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Abstract
Cross-lingual information retrieval (CLIR)
helps users find documents in languages dif-
ferent from their queries. This is especially im-
portant in academic search, where key research
is often published in non-English languages.
We present CLIRudit, a novel English-French
academic retrieval dataset built from Érudit, a
Canadian publishing platform. Using multilin-
gual metadata, we pair English author-written
keywords as queries with non-English abstracts
as target documents, a method that can be ap-
plied to other languages and repositories. We
benchmark various first-stage sparse and dense
retrievers, with and without machine transla-
tion. We find that dense embeddings without
translation perform nearly as well as systems
using machine translation, that translating doc-
uments is generally more effective than trans-
lating queries, and that sparse retrievers with
document translation remain competitive while
offering greater efficiency. Along with releas-
ing the first English-French academic retrieval
dataset, we provide a reproducible benchmark-
ing method to improve access to non-English
scholarly content.

1 Introduction

Cross-lingual information retrieval (CLIR) helps
users find documents written in languages different
from their search queries. This removes the need
for proficiency in multiple languages and makes
it easier to access valuable information that might
otherwise be missed because of language barriers.

CLIR is especially important for academic re-
search. While English is the main language for sci-
entific communication, important work often exists
in other languages, particularly in certain fields and
historical contexts (Pölönen, 2020; Beigel and Di-
giampietri, 2022; Khanna et al., 2022). Researchers
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French title
French subtitle
French abstract
French keywords

English title
English subtitle
English abstract
English keywords

Paper #16,389

French title
French subtitle
French abstract
French keywords

English title
English subtitle
English abstract
English keywords

Paper #4
French title
French subtitle
French abstract
French keywords

English title
English subtitle
English abstract
English keywords

Paper #3
French title
French subtitle
French abstract
French keywords

English title
English subtitle
English abstract
English keywords

Paper #2
French title
French subtitle
French abstract
French keywords

English title
English subtitle
English abstract
English keywords

Paper #1
D1:      Title 1. Subtitle 1. Abstract 1.
D2:      Title 2. Subtitle 2. Abstract 2.
…
D16389:  Title 16389. Subt 16389. Abs 16389.

Q1:      Keywords 1A, 1B, 1C
Q2:      Keywords 1A, 1B, 1D
Q3:      Keywords 1A, 1C, 1D
Q4:      Keywords 1B, 1C, 1D
…
Q357710: Keywords 16389B, 16389C, 16389D

Documents

Queries

Qrels
Q1,D1 Q2,D1 Q3,D1 Q4,D1
… 
Q357710,D16389

Academic papers
corpus

Cross-lingual
information retrieval dataset

Figure 1: The CLIRudit dataset. We use articles with
abstracts and keywords in both French and English. En-
glish keywords form the queries, with relevance judged
by their presence in each article. Documents consist of
the French title, subtitle, and abstract.

may overlook key work if they cannot search across
languages, especially if they’re unfamiliar with
technical terms. English is also often used due to
the expectation of finding more results, reinforcing
bias against documents in other languages.

Modern information retrieval (IR) systems often
use bi-encoder architectures for first-stage retrieval,
separately encoding documents and queries as
dense embeddings (Devlin et al., 2019; Karpukhin
et al., 2020; Xiong et al., 2021). Multilingual ex-
tensions of these methods have been effective in
general-domain CLIR (Artetxe and Schwenk, 2019;
Conneau et al., 2020; Anastasopoulos and Neubig,
2020; Asai et al., 2021a; Nair et al., 2022; Zhang
et al., 2023a). Another common approach is to
use machine translation (MT) to convert queries or
documents to the same language before searching
(Galuščáková et al., 2022; Lin et al., 2022; Huang
et al., 2023; Lawrie et al., 2024).

Technical texts often use specialized vocabulary
and styles that present challenges for MT and mul-
tilingual embeddings (Lawrie et al., 2024; Litschko
et al., 2025). However, research on CLIR in tech-
nical domains is limited (Xu et al., 2016; Zavorin
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et al., 2020), and studies focusing specifically on
academic content are even scarcer, typically rely-
ing on small, curated datasets (Lawrie et al., 2024).
As a result, the effectiveness of CLIR methods for
academic retrieval remains underexplored.

We address this gap by introducing a dataset for
cross-lingual academic search and benchmarking
first-stage retrieval methods. Our contributions are:

• A new method for creating academic CLIR
datasets using multilingual metadata. We use En-
glish keywords as queries and non-English ab-
stracts as documents, allowing evaluation of IR
methods on retrieving original-language documents
based on author-provided English keywords. This
method can be applied to other academic databases
and language pairs.

