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Abstract

This work investigates the impact of multi-task,
multi-lingual, and multi-source learning ap-
proaches on the robustness and performance
of pretrained language models. To enhance
this analysis, we introduce Subsets of Interest
(SOI), a novel categorization framework that
identifies six distinct learning behavior patterns
during training, including forgettable examples,
unlearned examples, and always correct exam-
ples. Through SOI transition heatmaps and
dataset cartography visualization, we analyze
how examples shift between these categories
when transitioning from single-setting to multi-
setting1 configurations. We perform compre-
hensive experiments across three parallel com-
parisons: multi-task vs. single-task learning us-
ing English tasks (entailment, paraphrase, senti-
ment), multi-source vs. single-source learning
using sentiment analysis datasets, and multi-
lingual vs. single-lingual learning using intent
classification in French, English, and Persian.
Our results demonstrate that multi-source learn-
ing consistently improves out-of-distribution
performance by up to 7%, while multi-task
learning shows mixed results with notable gains
in similar task combinations. We further intro-
duce a two-stage fine-tuning approach where
the second stage leverages SOI-based subset
selection to achieve additional performance im-
provements. These findings provide new in-
sights into training dynamics and offer prac-
tical approaches for optimizing multi-setting
language model performance.

1 Introduction

Deep learning has revolutionized natural language
processing (NLP), with Transformer-based mod-
els (Vaswani et al., 2017) achieving remarkable

* Equal Contribution
1For brevity, we use "multi-setting" to refer to multi-task,

multi-source, or multi-lingual learning, and "single-setting" to
refer to single-task, single-source, or single-lingual learning,
respectively.

success across various tasks. These architectures
primarily fall into two categories: decoder-only
models, such as GPT-2 (Radford et al., 2019),
and encoder-only models, including BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019).
Recently, decoder-only large language models
(LLMs) have gained prominence, notably follow-
ing the success of ChatGPT. While newer open-
source LLMs, such as the Llama3 family (Dubey
et al., 2024), facilitate human-friendly interactions
across diverse tasks, they do not consistently out-
perform traditional models (Abaskohi* et al., 2024;
Ghaffarzadeh-Esfahani et al., 2024). Furthermore,
current benchmarks for evaluating LLMs empha-
size general capabilities such as comprehension
and reasoning, frequently neglecting specialized
NLP tasks like text classification and named en-
tity recognition. Recent research by Yu et al.
(2023) indicates that smaller, fine-tuned encoder-
only pretrained language models (PLMs), such
as RoBERTa, can match or exceed the perfor-
mance of larger LLMs across various specialized
datasets. Although closed-source LLMs like GPT-
4o (Hurst et al., 2024) can occasionally surpass
PLMs with extensive prompt engineering, smaller
open-source models offer substantial advantages re-
garding speed, cost-effectiveness, and transparency.
Therefore, systematic analyses of PLM training dy-
namics remain crucial, even as LLMs increasingly
dominate NLP research.

Motivated by this, we systematically investi-
gate the impact of multi-task, multi-lingual, and
multi-source learning approaches on the robustness
and performance of PLMs. Multi-task learning,
which leverages shared knowledge across related
tasks, has shown considerable promise for enhanc-
ing model generalization and robustness, particu-
larly under constraints of limited data and computa-
tional resources. Concurrently, multi-source learn-
ing exploits diverse data origins to provide models
with a broader understanding of target problems,
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while multi-lingual learning enables the acquisition
of language-agnostic knowledge, significantly im-
proving cross-lingual transfer and performance on
low-resource languages.

Despite these advances, a key challenge in train-
ing PLMs is handling Forgettable Examples, sam-
ples that are difficult or out-of-scope, leading mod-
els to frequently oscillate between correct and
incorrect predictions during training. Although
fine-tuning on these challenging examples has
proven beneficial in enhancing model robustness
(Yaghoobzadeh et al., 2021), systematic analysis
of their underlying learning patterns is currently
lacking.

