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Abstract

Multilingual language models excel across lan-
guages, yet how they internally encode gram-
matical tense remains largely unclear. We in-
vestigate how decoder-only transformers rep-
resent, transfer, and control tense across eight
typologically diverse languages: English, Ger-
man, French, Italian, Portuguese, Hindi, Span-
ish, and Thai. We construct a synthetic tense-
annotated dataset and combine probing, causal
analysis, feature disentanglement, and model
steering to LLaMA-3.1 8B. We show that tense
emerges as a distinct signal from early layers
and transfers most strongly within the same
language family. Causal tracing reveals that
attention outputs around layer 16 consistently
carry cross-lingually transferable tense infor-
mation. Leveraging sparse autoencoders in this
subspace, we isolate and steer English tense-
related features, improving target-tense predic-
tion accuracy by up to 11% in a downstream
cloze task' .

1 Introduction

Recent transformer-based large language models
(LLMs) learn high-dimensional contextual embed-
dings that yield state-of-the-art performance on
multilingual tasks. However, these vectors conflate
multiple linguistic features (Jawahar et al., 2019;
Tenney et al., 2019; Belinkov, 2022), and as yet it
remains unclear how these models represent tense
internally. Grammatical tense, how languages mark
past, present, and future, is fundamental to accurate
human communication, reasoning and natural lan-
guage processing (NLP) alike. Linguistic theories,
from Reichenbach’s tripartite model of event, refer-
ence, and speech time (Prior, 1967; Kamp, 1968) to
later typological surveys, show that languages em-
ploy varied morphological and syntactic strategies,
morphological inflections (e.g., “-ed”), auxiliaries

'We release our data and code publicly at https://gith
ub.com/ariunerdenetum/tenseloc

Figure 1: Main findings. Tense resides in a compact, causally
active decoder subspace. (Top) Causal tracing shows that
restoring a small projected subspace recovers tense probabil-
ities across languages. (Bottom) SAE-based steering shows
that scaling interpretable tense features in the residual stream
shifts cloze completions toward the target tense, with minimal
impact on other tenses at moderate scaling. These effects hold
without temporal adverbials, indicating an internalized tense
representation rather than surface-cue reliance.

(e.g., “will”), or adverbial cues (e.g., “Yesterday”),
to situate events temporally.

Despite this foundational importance, the ways
in which multilingual LLMs internally encode
tense remain largely unchartered. Prior probing
work (Li and Wisniewski, 2021) shows that mor-
phological cues can predict tense in cross-lingual
settings (i.e., French and Chinese), and large-scale
studies report that multilingual encoders reliably
encode morphological information including tense
(Acs et al., 2023). Yet, these studies rely on cor-
relation and cannot show whether the identified
subspaces are functionally used by the model.

Along a related line of research, Sparse Au-
toencoders (SAEs) have been proposed to disen-
tangle monosemantic features, hidden dimensions
aligned with human-interpretable concepts (Tem-
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pleton et al., 2024; Gao et al., 2024). If successful,
SAE:s offer not only interpretability but also con-
trol, enabling researchers to steer model outputs by
scaling these features (O’Brien et al., 2024; Hirle
et al., 2024). However, their application to gram-
matical tense remains under-explored. In particular,
it is still unknown whether sparse tense features
identified by SAEs, if they exist, are functionally
necessary or sufficient for influencing model pre-
dictions.

In this work, we present a comprehensive anal-
ysis of LLaMA-3.1 8B to examine how it en-
codes and uses grammatical tense across typo-
logically diverse languages, and to determine
whether these encodings are causally necessary,
sufficient, and manipulable via sparse-feature
interventions. We show that targeted interven-
tions on identified subspaces produce predictable
changes in generation accuracy, providing a func-
tional (not merely correlational) account of tense
representation.

We combine probing, causal tracing, pre-trained
SAEs, and targeted residual-stream interventions
grounded in mechanistic interpretability to (¢) lo-
cate tense subspaces, (7i) identify tense-carrying
streams and layers (Section 3), (iii) disentangle
human-interpretable, monosemantic tense features
(Section 4), and (iv) test controllability via feature
scaling (Section 5). We show our main findings in
Figure 1.

Our contributions are fourfold:

1. We curate and release a multilingual, tense-
annotated dataset of simple past, present, and
future-tensed sentences in eight languages,
with and without explicit temporal adverbials.

2. We show that linear tense signals are consis-
tent throughout layers, generalize within lan-
guage families in mid-layers, and that a causal
bottleneck in attention-output around layer 16
(i.e., mid-layer) mediates functional use.

3. We extract monosemantic SAE features for
each tense in English and check if those fea-
tures are human interpretable, by validating
their alignment with surface tense markers
(e.g., “did”, “will”).

4. We manipulate the model’s generation output
via SAE features, showing that moderate scal-
ing of target-tense features improves English
cloze accuracy by up to 11% and transfers to
German.

Language UD Treebank

English (en) UD_English-EWT (x)
German (de) UD_German-GSD (x)
French (fr) UD_French-GSD (x)
Italian (it) UD_Italian-ISDT (x)
Spanish (es) UD_Spanish-GSD (x)
Portuguese (pt)  UD_Portuguese-GSD ()
Hindi (hi) UD_Hindi-HDTB (* * %)
Thai (th) UD_Thai-PUD (x * %)

Table 1: UD corpora and curation methods for eight lan-
guages. Inflection method is denoted by asterisk (“*”): () -
PatternLite; (%) - mlconjug3; (* * %) - custom rules.

2 Methods

2.1 Overview of our Approach

By combining probing, causal analysis, and fea-
ture disentanglement, we investigate how complex
grammatical categories are represented in large
multilingual transformers and establish a method-
ology for precise and interpretable control over
temporal generation.

1. Identification and isolation of tense repre-
sentation: We apply layer-wise probes and
causal interventions to hidden activations to
identify which layers and output streams carry
tense signals and which are functionally nec-
essary for tense prediction.

2. Identifying human-interpretable tense fea-
tures: We apply pre-trained SAEs to these
tense-bearing activations to disentangle tense
to monosemantic features that align with
human-readable tense markers (e.g., “did,”
“will”), and validate these features against
probing and causal-tracing results.