• The release of CLIRudit, a dataset based on Éru-
dit, a Quebec-based non-profit publishing platform
(Fig. 1).1 To our knowledge, this is the first dataset
for English-French academic retrieval.

• A thorough empirical comparison of first-stage
CLIR methods, including query and document
translation, and state-of-the-art dense and sparse
retrievers.

• Practical insights to improve the discoverability
of non-English scholarly content, which is espe-
cially relevant for academic publishing platforms.

Our results show that dense embeddings without
translation perform nearly as well as those using
MT. Document translation generally improves re-
trieval more than query translation. While sparse
retrievers combined with document translation may
not surpass the best dense multilingual methods,
they remain competitive and offer advantages in
search speed and indexing efficiency.

2 Related work

This section reviews relevant research on academic
CLIR, focusing on first-stage retrieval methods,
datasets, and bilingual academic corpora.

2.1 Cross-lingual retrieval

Lin et al. (2022) proposed a conceptual framework
for CLIR, outlining three main strategies for first-
stage retrieval: document translation (DT), trans-
lating documents into the query language; query

1https://hf.co/datasets/ftvalentini/clirudit

translation (QT), translating queries into the docu-
ment language; and language-independent repre-
sentations, encoding queries and documents into a
shared vector space for direct retrieval. Since we
focus on single-stage retrieval, we do not address
later steps of a retrieval pipeline, such as re-ranking
or results fusion.

Translation-based methods have been widely
used and generally effective, although their success
has varied across domains and language pairs. DT
combined with neural ranking has shown strong
performance in general-domain tasks (Lin et al.,
2022; Lawrie et al., 2023b; Lassance et al., 2023),
often outperforming QT, which struggles with
short, ambiguous queries and limited training data
(Galuščáková et al., 2022). However, DT is not
a clear winner, with QT performing better in do-
mains like healthcare (Saleh and Pecina, 2020) and
in high-resource languages (Huang et al., 2023).

Alternative approaches like probabilistic struc-
tured queries (PSQ) generate multiple plausible
translations per term using alignment models, offer-
ing more flexibility than standard machine transla-
tion (Darwish and Oard, 2003; Yang et al., 2024c).

Early studies found a strong link between trans-
lation quality and retrieval effectiveness (Zhu and
Wang, 2006), but later work found that better MT
doesn’t always improve retrieval, particularly in
specialized domains (Pecina et al., 2014). Recent
research suggests a weak positive correlation (Boni-
facio et al., 2022) with diminishing returns beyond
a certain MT quality level (Zhang and Misra, 2022).

Multilingual bi-encoders avoid MT entirely by
using multilingual pretrained models (Jiang et al.,
2020; Bonifacio et al., 2022; Nair et al., 2022,
2023). These methods can reduce indexing costs
but often perform worse than MT-based retrieval,
with QT or DT followed by monolingual re-
trieval frequently achieving better first-stage results
(Litschko et al., 2019; Asai et al., 2021a; Lin et al.,
2022; Nair et al., 2023; Lawrie et al., 2023b).

Recent methods like translate-train (Nair et al.,
2022) and translate-distill (Yang et al., 2024b) in-
tegrate MT into training, allowing bi-encoders
to jointly learn retrieval and translation; unlike
translate-test methods like DT and QT, which trans-
late only at test-time. Translate-distill further uses
distillation from cross-encoders, achieving strong
results across multiple languages. Additionally,
large decoder-only language models (LLMs) have
been adapted as bi-encoders for dense retrieval (Lee
et al., 2024; Li et al., 2025).
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2.2 CLIR datasets

Well-documented and diverse datasets are crucial
for advancing CLIR because they enable training
and evaluation across languages and domains.

Shared evaluation initiatives like TREC
(Voorhees, 2005) and CLEF (Chen, 2002)
provide manually curated test collections with
human-generated queries and relevance judgments
gathered by pooling top-ranked results. NeuCLIR
(TREC 2022) focuses on neural CLIR, alongside
other datasets such as BETTER (Soboroff, 2023)
and HC4 (Lawrie et al., 2022). While these
collections are usually carefully designed, they
are typically small, often with fewer than 1,000
queries. Galuščáková et al. (2022) provide a
comprehensive survey of such resources.

Sentence-level retrieval datasets are also com-
mon, such as BUCC, Tatoeba (Siddhant et al.,
2020), and STS17/STS22 (Cer et al., 2017; Chen
et al., 2022), which focus on matching similar sen-
tences across languages.

