu et al.
(2022a) showed that domain-specific fine-tuning
compounds forgetting across both domains and lan-
guages. Liu and Niehues (2022); Liu et al. (2023)
confirmed that standard fine-tuning consistently
triggers catastrophic forgetting of unseen language
pairs, even in pre-trained models with large lan-
guage coverage, such as M2M-124 (Goyal et al.,
2022) and mBART-50 (Tang et al., 2021). Besides
language and domain forgetting, models also lose
in-context learning abilities after fine-tuning (Alves
et al., 2023).

Model Factors Influencing Forgetting The
scale of both the model and its pretraining data has
been identified as a key factor in mitigating catas-
trophic forgetting (Ramasesh et al., 2022). Our
study extends this analysis by examining the rela-
tive scale between the model and the fine-tuning
data. The choice of fine-tuning methodology is
another contested factor. Kalajdzievski (2024) sug-
gests that LoRA does not resolve catastrophic for-
getting, while Biderman et al. (2024) suggest that
LoRA “learns less and forgets less”. The finding
by Zhang et al. (2024) that the optimal fine-tuning
method is highly task-dependent warrants a specific
investigation for the task of multilingual MT.

3 Controlled Setting to Study
Catastrophic Forgetting in MT

Our controlled experiments are structured along
two dimensions, namely the choice of base model
and the characteristics of the training dataset.
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Model Size Model Type

M2M-124-0.2B 175M Translation-specificM2M-124-0.6B 615M
Qwen2.5-0.5B-Instruct 494M

Instruction-followingQwen2.5-7B-Instruct 7B
Llama-3-8B-Instruct 8B

Table 1: Base models and their configurations.

3.1 Base Models

An overview of all base models and their configu-
rations is provided in Table 1.

Translation-Specific Models We choose M2M-
1241 (Goyal et al., 2022) with two sizes:
• M2M-124-0.2B: smallest-scale baseline
• M2M-124-0.6B: larger-scale comparison to iso-

late model size effects

Instruction-Following Models We evaluate and
fine-tune models from two prominent families,
Qwen 2.5 (Qwen Team et al., 2025) and Llama 3
(AI @ Meta et al., 2024):
• Qwen2.5-0.5B-Instruct : similar to M2M-124-

0.6B in size for comparison between translation-
specific and instruction-following models2

• Qwen2.5-7B-Instruct: larger-scale instruction-
following baseline

• Qwen2.5-7B-Instruct (LoRA): identical to full
fine-tuning but using LoRA as a PEFT approach

• Llama-3-8B-Instruct (LoRA): similar scale to
above but from another family

3.2 Data

Dataset Overview As shown in Table 2, we ex-
periment on datasets of different scales:
• SMALL: training dataset in ALMA (Xu et al.,

2024), covering five languages paired with En-
glish: Czech (cs), German (de), Icelandic (is),
Russian (ru), and Chinese (zh). The unseen lan-
guages include Hebrew (he), Japanese (ja), and
Ukranian (uk).

• LARGE: from the WMT 21 Shared Task on Large-
Scale Multilingual Machine Translation (Wenzek
et al., 2021), focusing on three related Austrone-
sian languages paired with English: Javanese
(jv), Malay (ms), and Tagalog (tl). The unseen
language is Indonesian (id).

1We choose M2M-124 over NLLB-200 models of similar
sizes (NLLB Team, 2024) as the former showed stronger
performance in our preliminary experiments.

2We note that this is not fully controlled setup contrasting
M2M-124-0.6B due to different pre-training data.

