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Abstract

Multilingual Neural Machine Translation
(MNMT) models enhance translation quality
for low-resource languages by exploiting
cross-lingual similarities during training—a
process known as knowledge transfer. This
transfer is particularly effective between lan-
guages that share lexical or structural features,
often enabled by a common orthography.
However, languages with strong phonetic
and lexical similarities but distinct writing
systems experience limited benefits, as the
absence of a shared orthography hinders
knowledge transfer. To address this limitation,
we propose an approach based on phonetic in-
formation that enhances token-level alignment
across scripts by leveraging transliterations.
We systematically evaluate several phonetic
transcription techniques and strategies for
incorporating phonetic information into NMT
models. Our results show that using a shared
encoder to process orthographic and phonetic
inputs separately consistently yields the best
performance for Khmer, Thai, and Lao in both
directions with English, and that our custom
Cognate-Aware Transliteration (CAT) method
consistently improves translation quality over
the baseline.

1 Introduction

A common approach to enhancing Neural Ma-
chine Translation (NMT) for low-resource lan-
guages involves leveraging the knowledge from
similar high-resource languages. One approach
to this is multilingual learning, in which a high-
resource language pair is combined with a low-
resource language pair within a single multilingual
model (Chen et al., 2019)

This method is effective with large models that
support dozens of languages (Aharoni et al., 2019;
Gala et al., 2023). The method also performs
well on a smaller scale when pairing related lan-
guages, such as low-resource Haitian Creole with

high-resource French (Robinson et al., 2023), Viet-
namese and French (Ngo et al., 2020), or Cata-
lan and several higher-resource Indo-European lan-
guages (Chen and Abdul-Mageed, 2021). In these
cases, the low-resource language improvements
are enabled by the token overlap with the higher-
resource languages (Aji et al., 2020; Patil et al.,
2022). This token overlap relies on the shared
scripts between the high- and low-resource lan-
guages, a benefit not all low-resource languages
have (Muller et al., 2021).

Some low-resource languages have a related
high-resource counterpart but use a different writ-
ing system. Despite strong phonetic and lexical
similarities, the lack of a shared writing system al-
most completely eliminates token overlap, poten-
tially limiting the benefits of transfer learning. One
way to address this problem is by increasing to-
ken overlap; for example, Limisiewicz et al. (2023)
achieve this by modifying the tokenizer, though
our approach differs.

In this work, we propose and evaluate a method
for increasing token overlap in NMT models
through the use of phonetic transliterations. Specif-
ically, we incorporate both phonetic information
and the original orthographic representations of
three Southeast Asian languages into a Multilin-
gual NMT (MNMT) model. Our evaluation fo-
cuses on Thai, Lao, and Khmer—closely related
languages spoken in Thailand, Laos, and Cambo-
dia, respectively. Although these languages share
many lexical and grammatical similarities, each
employs a distinct orthographic system.

We compare a baseline multilingual NMT
(MNMT) system, which uses only the ortho-
graphic representations of the languages, against
three transliteration methods. The transliteration
methods include International Phonetic Alphabet
(IPA) transcriptions, Romanization, and a cus-
tom method we call Cognate-Aware Transliter-
ation (CAT). These transcriptions are integrated
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with the original orthographies in three ways: 1)
by concatenating the orthographic and transliter-
ated representations as a single input to a vanilla
transformer, 2) by using a single encoder that pro-
cesses the two inputs separately before concatenat-
ing their embeddings for a shared decoder, and 3)
by using two separate encoders—one for the ortho-
graphic input and one for the transliterated input—
combined with a shared decoder. More details can
be found in Section 3.

Incorporating phonetic information allows
MNMT models to overcome divergent orthogra-
phies and improve knowledge transfer between
languages, boosting translation quality by up to
3.4 BLEU points and 4.4 chrF points for low-
resource Southeast Asian languages. Additional
results show that IPA and CAT generally outper-
form Romanization, with shared-encoder models
achieving the largest gains over the baseline.
Overall, we contribute:

* A framework for integrating phonetic translit-
erations into multilingual NMT.

* Cognate-Aware Transliteration (CAT), a
novel method for capturing cross-lingual
similarities.

* A comprehensive evaluation of transliteration
and integration strategies on Thai, Lao, and
Khmer.