To address this gap, we introduce Subsets of
Interest (SOI), a novel framework for categoriz-
ing dataset samples based on distinct learning be-
haviors observed during training. Specifically,
SOI consists of six categories: Unlearned Exam-
ples (UNE), Always Correct Examples (ACE), 1-
time Forgettable Examples (1t-FRGE), At least
2-times Forgettable Examples (≥ 2t-FRGE),
Early-Learned Examples (ELE), and Late-Learned
Examples (LLE). Collectively, these subsets
enable detailed insights into the dynamics of
model learning behaviors under single- or multi-
setting configurations, spanning different tasks, lan-
guages, and sources. Furthermore, we investigate
the potential of SOI subsets to enhance out-of-
distribution performance through second-stage fine-
tuning strategies based on various SOI combina-
tions.

The key contributions of this work are as follows:
First, we introduce the SOI framework, system-
atically classifying training samples into distinct
learning behavior subsets (Section 4.1). Second,
we visualize model learning dynamics via dataset
cartography and SOI transition heatmaps, offering
intuitive insights into sample-level training behav-
iors (Sections 4.2 and 4.3). Third, we provide a
comprehensive comparative analysis of multi-task,
multi-lingual, and multi-source learning methods,
evaluating their impacts on both in-distribution (ID)
and out-of-distribution (OOD) performances (Sub-
section 5.1). Lastly, we extend our OOD evalua-
tions through second-stage fine-tuning on strategi-
cally chosen subsets derived from SOI analyses,
demonstrating additional performance gains (Sub-
section 5.2).2

2Our code is publicly available at this GitHub repository.
It builds upon the implementation provided here, adapting
Hugging Face’s transformers library for multi-setting training.

2 Related Work

In recent years, extensive research has focused on
developing multilingual models as well as models
capable of performing multiple NLP tasks simulta-
neously. Multi-task learning leverages shared rep-
resentations to jointly optimize model performance
across various related tasks, enhancing model gen-
eralization, robustness, and computational effi-
ciency. Early foundational work by Collobert and
Weston (2008) introduced multi-task learning con-
cepts to NLP, illustrating that training multiple
tasks concurrently could lead to better feature gen-
eralization and more robust representations. Sub-
sequent studies have widely adopted transfer learn-
ing techniques (Howard and Ruder, 2018), demon-
strating how pretrained language model knowledge
can significantly enhance performance on various
downstream NLP tasks. Multi-lingual learning, an-
other promising direction, enables models to gain
language-agnostic knowledge to understand, gen-
erate, and generalize textual information across
multiple languages. Conneau et al. (2020) intro-
duced XLM-R, a robust cross-lingual PLM trained
on diverse multilingual data, significantly improv-
ing performance on low-resource languages and
facilitating effective cross-lingual transfer.

Understanding model behavior at the individ-
ual example level represents another critical aspect
in training language models. The phenomenon
of example forgetting, instances where models os-
cillate between correct and incorrect predictions
during training, has been thoroughly investigated
by Yaghoobzadeh et al. (2021). Their work demon-
strated that fine-tuning models specifically on these
challenging, forgettable examples can significantly
enhance model robustness and generalization on
task-specific OOD datasets. Complementary to this
perspective, Swayamdipta et al. (2020) proposed
dataset cartography, a visualization technique char-
acterizing training samples based on prediction
confidence and variability metrics. Their method
categorizes data into easy-to-learn, hard-to-learn,
and ambiguous regions, providing intuitive insights
into model behavior throughout training. They con-
clude that training the model from scratch on the
ambiguous region achieves the best ID and OOD
performances compared to other scenario cases,
including training on hard-to-learn and forgetting
examples.

Inspired by these foundational works, our study
introduces the Subsets of Interest (SOI) framework,

323

https://github.com/vassef/Analyzing-Forgettable-Examples-of-Language-Models-in-Multi-Task-Multi-Lingual-and-Multi-Source-Mod
https://medium.com/@shahrukhx01/multi-task-learning-with-transformers-part-1-multi-prediction-heads-b7001cf014bf


extending beyond previous categorizations with a
finer-grained, analytical perspective. Instead of
limiting analysis to three regions, SOI systemati-
cally classifies training examples into six distinct
learning subsets based on their dynamic behaviors
during training. Our comprehensive categorization
enriches existing analytical tools, offering nuanced
insights into model OOD generalization capability
across various multi-task, multi-lingual, and multi-
source training scenarios.