Dataset Details

SMALL

Training Data: ALMA (117K sentence pairs)
Test (supervised): WMT23 (Kocmi et al., 2023)
Test (unseen pair): WMT24 (Kocmi et al., 2024)
Test (unseen source): WMT23
Test (unseen target): WMT23
Training directions: {cs, de, is, ru, zh}↔en
Testing directions:

- Unseen pair (20): {cs, de, is, ru, zh}↔{cs,
de, is, ru, zh}

- Unseen source (3): {he, ja, uk} → en
- Unseen target (3): en → {he, ja, uk}

LARGE

Training Data: WMT21 large-scale multilin-
gual track (54M sentence pairs)
Test (unseen pair): FLoRes (Goyal et al., 2022)
Test (unseen source): FLoRes
Test (unseen target): FLoRes
Training directions: {jv, ms, tl}↔en
Unseen testing directions:

- Unseen pair (6): {jv, ms, tl}↔{jv, ms, tl}
- Unseen source (4): id → {en, jv, ms, tl}
- Unseen target (4): {en, jv, ms, tl} → id

Table 2: Dataset overview for training and testing con-
figurations for both small and large-scale experiments.

• subsampled LARGE: sampled from the LARGE

dataset with 12K, 120K, and 1.2M sentences per
language pair respectively.

Unseen Language Pairs We evaluate catas-
trophic forgetting on three types of unseen lan-
guage pairs. Our analysis focuses on pairs where
at least one language was seen during fine-tuning,
as pairs with two unseen languages consistently
showed severe performance degradation in prelimi-
nary experiments. The three categories are:
• Unseen Pair: Both the source and target lan-

guages are present in the fine-tuning data, but
not in combination. This is the most challenging
category as explained next.

• Unseen Source: The source language has not
been seen during fine-tuning, but the target lan-
guage has.

• Unseen Target: The target language has not been
seen during fine-tuning, but the source language
has.

Among the three evaluated categories, the “unseen
pair” scenario presents a unique challenge. While
counterintuitive, this case is often more difficult
than scenarios involving languages completely un-
seen during fine-tuning. The primary reason for
this difficulty lies in the English-centric nature of
the fine-tuning dataset. Because all training ex-
amples are paired with English, the model learns
an implicit association that a specific source lan-
guage uniquely predicts English as the target lan-
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guage, which represents a spurious correlation (Gu
et al., 2019).3 In contrast, the other two condi-
tions do not present this conflict to the same level.
For an unseen source language, the model has
not formed any directional association during fine-
tuning. Therefore, there is no learned association to
be overridden. The unseen target language scenario
is also comparatively less difficult. Specifically, as
long as the source language has to translate into
multiple different target languages during training
or has not been seen in training, the model does not
learn a one-to-one mapping to a single output. This
condition applies to four of the seven unseen target
language scenarios (en →{he, ja, uk, id}), where
the source language was part of a multi-target trans-
lation setup. This configuration discourages over-
specialization toward a single output language, re-
ducing the overall difficulty of translating into a
unseen target language for this category.

Language Control Mechanisms Following the
original models, we use different language speci-
fication methods. For M2M-124, we follow their
token-based control, prepending source and target
sentences with their respective language tokens:

<source_lang_token> source sentence
<target_lang_token> target sentence

For instruction-following models, we use the sys-
tem prompt “Translate the given sentence from
[source language] to [target language]” followed
by the source sentence. In ablations, we also test
instructions in the target language4.

3.3 Training and Inference
For full fine-tuning, we update all model param-
eters. For LoRA, we adopt a rank of 8 and α of
16, applying adapters to all components within self-
attention (Query, Key, Value, Output, Gate) and
linear projections. This LoRA configuration was
chosen after initial experiments applying LoRA
to fewer components showed weaker supervised
performance. It also creates conditions more analo-
gous to full fine-tuning than selective adapter appli-
cation, minimizing potential confounding factors
related to parameter coverage. More training and
inference details are available in Appendix A.

3For instance, when translating from German-Czech after
fine-tuning on English-Czech and German-English, the model
has been implicitly trained to associate German inputs with
English outputs. Direct German-Czech translation requires
the model to override this spurious correlation.

4We translate English instructions with DeepL. For lan-
guages not supported by DeepL, we use Google Translate.