To address scale limitations, recent work has
explored automatic dataset creation. For exam-
ple, Mayfield et al. (2023) used LLMs to generate
English queries from target-language documents.
Wikipedia’s multilingual, structured content has
also been used for automatic dataset creation, as
seen in MuSeCLIR (Li et al., 2022), MKQA (Long-
pre et al., 2021), WikiCLIR (Sasaki et al., 2018),
CLIRMatrix (Sun and Duh, 2020), and AfriCLIR-
Matrix (Ogundepo et al., 2022).

2.3 Academic datasets

Some prior datasets address CLIR in technical
domains. For example, Xu et al. (2016) study
cross-language technical question retrieval, CLEF
eHealth simulates medical search by non-experts
(Galuščáková et al., 2022), and MATERIAL cov-
ers law, security, and health topics (Zavorin et al.,
2020). A close reference to our work is Neu-
CLIR 2023’s technical track, which contains 40
English queries to retrieve Chinese academic ab-
stracts across Chemistry, Economics, Physics, Biol-
ogy, and Medicine (Lawrie et al., 2024). NeuCLIR
2024 also featured a technical task but their pro-
ceedings were unavailable at the time of writing.

Beyond CLIR-specific datasets, some parallel
academic corpora similar to the one we use in-
clude academic metadata aligned across languages.
SciPar (Roussis et al., 2022) compiles bilingual
titles and abstracts from theses and dissertations.

Other examples mentioned in Roussis et al. (2022)
include SciELO (Neves et al., 2016, English,
Portuguese, Spanish), ASPEC (Nakazawa et al.,
2016, English, Japanese, Chinese), CAPES (Soares
et al., 2018, Brazilian academic works), and EDP
(Névéol et al., 2018, English-French biomedical
texts). In the biomedical domain, MEDLINE (Wu
et al., 2011) and BVS (Soares and Krallinger, 2019)
provide multilingual aligned abstracts. Niu and
Jiang (2024) introduce a dataset of translated ab-
stracts from journals in translation studies.

These corpora mainly support MT by provid-
ing parallel abstracts and titles, often with aligned
sentences. Our work differs by using keywords as
queries of a CLIR dataset. Among existing cor-
pora, only CAPES and BVS include multilingual
keywords suitable for this task, but they are not
publicly available at the time of writing.

3 Evaluation data
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Figure 2: Number of queries per disciplines in the
CLIRudit dataset. A query inherits the disciplines of
the articles containing its keywords. Since queries can
originate from multiple articles and articles can have
multiple disciplines, percentages do not sum to 100%.

To evaluate academic CLIR methods, we built
CLIRudit using data from Érudit2, a Quebec-based
Canadian platform that publishes research in the
arts, humanities, and social sciences. Érudit’s jour-
nals are selected by a scientific committee and meet
national quality standards, ensuring the relevance
and quality of the content.

We focused exclusively on research articles that
included both English and French abstracts and
keywords, provided by the authors. From each

2https://www.erudit.org/en/
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article’s metadata, we extracted the title, subtitle,
abstract, and keywords.

Following the standard CLIR task setup, with
English queries targeting non-English documents
(Lawrie et al., 2023a, 2024), we built the dataset as
follows (see Fig. 1 for an overview):

• Queries. Created by combining all possible
groups of three English keywords from each article;
e.g., an article with keywords {A, B, C, D} gener-
ates the queries: “A,B,C”, “A,B,D”, “A,C,D”,
and “B,C,D”.

• Relevance judgments. A document was marked
relevant to a query if its English keyword metadata
included all three query keywords. This is based
on the assumption that authors try to make their
work discoverable via those terms.

• Document collection. Each document or re-
trieval unit was built as the concatenation of its
French title, subtitle, and abstract.

We chose three-keyword combinations for
queries based on preliminary observations. Using
only two keywords produced overly broad queries
which could apply to many documents even if
those specific terms weren’t used by the authors;
e.g., “family dynamics, gender identity” or “canada,
québec”. In contrast, using more than three key-
words led to overly narrow queries that were un-
likely to reflect realistic user search behavior.

The final dataset contains 357,710 queries de-
rived from 41,594 unique English keywords, with
an average query length of 4.8 words (SD = 1.7);
and 16,389 French documents from 124 journals
across 25 disciplines, with an average document
length of 176.7 words (SD = 82.4). Because of the
way the dataset was built, all documents in the col-
lection are relevant to at least one query. 99.3% of
queries have only one relevant document, showing
that most three-keyword combinations are unique
to a single article, which highlights the specificity
of the queries.