2 Related Works

Previous research has been conducted for the
cross-lingual transfer of various NLP tasks in Chi-
nese, Japanese, Korean, and Vietnamese (CJKV).
Nguyen et al. (2023) utilize the International Pho-
netic Alphabet (IPA) to produce transcriptions in
an attempt to improve the cross-lingual transfer
for CJKV languages. They show improvements
in cross-lingual transfer for POS tagging and NER
tasks. Nguyen et al. (2024) build on that work
by creating more benchmark data for additional
tasks beyond token-level POS tagging and NER.
Romanization is also included in experiments in
addition to the phonetic transcriptions, finding the
romanization to perform better than the phonetic
transcriptions. Both of these works focus on the
alignment of the transcriptions/romanization to the
orthographic tokens. Moosa et al. (2023) further
study transliteration as a cross-lingual signal for In-
dic languages, showing that transliteration can im-

prove multilingual language modeling and down-
stream task performance across scripts.

Recent work extends these ideas to large lan-
guage models (LLMs). Purkayastha et al. (2023)
propose a large-scale romanization-based adapta-
tion approach for multilingual LLMs, demonstrat-
ing improved transfer to low-resource and non-
Latin languages. Similarly, J et al. (2024) intro-
duce RomanSetu, which leverages romanization to
improve multilingual capabilities in LLMs while
reducing training costs. Nguyen et al. (2025) ex-
plore phoneme-based prompting for LLMs, find-
ing that phonemic representations enhance multi-
linguality for non-Latin-script languages.

Romanization has been used to enhance knowl-
edge transfer in multilingual NMT models. A uni-
versal parent model trained with a Romanized vo-
cabulary was found to achieve improved knowl-
edge transfer in a many-to-one translation scenario
(Gheini and May, 2019). Amrhein and Sennrich
(2020) extended this approach to many-to-many
NMT models and found that while romanization
does not consistently improve results across all lan-
guages, it is beneficial in cases where related lan-
guages use different scripts. In such scenarios, ro-
manization facilitates knowledge transfer. Addi-
tionally, Salesky et al. (2023) address this prob-
lem by abstracting vocabularies entirely. They
utilize multilingual pixel representations, enabling
the model to generalize to new and even unseen
scripts as inputs.

While prior work has applied romanization
and phonetic representations to well-resourced
language families, our study focuses on lower-
resource Southeast Asian languages with limited
transliteration tools in the underexplored domain
of Neural Machine Translation.

3 Methodology

In Section 3.1, we describe the non-transliterated
baseline inputs and the three transliteration meth-
ods we intend to compare. In section 3.2 we de-
scribe the methods for computing token overlap
between transliterated texts. Finally, section 3.3
describes the methods for integrating the phonetic
transcriptions into NMT models.

3.1 Phonetic Transcriptions

There are multiple levels of granularity at which
phonetic transcriptions can be applied. In this
work, we explore whether different translitera-
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tion strategies affect downstream model perfor-
mance. By varying the degree of token overlap
across languages—from none at all to a highly cus-
tomized scheme designed to maximize overlap—
we aim to understand how transcription choices
influence cross-lingual modeling. The following
subsections describe the four approaches we eval-
uate, ranging from no transliteration to a cognate-
aware system.

No transliteration. As a baseline, we evaluate
the models without any transliteration, using the
original orthographic representations of the text for
all languages. We expect this to have the low-
est amount of token overlap between related lan-
guages of different scripts.

International Phonetic Alphabet (IPA). We
consider the most granular method for transliter-
ation to be converting text into IPA transcriptions.
IPA would maintain the most subtle differences be-
tween languages and dialects, which could be detri-
mental to this methodology. Despite this, we ex-
pect that the unified alphabet will still yield much
more token overlap than original orthographies.

Romanization. Romanization is the process of
converting text from another script into the Latin
alphabet. We expect that transliterating non-Latin
scripts into Latin would be result in simpler tran-
scriptions compared to IPA, but still be granular
enough to be useful in distinguishing sounds.

Cognate-Aware  Transliteration (CAT).
Regular sound correspondences are systematic
phoneme changes that occur in cognates across re-
lated languages (Brown et al., 2013). For example,
the /t¢"/ sound in Thai is systematically replaced
by the /s/ sound in Lao. Similarly, the Thai /r/
is replaced by /h/ or /1/ in Lao. Additionally,
similar substitutions occur between some German
and English words, such as the replacement of
the English /8/ sound in this” and “that” with the
/d/ sound in their German equivalents, ’dies” and
”das.”