3 Experiments Setup

In this section we introduce three parallel exper-
imental comparisons: multi-task vs. single-task
learning, multi-source vs. single-source learning,
and multi-lingual vs. single-lingual learning. For
each comparison, we conducted similar experi-
ments to evaluate both performance and generaliz-
ability. Our experimental framework encompasses
various tasks, languages, datasets, and a unified
model architecture detailed below.

3.1 Tasks, Languages and Sources
Our experimental framework spans across multiple
dimensions of learning. In the multi-task learn-
ing, we utilize three English tasks: entailment (E),
paraphrase (P), and sentiment (S). Entailment and
paraphrase tasks require binary decisions on seman-
tic relationships between two textual inputs, while
sentiment analysis processes single inputs, allow-
ing us to explore combinations of similar tasks (P
& E) versus dissimilar ones (S & P, S & E). For the
multi-source learning, we focus on sentiment analy-
sis across different data distributions using English
datasets, isolating the effects of data source varia-
tion from task variation. In our multi-lingual ex-
periments, we conduct intent classification across
French (Fr), English (En), and Persian (Fa). This
language selection enables us to examine the im-
pact of script and linguistic similarities, as English
and French share common features while Persian
differs significantly in both script and structure.

3.2 Datasets
We employed several benchmark datasets tailored
to different learning settings. For each setting,
such as multi-task learning, we construct three
pairs of datasets, where each pair includes one
in-distribution (ID) and one out-of-distribution
(OOD)dataset. Each ID dataset is divided into
training, validation, and test splits, whereas the
corresponding OOD dataset is treated as a single

evaluation set without internal splits. In the fol-
lowing subsections, we detail the specific datasets
chosen for each setting.

3.2.1 Multi-task Learning
For entailment, SciTail (Khot et al., 2018) serves
as the ID dataset, comprising 23,097 training ex-
amples. The OOD counterpart is the RTE training
set from the GLUE benchmark (Wang et al., 2018),
comprising 2,490 samples. In the paraphrase de-
tection task, we use the Microsoft Research Para-
phrase Corpus (MRPC) (Dolan and Brockett, 2005)
as the ID dataset, which includes 3,668 training in-
stances. The OOD dataset in this case is a reduced
version of the Quora Question Pairs (QQP) training
set from the GLUE (Wang et al., 2018), subsam-
pled to 4,000 examples.

For sentiment classification, we utilize a modi-
fied version of the Twitter US Airline Sentiment
dataset (Rane and Kumar, 2018), containing 8,078
samples after removing "neutral" labels to enforce
binary sentiment polarity. For the correspond-
ing OOD dataset, we adopt a reduced version of
the Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013) dataset, limited to 4,000 examples to
maintain balance across tasks.

3.2.2 Multi-source Learning
For multi-source experiments, we use three sen-
timent analysis datasets as our ID datasets, each
containing 50,000 examples sampled from the full
dataset with an 80-10-10 train-eval-test split, result-
ing in 40,000 training instances per dataset. The
IMDB movie reviews dataset (Rudra and Gopalakr-
ishnan, 2023) serves as our first source, the Yelp Re-
views dataset (Hemalatha and Ramathmika, 2019)
comprises business reviews with binary sentiment
labels, and Sentiment140 (Habib and Sultani, 2021)
provides sentiment-labeled Twitter content for so-
cial media analysis.

As the OOD dataset, we use the Stanford Senti-
ment Treebank (SST-2) (Socher et al., 2013), com-
prising 5,000 examples. Since all sources share the
same task, we use the same OOD dataset for all
three sources.

3.2.3 Multi-lingual learning
For our multilingual experiments, we adopted three
intent classification datasets as the ID datasets:
Persian subset of MASSIVE (FitzGerald et al.,
2023) (11,514 training examples), Small subset of
CLINC150 (Larson et al., 2019) for English (7,600
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Figure 1: Unified Architecture for Our Multi-Setting
Learning Experiments.

training samples), and LORIA subset of MIAM
(Colombo et al., 2021) for French (8,465 training
samples).