3. Steering tense generation: We test whether
SAE-derived features provide causal leverage
by scaling them during inference. Through
controlled interventions in the residual stream,
we evaluate whether such scaling predictably
steers tense generation in downstream cloze
task.

2.2 Dataset

We build a controlled, multilingual, tense-
annotated dataset from Universal Dependencies
(UD) v2 (Consortium, 2021) and focus on lan-
guages that differ in morphological tense mark-
ing (curation in Table 1 and examples in Table 2).
Dataset construction proceeds in two stages: (7) ex-
traction of subject—verb—object clauses (SVO; SOV
for Hindi; see Table 6 in Appendix; (i) generation
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Lang. Tense no_temp with_temp
Past We lacked sufficient information of an investiga-  Yesterday, we lacked sufficient information of an
tion. investigation.
<
4 Present  We lack sufficient information of an investigation.  Usually, we lack sufficient information of an
5 . S
[E 1nvestigation.
Future =~ We will lack sufficient information of an investiga- Tomorrow, we will lack sufficient information of
tion. an investigation.
s Past Sie hatte eine Linge von Metern. Gestern, hatte sie eine Linge von Metern.
g Present  Sie hat eine Lénge von Metern. Normalerweise, hat sie eine Linge von Metern.
O Future  Sie wird eine Lénge von Metern haben. Morgen, wird sie eine Linge von Metern haben.

Table 2: Synthetic sentence examples in past, present, and future tenses for two datasets (“no_temp” and “with_temrep”). Each
sentence is generated via subject—verb—object extraction and verb inflection, producing three tense variants per sentence.

of three tense variants per sentence by automati-
cally inflecting the main verb of the sentence using
language-specific tools and rules.

Verb conjugation is performed with existing li-
braries and targeted rule sets: PatternLite (Smedt
and Daelemans, 2012) for Romance and Germanic
languages, mlconjug3 (Diao, 2023) for Portuguese
(to capture irregular forms), and custom rule-
based scripts for Hindi? and Thai® (see Table 1).
Each example is annotated with language, tense,
sentence, main_verb, and verb_index. The full
corpus comprises 18,580 training and 4,646 test
examples. To separate reliance on additional lexi-
cal temporal adverbials from internal verbal tense
representations, we maintain two parallel splits:
no_temp (i.e., temporal adverbials removed) and
with_temp.

We select our target languages (Table 3) to cover
typological diversity in tense marking (e.g., mor-
phological inflection, auxiliaries, adverbials) and
permit evaluation of within-family transfer. A per-
language breakdown of tense-marking strategies
and extraction configurations is provided in the
Appendix C.

Language Family Writing system
English Germanic Latin

German Germanic Latin

French Romance Latin

Italian Romance Latin
Portuguese Romance Latin

Spanish Romance Latin

Hindi Indo-Aryan Devanagari
Thai Kra-Dai Thai script

Table 3: Target languages, families, and scripts. All lan-
guages are Indo-European except Thai.

2https://en.wikibooks.org/wiki/Hindi/Verbs
3https ://en.wikipedia.org/wiki/Thai_language

2.3 Model

We use Meta LLaMA-3.1-8B (Meta, 2024), an au-
toregressive decoder-only transformer with byte-
pair encoding. For each input sentence, we ex-
tract the hidden representation of the main-verb
token (excluding auxiliaries) at every layer { =
{0,...,32}. Model weights remain frozen for all
experiments.

Sparse Autoencoders. We use two distinct pre-
trained SAEs for our analyses. (i) We employ
LLaMA Scope (He et al., 2024) TopK-8x SAEs,
which comprise 256 SAE components applied at
each layer and stream (residual, attention, MLP),
trained on the SlimPajama corpus (He et al., 2024).
However, LLaMA Scope exhibits relatively high
reconstruction loss, which restricts steering capa-
bilities. Since it was trained on a primarily English
dataset, we expect extreme sparse English features,
which can limit interpretability and stability when
applied cross-lingually*.

To address these issues, (i) we train multilin-
gual SAEs of TopK-8x variants (expanding the
hidden space by “factor 8’) on Wikipedia text from
seven languages: English, Spanish, French, In-
donesian, Vietnamese, Chinese, and Japanese. Un-
like LLaMA Scope’s English-centric and highly
sparse representations, our multilingual SAEs are
designed to achieve lower reconstruction loss while
producing sparse, language-agnostic features that
enable more reliable cross-lingual comparison and
steering within the same model architecture.

3 Identification and isolation of tense
representation

We systematically probe how tense is encoded in
LLaMA-3.1 8B, examining which layers and com-

4https ://huggingface.co/Yusser/multilingual_1
lama3.1-8B_saes/tree/main
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ponents represent tense and to what extent. To
complement this, we use causal tracing to identify
which layers are functionally responsible for carry-
ing and applying tense signals during generation.
In the body of the paper, we mainly focus on causal
tracing, with additional detailed results on probing
reported in Appendix D.

Causal Tracing of Tense Signals. As a prelim-
inary experiment to ascertain if the tense repre-
sentation is linearly decodable, we perform linear
probing (Hewitt and Manning, 2019; Tenney et al.,
2019; Chi et al., 2020) and find that tense represen-
tation resides throughout all the layers emerging
from early layers and most robust in later layers
(Figure 7 in Appendix D).

However, probing alone only shows where infor-
mation is encoded and thus demonstrates correla-
tion rather than causal influence; to address this, we
test causality by intervening in intermediate activa-
tions to verify that the representations in question
directly drive syntactic tense production. We adopt
the causal tracing method introduced by Meng et al.
(2022), implementing layerwise intervention and
patching in our target model using the Pyvene li-
brary (Wu et al., 2024). In causal tracing, we care
about the activations (i.e., hidden signals) as they
travel through the network, which in our case, are
tense signals.

Prompting. Each of our trials uses a one-shot
prompt consisting of (¢) a full sentence in the target
tense and (47) a truncated version of that sentence
ending just before the verb:

Template

<partial-X-tense-ending-before-verb>

Lily the cat relaxed on the mat and she ate an apple.
Lily the cat relaxed on the mat and she

The truncated sentence is fed to the model, forc-
ing prediction of the verb and exposing how tense
is internally represented. Since verbs may span
multiple subtokens, we compute log-probabilities
until the full sequence is generated.