For this method, sound correspondences would
be represented by unified characters for both lan-
guages in the transliteration, with the purpose of
representing cognates uniformly. There are cur-
rently no automatic methods for finding regular
sound correspondences and thus CAT rules would
need to be created manually for a set of languages,
though one potential method could be to automati-
cally detect cognates based on parallel data (Gron-
roos et al., 2018) and then use those to create a
CAT system. We hypothesize that a high quality

transliteration system based on the regular sound
correspondences between languages would yield
the highest overlap of tokens, compared to the pre-
vious methods.

3.2 Vocabulary Overlap

In multilingual NLP models, shared vocabularies
between languages are commonly used. Previ-
ous work has shown that larger vocabulary over-
lap leads to improved model performance (Pires
et al., 2019; Wu and Dredze, 2019). Our work
seeks to determine whether this applies to Neural
Machine Translation, and more specifically if the
amount of vocabulary overlap between the translit-
erations (not the original orthographies) correlates
with downstream translation performance.

To assess the degree of vocabulary overlap be-
tween languages, we employ two metrics. These
metrics are based on discrete token-level over-
lap comparisons using the Jaccard Index (Jaccard,
1901), defined as:

|AN B

JAB) = G0 M

Corpus-level Jaccard (CJ). This is the sim-
plest metric for quantifying vocabulary overlap.
We compute the Jaccard Index at the corpus level,
where set A contains all unique tokens in Lan-
guage A, and set B contains all unique tokens in
Language B. This metric provides a general sense
of phonetic overlap between the two languages
based on their transliterations. However, it does
not capture whether semantically equivalent sen-
tences share a high degree of lexical overlap.

Mean Pairwise Jaccard (MPJ). We define
Mean Pairwise Jaccard (MPJ) as the average Jac-
card Index computed between aligned sentence
pairs across two languages. For each sentence pair
1, let A; denote the set of unique tokens in sentence
7 in language A, and B; denote the corresponding
set of unique tokens in the translated sentence in
language B.

We define two vectors of sets:

a:(A1,...,An), b:(Bl,...,Bn)
MP]J is then computed as:
1 n
MPJ(a,b) = — A;, B; 2
I(a,b) ”,le( ) @

where J(A;, B;) is the Jaccard Index between the
token sets of sentence <.
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This metric better captures whether semanti-
cally equivalent sentences share a high degree of
lexical overlap.

3.3 Phonetic Integration

Neural Machine Translation (NMT) models aim
to generate a target sentence y = (y1,%2, .- -, Yn)
given a source sentence X = (1,Z2,...,Tm).
The model defines a conditional probability distri-
bution:

n

P(y|x) =[Pl

i=1

y Yi—1, X) (3)

Each term in the product represents the proba-
bility of generating the token y; at step ¢ given all
previously generated tokens yq,...,y;—1 and the
entire source sentence X.

To incorporate phonetic information, we intro-
duce a transcription function 7(x) that maps the
source sentence to its phonetic representation. The
conditional probability is then modified to condi-
tion each target token not only on the previously
generated tokens and the source sentence in its
original script, but also the phonetic transcription:

n

Py %) =[Pl

t=1

y Yi—1,X, T(X)) (4)

The target output of the NMT model can be con-
ditioned on a given transcription function 7(x) in
various ways. We propose the following methods
for integrating the phonetic transcriptions:

Concatenated Input. Orthographic and pho-
netic sequences are concatenated into a single in-
put.

Shared Encoder. A single encoder processes
both inputs; their embeddings are concatenated be-
fore decoding.

Dual Encoder. Separate encoders process or-
thographic and phonetic inputs, with a shared de-
coder attending to both.

4 Experiments

4.1 Data

To evaluate the various phonetic transcription and
integration methods, we study the following set
of South-East Asian languages: Khmer, Lao, and

Language Pair Uncleaned Cleaned
Thai - English 2,175,880 1,080,329
Lao - English 1,994,050 612,836
Khmer - English 1,501,301 501,955

Table 1: Approximate number of parallel segments for
each language pair. Extensive cleaning was performed
to ensure higher quality data.

Thai. Although each language uses a distinct writ-
ing system, they share significant linguistic sim-
ilarities because of common historical and geo-
graphical background, with roots in Pali and San-
skrit (Enfield, 2019).