Since the number of intent classes can differ
across datasets in the intent classification task, we
translated each ID dataset into Burmese, a very
low-resource language, and treated these translated
versions as the OOD datasets. For translation, we
employed the No Language Left Behind machine
translation model3 (NLLB Team et al., 2022).

3.3 Architecture
Our experiments employ a unified architecture
(see Figure 1) that leverages shared knowledge
through a common encoder. For multi-task and
multi-source experiments, we use BERT-base4 (De-
vlin et al., 2019), while multi-lingual experiments
utilize the multilingual XLM-R5 (Conneau et al.,
2020) model. Each setting maintains specialized
classification heads (task-specific, source-specific,
or language-specific) attached to the shared en-
coder. For multi-setting experiments, train-
ing occurs with pairs of tasks/sources/languages:
sentiment-entailment (SE), sentiment-paraphrase
(SP), and paraphrase-entailment (PE) for tasks;
IMDB-Yelp (IY), Sentiment140-Yelp (SY), and
IMDB-Sentiment140 (IS) for sources; and finally,
English-Persian (En-Fa), French-English (Fr-En),
and French-Persian (Fr-Fa) for languages.

4 Subsets of Interest

In this section, we present a comprehensive frame-
work for analyzing deep learning models through
the lens of training dynamics. We introduce the
concept of Subsets of Interest (SOI), a novel cate-
gorization system that partitions training examples
based on their unique learning patterns observed

3We used “nllb-200-3.3B” model.
4We used “bert-base-uncased” model.
5We used “xlm-roberta-base” model.

during the training process. Our analysis unfolds
in three complementary parts: first, we formally
define the six distinct SOI categories and their char-
acteristics; second, we employ dataset cartogra-
phy to visualize how these subsets manifest in the
confidence-variability space; and third, we intro-
duce transition heatmaps to track how examples
migrate between SOI categories under different
training configurations. Together, these compo-
nents provide a systematic approach to understand-
ing and analyzing the complex dynamics of neural
network training.

4.1 SOI Framework and Definitions
In this section, we introduce a novel approach to
analyzing deep learning models by extracting spe-
cific samples from the training set, based on unique
learning patterns observed during training. Based
on these patterns, the training set spans six distinct
subsets, which we call Subsets of Interest (SOI):
1. Unlearned Examples (UNE), 2. Always Correct
Examples (ACE), 3. 1-time Forgettable Examples
(1t-FRGE), 4. At least 2-times Forgettable Ex-
amples (≥2t-FRGE), 5. Early-Learned Exam-
ples (ELE), and 6. Late-Learned Examples (LLE).

UNE refers to samples that show no sign of
learning from a certain point onward in the training
process. A representative prediction pattern over
ten epochs of fine-tuning, assuming the true label is
1, might be [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]. ACE denotes
samples that the model finds particularly easy to
learn, exhibiting consistently correct predictions
across all epochs, such as [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
1t-FRGE and ≥2t-FRGE represent sam-

ples that undergo forgetting events, inspired by
Toneva et al.’s (2019) work on forgetting dynam-
ics during training. In that framework, our UNE
is interpreted as a subset of forgettable examples
exhibiting an infinite number of forgetting events,
denoted by ∞t-FRGE. A more recent study by
Yaghoobzadeh et al. (2021) defined forgettable ex-
amples as those that experience at least one forget-
ting event (i.e., ≥1t-FRGE), or are never learned
at all (i.e., UNE).

In our framework, a forgettable example is de-
fined as one that exhibits at least one forgetting
and one recollecting event. A forgetting event
occurs when a previously correct prediction be-
comes incorrect in a subsequent epoch, while a
recollecting event is the reverse, an incorrect pre-
diction followed by a correct one. This distinc-
tion ensures that FRGE includes dynamic behav-
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Figure 2: Dataset cartography Map for Single-Lingual
Learning in Persian (Fa), showing confidence (average
highest prediction probabilities) vs. variability (standard
deviation across training epochs).

ior, separating it from UNE, which lacks recollec-
tion. For example, a prediction pattern such as
[0, 1, 0, 0, 0, 1, 0, 1, 0, 0] contains three forgetting
and two recollecting events, and would be catego-
rized as ≥2t-FRGE.