Subspace Intervention. On this prompting
setup, we apply a clean—corrupt—restore cycle at
each transformer block to identify subspaces crit-
ical for tense encoding. We intervene across four
activation streams S: attention output, MLP acti-

vation, MLP output, and post-residual block out-
put. (i) In the clean step, we record the probability
Pgold of the gold next token. (i7) In the corrupt
step, Gaussian noise € ~ N'(0, §21) is injected into
tense-bearing embeddings at layer 0. (¢i¢) In the re-
store step, noisy activations at layer ¢ and stream S
are overwritten with their clean counterparts.
We measure recovery as
ApE’S 7,9

restored — Prestored — Pcorrupt

Averaging over prompt variants, noise seeds (Co-
las et al., 2018), and languages yields a recovery
curve with Standard Error of the Mean (+SEM;
Wooldridge, 2023) as a function of layer ¢. Follow-
ing Meng et al. (2022), we report the indirect effect,
i.e., the change in output probability when a single
state is restored. More details are in Appendix E.

Results. By corrupting and selectively restoring
hidden-state activations, we observe that across
the evaluated languages and tenses the attention-
output stream shows a clear recovery peak around
layer 16 (Figure 2); restoring the projected sub-
space at this layer yields a measurable increase in
target-tense probability. This localizes mid-layers
as functionally necessary for tense prediction, con-
sistent with our preliminary probing results (Figure
7 Appendix D). Per-stream breakdowns are shown
in Figure 12 in Appendix F.

Layer wise analysis indicates a processing pro-
gression: tense information emerges in the MLP
activations near layer 15, is read by attention in
layers 15-18, and then is propagated forward (Fig-
ure 13 in Appendix F). Recovery magnitudes in
the MLP stream are smaller than in attention but
indicate a measurable tense signal. This pattern is
consistent with prior layer-wise intervention stud-
ies on other phenomena (e.g., factual knowledge in
Meng et al. (2022)).

4 Identifying human-interpretable tense
features.

Having identified critical layers ¢* for tense repre-
sentation, we next ask whether features extracted
by SAEs can be used to steer the model’s out-
puts. Specifically, we test whether activating or
inhibiting these features systematically shifts the
predicted verb tense. This allows us to evaluate
not only the interpretability of SAE features but
also their causal influence on generation. To this
end, we use SAEs to discover latent features in the
model’s hidden states that align with grammatical

246



attention_output | Pas

attention_output | Pre

attention_output | Fut

0.5 0.25 Lang.
0.4 020 en
o 0.4 . —— de
B fos Zo1s —r
302 i i it
5 502 5010 — pt
0.1 A 01 0.05 Fl’/\JAJ\_\ ET
0.0 /_WM 0.0 0.00 Vi — th
0 10 20 30 0 10 20 30 0 10 20 30
mlp_activation | Pas mlp_activation | Pre mlp_activation | Fut
0.4 0.05
0.3
0.3 0.04
4 £o2 5003
02 g g
g g S o002
| 0.1
01 /:\ : f i 0.01
0.0 — t 0.0 0.00
0 10 20 30 0 10 30 0 10 20 30

20
Restored layer
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recovers the correct verb-tense prediction.

tense in English. Our goals are twofold: (i) to
validate that SAE-derived features are consistent
with the probing and causal-tracing results (Figures
2 in Section 3 and 7 in Appendix D), and (i) to
identify monosemantic tense features that reliably
map to tense labels and localize to the critical trans-
former layers ¢* identified earlier. Experiments
are conducted on our curated datasets no_temp and
with_temp.

Hidden-state extraction. Each sentence is fed in-
dividually through the original LLaMA model via
the HookedTransformer interface in the sae_lens
library (Bloom et al., 2024). We capture the hid-
den activations at the attention, MLP, and residual
output streams for critical layers 15-31 (Figure 2 in
Section 3). We extract the activation vector corre-
sponding to the main verb token in each sentence.

SAE inference. We feed the hidden states to our
trained multilingual SAEs and the LLaMA Scope
SAEs (He et al., 2024) and obtain feature activa-
tions and corresponding decoder weights. We com-
pute the reconstruction mean-squared error (MSE)
on activations to identify which SAE best com-
presses the original signal with minimal loss (Fig-
ure 3). This helps us select the SAE whose low
MSE guarantees fidelity to the model’s internal rep-
resentations (Shu et al., 2025; Engels et al., 2025).

However, since SAEs are trained with two loss
functions for reconstruction and sparsity, there is

a trade between having sparse monosemantic fea-
tures and the steerabilty of the SAE (Bayat et al.,
2025; Harle et al., 2024). Bayat et al. (2025) ad-
dress this problem by adding a reconstruction error
term to the SAE output while we propose training
a new model that preforms better on reconstruction
loss.

To assess how well each SAE isolates tense, we
perform clustering on the encoder outputs at each
layer and calculate the V-measure (v, ) (Rosenberg
and Hirschberg, 2007) against true tense labels”.
We flatten the feature activations across all exam-
ples, use K-means with £k = 3 (i.e., assumes 3
clusters and equal weight per class) for the past,
present, and future tenses, and compute vy for each
layer ¢ (Figure 4).

Extracting tense features at critical layers (/*.
After determining the optimal £*, we shortlist can-
didate features by intersecting two rankings. First,
we rank each latent dimension based on the co-
sine similarity with static token embeddings from
the model’s unembedding matrix (He et al., 2024),
which relies on the linear representation hypoth-
esis (Nanda, 2023a; Bereska and Gavves, 2024).
Second, we train one-vs-rest linear probes with Lo-
gisticRegression from scikit-learn on the encoder

>V-measure quantifies clustering quality as the harmonic
mean of homogeneity (i.e., each cluster contains only mem-
bers of a single class) and completeness (i.e., all members of
a class are assigned to the same cluster).
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Figure 4: V-measure by layer for SAEs on corpora with/without temporal cues. Tense features are most distinct at layers 15-16.

outputs to predict temporal states.

Features are then ranked by their absolute probe
weights to identify those that align with tense to-
kens and drive tense classification. However, this
intersection might overlook weaker valid features
or retain spuriously correlated ones if noise is
agreed upon in both rankings. To address this, we
conduct additional experiments in the steering ex-
periment detailed in Section 5.