We utilize the Paracrawl Bonus dataset which fo-
cuses on better coverage for South and East Asian
languages (Koehn, 2024). This data is noisy, so
we applied the guidelines found in the GILT Lead-
ers Forum’s Best Practices in Translation Memory
Mangement.! Details of the cleaning pipeline are
provided in Appendix A; the most impactful step
was validating that Unicode characters correspond
to the intended language. Table 1 shows the num-
ber of parallel sentence pairs for each language pair
before and after cleaning.

We use all the cleaned data for training, in both
English — X and X — English directions. For val-
idation and testing, we use the FLORES+ (NLLB
Team et al., 2024) dev and devtest datasets for each
language direction, ensuring that there was no data
contamination in the training set.

4.2 Transliteration

Although several IPA transliteration tools are avail-
able for Thai (Phatthiyaphaibun et al., 2023), and
the Uroman package (Hermjakob et al., 2018) pro-
vides coverage for all three languages under study,
we chose to develop our own transliteration soft-
ware and typology for IPA, romanization, and CAT
(Cognate-aware Transliteration), which we release
on our public Github repository.> This ensured
that our comparisons remained consistent and fair,
avoiding the inconsistencies that can arise when
relying on multiple tools created by different de-
signers. Additionally, there is currently a dis-
tinct lack of quality, openly-available translitera-
tion software for Khmer and Lao.

"https://github.com/GILT-Forum/
TM-Mgmt-Best-Practices/blob/master/
best-practices.md

Zhttps://github.com/byu-matrix-lab/
sea-transliteration-mnmt
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Transliteration Thai Sentence Khmer Sentence Token

Method Overlap

None AATINITOLTYUNTB) Sjﬁmms:]smhmm 0
fiuninendo BUNIgNASMS

IPA kP unsarmartPrianpPasa: ?nk?arcrionpPasamaw 4
thimmhazuaittjaslajajd mhazvetja:ljba:n.

Romanization khunsaamaarthrianphaasaa gnkqaacrienphaasaanau 4
thiimhaauaithyaalaiaid mhaavityaalybaan.

CAT khonsaamaartrianphaasaa onkoaacrianphaasaanao 5
teimhaauaityaalacaet mhaavityaalybaan.

Table 2: Example Thai and Khmer translations of the English sentence: You can learn languages at a univer-
sity.” Each sentence is transliterated using the International Phonetic Alphabet (IPA), romanization, and a custom
Cognate-Aware Transliteration (CAT). Each representation is tokenized using the XLM-RoBERTa (Conneau et al.,
2020) tokenizer and the overlap of tokens between the two sequences is calculated as the intersection between the

two token sets.

To unify our transliteration methods, we created
a simple transliteration script that replaces spec-
ified Unicode characters with others based on a
JSON file containing all mappings. This supports
single Unicode characters and sequences of Uni-
code characters.

For our IPA transliterations, we used the
Wikipedia script descriptions from the Khmer?,
Thai*, and Lao® script pages. For romanization,
we used the mappings described in the Uroman
(Hermjakob et al., 2018) source code.’

To create a transliteration scheme that heavily
encourages token overlap between languages, we
created CAT for the three South-East Asian lan-
guages. This was designed by categorizing each
consonant and vowel character in each of the lan-
guages according to both orthographic similarity
and phonetic similarity. More details on the cre-
ation of CAT for Khmer, Lao, and Thai are con-
tained in Appendix B.

To showcase the differences for each of these
methods, we provide an example in Table 2. In this
example, we take a Thai and a Khmer translation
of the sentence ”You can learn languages at a uni-
versity.” and transliterate using the four methods:
None, IPA, Romanization, and CAT. These translit-
erations are tokenized using the XLM-RoBERTA
(Conneau et al., 2020) tokenizer to demonstrate to-
ken overlap differences.

*https://en.wikipedia.org/wiki/Khmer_script

*https://en.wikipedia.org/wiki/Thai_script

https://en.wikipedia.org/wiki/Lao_ script

®https://github.com/isi-nlp/uroman

4.3 Training Implementation

For our experiments, we compare a baseline Trans-
former (Vaswani et al., 2017) model to each combi-
nation of transliteration and integration method, re-
sulting in nine model variants. The transliteration
methods are (1) IPA transcriptions, (2) Romaniza-
tion, and (3) our proposed Cognate-Aware Translit-
eration (CAT). Each is integrated into the model
using one of three approaches: (a) concatenating
orthographic and transliterated inputs, (b) process-
ing them separately within a shared encoder before
concatenation at the embedding level, or (c) using
two separate encoders combined with a shared de-
coder.