3.4 Metrics

For evaluation, we primarily use COMET-22 (Rei
et al., 2022) as our main quality metric due to its
strong correlation with human judgments (Freitag
et al., 2022). However, COMET has known limita-
tions when models generate unintended languages
(Zouhar et al., 2024), which is particularly relevant
for catastrophic forgetting. Therefore, we include
BLEU5 (Papineni et al., 2002) as a complemen-
tary string-matched metric. When appropriate, we
also report language accuracy using the language
identification tool by Lui and Baldwin (2011).

4 Gain-Forgetting Analyses

We investigate the trade-off between performance
gains on fine-tuned language pairs and potential
catastrophic forgetting on those unseen during fine-
tuning. To visualize this relationship, we create
scatter plots (Figure 2 and Figure 3) where each
point represents a language pair’s performance be-
fore (x-axis) and after (y-axis) fine-tuning. The di-
agonal line (y = x) is a reference boundary, where
points below indicate catastrophic forgetting, while
those above indicate performance improvement.

4.1 Model Scale and Fine-Tuning Data Size

Impact of Model Size Larger model variants con-
sistently exhibit greater resistance to catastrophic
forgetting. For M2M-124 models, the 0.6B pa-
rameter variant shows fewer language pairs in the
forgetting zone compared to its 0.2B counterpart.
Similarly for Qwen2.5, the 7B model demonstrates
substantially less forgetting than the 0.5B model
across all language pairs. This confirms the finding
from Ramasesh et al. (2022) that the base model
scale helps mitigate forgetting.

Impact of Fine-Tuning Data Volume We addi-
tionally observe that the amount of fine-tuning data
plays a crucial role in forgetting. By contrasting
Figure 2 (∼100K sentences FT data) and Figure 3
(∼ 54M sentences FT data), it becomes clear that
higher-data-volume fine-tuning leads to stronger
forgetting across all model variants. This observa-
tion extends the findings of Ramasesh et al. (2022),
by demonstrating that catastrophic forgetting is im-
pacted not only by base model scale, but also by
the intensity of task-specific training.

5with default tokenizer “13a” in sacreBLEU (Post, 2018),
and the dedicated tokenizers for Chinese and Japanese.
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Figure 2: Gain-forgetting plots on the SMALL dataset (117K sentence pairs). Catastrophic forgetting is minimal,
except unseen language pairs on Llama (addressed later in Table 4).
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Figure 3: Gain-forgetting plots on the LARGE dataset (54M sentence pairs). Catastrophic forgetting is more severe,
especially with translation-specific models where they show performance collapse approaching 0 BLEU.
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Figure 4: Controlled analysis of data volume effects by
subsampled portions of the LARGE dataset. Forgetting
becomes severe as fine-tuning data amount increases.

Controlled Analysis of Data Volume Effects To
isolate the impact of data volume from dataset-
specific factors (e.g., the ALMA dataset has higher-
quality data), we conduct controlled experiments

using subsampled portions of the WMT21 dataset.
We systematically vary the amount of fine-tuning
data while maintaining a consistent data source.
Starting with 12K sentences per language pair
(matching ALMA), we increase the volume by
an order of magnitude at each step: 12K →
120K → 1,200K sentences per language pair. Fig-
ure 4 demonstrates the progressive increase in
catastrophic forgetting as training volume grows.
At 12K sentences per language pair, the gain-
forgetting pattern resembles ALMA results, with
most language pairs clustered near the diagonal
line and minimal performance changes. At 120K
sentences, a shift toward forgetting emerges, par-
ticularly for target languages unseen in fine-tuning.
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Model Average en→id

COMET BLEU COMET BLEU

Qwen2.5-0.5B-Instruct 64.0 8.0 71.6 11.8
+ Instruction-based FT 65.3 6.8 80.9 19.2
+ Token-based FT 60.9 5.2 72.1 14.0

Table 3: Effectiveness of different language control
mechanisms on unseen target languages compared to
the base model without fine-tuning. Instruction-based
language control outperforms token-based control.