Results. Our multilingual SAE attains low mean-
squared reconstruction error across layers (Figure
3), supporting ¢* =~ {15,16} as the tense-critical
layers where tense distinctions are most sharply
encoded. This underscores the importance of inter-
mediate layers for tense representation and aligns
with our previous results in Figure 2 in Section
3. The intersected SAE feature set corresponds to
human-readable tense markers (e.g., “did,” “does,”
“will”; Figure 5), validating the interpretability of
these features and their suitability for downstream
steering. Additional visualizations appear in Fig-
ures 14 and 15 (Appendix G).

Visualizing high-dimensional SAE activations at
£* via UMAP provides an intuitive snapshot of how
the model’s latent space isolates tense information
(Figure 16 in Appendix G).

Baselines

A Original model, no adapter.

B1 LLaMA Scope SAE adapter applied at
£*, with a = 1.0 (i.e., no scaling).

B2 Our Multilingual SAE adapter applied
at £*, with a = 1.0 (i.e., no scaling).

Steering

Excitation ~ Multiply each selected feature f by o >
1.0 (positive intervention).

Inhibition =~ Multiply each selected feature f by o <

1.0 (negative intervention).

Table 4: Definitions of baselines and feature-steering settings.

We find that in both SAE frameworks, future
tense forms a distinct cluster while having more
subtle distinctions between past and present tenses.
This pattern suggests that SAEs capture a stronger,
more uniform signal for the future tense than for the
more subtle distinctions between past and present
forms.

S Steering Tense Generation

After identifying tense-sensitive features, we test
whether these features can be used directly to con-
trol model behavior. Following an adapter-based
steering paradigm Kissane et al. (2024b), we inte-
grate SAE-derived “tense axes” into the residual
stream and scale them during generation (McGrath
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etal., 2024; O’Brien et al., 2024; Hirle et al., 2024).
This mirrors prior steering work on syntactic and
factual pathways and enables fine-grained tense
control without retraining.

Specifically, we evaluate the causal impact of
tense features by steering LLaMA-3.1 8B’s hidden
activations in a cloze task, which is explained be-
low. Using feature scaling, we multiply selected
latent dimensions by a factor « at critical layers ¢£*,
with o > 1 for excitation and o < 1 for inhibition
on the cloze task.

Cloze task. We use a cloze fill-in-the-blank eval-
uation. Each prompt consists of a temporal cue
(e.g., “Yesterday”), a sentence with a missing verb,
three verb-form options (one per tense), and an
answer placeholder. For instance:

Yesterday, the dog ___ at the mailman.
A) barks

B) barked

C) will bark

Answer:

The model must output the correct option (“A”,
“B”, or “C”). For each tense, we construct a bal-
anced development set of 30 prompts and a test
set of 500. Prompts pair diverse subjects/objects
(e.g., “T”, “we”, “the mailman”) with base verbs
conjugated (including irregulars) into target tenses
using PatternLite (Smedt and Daelemans, 2012);
correct option order is randomized. We run the task

in English and German and report accuracy.

Steering procedure. We compare three baselines
and multiple steering configurations (Table 4).

SAE adapter combinations. We explore SAE
adapters at individual layers (e.g., £* = 15 then
* = 16 separately), and both layers combined.
For each combination, we apply the same feature
set (Table 9 in Appendix H) and scaling « across
all prompts in one run. This setup enables us to
observe how scaling the SAE features, either indi-
vidually or jointly across layers, affects the model’s
predictions in the downstream task.

Feature selection and scaling. Our SAE obser-
vation analysis (Section 4) yields a pool of fea-
tures, but we need to ensure that these human-
interpretable features are functional in the down-
stream task. Thus, we perform a grid search on
the dev set to identify which features and « values
work best for each tense. Specifically, for each
candidate feature f in the combined pool, we run
steering on the dev-prompts for each label, record
the change in accuracy relative to baselines, and
retain only those feature combinations that improve
the target-label accuracy. This fine-grained search
allows us to isolate the most effective features and
scaling factors before the final test-set evaluation.
The features determined in this fashion are listed
in Table 9 in Appendix H.

Results. We evaluate cloze-task accuracy on the
test set and find that moderate excitation (o = 5.0)
of tense features reliably enhances correct-tense
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A B1 B2

15 16

Both

Language Target tense
- 1.0 1.0 20 50 0.1 20 50 0.1 20 50 01
Past 0.81 0.13 081 082 084 08 080 0.82 0.81 0.80 0.80 0.8l
English Present 0.39 0.09 039 041 036 039 042 048 038 050 038 0.37
Future 076 0.14 077 080 085 074 078 0.81 077 081 077 075
Past 0.63 - 063 064 068 063 065 065 067 062 063 0.63
German  Pregent 0.60 - 061 062 066 064 071 066 072 060 060 0.57
Future 0.44 - 043 043 044 042 038 043 036 044 045 045

Table 5: Test-set steering results. Baselines: A = original; B1 = LLaMA Scope SAEs (15-16); B2 = Multilingual SAEs (15-16).
Fy« € {15,16, Both} is the Multilingual SAE hook layer(s); subheader shows « (o > 1: excitation). (Highlighted) cells mark
excitation that outperforms the baselines. In inhibition settings, lower accuracy indicates successful downward control.

predictions. Inhibition produces only small accu-
racy reductions, suggesting the model compensates
for partial suppression via redundant or alterna-
tive features. A likely mechanistic explanation is
that tense encoding is partially distributed and over-
lapping, so that inhibiting only a subset of target
features may not have an effect as intended (Mc-
Grath et al., 2024). In line with McGrath et al.
(2024), positive interventions are more effective
than negative ones.

English tense features transfer to German for
past and present (Table 5), but not for future tense.
This finding suggests partial cross-lingual align-
ment and the presence of language-specific atten-
tion heads. We hypothesize that the observed En-
glish — German non-transfer primarily reflects
distinct syntactic encodings (e.g., German verb-
second and verb-final patterns) that alter where
tense cues are represented across layers and com-
ponents. The layer-wise causal differences reported
in Figure 2, Section 3 align with this interpretation.