ELE and LLE refer to samples that initially
elude correct classification but eventually reach
a point of consistent accuracy. If the first correct
prediction occurs on or before epoch 5, the sample
is considered ELE; otherwise, it is categorized as
LLE, reflecting late-stage learning. For instance,
prediction patterns such as [0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
and [0, 0, 0, 0, 0, 0, 0, 0, 1, 1] represent ELE and
LLE, respectively. All training was conducted over
10 epochs, meaning the ELE/LLE classification is
influenced by this hyperparameter. However, the
broader notion of early- vs. late-stage learning
generalizes across training durations.

4.2 SOI Visualization via Dataset
Cartography

To better illustrate our definition of SOI, we use
dataset cartography analysis, following the ap-
proach of Swayamdipta et al.’s (2020), to visualize
how the model learns over time. This method maps
training examples onto a two-dimensional space
based on two metrics: confidence (the average of
the model’s highest prediction probabilities) and
variability (the standard deviation of these predic-
tions across training epochs). This mapping helps
us understand how the model behaves with differ-
ent examples during training.

With cartography we divide the examples into
three main regions: (1) easy-to-learn, with high
confidence and low variability; (2) hard-to-learn,
with low confidence and low variability; and (3)
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Figure 3: SOI Transition Heatmap: Tracking Training
Example Migrations from Single-task (E) to Multi-task
(SE). Each cell Hi,j shows the number of examples tran-
sitioning from SOI category i in single-task to category
j in multi-task learning, with the final row and column
representing total sums.

ambiguous, with high variability.
Figure 2 shows the cartography plot for single-

lingual learning in Persian. In this plot, the UNE
category mainly appears in the hard-to-learn re-
gion, while ACE is mostly found in the easy-to-
learn region. The LLE class spreads across the
hard-to-learn and ambiguous regions, showing a
wide range of variability but generally low con-
fidence. On the other hand, ELE stretches from
the ambiguous to the easy-to-learn region, suggest-
ing higher confidence even when variability dif-
fers. Both 1t-FRGE and ≥2t-FRGE appear in
all three regions, with more examples found in the
ambiguous area, which suggests less stable learn-
ing behavior. A full version of our cartography
visualization is provided in Appendix B.

4.3 SOI Transitions through Heatmaps

To analyze how training dynamics evolve under
different configurations, we introduce SOI transi-
tion heatmaps, which capture how examples shift
between learning behavior categories when mov-
ing from a single-setting (e.g., single-task) to a
multi-setting configuration (e.g., multi-task).

Each transition is represented as a one-to-one
mapping from a subset of training examples in a
given SOI category under the single-setting to a po-
tentially different category under the multi-setting.
This mapping highlights how the training setup
influences the model’s ability to learn or forget
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certain examples.
To visualize these transitions, we construct 7× 7

heatmaps. The first 6 rows and columns corre-
spond to the defined SOI categories, while the fi-
nal row and column represent the row sums and
column sums, respectively. Each cell Hi,j in the
heatmap records the number of training examples
that transitioned from category i (row, under the
single-setting) to category j (column, under the
multi-setting). For instance in Figure 3, if 24 exam-
ples labeled as LLE in single-task learning become
ELE in multi-task learning, then the corresponding
cell is HLLE,ELE = 24.

5 Results & Analyses

In this section, we present our experimental results
and analyses, focusing on the impact of different
multi-setting configurations on ID and OOD per-
formance, relative to their corresponding single-
setting baselines.

5.1 First-Stage Fine-Tuning

The goal of first-stage fine-tuning is to adapt PLMs
introduced in Subsection 3.3 to the in-distribution
(ID) training sets under both single-setting and
multi-setting configurations. Evaluation is then
performed using the corresponding ID test sets
and OOD test sets.

5.1.1 In-Distribution Performance
Overall, we observed no substantial improvements
in ID performance when moving from single-
setting to multi-setting fine-tuning. A notable ex-
ception was the entailment task, which exhibited a
performance gain of 2.6% when trained jointly with
the sentiment task. Additionally, five cases showed
marginal improvements (between 0.5% and 1.0%),
mostly attributed to multi-source learning. The re-
maining configurations either showed negligible
changes (≤ 0.5%) or experienced slight perfor-
mance degradation (see middle columns of Tables
1, 2, and 3).