At 1,200K sentences, severe catastrophic forgetting
occurs, though not to the full extent observed in
the complete dataset. The progressive degradation
suggests that the intensity of fine-tuning on specific
language pairs impacts the forgetting patterns.

4.2 Architecture and Language Control
Mechanism

To isolate the impact of model architecture and
pretraining objectives on catastrophic forgetting,
we compare two models of comparable scale but
different designs: M2M-124-0.6B, a translation-
specific encoder-decoder model, and Qwen2.5-
0.5B, a general-purpose decoder-only model pre-
trained for instruction following. While these two
models differ in their pre-training data, which pre-
ludes a fully controlled comparison, we also repli-
cate M2M-124’s language control mechanism on
Qwen2.5 to reduce potential confounding factors.

Forgetting Patterns Across Architectures In
Figure 3 on the LARGE dataset, where forgetting
effects are strongest due to large-scale fine-tuning
data, both models exhibit catastrophic forgetting
with multiple language pairs falling below the di-
agonal. However, they differ in their forgetting pat-
terns: M2M-124-0.6B exhibits severe performance
degradation on unseen target languages, while
Qwen2.5-0.5B shows modest forgetting. We hy-
pothesize that this is related to the target language
control mechanisms by the models. As discussed
in §3.2, M2M-124 relies on language-specific to-
kens prepended to both source and target sentences,
with the target-side token determining the output
language. In contrast, with Qwen, we use natural
language instructions to specify the target language,
leveraging its existing instruction-following capa-
bilities. This instruction-based mechanism may
support more generalizable language control and
help mitigate catastrophic forgetting on unseen tar-
get languages. We examine this hypothesis next.

Isolating Language Control Mechanisms To
test the previous hypothesis that natural language
instructions facilitate language control, we conduct
a controlled experiment by fine-tuning Qwen2.5-
0.5B using the same token-based language speci-
fication format as M2M-124, as described in §3.2.
This format eliminates natural language instruc-
tions entirely, allowing fairer comparisons between
models while holding the language control method
unchanged. The results support our hypothesis
that instruction-following paradigms provide su-
perior language control. As shown in Table 3,
when trained with token-based language control,
Qwen2.5’s performance on unseen target languages
drops substantially from 65.3 to 60.9 COMET over
4 unseen target language pairs. To account for
low initial performance in some non-English lan-
guage pairs, we specifically examine the English-
Indonesian pair, which has a stronger baseline.
In this case, performance still degrades substan-
tially from 80.9 to 72.1 COMET and from 19.2 to
14.0 BLEU. These results on Qwen show that it
is the instruction-following ability, rather than the
decoder-only architecture, that provides stronger
protection against target language forgetting.

Impact of In-Language Instructions Building
on our previous findings regarding instruction-
following for language control, we investigate
whether using instructions in the target language
(in-language instructions) can mitigate catastrophic
forgetting on unseen language pairs. While prior
work on in-language instructions for multilingual
LLMs shows mixed results (Marchisio et al., 2024;
Mondshine et al., 2025; Liu et al., 2025; Romanou
et al., 2025; Enomoto et al., 2025), these studies
primarily evaluate models out-of-the-box. In con-
trast, we focus specifically on the training effects
of in-language instructions.

We focus on the Llama3-8B trained on the
SMALL dataset, which exhibits strong catastrophic
forgetting (rightmost plots in Figure 2). As the re-
sults in Table 4 suggest, for unseen language pairs
affected by forgetting, in-language instructions sub-
stantially outperform English instructions. Specifi-
cally, average language accuracy improves dramat-
ically from 22.1% to 82.0%, with corresponding
translation quality gains as measured by COMET
increasing from 57.2 to 70.9. It is worth noting that
this does not impact performance on supervised
language pairs, and slightly improves performance
on unseen target languages (COMET 79.6→80.3).
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Metric Supervised Unseen
Pair