All experiments are based on the Transformer-
base architecture. We use the BARTForCondition-
alGeneration implementation (Lewis et al., 2019),
modified to support both the shared-encoder and
dual-encoder configurations.

Each model contains 6 encoder layers and 6 de-
coder layers, with the dual-encoder setup allocat-
ing 6 layers to each encoder. The feed-forward net-
work has a dimensionality of 2048, each encoder
and decoder uses 8 attention heads, and the hidden
size (dmodel) 18 512. We employ ReLU activations
and apply dropout with a rate of 0.1.

Models are trained to convergence using 8 A100
GPUs, with an effective batch size of 8,192. Vali-
dation is performed every 4,000 steps, and conver-
gence is determined using the validation set.

For tokenization, we train Byte-Level BPE to-
kenizers using the HuggingFace Tokenizers li-
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Orth. IPA  Rom. CAT

Thalao C 0024 02300 0198 0719
MPJ  0.029 0.113F 0093  0.394

CJ] 0007 0055 0.107" 0.694
Tha-Khm ol 0011 00620 0060  0.202
Khmlao CJ 0007 0042 0080" 0.637
MPJ 0.011 0.0657 0.064 0.198

Table 3: Corpus-level Jaccard (CJ) and Mean Pairwise
Jaccard (MPJ) scores for Thai (Tha), Lao (Lao), and
Khmer (Khm) across four transliteration methods: na-
tive orthography (Orth.), IPA, Romanization (Rom.),
and CAT. Bold = highest overlap; T = second highest.

brary.” We build separate multilingual tokenizers
for each representation—orthography-only, IPA,
Romanization, and CAT—each with a vocabu-
lary size of 32K, trained on uniformly sampled
sentences from the training set. For the shared-
encoder and concatenation models, we train joint
tokenizers that include both orthographic and
transliterated text, using a larger vocabulary size
of 56K, also drawn from uniformly sampled train-
ing data.

5 Results and Discussion

5.1 Vocabulary Overlap

To determine vocabulary overlap for each translit-
eration method, we first created the “complete”
(Freitag and Firat, 2020) aligned data so we
can compare sentences across non-english centric
pairs, using English as a pivot to find the X — Y
translation directions. This resulted in 19,525 sen-
tences translated into Khmer, Lao, and Thai.

We calculated Corpus-level Jaccard (CJ) and
Mean Pairwise Jaccard (MPJ) for the following
language pairs across each transliteration method:
Thai <> Lao, Thai +» Khmer, and Khmer <> Lao.
Each language was transliterated into IPA, Roman-
ization, and CAT and we report overlap metrics in
Table 3, with the original orthography overlap cal-
culations included as a baseline reference. Overlap
is determined using the tokenizers trained for each
transliteration method, as described in Section 4.3.

As expected, the overlap between tokens when
using the native orthographies is close to 0, indi-
cating almost zero overlap. The little overlap that
is included is likely to be punctuation and numer-
als common to all three languages. Meanwhile, we

"https://github.com /huggingface/tokenizers

see that CAT achieves the highest amount of over-
lap both globally and at the sentence-level. For
the more linguistically related Thai—Lao pair, IPA
yields greater token overlap than Romanization,
whereas the Khmer—Thai and Khmer—Lao pairs
show lower values and mixed outcomes between
IPA and Romanization.

5.2 Multilingual Neural Machine Translation
(MNMT)

We report chrF++ (Popovi¢, 2017) and BLEU (Pa-
pineni et al., 2002) scores for all language direc-
tions calculated using SacreBLEU (Post, 2018).
For language directions with English as the target,
we utilize the default tokenization for BLEU. For
language directions with English as the source, we
utilize the Flores-200 tokenizer to calculate an sp-
BLEU score instead, as the South-East Asian lan-
guages do not use spaces as word delimiters.