84.9% of the abstracts in the dataset come from
articles whose primary language is French, 14.3%
from English, and 0.9% from other languages. The
most frequent disciplines in the queries are Human-
ities and Social Sciences, Water and Environment,
Sociology, and Anthropology and Ethnology (full
distribution in Fig. 2).

CLIRudit simulates a scenario where users know
only the relevant terms in English, while the per-

tinent documents are only in French, with no di-
rect translations available. Our pipeline offers a
reproducible method to build CLIR datasets for
academic search. Rather than relying on complex
heuristics, it leverages the inherent bilingual struc-
ture of scientific publications. While this work
focuses on English-French retrieval, the method
can be extended to other databases and language
pairs, facilitating research in cross-lingual scientific
retrieval.

4 Models and methods

This section describes the retrieval and MT meth-
ods, and evaluation metrics used for benchmarking.

4.1 Retrievers
We tested lexical, sparse, and dense first-stage re-
trievers, all operating as bi-encoders, encoding
queries and documents separately. Due to our rela-
tively small document collection, we used exhaus-
tive nearest-neighbor search. We prioritized well-
documented, open-source models.

Dense multilingual retrievers. We evaluated
three state-of-the-art bi-encoders for direct CLIR
without translation, as they are pretrained and fine-
tuned on multilingual data: mE53 (Wang et al.,
2024), mGTE-dense4 (Zhang et al., 2024), and
BGE-m-gemma25 (Li et al., 2025). While mGTE-
dense and BGE-m-gemma2 are fine-tuned on some
cross-lingual tasks involving mixed-language in-
puts, mE5 is trained on multilingual but not ex-
plicitly cross-lingual data, which may affect CLIR
performance.

Dense English retrievers. We included English-
focused models to assess two approaches: (1) re-
trieving French documents translated to English, or
(2) leveraging cross-lingual transfer, where mod-
els, fine-tuned mainly on one language, perform
well on other languages for the same task (Artetxe
and Schwenk, 2019; Asai et al., 2021b; Zhang
et al., 2023a). We assessed two top English MTEB
(Muennighoff et al., 2023) performers as of early
2025: NV-Embed-v26 (Lee et al., 2024), and BGE-
EN-ICL7 (Li et al., 2025). Though targeting En-
glish, these models have some multilingual fine-
tuning (including French), and their Mistral-7B
backbone (Jiang et al., 2023) may also have had

3intfloat/multilingual-e5-large
4Alibaba-NLP/gte-multilingual-base
5BAAI/bge-multilingual-gemma2
6nvidia/NV-Embed-v2
7BAAI/bge-en-icl
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multilingual pretraining. but this information is not
publicly available.

French-specialized dense retrievers. Few
dense retrievers specialize in non-English lan-
guages, and those that do are developed by open
source communities and lack thorough documen-
tation. We considered these top performers on the
MTEB French benchmark (Ciancone et al., 2024):
Croissant8 (from CroissantLLM, Faysse et al.,
2024), Solon9, and Lajavaness10, all of which are
bilingual at some degree as they include English
data in pre-training or fine-tuning.

Dense multi-vector retrievers. ColBERT-style
models encode queries and documents into token-
level embeddings, enabling fine-grained late inter-
action and pre-computation of document represen-
tations, with strong performance in out-of-domain
retrieval (Khattab and Zaharia, 2020; Santhanam
et al., 2022b). PLAID (Santhanam et al., 2022a) im-
proves speed using clustering and centroid-based
interaction. We tested PLAID-X11 (Yang et al.,
2024a), a multilingual ColBERT variant trained via
translate-distill, distilling signals from an English
cross-encoder and translated passages. It uses mul-
tilingual batching to support English queries and
French, German, and Spanish documents.

Sparse retrievers. These encode queries and
documents as term-weighted vectors, enabling effi-
cient retrieval with inverted indexes (Formal et al.,
2022). We tested BM25 (Robertson et al., 2009), a
strong exact-match baseline (Thakur et al., 2021),
used on inputs translated into a common language.

Learned sparse models improve retrieval by ex-
panding terms through supervised training (Lin
et al., 2022). We assessed SPLADE++12 (mono-
lingual, requires MT into English); and the mul-
tilingual mGTE-sparse (Zhang et al., 2024) and
BGE-M3-sparse (Chen et al., 2024), which al-
low cross-lingual retrieval but lack term expansion,
limiting performance when queries and documents
share few tokens. We excluded BLADE (Nair et al.,
2023), a cross-lingual SPLADE variant with term
expansion, due to the lack of an English-French
version. Additionally, BLADE has demonstrated
lower effectiveness compared to PLAID-X, which
we included in our evaluation.