Unseen
Source

Unseen
Target

Original
COMET 76.9 63.8 81.1 71.8
BLEU 26.0 10.9 29.5 14.8
LangID 97.9 85.1 97.9 93.5

English
instruction

COMET 81.4 57.2 82.8 79.6
BLEU 30.0 4.4 31.8 15.5
LangID 96.7 22.1 98.4 94.1

In-language
instruction

COMET 81.7 70.9 82.9 80.3
BLEU 30.3 14.4 32.4 16.1
LangID 97.5 82.0 98.5 95.1

Table 4: With Llama3 on the SMALL dataset, in-
language instructions recover catastrophic forgetting on
unseen pairs, reversing a 6.6 COMET loss (63.8→57.2)
into a 7.1 COMET gain (63.8→70.9).

4.3 Analyses by Language Pair Types
The results in Figure 2 and Figure 3 also suggest
that catastrophic forgetting patterns are strongly de-
pendent on the language pair type. As shown in the
previous section, a major issue for language pairs
unseen during fine-tuning is generating incorrect
output languages. Therefore, we separately discuss
the two language control mechanisms.

Token-Based Control and Target Language For-
getting For translation-specific models (M2M-
124 variants) which use specialized tokens for lan-
guage control, performance degradation is most
acute for unseen target languages. This is expected,
as if the language token for a target language is
never encountered during fine-tuning, the model’s
ability to interpret it and generate the correct lan-
guage catastrophically degrades.

Unseen Pairs as Main Vulnerability for Instruc-
tion-Following Models In contrast, instruction-
following models demonstrate greater resilience
on unseen target languages, a capability we at-
tribute to the generalizable nature of natural lan-
guage prompts (§4.2). However, these models are
not immune to forgetting and are most susceptible
when handling unseen language pairs, where both
source and target languages are absent from the
fine-tuning set. This is particularly evident with the
Llama3-8B model. We hypothesize this vulnera-
bility is compounded by the fact that these unseen
pairs are often non-English-centric. Base models
typically possess weaker zero-shot capabilities for
such translation directions due to the prevalence of
English in their pre-training data. Fine-tuning on a
different, often English-centric, set of pairs appears
to accelerate the forgetting of these already fragile,

non-English-centric translation abilities.

4.4 Comparing LoRA and Full Fine-Tuning
We observe that LoRA and full fine-tuning result in
comparable levels of catastrophic forgetting (fourth
and fifth columns of Figure 2 and Figure 3). Note
that we applied LoRA adapters to all components
of self-attention and linear projections, thereby
minimizing differences in parameter coverage as a
confounding factor. Our finding differs from that
of Biderman et al. (2024), who observed that LoRA
mitigates forgetting when adapting models to dis-
similar domains like code and math. We hypothe-
size that this difference is because our fine-tuning
task (translation) requires a smaller domain shift
for the base models, which already exhibit strong
zero-shot translation capabilities, whereas adapting
to code or math requires a larger deviation.

5 Evaluating Cross-Lingual Alignment
for Forgetting Mitigation

Having identified the architectural and training fac-
tors that impact catastrophic forgetting, we pose
a question about mitigation strategies: Do estab-
lished forgetting mitigation methods primarily re-
store lost performance, or do they also improve
cross-lingual transfer? We focus on cross-lingual
alignment methods, as they encourage similar rep-
resentations for semantically equivalent content
across languages, which could mitigate forgetting.

5.1 Evaluated Methods
We evaluate three prominent cross-lingual align-
ment techniques that encourage shared representa-
tions across languages:
• Adversarial language identification (Ganin

et al., 2016; Arivazhagan et al., 2019): includes
an adversarial language classifier that encourages
language-agnostic representations by penalizing
the model’s ability to predict the source language
from hidden states.