A summary of all chrF++ and BLEU/spBLEU
scores are shown in Table 4. Overall, all translit-
eration methods and integration methods generally
improve over the baseline, as indicated by a higher
score with statistical significance. The gains ap-
pear to be larger when translating into English, re-
flecting the baseline’s struggle to encode and com-
prehend the South-East Asian languages. Using a
shared encoder with IPA transliterations achieves
the highest scores in all but 1 direction, all of which
are statistically significant compared to the base-
line. The one exception is that CAT with dual en-
coders achieves the highest scores for the English
— Lao pair. These results suggest that integrat-
ing any form of transliteration not only helps boost
performance for lower-resource languages such as
Khmer and Lao, but can also provide measurable
gains for higher-resource languages like Thai.

To isolate the effects of the integration methods,
we average the results over the three translitera-
tion methods (romanization, IPA, and CAT) and
report the corresponding chrF++ scores compared
to the baseline in Table 5. We focus on chrF++
scores because it provides a more reliable metric
for these South-East Asian languages, which do
not use spaces to delimit word boundaries. Across
all language directions, using a shared encoder
to integrate transliterations consistently improves
translation performance, with gains ranging from
+0.4 to +3.4 chrF++ points over the baseline. In
contrast, the Concat and Dual approaches show
smaller improvements or even declines when trans-
lating from English to , with changes ranging from
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System Khm — Eng Lao —Eng Tha— Eng Eng—Khm Eng— Lao Eng— Tha
Baseline 37.8/9.3 39.3/11.4 39.4/11.3 40.4/18.1 44.3/21.0 42.6/25.0
CAT Concat  40.0%¥/11.7*  42.3%/14.0* 41.6%/12.4*¥ 40.7*/18.4 44.7%/21.5%  43.2%/25.7*
CAT Shared  40.5%/11.5%  41.5%/12.8*  40.9%/11.9*  40.7/18.2 45.0%/21.6% 42.8/25.4
CAT Dual 39.9%/10.5%  42.6%/14.2* 42.2%/12.8% 41.4%/19.0%  45.5%/22.4% 43.6*%/26.4*
IPA Concat 39.2%/10.7*  41.6%/13.7*%  41.1%/11.4 39.0*/16.7%  43.2*%/19.9%  41.0%/23.4*
IPA Shared 42.2%/11.6*  43.4%/14.8%  43.2*%/13.5%  41.5%/19.3*  45.4%/22.2*%  43.9%/26.8*
IPA Dual 39.9%/10.1*%  41.5%/13.4*%  40.7%*/12.0%  38.8%/16.1*  42.9%/19.5%  40.5%/22.6*
Rom. Concat  38.9%/10.6%  41.9%/13.7* 41.1*/12.3* 40.3/17.9 44.2/21.0 42.3/25.0
Rom. Shared  40.8*/11.0%*  41.7%/13.3*  40.3*/11.6 40.1*/17.9 44.3/21.2 42.3/24.9
Rom. Dual 39.2%/10.4*  41.2%/13.9*  40.0%/11.5 39.8%/17.2%  43.3%/20.1* 41.4%/23.8*

Table 4: chrF++/BLEU scores for each transliteration method and architecture across all language directions.
Scores are reported as chrF++/BLEU. Bold values indicate the best score within a language direction. An as-
terisk (*) marks scores that are significantly different from the Baseline (p < 0.05).

-0.8 to +2.6. These results highlight that the shared
encoder is the most robust method for integrating
transliterations for this dataset.

Focusing on the transliteration methods them-
selves, we average the results over the integration
methods (concatenation, shared encoder, dual en-
coder) and report the chrF++ scores in Table 6,
again comparing the averaged scores to the base-
line. Unlike the integration methods, there is
no single transliteration approach that consistently
achieves the largest gains across all directions. IPA
performs best on average when translating into En-
glish, with improvements ranging from +2.3 to
+2.6 chrF++, but it underperforms when translat-
ing from English, with declines between -0.8 and
-0.5. However, CAT performs best on average for
English — X directions, as well as providing more
consistent improvements across all language direc-
tions, with score increases ranging from +0.5 to
+2.8. Romanization generally improves over the
baseline but tends to achieve smaller gains than
IPA or CAT.

According to these experiments, there is not a
clear transliteration method which performs bet-
ter than all the others. We see that both IPA and
CAT enhance these MNMT models more than ro-
manization, but not by much. Despite the much
larger token overlap when using CAT, it does not
do much better than the [PA performance. Though
CAT results in much higher token overlap across
languages, its performance is not substantially bet-
ter than IPA. We hypothesize that this may be due
to CAT’s tendency to overgeneralize: it creates
shared tokens between languages that do not neces-
sarily share semantics, which can introduce ambi-
guity. Conversely, IPA enforces stricter token shar-
ing, resulting in more precise and less ambiguous
representations that facilitate effective knowledge

transfer.