Finally, we tested PSQ (Yang et al., 2024c),

8manu/sentence_croissant_alpha_v0.3
9OrdalieTech/Solon-embeddings-large-0.1

10Lajavaness/bilingual-embedding-large
11plaidx-large-clef-mtd-mix-passages-mt5xxl-engeng
12naver/splade-cocondenser-ensembledistil

which enables sparse CLIR without conventional
MT by indexing documents in query language to-
kens using a probabilistic alignment matrix (Yang
et al., 2024b).

See Appendix A for further details on the models
and their implementations.

4.2 Machine translation

We tested three machine translation models:
• GPT-4o-mini13. Recent work shows LLMs per-
form well on document-level MT (Kocmi et al.,
2023; Zhang et al., 2023b; Pang et al., 2025). We
used a cost-efficient proprietary model which per-
formed competitively on high-resource language
pairs (Hendy et al., 2023; Zhu et al., 2024).
• Llama-3.2. We used the 3.2B-parameter version
as an open-source LLM alternative to GPT, with
strong zero-shot capabilities in French to English
translation (Zhang et al., 2023b). Open-source
models can be advantageous for cost-efficiency and
for the ability to fine-tune on domain-specific data.
• OpusMT, a 75M-parameter French-English Mar-
ianMT encoder-decoder model (Tiedemann et al.,
2023) trained on Opus parallel data14. While de-
signed for sentence-level MT, we applied it at the
document level following Cui et al. (2024). It sup-
ports up to 512 tokens, far fewer than the 100k+
limits of GPT and Llama.

For LLM translation we used a zero-shot prompt
suited for instruction-tuned LLMs (details in Ap-
pendix B). We did not test other strong proprietary
translators due to lack of cost-efficient APIs.

Finally, as gold standard translations, we used
the English translations of the French titles, subti-
tles, and abstracts provided by the article authors.
These reflect the potential performance of each re-
trieval method using human translations. We did
not use the actual French keywords as “gold stan-
dard” queries since they do not map one-to-one
to the English keywords; using them would alter
the original set of evaluation queries and introduce
noise into the analysis.

4.3 Evaluation metrics

To measure retrieval performance, we use Re-
call@100 and Mean Average Precision with a 1000
cutoff rank (MAP), which have been widely used
(Nair et al., 2023; Lawrie et al., 2024; Yang et al.,
2024c). Whereas Recall@100 is useful to assess

13gpt-4o-mini
14Helsinki-NLP/opus-mt-fr-en
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the effectiveness of methods when used as first-
stage retrievers, MAP is more appropriate for mea-
suring overall performance of a method used as a
single-stage system (Yang et al., 2024c). We com-
pute 95% bootstrap confidence intervals with 1,000
resamples to assess statistical significance.

To evaluate document translation quality, we
used three metrics used in recent works (Sun et al.,
2022; Zhang et al., 2022; Zhuocheng et al., 2023):
BLONDE (Jiang et al., 2022), document-BLEU
(d-BLEU, Liu et al., 2020), and document-chrF
(d-chrF, Zhuocheng et al., 2023).

5 Results and analysis

This section analyzes the performance of retrieval
and translation models on CLIRudit (Table 1). Due
to the large sample size, no confidence interval
width exceeded 0.003. Intervals are omitted here
for readability (see Appendix C). To account for
input length effects, we evaluated each method
both at its native input limit and with the same
512-token limit. Results differed by no more than
0.005 from the reported values, small enough to
not affect general trends.

We now discuss key findings from the results.
1. Without translation, dense retrievers excel,

even without multilingual retrieval fine-tuning.
NV-Embed-v2 and PLAID-X achieved the highest
MAP, while BGE-m-gemma2 led in Recall@100.
Interestingly, NV-Embed-v2 is not reported to have
multilingual capabilities; though its fine-tuning
data, which is English-only for retrieval, includes
French in STS17 and STS22 sentence pairs (Cer
et al., 2017; Chen et al., 2022).

BM25 with the French analyzer performed
poorly without MT due to the query-document lan-
guage mismatch, but still had non-zero results. This
shows CLIRudit has some query-document lexical
overlap; manual inspection revealed shared terms
like proper nouns, Latin terms, and acronyms.

Among sparse models, SPLADE++ outper-
formed mGTE-sparse and BGE-M3-sparse, likely
thanks to query expansion mitigating the language
mismatch. PSQ addresses this mismatch via prob-
abilistic translation, reaching MAP comparable to
larger dense models like mE5 and mGTE-dense.