We do not rule out potential effects of tokeniza-
tion or corpus frequency; confirming whether syn-
tax alone explains the pattern will require targeted
tests such as tokenization normalization, auxiliary
alignment interventions, and controlled frequency
experiments, which we leave for future work.

Moreover, since SAE features can partially over-
lap semantically, interventions on one tense may
also influence others. We present these cross-label
effects in Tables 10 and 11 in Appendix H.

6 Conclusion

We present a four-phase diagnostic pipeline: prob-
ing, causal tracing, SAE disentanglement, and
steering that links where tense information is lin-
early readable in latent representations to where
it is functionally necessary and controllable. Lin-

ear probes show that LLaMA-3.1 8B (Meta, 2024)
internally represents simple past, present, and fu-
ture tenses in low-dimensional subspaces that are
detectable across layers; with crosslingual transfer
peaking in layers 20 to 30, suggesting a language
agnostic encoding. Causal interventions (Meng
et al., 2022) localize a functionally necessary sub-
space at around layers 15-16, primarily within the
attention stream (with contributions from MLP ac-
tivations and outputs), and restoring this small sub-
space recovers tense probability.

Applying SAEs (Kissane et al., 2024b; O’Brien
et al., 2024; Hérle et al., 2024) to activations at lay-
ers 15-16 yields monosemantic tense features that
align with human-readable tense markers. Scaling
these features in the residual stream systematically
shifts cloze completions toward the target tense, im-
proving correct-tense accuracy by up to 11% points
with modest degradation. Crucially, the effect per-
sists even without temporal adverbs (for example,
“yesterday”), showing that the model internally en-
codes tense rather than relying on surface cues.
English derived features transfer to German past
and present but not future tense, suggesting that the
model captures an abstract crosslingual temporal
structure, though some future constructions may
remain language specific or data limited.

To our knowledge, this is the first evidence in a
multilingual LLM of a causally active, language
agnostic tense subspace whose disentangled, inter-
pretable features can steer generation. The finding
holds across eight languages for simple tense forms,
but broader generalization to richer aspectual pat-
terns, other model families, and naturalistic con-
texts remains open. Future work should extend this
framework to more complex temporal systems and
finer grained circuit level analyses of cross-lingual
temporal representation.
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Limitations

This study operates in a controlled diagnostic set-
ting that enables causal intervention but may limit
generalization. Our experiments rely on automati-
cally inflected sentences from UD treebanks, which
simplify discourse context and may not mirror nat-
ural tense use. Rule-based inflections for Hindi
and Thai add minor noise. We analyze only one
decoder-family model and focus on basic tense
forms—past, present, and future. While our inter-
ventions reveal clear mechanistic signals, we do
not claim generalization to richer discourse con-
texts, morphologically complex or low-resource
languages, other architectures, or compound aspec-
tual tenses.

Future work should extend to human-annotated,
naturalistic corpora with explicit tense labels, repli-
cate analyses across architectures and tokenizers,
and apply finer-grained causal probes and steering
methods. Evaluating longer contexts and down-
stream tasks will further test whether the recovered
features capture robust, generalizable temporal rep-
resentations.
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A Ethical Considerations

This work investigates how multilingual large lan-
guage models represent and transfer grammatical
tense across languages through causal and inter-
pretability analyses. All experiments were con-
ducted on open-weight models and publicly avail-
able datasets, including synthetically generated,
tense-annotated corpora derived from existing tree-
banks. No human or private data were used. All
model and data artifacts were used in full compli-
ance with their respective licenses.

B Related work

This section addresses our study within intercon-
nected research areas: linguistic theory of tense,
interpretability methods used in our work, and cur-
rent progress of linguistic analysis in mechanistic
interpretability.

B.1 Tense in linguistics

Early linguistic work characterizes tense as the
grammatical marking that locates an event in time.
From a syntactic perspective, tense operates as a
feature on a clause head that triggers morphological
inflections (Partee, 1973). In contrast, semantic

frameworks treat tense morphemes as operators that

shift a reference time relative to the utterance time
(Dahl and Velupillai, 2011). A further distinction
arises between absolute tense, which ties events
to the moment of speaking (e.g., simple past vs.
present), and relative tense, which relates one event
time to another (e.g., perfect or pluperfect) (Comrie,
1985).

B.2 Mechanistic interpretability

Superposition hypothesis. Superposition posits
that internal vectors store more distinct features
than their dimensionality by overlapping feature di-
rections. Overlap causes crosstalk when recovering
a single feature, because directions are not all or-
thogonal. This cost is acceptable when features are
sparse (i.e., few active features per input) and when
nonlinear readouts or learned decoders excite true
signals and inhibit overlap (Bereska and Gavves,
2024; Olah, 2023).

Linear representation hypothesis. This hypoth-
esis proposes that neural networks often depict
high-level features as linear trajectories within
the activation space (Bereska and Gavves, 2024).
Linear representation can ease the comprehension
and adjustment of neural network representations
(Nanda, 2023b).

Relevant studies. Mechanistic interpretability
has progressed through complementary observa-
tion and intervention methods. Linear and struc-
tural probes (Tenney et al., 2019; Hewitt and Man-
ning, 2019; Jawahar et al., 2019) reveal that trans-
former layers encode syntactic and semantic cat-
egories. Multilingual probing of mBERT and
XLM-R shows recoverable tense signals across
dozens of languages (Acs et al., 2023; Li and Wis-
niewski, 2021). However, high-capacity probes
risk spurious correlations and probing accuracy
can be misleading (Hewitt and Manning, 2019;
Belinkov, 2022). Consistent with Tenney et al.
(2019) and Jawahar et al. (2019), we expect syn-
tax is represented in early layers and higher-level
abstractions in mid layers. Temporal semantics
research—timeline inference and event ordering
corpora (UzZaman et al., 2012; Yahiaoui and
Atanassova, 2023)—and aspectual probes (Methen-
iti et al., 2022) target factual time relations rather
than internal tense morphology. Causal tracing
techniques (Abnar and Zuidema, 2020; Meng et al.,
2022; Zhang and Nanda, 2024), have begun to link
hidden activations to model behaviors, but have not
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yet been applied to tense. Finally, SAEs demon-
strate that enforcing sparsity extracts monoseman-
tic units for linguistic features (Bricken et al.,
2023), offering a promising path to disentangle
tense from other representations. Unlike prior work
on encoders (e.g., mBERT probes), our work uni-
fies these strands—probing, causal analysis, and
SAE disentanglement—to fill the current gap in un-
derstanding and controlling tense in decoder-only
multilingual transformers.