• Similarity-only loss (Arivazhagan et al., 2019;
Pham et al., 2019): pulls together translation
pairs without negative examples. While a naive
implementation would lead to representation col-
lapse, joint training with the translation loss mit-
igates this by maintaining discriminative power
for the primary task (Duquenne et al., 2023).

• Contrastive loss (Pan et al., 2021): employs a
contrastive objective that pulls together represen-
tations of translation pairs while pushing apart
representations of unrelated sentence pairs.
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Figure 5: Cross-lingual alignment effects on translation-
specific models on the LARGE dataset. Alignment meth-
ods bring gains in unseen language pairs, but suffer from
persistent forgetting in unseen target languages.

The losses are applied on encoder for encoder-
decoder models, and on the middle layers of
decoder-only model (Liu and Niehues, 2025).

5.2 Translation-Specific Models

We first evaluate the three alignment methods on
translation-specific models: the 0.2B and 0.6B vari-
ants of M2M-124. The results are shown in Fig-
ure 5, displaying change in translation quality for
various language categories, comparing each align-
ment method against the plain fine-tuning baseline.

Gains in Unseen Language Pairs Among the
three unseen categories, alignment methods primar-
ily improve performance on unseen language pairs.
These improvements are observed when plain fine-
tuning causes forgetting (Figure 5a) and when it
brings improvements (Figure 5b). For the 0.2B
model, these methods reverse a -7.5 COMET loss
by plain fine-tuning (60.5→53.0) into a gain of over
10 COMET. On the larger 0.6B model, the gains
are more modest but consistent, ranging from +0.8
to +1.5 COMET over the plain fine-tuning base-
line. Besides this category, alignment techniques
do not benefit unseen source or target languages,
as discussed next.

Persistent Forgetting in Unseen Target Lan-
guages The last column of Figure 5 shows that all
three approaches still result in drastic, double-digit
COMET degradation for this category. This sug-
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Figure 6: Cross-lingual alignment effects on instruction-
following models on the SMALL dataset.

gests an inherent weakness of the token-based lan-
guage control mechanism discussed in §4.3. Cross-
lingual alignment, while beneficial for transfer,
struggle to overcome this fundamental limitation.

Similar Performance Patterns Across Alignment
Methods The three evaluated alignment methods
exhibit highly similar performance patterns. While
the adversarial approach shows an advantage for
unseen target languages (Figure 5), the improve-
ment is insufficient to overcome the severe forget-
ting in this category. We argue this difference is of
limited practical relevance, as the degradation re-
sults from an inherent limitation in the token-based
language control that none of the methods fully
resolve. Moreover, the instruction-based language
control already demonstrates superior baseline per-
formance in this setting (§4.2). Therefore, given
their comparable overall effectiveness, we select a
single representative alignment method for the sub-
sequent analysis of instruction-following models.

5.3 Instruction-Following Models

We choose the contrastive approach for studying
instruction-following models due to its generality,
as the other two approaches require joint training
with task-specific loss to avoid collapse. In Fig-
ure 6, results are shown for both Llama3-8B and
Qwen2.5-7B with LoRA fine-tuning on both the
SMALL and LARGE fine-tuning data configurations.

Impact on Unseen Source and Target Languages
On unseen source languages, cross-lingual align-
ment generally leads to performance comparable
to standard LoRA fine-tuning, in line with previous
observations on task-specific models (§5.2). On un-
seen target languages, cross-lingual alignment pro-
vides a modest gain of 0.7 COMET (79.6→80.3)
for Llama, whereas it offers no significant improve-
ment for the Qwen model. These results sug-
gest that the primary advantage of cross-lingual
alignment is its ability to reverse forgetting on un-
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seen language pairs. In conditions where standard
fine-tuning already yields improvements, the ad-
ditional gains from alignment are much milder.
This forgetting pattern here, especially in the un-
seen target category, differs from those observed
on translation-specific models in §5.2. The persis-
tent strong forgetting observed previously is sub-
stantially reduced, with alignment occasionally sur-
passing the performance of standard fine-tuning.
This suggests that as models move forward in their
instruction-following capabilities, their potential
for cross-lingual transfer is also enhanced.