2. Document translation can improve dense
retrievers. DT with GPT-4o-mini improved dense
retriever MAP by up to 10% and Recall@100 by up
to 5% (Fig. 3, left). The highest MAP overall came
from NV-Embed-v2+DT and PLAID-X+DT with

GPT-4o-mini. However, translation sometimes hurt
performance, especially with QT, affecting models
like mE5, BGE-EN-ICL, and even top-performing
ones like NV-Embed-v2 and PLAID-X.

Manual review showed QT can reduce recall by
mistranslating proper nouns with identical cross-
language spelling. For example, “Goose Bay” (a
Canadian town) was incorrectly translated as “Baie
aux Oies” instead of remaining unchanged.

3. Document translation usually outper-
formed query translation for sparse retrievers.
Translation had a modest effect on dense models
but significantly boosted sparse retrieval. More-
over, DT consistently outperformed QT (Fig. 3
right), especially for BM25 and SPLADE++, with
SPLADE++ plus DT nearing the top dense retriever
MAP, and also outperforming the PSQ probabilistic
translation method (Table 1).

While DT may offer richer context than QT
(Galuščáková et al., 2022; Lin et al., 2022), DT out-
performing QT is expected for SPLADE++ since
it’s trained only in English. In contrast, mGTE-
sparse and BGE-M3-sparse performed similarly
with QT and DT.

Manual inspection of BM25 cases where DT
outperformed QT shows that DT can preserve key
terms better. For example, “fair innings” cor-
rectly remains unchanged with DT to English, but
translating the query to French yields “juste part”,
which isn’t in the original document. Similarly,
the term “beck” in a query about the surname of
a social scientist is correctly preserved in DT, but
mistranslated as “appel” in the query (French for
“call”), making the document irretrievable.

4. Document translation quality correlated
with retrieval performance. GPT-4o-mini led
in document translation quality (BLEU=34.41,
BLONDE=49.32, chrF=63.83), followed closely
by Llama (BLEU=31.27, BLONDE=46.52,
chrF=61.56), with OpusMT trailing far behind
(BLEU: 10.77, BLONDE: 19.35, chrF: 36.15).
This ranking mirrors their retrieval performance,
where GPT-4o-mini systematically outperformed
Llama, which in turn outperformed OpusMT
(Table 1). While these results indicate a correlation
between translation and retrieval quality, quantify-
ing MT’s exact contribution requires further study
beyond the scope of this paper.

5. Top dense retrievers approached gold
translation recall. Models like NV-Embed-v2,
BGE-m-gemma2, BGE-EN-ICL, and PLAID-X,
performed close to their gold translation recall (Fig.

231



MAP Recall@100

Machine
Trans. (→) None Query

(GPT4)
Doc. Gold None Query

(GPT4)
Doc. Gold

Retriever (↓) Opus Llama GPT4 Opus Llama GPT4

mE5 0.434 0.412 0.448 0.480 0.490 0.526 0.784 0.760 0.790 0.817 0.823 0.840
mGTE-dense 0.450 0.445 0.452 0.459 0.468 0.496 0.820 0.813 0.820 0.834 0.837 0.849
BGE-m-gemma2 0.571 0.543 0.533 0.548 0.560 0.571 0.903 0.895 0.894 0.908 0.910 0.917
NV-Embed-v2 0.580 0.575 0.541 0.569 0.586 0.600 0.895 0.889 0.866 0.887 0.892 0.894
BGE-EN-ICL 0.507 0.441 0.411 0.486 0.501 0.535 0.857 0.810 0.760 0.831 0.837 0.861
Croissant 0.358 0.365 0.325 0.345 0.357 0.376 0.793 0.794 0.748 0.773 0.781 0.794
Solon 0.507 0.516 0.502 0.520 0.536 0.555 0.856 0.858 0.845 0.860 0.866 0.870
Lajavaness 0.472 0.454 0.431 0.457 0.470 0.486 0.848 0.838 0.817 0.836 0.843 0.849
PLAID-X 0.578 0.548 0.539 0.572 0.586 0.605 0.870 0.854 0.845 0.869 0.874 0.879
SPLADE++ 0.284 0.426 0.530 0.548 0.572 0.609 0.604 0.753 0.836 0.853 0.864 0.875
mGTE-sparse 0.169 0.434 0.401 0.405 0.428 0.487 0.443 0.763 0.737 0.760 0.771 0.805
BGE-M3-sparse 0.177 0.458 0.413 0.434 0.460 0.511 0.449 0.781 0.738 0.763 0.778 0.807
BM25 0.181 0.390 0.488 0.513 0.549 0.611 0.417 0.706 0.789 0.815 0.832 0.861
PSQ 0.440 - - - - - 0.756 - - - - -

Table 1: MAP and Recall@100 in CLIRudit. Best column scores are in bold; best row scores per metric are
underlined, excluding gold translation. Statistical significance is shown in Appendix C for better readability.
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Figure 3: % difference in MAP and Recall@100 of document translation (red) and query translation (blue)
compared to no translation. Positive (negative) values indicate improvement (degradation) with translation. For ease
of visualization, sparse models are shown with a different scale and only GPT translation is considered.