C Tense Typologies

We survey the target languages in terms of family,
script, word order, and tense marking strategies:

English (Indo-European, Germanic; Latin al-
phabet; SVO): English has a strong past/non-
past distinction (Parsons, 2002). The simple past
is marked by the suffix “-ed” (i.e., plus irregular
forms), and the present is unmarked or marked
by “-s” for a third person. Future time is typi-
cally expressed periphrastically using auxiliaries
(e.g., “will”, “going to”) rather than an inflection
(Parsons, 2002). Thus, English encodes tense mor-
phologically for past and present but uses modal
auxiliaries for future.

German (Indo-European, Germanic; Latin
alphabet; Verb-Second order): German also
marks tense morphologically. Present-tense verb
forms (e.g., geht (“war”)) contrast with a simple
past (i.e., Priteritum) typically marked by suffixes
or vowel ablaut (e.g., ging (“went”)). German
uses auxiliaries (e.g., “werden”, “sein”, “haben”)
to form periphrastic tenses, including the future
and perfect. In subordinate clauses, it can use wird
gehen (“will go”) as a future. Overall, German has
a two-way distinction (i.e., present vs. past) with
optional future auxiliaries.

French (Indo-European, Romance; Latin alpha-
bet; SVO): French has rich tense inflection on
verbs. The present tense (e.g., parle (“speaks’™))
is marked, as is the simple past (i.e., passé sim-
ple, e.g. parla) and imperfect (e.g., parlait). The
“passé composé” uses “avoir/étre” + past participle
to express past. French also has a true future suffix
(e.g., “-ra”, as in parlera (“will speak™)) (Dryer
and Haspelmath, 2013). Thus, tense is marked by
a variety of suffixes and auxiliary constructions.

Italian (Indo-European, Romance; Latin al-
phabet; SVO): Italian, like other Romance lan-

guages, uses inflectional suffixes to mark tense. For
example, “-0” and “-ai” in parlero (“1 will speak™)
signal future tense, while “-ai” or “-i” mark past
forms. The present tense is marked by suffixes
on the verb stem (e.g., “-0”, “-i”, “-a”, “-iamo”,
etc.). Compound tenses (i.e., passato prossimo) use
“avere/essere” + participle for past reference. Thus,
Italian distinguishes past, present, and future with

a mix of suffixal and auxiliary marking.

Portuguese (Indo-European, Romance; Latin al-
phabet; SVO): Portuguese similarly marks tense
on verbs. Present tense forms (e.g., falo (“speak™))
contrast with a past preterite (e.g., falei) and a fu-
ture suffix (e.g., falarei). There is also an imperfect
(e.g., falava). The future tense can be formed an-
alytically (i.e., using auxiliary “ir”” + infinitive) or
synthetically (i.e., “-rei” endings). Overall, Por-
tuguese verb morphology encodes multiple tense
distinctions.

Spanish (Indo-European, Romance; Latin al-
phabet; SVO): Spanish marks tense on verbs
with multiple inflections. The simple past (i.e.,
preterite, e.g., hablé (“speak’™)) and imperfect (e.g.,
hablaba) are distinct suffixes, as are present (e.g.,
hablo) and future (e.g., hablaré) forms (Dryer and
Haspelmath, 2013). The future tense is a suffix
(i.e., usually “-ré”) attached to the infinitive. Com-
pound tenses use auxiliaries (i.e., “haber” + partici-
ple). Overall, Spanish has separate affixes for past,
present, and future on the verb.

Hindi (Indo-European, Indo-Aryan; Devana-
gari script; SOV): Hindi’s tenses are typically
marked by verb inflections and auxiliaries. The
simple present and past tenses are distinguished
by different participial stems and agreement. For
example, “-taa/-ti” suffixes for present continu-
ous vs. ‘““-yaa” participles for perfective past
(e.g., khaataa/khaatii (“eating”), khaayaa/khaayi
(“ate”)). Hindi does not have a grammatical future
inflection on the verb itself. Instead, periphrastic fu-
tures are formed with modal auxiliaries (e.g., hoga
(“will be”)) or with the verb nikalnaa (“to leave”)
implying future intent. Thus, Hindi effectively con-
trasts past vs. non-past, with future marked by
particles or context.

Thai (Kra-Dai, Tai branch; Thai script; SVO):
Thai is often described as a tenseless language.
Thai verbs do not inflect for tense. Instead, time
reference is conveyed by aspect markers and tem-
poral adverbs. For example, particles such as ldew
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Language NP Modifiers VP Auxiliaries PP Modifiers

en, de, fr, it, pt, es det, amod, compound, poss, nummod aux, aux:pass, compound:prt det, amod, compound
hi det, amod, compound, poss, nummod aux, aux:pass, compound:prt det, amod, compound
th det, amod, compound, nummod aux, aux:pass, compound:prt det, amod, compound

Table 6: Simplified dependency-modifier configuration used for NP, VP, and PP extraction per language.

(“already”) or ja (“will”’) and context words (e.g.,
“yesterday” or “tomorrow”) indicate past or future
tense. Typologically, Thai lacks any inflectional
future tense. It falls in the Southeast Asian area
that does not mark future morphologically (Dryer
and Haspelmath, 2013).

D Preliminary Linear Probing

We check if tense information is stored linearly
by training classifiers on the model’s hidden states.
We follow the probing framework of Hewitt and
Manning (2019) for layer-wise analysis and the
multilingual transfer evaluation of Chi et al. (2020).
We conduct a series of experiments to assess in-
ternal tense representation after having observed
strong diagonal accuracy from final layer (Figure
6). We utilize layerwise probes, where we train a
separate probe for each layer on the dataset labeled
as “no_temp” with a learning rate set at le-3.

g = softmax(Wyhe(z)+b), L =H(y,y)+A|W |1

where y € {past, present, future}, x is the main
verb in the input and A\ € {0.01, 0.003, 0.001}.