5.1.2 Out-of-Distribution Performance
OOD performance across both single-setting and
multi-setting configurations was consistently lower
than ID performance. However, the comparative
OOD performance between the two configurations
revealed insightful trends.

Referencing Table 1, we observed similar OOD
behavior for French and Persian, while English
exhibited a distinct pattern. Specifically, French

showed one performance decline (in the French-
English pair) and one improvement (French-
Persian), while Persian followed a symmetric trend
with a drop in the Persian-French case and an in-
crease in Persian-English. In contrast, English ex-
perienced performance drops in both of its OOD
pairings. These results suggest that multilingual
OOD behavior cannot be easily generalized from
single-lingual learning. Notably, the positive im-
pact of one language on another’s OOD perfor-
mance (e.g., Persian improving French) does not
imply reciprocal benefit (i.e., French may not en-
hance Persian).

Turning to Table 2, the multi-source learning
configuration demonstrated consistent OOD im-
provements across all six evaluated cases. For
Sentiment140, we observed the most significant
gain, with a 7% improvement in OOD accuracy.
Other datasets exhibited improvements exceeding
3%, confirming the effectiveness of multi-source
learning in enhancing generalization beyond the
training distribution.

Finally, Table 3 echoes the patterns seen in Ta-
ble 1, with one key distinction: in multi-task learn-
ing, when one task enhances another’s OOD perfor-
mance, the improvement is typically mutual. This
is evident in the Paraphrase-Entailment configura-
tion (similar tasks), where OOD performance in-
creased by 1.8% for Entailment and 6.9% for Para-
phrase. In contrast, dissimilar task combinations
such as Sentiment-Paraphrase led to performance
drops in both tasks under OOD evaluation.

Overall, OOD performance improves most when
we hold the task and language fixed (e.g., English
sentiment analysis) and vary only the data sources
(multi-source). With a fixed task but varying lan-
guages (multilingual intent classification), the ef-
fect is language-dependent—some language pairs
improve while others regress. When tasks differ
(multitask), gains are conditional and appear pri-
marily when the tasks are closely related (e.g., en-
tailment and paraphrase).

5.2 Second-Stage Fine-Tuning
In the second-stage fine-tuning, we investigate
whether the multi-setting models fine-tuned in Sub-
section 5.1 can be further improved to enhance
OOD performance. The fine-tuning sets for this
stage are selected based on the heatmaps introduced
in Section 4.3, which reveal SOI transitions for
a given task, language, or source. For instance,
referring to Figure 3, we can subsample the En-
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tailment training set by extracting all ELE exam-
ples from the single-task configuration (e.g., all
entries along row HLLE,-). Using this approach,
we experimented with multiple subsampled sets,
each defined by a specific heatmap-based criterion,
and selected the one that achieved the best aver-
age OOD performance across the three multi-task
combinations. The selected strategy was then ap-
plied to the multi-source and multi-lingual setups
as well (see below). Fine-tuning was conducted for
4 epochs, and evaluation was performed solely on
OOD sets under multi-setting conditions.

5.2.1 Heatmap-Based Fine-Tuning Set
Selection

We evaluated several fine-tuning set selection
strategies based on the transition patterns iden-
tified from the heatmaps: I. Transitions repre-
senting shifts from more favorable to less favor-
able learning behaviors (9 out of 36 heatmap
transitions: [ACE,ELE,LLE] → 1t-FRGE,
[LLE,ELE,ACE, 1t-FRGE] → ≥2t-FRGE,
and [ACE,ELE] → LLE); II. Diagonal
entries excluding both ACE → ACE and
ELE → ELE; III. Diagonal entries excluding
only ACE → ACE; IV. All forgettable exam-
ples identified in single-task learning; V. All for-
gettable examples identified in multi-task learning;
and VI. The entire training set. Among these strate-
gies, method III produced the highest average out-
of-distribution (OOD) performance across various
multi-task configurations.