4). Except for BGE-m-gemma2, gaps in MAP were
larger, indicating potential for better ranking.

Sparse models BM25 and SPLADE++ achieved
the highest MAP with gold translations (Table 1),
highlighting the impact of translation quality. Be-
cause CLIRudit queries are keywords and docu-
ments are abstracts, sparse models naturally per-
form well with accurate translations. SPLADE’s
smaller gap to gold as compared to other sparse
methods suggests greater robustness to translation
errors, likely due to query expansion.

6. Performance varies significantly across
disciplines. Considering the best-performing ap-
proach for each retriever, MAP was on average
higher in Industrial Relations, Theology, Women’s
Studies, Psychology, Management, and Economics,
and lower in Philosophy and Law (Fig. 5). While
Croissant was typically the weakest across disci-

plines, no translation-retriever combination consis-
tently outperformed the others.

6 Discussion

Dense single-vector retrievers based on large
decoder-only models (e.g., NV-Embed-v2, BGE-m-
gemma2) achieve near gold translation-augmented
performance without additional training, which
may result from pretraining on large corpora and
cross-lingual transfer capabilities. A smaller,
CLIR-specialized model, PLAID-X, also per-
formed competitively; at the expense of needing
language- and task-specific training data and hav-
ing higher search latency due to its multi-vector
design (Santhanam et al., 2022a). Both dense ap-
proaches avoid the overhead of translating the en-
tire corpus, but large models may incur high index-
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Each dot represents a method’s MAP in a discipline’s
queries, using its best translation method (excluding
gold). Dot colors indicate retrievers: Croissant (pink)
often performs worst, while the best varies by discipline.

ing costs on large collections.
Sparse retrievers, lexical or learned, offer faster

indexing and search, but need translation to nar-
row the gap with dense methods, and still fall
short in overall performance. DT outperformed
QT, likely because it provides richer context; and it
can be done offline, which is important when using

costly MT systems. QT enables quicker experi-
mentation by avoiding corpus reindexing with each
new model, but usually with lower accuracy (Lin
et al., 2022; Galuščáková et al., 2022). Ultimately,
the choice of method comes down to balancing re-
trieval performance, indexing and search latency,
and translation costs.

Our dataset uses keyword-based queries, reflect-
ing how authors describe their work to make it
discoverable. This assumes users know the right
keywords, shifting the dataset challenge to lan-
guage differences in a technical domain rather than
query formulation. This allows meaningful analy-
sis, though it’s unclear how system rankings might
change with other types of queries, e.g., natural lan-
guage questions. Our approach aligns with other
datasets using non-natural or generated queries,
such as SCIDOCS, DBPedia (Thakur et al., 2021),
WikiCLIR (Sasaki et al., 2018), and CLIRMatrix
(Sun and Duh, 2020).

Like all IR datasets, ours has limitations in
scope and collection method, so we encourage
evaluation on many, diverse datasets. As the first
English-French academic retrieval dataset, CLIRu-
dit adds to this diversity and complements existing
resources.

7 Conclusions

We introduced a method for building CLIR datasets
from bilingual metadata in scientific publications.
By using keywords as queries and abstracts as doc-
uments, this approach enables automated, scalable
creation of large evaluation resources without man-
ual annotation or complex heuristics. We applied
it to produce CLIRudit, the first English-French
CLIR dataset for academic search, based on a real-
world database.

Evaluations of single-stage methods on CLIRu-
dit showed that: (1) state-of-the-art dense bi-
encoders achieved strong cross-lingual perfor-
mance without translation, nearing monolingual
retrieval with gold translations; (2) sparse retrievers
with document translation were competitive; and
(3) document translation generally outperformed
query translation, likely due to richer context.

These results have practical implications for aca-
demic search systems. Large dense retrievers de-
liver the best performance, but the strong results of
sparse retrievers with document translation suggest
a viable alternative that may be more practical to
implement at scale. This is particularly relevant
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for academic publishing platforms like Érudit that
aim to make their content more discoverable to
researchers.