Overall Confusion Matrix for Tense Classification

1400

past 40

1200

1000

present
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T
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T
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Figure 6: Confusion matrix of classification perfor-
mance at the final layer of Llama-3.1 8B. Rows are true
tense labels, and columns are predicted labels. Strong
diagonal values relative to the off-diagonal values con-
firm linear separability. It is measured on the main verb
token (i.e., can be multiple tokens) embeddings.

D.1 Cross-lingual transfer

We adapt the layerwise paradigm to assess
language-agnostic encoding by following the

framework established by Chi et al. (2020) conduct-
ing two strategies: direct and hold-one-out transfer.
This approach tests whether grammatical tense is
encoded in a language-agnostic subspace or vary
by language morphology. High transfer accuracy
indicates a shared tense representation, while low
accuracy suggests language-specific patterns. In
the direct transfer approach, we train our model on
one language and then test it on other languages,
and in the hold-one-out method, we train the model
on seven other languages while reserving one lan-
guage for testing.

D.2 Results

Probing accuracy under different L1 coefficients

0.9
C=0.01

C=0.003

08T c=0.001

0.7 4

0.6 4

Accuracy

0.5

0.4 4

6 .’; 1‘0 1‘5 2‘0 2‘5 3b
Layer

Figure 7: Probes trained with L1 regularization (A =
0.01, 0.003, 0.001) show that tense is recoverable from
early layers under weak regularization. Stronger penal-
ties delay emergence to later layers, indicating that tense
develops in early layers but strengthens in deeper ones,
aligning with previous findings on syntactic feature
emergence (Kissane et al., 2024a; Tenney et al., 2019).
Early detection may also relate to morphology.
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Figure 8: Direct-transfer performance across languages.
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Figure 9: Direct-transfer accuracy by layer. Each subplot shows, for a fixed train language, the probe’s accuracy
on all test languages at each layer. Languages within the same family transfer more effectively to one another,
with peak transfer performance in the mid-to-late layers. Romance languages exhibit strong within-group transfer,
although French yields the weakest performance among them. Hindi and Thai show poor cross-transfer from
most other languages, indicating distinct tense encoding, likely attributable to their divergent typology, writing
systems, and language families. English and German nonetheless transfer moderately well into Hindi and Thai,
possibly because auxiliary constructions in Hindi and future-tense markers in Thai partially align with Germanic
and Romance patterns.
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Figure 10: Direct transfer performance broken down into tense at layer 25, where the transfer performance peaks.
Transfer between languages within the same family is noticeable, while self-transfer is also distinguishable.
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Figure 11: Hold-one-out transfer probing performance across layers and languages, broken down by tense. A single
hyperplane trained on all languages except the held-out target still separates tense above chance for most languages,
signifying language-agnostic features—past tense yields the highest hold-out F1-macro across all held-out languages,
with English highest and German lowest. In the Romance group, only the past tense remains robust; present and
future collapse toward chance, especially for French. Hindi’s past/future peaks in late layers; present emerges earlier.
Thai’s past-tense transfer peaks mid-layers; present/future remain near chance.
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Language Past

Present

Future

English Lily the cat relaxed on the mat
and she ate an apple.
German Lily die Katze entspannte sich

auf der Matte und sie aB} einen
Apfel.

Lily the cat relaxes on the mat
and she eats an apple.

Lily die Katze entspannt sich
auf der Matte und sie isst einen
Apfel.

Lily the cat will relax on the mat
and she will eat an apple.

Lily die Katze wird sich
entspannen auf der Matte und
sie wird einen Apfel essen.

Table 7: Semantically minimal, tense-varying template example in English and German.

E Causal Tracing
E.1 Prompt design

We construct semantically minimal sentence
frames that differ only in verbal inflection (i.e.,
past, present, or future) across eight languages.

Few-shot. We create prompts with two identical
full-tense sentences separated by a distractor of
alternate tense. We inject noise in the verb positions
of the first and last sentences to assess whether
causal tracing method can flip the generated tense.

Template

<full-X-tense-sentence>
<full-Y-tense-sentence>
<partial-X-tense-ending-before-verb>

Lily the cat relaxed on the mat and she ate an apple.
Lily the cat relaxes on the mat and she eats an apple.
Lily the cat relaxed on the mat and she

Original generation: ate. After noise injection: eats.

One-shot. To confirm cross-language validity,
we generate five variants per tense by varying
subjects (e.g., “I,” “Aki the dog”), verbs, and ob-
jects while preserving argument structure. English
templates were manually drafted, translated us-
ing Google Translate, and validated through back-
translation. Table 7 shows representative templates.

Template

<full-X-tense-sentence>
<partial-X-tense-ending-before-verb>

Example

Lily the cat relaxed on the mat and she ate an apple.
Lily the cat relaxed on the mat and she

Original generation: ate. After noise injection: is.

E.2 Experimental setup

1. Prompts. Five prompts per tense and lan-
guage, varying subject/pronoun and verb-
object lexemes.

2. Noise Seeds. M,,,;sc = 5, seeds to ensure in-
dependent Gaussian draws for reproducibility.

3. Window Size. Window = 3, restoring layer
£ activations at some token positions with its
previous and next layers.

4. Streams. Four sub-components per layer: at-
tention output, MLP activation, MLP output,
block output.

Restoration positions In the few-shot prompt
experiment, we perform restoration on all token
positions. Based on the results, we decided to focus
on critical token positions where restoration is most
effective in the one-shot experiment (Table 8).

Position Description

<|begin_of_text|> The very first token embedding.
(pos @)

Pre-verb The token immediately preceding

the first main-verb subtoken.

All subtokens of the auxiliary +
main-verb.

The last token in the “partial
...ending” line.

Tense-bearing
subtokens
Final token

Table 8: Critical token positions.