Why Gains Concentrate on Unseen Pairs The
most significant performance improvements are
observed on unseen pairs, where both the source
and target languages were included in the training
data but never appearing together. As discussed
in §3.2, this category is particularly challenging
because fine-tuning can cause the model to overfit
to spurious source-target associations, leading to
outputs in an incorrect target language.

We interpret these results as evidence that cross-
lingual alignment methods directly counteract this
degradation. Encourage more language-invariant
representations leads to disentangling semantic con-
tent from language-specific features. By breaking
the spurious associations learned during training,
alignment mitigates the effects of forgetting and
restores the model’s ability to generate the correct
target language. Consequently, the performance
gains are most substantial on these unseen pairs.
Considering that the number of translation direc-
tions in a multilingual system scales quadratically,
and that many languages may only have parallel
data to English, breaking the spurious correlations
that affect unseen pairs is of high practical impor-
tance for scalable translation models.

In contrast, for translation directions involving
entirely unseen languages, the central challenge is
a general lack of exposure rather than spurious cor-
relations. Therefore, the impact of this alignment
mechanism is much milder in those scenarios.

6 Conclusion

In this work, we aim to resolve ambiguities in the
literature regarding when catastrophic forgetting
occurs for multilingual fine-tuning for MT. Based
on our findings, we provide the following practical
recommendations: 1) Consider the relative scale
between model size and fine-tuning data. Larger
datasets may require larger base models to pre-

vent forgetting. 2) Prioritize models with strong
instruction-following abilities over specific archi-
tectural choices. 3) Do not rely solely on parameter-
efficient fine-tuning methods as a forgetting mitiga-
tion strategy. 4) For models exhibiting forgetting,
cross-lingual alignment is promising for unseen
pairs where both source and target languages have
been separately seen in fine-tuning. For instruction-
following models, we recommend training with in-
language instructions as an initial data-oriented ap-
proach before proceeding with cross-lingual align-
ment approaches.

Limitations

Our study has several limitations that should be
considered when interpreting the results:
• Our translation experiments focus on English-

centric language pairs, which reflects real-world
data availability. Extension to non-English pivot
scenarios would provide additional validation of
our findings’ generalizability.

• While we vary model and data scales system-
atically, computational constraints limit our ex-
ploration to larger size ranges. The dynamics
of forgetting in even larger models remain to be
investigated.

• We focus on machine translation as it provides a
well-structured testbed for studying multilingual
forgetting with clear evaluation metrics. Whether
similar patterns emerge across other multilingual
tasks remains an open question beyond the cur-
rent scope.
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A Training and Inference Details

Implementation Frameworks: The M2M-124 ex-
periments were conducted using FairSeq (Ott et al.,
2019), while Qwen and Llama experiments utilized
Hugging Face Transformers (Wolf et al., 2020).

Training For M2M-124, we used a batch size of
16,384 target tokens. For Qwen and Llama models,
we used a batch size of 128 sentences. With M2M-
124, we applied a warmup period of 2,500 steps

with a learning rate of 1e-4. Training was limited to
a maximum of 500K updates, with validation runs
every 2,000 steps. Early stopping was triggered if
validation loss does not improve for 10 consecutive
runs. With Qwen and Llama, we used a warmup
period of 200 steps with a default learning rate of
5e-4. For full fine-tuning of Qwen-7B and Llama-
8B, the learning rate was reduced to 1e-4 to due
to training instability with higher rates. Validation
was conducted every 200 steps, with early stopping
applied after 5 consecutive runs without improve-
ment. Both model families employed an inverse
square root learning rate schedule.

Decoding During inference, we used beam
search with a beam size of 5 for M2M-124 experi-
ments, while greedy search was applied for Qwen
and Llama models, following Alves et al. (2024).
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