Both IPA and CAT provide larger improvements
to the MNMT models compared to romanization,
though the differences are relatively modest. Over-
all, all three transliteration methods contribute to
improved translation, particularly in low-resource
settings, despite the apparent lack of correlation to
the amount of vocabulary overlap as described in
Section 5.1.

Future work should investigate whether the
shared tokens for each transliteration method ac-
tually preserve semantic equivalence across lan-
guages, or if their overlap introduces misleading
or ambiguous representations.

6 Conclusion

Low-resource languages with unique writing sys-
tems pose challenges for traditional Neural Ma-
chine Translation (NMT) knowledge transfer tech-
niques. In this work, we proposed methods
for integrating phonetic transliterations to address
the lack of shared orthographies between related
high- and low-resource languages in Multilingual
NMT (MNMT) systems. Specifically, we com-
pared three transliteration schemes—International
Phonetic Alphabet (IPA), romanization, and our
custom Cognate-Aware Transliterations (CAT)—
together with three integration methods in a Trans-
former model: concatenating inputs, using a
shared encoder, and using dual encoders. We eval-
uated this methodology for Khmer, Lao, and Thai
in both directions with English, leveraging knowl-
edge transfer from the higher-resource Thai to the
lower-resource Lao and Khmer.

Overall, integrating any transliteration method
via any integration strategy improves translation
performance in the X — English direction, while
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System Khm — Eng Lao —Eng Tha— Eng Eng— Khm Eng—Lao Eng— Tha
Baseline 37.8 (+0.0) 39.3(+0.0)  39.4(+0.0)  40.4 (+0.0) 443 (+0.0)  42.6 (+0.0)
Concat Average 39.4 (+1.6) 419 (+2.6) 41.3(+1.9) 40.0(-0.4) 44.0 (-0.3)  42.2(-0.4)
Shared Average  41.2 (+3.4) 42.2 (+2.9) 41.5(+2.1) 40.8 (+0.4) 44.9 (+0.6)  43.0 (+0.4)
Dual Average 39.7 (+1.9) 41.8 (+2.5) 41.0(+1.6) 40.0(-0.4) 439 (-0.4)  41.8(-0.8)

Table 5: chrF++ scores for the three phonetic integration methods, averaged over all transliteration methods (Ro-
manization, IPA, CAT) compared to the Baseline. Bold values indicate the best score within a language direction.
Values in parentheses indicate the change relative to the Baseline.

System Khm — Eng Lao — Eng Tha — Eng Eng— Khm Eng— Lao Eng— Tha
Baseline 37.8 (+0.0) 39.3 (+0.0) 39.4 (+0.0)  40.4 (+0.0) 443 (+0.0)  42.6 (+0.0)
CAT Average  40.1 (+2.3) 42.1 (+2.8) 41.6 (+2.2)  40.9 (+0.5) 45.1 (+0.8)  43.2 (+0.6)
IPA Average 40.4 (+2.6) 42.2 (+2.9) 41.7(+2.3) 39.8(-0.6) 43.8(-0.5)  41.8(-0.8)
Rom. Average 39.6 (+1.8) 41.6 (+2.3)  40.5(+1.1)  40.1(-0.3) 43.9(-0.4)  42.0 (-0.6)

Table 6: chrF++ scores for the three transliteration methods, averaged over all integration methods (concatenated
input, shared encoder, dual encoder) compared to the Baseline. Bold values indicate the best score within a language
direction. Values in parentheses indicate the change relative to the Baseline.

translations from English — X show less con-
sistent gains. Among all combinations, using a
shared encoder with IPA or CAT transliterations
achieves the largest improvements. Notably, the
Khmer — English direction—our lowest-resource
scenario—achieves the highest chrF++ improve-
ment of +4.4 points, providing strong evidence of
effective knowledge transfer between these South-
East Asian languages.