5.2.2 Out-of-Distribution Performance
We compare the second-stage results against first-
stage OOD performance (Subsection 5.1.2). In
multi-lingual learning (Table 1), English-French
continued to decline, while English-Persian and
French-Persian each showed marginal improve-
ments of about 0.3%. Here, one possible expla-
nation for the overall limited improvements lies in
the nature of the OOD test language—Burmese, a
low-resource language that XLM-R may struggle
to represent effectively. As a result, improvements
made through training on English, French, or Per-
sian datasets may not transfer well to Burmese,
regardless of the fine-tuning strategy. In multi-
source learning (Table 2), no further gains were
observed, likely because the first-stage fine-tuning
had already maximized performance. In multi-task
learning (Table 3), each combination showed a
clear improvement for one task and a slight decline

for the other. These improvements often occurred
where first-stage fine-tuning had previously led to
performance drops (e.g., Paraphrase dropped from
62.7% to 57.3% in the first stage, then improved to
58.8%).

Based on our analysis, we found that second-
stage fine-tuning was most beneficial in the multi-
task setting, had limited or no effect in the multi-
source setting, and largely preserved performance
in the multi-lingual setting. These results suggest
that optimizing the fine-tune set selection with the
help of SOI transitions heatmaps is a promising
direction for improving OOD robustness in multi-
setting configurations.

6 Conclusion & Future Work

In this work, we conducted a comprehensive inves-
tigation into the effects of multi-task, multi-source,
and multi-lingual training on PLMs, emphasizing
the learning dynamics through the introduction of
SOI. By leveraging SOI transition heatmaps and
dataset cartography, we provided novel insights
into how different training configurations influence
both ID and OOD performance. Our results reveal
that multi-source learning consistently enhances
OOD generalization, while multi-task and multi-
lingual learning exhibit more nuanced behavior, of-
fering benefits primarily when task or language sim-
ilarities exist. The proposed two-stage fine-tuning
approach, particularly when guided by SOI-based
sample selection, showed further gains in OOD
performance, especially in multi-task settings. To
sum up, our work highlights the potential of multi-
setting configurations in creating more adaptable,
robust PLMs capable of generalizing across tasks,
languages, and sources.

While our study focused on encoder-based
PLMs, future work could apply the SOI framework
to large decoder-based language models, such as
GPT-style models, to gain insights into their train-
ing behaviors and generalization capabilities. Addi-
tionally, expanding beyond pairwise combinations
to train models on multiple (three or more) tasks,
sources, or languages simultaneously could pro-
vide a deeper understanding of scaling trends in
multi-setting learning. Another direction involves
investigating curriculum learning strategies where
training is staged according to SOI categories.
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Tables 1, 2, and 3 summarize experimental results from initial (first stage) and SOI-guided fine-tuning
(second stage). The initial fine-tuning trains PLMs separately (single-setting) or jointly (multi-setting) on
ID datasets; ID columns report in-distribution evaluations, while OOD columns show out-of-distribution
performance. The SOI-guided fine-tuning (second stage) further optimizes multi-setting models using
targeted subsets strategically selected via SOI transition heatmaps (Section 5.2.1), with improvements
measured under the second-stage OOD columns. To interpret these tables, first compare single-setting to
multi-setting performances from the initial fine-tuning, then evaluate the additional gains obtained from
the subsequent SOI-guided (second stage) fine-tuning.

Table 1: Single and Multi-lingual learning performances. For the multi-lingual setting, we translate each ID dataset
(in English, French, or Farsi) into Burmese, and treat the translated samples as OOD evaluation set.

First stage fine-tuning Second stage fine-tuning

Model Type Language ID OOD OOD

Single-lingual
English 84.5 52.8 -
French 88.5 49 -
Persian 87.4 62.9 -

Multi-lingual (En-Fr) English 84.4 51.9 51.8
French 88.7 41.6 40.9

Multi-lingual (En-Fa) English 84.7 48 48.1
Persian 87.4 63.3 63.6

Multi-lingual (Fr-Fa) French 89.4 52.2 52.2
Persian 87.2 61 61.4

Table 2: Single and Multi-source learning performances. OOD dataset: SST-2 is used for all three sources.