E.3 Evaluation metrics

We interpret higher Ap;.cstoreq Values as more sub-
stantial evidence that a given layer and stream are
critical for tense generation. We report means
with Standard Error of Mean (SEM) across dif-
ferent seeds. The Standard Error of the Mean
(SEM) quantifies the precision with which we
have estimated the true mean of Ap,.cstored aCrOSs
noise-seed replicates. Formally, if {z;}}, are
the Apyestorea Values for M independent seeds,
and ¥ = ﬁ&:pi with sample standard deviation

\/ﬁ& (l‘l — T)Q, then

SEM = —>

)

3
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F Layer-wise Recovery Analysis
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Figure 12: layerwise recovery curves Apyestored (£, S) in each language, faceted by stream and tense. High values
indicate that restoring the corrupted token activations at that layer and stream most effectively recovers the correct

verb-tense prediction.
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Figure 13: Causal analysis for each tense, averaging across language results.
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Figure 14: Token—feature heatmaps at layers 15-16 (¢*) for LLaMA Scope and Multilingual SAEs. Each heatmap
shows cosine similarity between SAE-derived feature vectors (from the decoder’s tense-encoding subspace) and
the model’s output embeddings. Rows are features; columns list the top ten tokens by similarity. LLaMA
Scope features show clear past cues (e.g., “yesterday,” “earlier”’) and future cues (e.g., “tomorrow,” “soon”), while
Multilingual SAE features align more weakly. A corresponding visualization using the model’s input embeddings is
shown in Figure 15.
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Figure 15: Token—feature heatmaps using model’s input embedding matrix at layers 15 and 16 for LLaMA Scope
and multilingual SAEs.
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2D UMAP projection at layer 16 2D UMAP projection at layer 16
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Figure 16: 2D UMAP of SAE activations at layer 16 for both Multilingual and LLaMA Scope frameworks. “Future”
examples form a tight, distinct cluster, while “past” and “present” intermingle, reflecting stronger, more consistent
signals for future tense due to the invariant token “will.” By contrast, past tense relies on irregular forms or the
“-ed” suffix, and present alternates between the bare verb and “-s,” producing overlapping activations. This pattern
highlights that steering future tense is more straightforward, whereas disentangling past versus present remains
challenging due to subtle morphological distinctions and semantic overlap.

La | Past | Present | Future
yer
| Feature o« | Feature o« | Feature o
15316 10.0 5112 4.0 702 1.5
23112 7.0 7890 8.0 5112 1.5
28855 10.0 15706 6.0 7890 3.0
30777 9.0 26492 10.0 12722 8.0
30777 7.0 15316 7.0
15 15706 2.0
23112 5.0
26492 1.5
28855 2.0
30777 1.5
32090 1.5
1221 8.0 3638 4.0 1221 3.0
3638 7.0 5215 6.0 3638 2.0
7895 9.0 3689 5.0
9951 7.0 5215 8.0
23504 8.0 6922 1.5
25624 3.0 7895 9.0
16 9951 1.5
12508 1.5
17716 1.5
23504 1.5
25624 4.0
28602 2.0
32043 7.0

Table 9: Tense features identified from multilingual SAEs at layers 15 and 16. For each target tense, we report
feature indices and their optimal scaling factor o on the dev set (30 prompts per tense). Higher « indicates a weaker
baseline signal requiring stronger scaling, while lower « reflects robust intrinsic tense encoding. Both tense-specific
and tense-agnostic features are included.
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Setting Fy= a | Past features | Presentfeatures | Future features
| Pas Pre Fut | Pas Pre Fut | Pas Pre Fut

A — | 081 039 076|081 039 076|081 039 0.76
Baseline Bl 1.0 013 009 0.14 | 013 009 0.14 | 013 0.09 0.14
B2 1.0 081 039 077|081 039 077|081 039 0.77

20| 082 040 0.80 | 080 041 078 | 0.81 040 0.79

50| 084 036 085|077 042 081 | 0.83 038 0.87
a>1 16 20| 081 040 078 | 080 042 077 | 0.80 041 0.78
50| 082 035 081|077 048 078 | 0.77 045 0.79
20| 082 039 081|079 042 078 | 0.80 041 0.81

15

Both
50| 080 036 084|072 050 081|076 048 0.82
15 0.1] 080 040 074 | 082 039 076 | 080 039 0.75
00| 079 040 074 | 082 039 076 | 080 039 0.75
o<1 16 0.1 0.81 039 0.76 | 0.81 0.38 0.77 | 0.81 0.38 0.77
0.0 | 0.81 0.39 0.76 | 0.81 038 0.78 | 0.81 038 0.77
Both 0.1 0.78 040 0.73 | 0.81 0.37 0.76 | 0.81 0.40 0.75

00| 078 040 073 | 081 037 076 | 081 039 0.75

Table 10: Model steering results on English test set. Baseline A: Original model; Baseline B1: LLaMA Scope SAEs
at layers 15, 16; Baseline B2: Multilingual SAEs at layers 15, 16; Fy« denotes the layer(s) where SAE adaptors
are applied during inference, and « is the scaling factor. Feature columns report accuracy when these features are
scaled. (Highlighted) cells mark excitation that outperforms the baselines. In inhibition settings, lower accuracy
indicates successful downward control.

Setting ~ Fy« o | Past features | Present features | Future features

| Pas Pre Fut | Pas Pre Fut | Pas Pre Fut

Baseline — | 0.63 060 044 | 063 060 044 | 0.63 0.60 0.44
) B 1.0 | 063 061 043|063 061 043 ] 063 061 043
15 20| 064 063 044 | 063 062 044 | 064 064 043

50| 068 065 042|061 066 042 | 066 064 044

a>1 16 20| 063 062 043|062 064 042 | 061 063 042
50| 065 065 042|057 071 040 | 058 0.68 0.38

Both 20| 065 065 044|062 066 042 | 063 066 043

50| 067 059 044|053 072 038|056 069 0.36

15 01| 062 059 044 | 064 060 044 | 063 058 044

00| 062 058 044 | 064 059 044 | 063 058 044

a<1 16 0.1 ] 063 059 044 | 064 060 045 | 064 059 045
00| 063 059 044|064 059 045|064 059 045

Both 0.1 | 063 058 044|064 057 046 | 064 057 045

00| 063 058 044 | 0.65 057 046 | 064 057 045

Table 11: Model steering results on German test set using the tense features found in English dataset. Baseline A:
Original model; Baseline B: Multilingual SAEs at layers 15, 16; Fy indicates the layer indices where SAE adaptors
are hooked to the model during inference. « is the scaling factor. Feature columns report accuracy after scaling.
(Highlighted) cells mark excitation that outperforms the baselines. In inhibition settings, lower accuracy indicates
successful downward control.

264