This approach can be extended to other lan-
guage groups that share linguistic features but not
orthography, such as Maltese (Latin script) and
Tunisian Arabic (Arabic script), with the poten-
tial to enhance translation for lower-resource lan-
guages. Future work could also explore addi-
tional transliteration and integration methods, as
well as leverage larger datasets such as OPUS for
South-East Asian languages, which would likely
further improve performance above the baseline.
Beyond multilingual learning for knowledge trans-
fer, additional work could explore whether inte-
grating transliterations benefits parent-child fine-
tuning (Zoph et al., 2016; Neubig and Hu, 2018)
in which a parent model is first trained on a high-
resource language pair and then fine-tuned on the
low-resource language pair.

Limitations

This study focuses on a single group of related lan-
guages and may not generalize to other language
families containing different orthographies. All
models were trained under fixed architectural con-
ditions, and results could differ when scaling mod-

els up or down. We trained using Paracrawl Bonus
data only, without incorporating additional OPUS
data, in order to maintain smaller models. While
this allows for controlled and informative experi-
ments, we acknowledge that including all available
data would likely improve overall translation met-
rics.

We note that creating a Cognate-Aware Translit-
eration (CAT) system requires expertise in the lan-
guages involved. Unlike IPA or romanization
schemes, which are more widely available and eas-
ier to apply across languages, there is currently no
automated way to generate a CAT system for a
given set of languages.
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A Cleaning Steps

We apply the following cleaning steps in our data
cleaning pipeline:

1. Remove pairs containing empty source or tar-
get segments.

2. Remove pairs when the source segment ex-
actly or nearly matches the target segment.

3. Remove duplicate source-target pairs.

4. Remove pairs with segments containing
mostly non-alphabetic characters.

5. Remove pairs with segments containing ab-
normally long sequences of characters with-
out spaces, including segments that are only
URLs.

6. Remove pairs containing segments with un-
balanced brackets.

7. Remove pairs containing fewer than 3 words
in the English source segment.

8. Remove pairs with segments containing a
higher number of characters than 5 standard
deviations above the mean for that language
(sentences that are too long).

9. Remove pairs in which the ratio of the lengths
of the source and target segments exceeds a
certain cutoff.

10. Normalize escaped Unicode characters.

11. Validate and normalize character encodings
for each language.

12. Normalize whitespace

13. Shorten sequences of excessively repeated
punctuation.

14. Normalize quotation marks.
15. Normalize HTML entities.

16. Remove all markup tags.

B Khmer, Lao, and Thai Cognate-Aware
Transliteration (CAT)

Creation of a Cognate Aware Transliteration (CAT)
system requires familiarity with the languages it
is designed to incorporate. The ideal CAT system
uses examples of known cognates to detect com-
mon, predictable mappings between phonemes
across multiple languages, including both vowels

and consonants. We did this manually, but find-
ing these mappings automatically is likely possible
and a topic for future research.

For Thai, Lao, and Khmer, we created these
mappings based on cognates, borrowed words,
and place names that could be found in both lan-
guages. Specifically, we constructed these map-
pings through a comparative dictionary-based ap-
proach. Each language was examined letter by
letter, and for each grapheme we identified po-
tential correspondences by consulting cognates,
loanwords, and place names attested across the
three languages. When a candidate word exhib-
ited both phonological similarity and a plausible
semantic match across the languages, we treated
it as evidence of a sound correspondence for that
grapheme. This procedure relied on the combined
expertise of the researchers, who brought working
knowledge of the relevant languages, ensuring that
proposed correspondences were grounded in lin-
guistic judgment. We also considered similarities
in orthography when creating mappings, such as
when two graphemes exhibited a large degree of
visual similarity, such as when two graphemes had
closely aligned visual features—Ilength, curvature,
and positioning—making them appear almost iden-
tical (e.g., Khmer vowel 1 and Thai vowel 1).

For this example, we designed the system to
maximize overlap and cognates, allowing for cog-
nates with different romanization and pronuncia-
tions to be successfully identified. However, this
may have led to the creation of false cognates,
negating some of the benefits of transfer learning.
In addition, because Khmer is not tonal, we chose
not to map the tones between Thai and Lao for
commonality. Mapping these may improve trans-
fer learning between Thai and Lao at the cost of
transfer learning between these two languages and
Khmer.

To reduce complexity, we modeled cognate con-
sonant phonemes based on beginning consonants
only, but mapping final consonants would lead to
a more complete CAT system. We chose not to
do this because of the complexity of determining
whether a consonant is beginning or final in Thai
and Khmer.
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