First stage fine-tuning Second stage fine-tuning

Model Type Dataset ID OOD OOD

Single-source
IMDB 89.4 79.4 -
Yelp 93.8 79.6 -
Sentiment140 82.7 76 -

Multi-source (IY) IMDB 90.2 83.9 83.6
Yelp 94.1 84.3 84.1

Multi-source (SY) Sentiment140 83.6 79 79.4
Yelp 93.7 83.2 82.7

Multi-source (IS) IMDB 90.2 85.5 84.9
Sentiment140 83.5 83 83.1

Table 3: Single and Multi-task learning performances. OOD dataset: RTE for entailment, QQP for paraphrase, and
SST-2 for sentiment.

First stage fine-tuning Second stage fine-tuning

Model Type Task ID OOD OOD

Single-task
Entailment 89.3 43.9 -
Sentiment 94.6 76.7 -
Paraphrase 81.7 62.7 -

Multi-task (SP) Sentiment 95 75.3 74.4
Paraphrase 80.3 57.3 58.8

Multi-task (SE) Sentiment 95.1 62.7 64.9
Entailment 91.9 38.6 38.2

Multi-task (PE) Paraphrase 79.3 69.6 70
Entailment 89.6 45.7 45.1
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Limitations

We outline the known limitations of our current im-
plementation: (1) The subsets of interest (SOI) cat-
egorize dataset samples by aggregating their learn-
ing pattern—the binary status of learned vs. not
learned per epoch—over 10 epochs, yielding six
learning categories. However, SOI (i) does not
account for the per-epoch class probability distribu-
tions and therefore does not fully capture the train-
ing dynamics of the samples, and (ii) we did not
validate the optimal number of epochs (here, 10),
defined as the epoch at which samples within each
SOI category exhibit the least shift to another cate-
gory when the epoch increases by one. (2) The SOI
concept is limited to discriminative tasks (e.g., de-
ciding whether a sentence entails another sentence)
that require ground-truth labels; for generative mod-
els trained on unlabeled text, it does not generalize.
(3) The multi-task/multi-source/multilingual exper-
iments were conducted on two datasets; exploring
a larger number of datasets remains unexplored. (4)
For computational efficiency, we applied the multi-
task heatmap-based subsampling (which defines
the second-stage fine-tuning set) to both the multi-
source and multilingual configurations. However,
a single subsampling policy may not generalize
across distinct multi-setting configurations.
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A Experiments Environment

All of the experiments were conducted on the
Google Colab virtual systems with around 12.7GB
of available RAM and an Nvidia T4 GPU with
around 15GB available VRAM.

B Complete Dataset Cartography
Visualizations

To complement our dataset cartography analysis in
Section 5, we provide here the complete set of car-
tography visualizations across all learning configu-
rations: Figures 4, 5, and 6 present the confidence-
variability distributions for single-setting learning
across tasks, sources, and languages, respectively.

C Complete Heatmap Visualizations

As part of our experimental analysis, we gener-
ated 18 transition heatmaps - six for each learning
mode (multi-task, multi-source, and multi-lingual).
While Section 6 presents a detailed analysis of
these transitions, here we provide the complete set
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Figure 4: Single-Task Learning (ST) cartography showing the distribution of examples for Entailment, Sentiment,
and Paraphrase tasks.

Figure 5: Single-Source Learning (SS) cartography showing the distribution of examples for IMDB, Sentiment140,
and Yelp sources.

Figure 6: Single-Lingual Learning (SL) cartography showing the distribution of examples for English, French, and
Farsi languages.
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of heatmaps for reference: Figures 7, 8, and 9 show
how samples transition happen between different
SOI categories when moving from single-mode to
multi-mode learning. Each cell indicates the num-
ber of samples that moved from one category to
another, with rows representing the initial (single-
mode) categories and columns showing the final
(multi-mode) categories.
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Figure 7: Multi-Task Learning (MT) transition heatmaps showing SOI transitions for all task combinations.

Figure 8: Multi-Source Learning (MS) transition heatmaps showing SOI transitions for all source combinations.
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Figure 9: Multi-Lingual Learning (ML) transition heatmaps showing SOI transitions for all language combinations.
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