Our method can be applied to other academic
databases and language pairs, supporting broader
research in cross-lingual access to scientific knowl-
edge.

Limitations

Our dataset’s document collection includes only rel-
evant documents, unlike in real applications where
relevant documents might coexist with a much
larger collection. The values reported may not be
representative of real-world settings. The reported
metrics should be used to compare methods rather
than to provide absolute performance estimates,
which is standard practice in IR research (Thakur
et al., 2021).

Our dataset may also contain some false neg-
atives: some relevant documents may not be la-
beled as such if some authors did not include some
suitable keywords in the metadata, while others
did. However, because queries consist of three key-
words, they are relatively specific, likely reducing
false negatives, as it is unlikely that there is more
than one document in the collection relevant to a
narrow query.

We found that the proprietary GPT-4o-mini LLM
outperformed the open-source Llama 3.2 and the
smaller OpusMT encoder-decoder for zero-shot
translation. Further exploration with few-shot
prompting or fine-tuning may improve the perfor-
mance of the open-source models. In addition,
OpusMT is not optimized for document translation,
so using sentence-level translation may be more
optimal. However, this approach requires a more
complex pipeline with sentence splitting and risks
losing cross-sentence coherence.

Possible data contamination is a concern for fair
evaluation: our test set may appear in the training
data of pre-trained models, especially LLMs used
for translation and retrievers initialized from LLMs,
such as NV-Embed-v2 and BGE-m-gemma2. This
could lead to inflated results, but is difficult to ver-
ify due to the lack of information about the exact
training data of these models (Sainz et al., 2023;
Oren et al., 2024).

Our dataset is limited to keyword-based queries
and metadata-only documents. Results may differ
with other query types, e.g. natural language ques-
tions, or full-text documents. Future work could

explore approaches that use other types of queries
or full-text representations. We also focused on
French, a high-resource language; performance
may vary in low-resource settings due to lower
translation quality and limited training data for re-
trievers.

We tested single-stage retrieval without re-
ranking, fusion, or pseudo-relevance feedback (Lin
et al., 2022). Including these techniques could en-
hance performance and reveal additional insights
into CLIR system design. We also did not analyze
the computational costs of translation, retrieval, or
indexing, as explored in prior work (Rosa et al.,
2021; Nair et al., 2023). Such analysis would be
valuable for assessing the trade-offs between effec-
tiveness and efficiency in practical deployment. Ad-
ditionally, we did not fine-tune or train any retrieval
models on our dataset. Training on domain-specific
data could potentially lead to better performance,
both on our dataset and on others.
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A Retrievers

Table 2 provides an overview of the retrievers eval-
uated in our study.

Inference with neural models was run using 16-
bit floating point (fp16) inference on two NVIDIA
A30 GPUs, each with 24GB of memory.

BGE-EN-ICL, BGE-m-gemma2, and NV-
Embed-v2 require appending task-specific instruc-
tions before encoding the queries, which we did
following the authors’ templates. BGE-EN-ICL
(Li et al., 2025) was used in its zero-shot mode,
i.e., without in-context examples appended to the
queries.

We also experimented with BGE-M3-dense15

(Chen et al., 2024), which we excluded from the
body of the paper because it did not show improved
performance or valuable insights.

We implemented BM25 using Pyserini with de-
fault parameters and language-specific analyzers
(Lin et al., 2021). For PSQ, we used the fast_psq
implementation by Yang et al. (2024c)16 with de-
fault parameters. We used the English-French ma-
trix trained on 17.6M parallel sentences provided
by Yang et al. (2024c).

B Translation

For LLM-based translation, we used a zero-shot
prompt inspired by established best practices for

15https://hf.co/BAAI/bge-m3
16https://github.com/hltcoe/PSQ
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Retriever Type Pre-train. Lang. Fine-tuning Lang. #Params. Emb. Dim. Max. Len.

mE5

Dense
(single-
vector)

Multilingual

Mostly English 560M 1024 512
mGTE-dense Mostly English, Chinese 305M 768 8192
BGE-m-gemma2 Mostly English, Chinese 9.2B 3584 8192
Solon French 560M 1024 512
Lajavaness French-English 560M 1024 512

Croissant French-English French-English 1.3B 2048 2048

NV-Embed-v2 Unknown Mostly English 7.8B 4096 32768
BGE-EN-ICL Mostly English 7.1B 4096 512

PLAID-X
Dense
(multi-
vector)

Multilingual English, French,
German, Spanish

560M 128
per token

512

mGTE-sparse Sparse
(Learned)

Multilingual Mostly English, Chinese 305M 250,000* 8192
BGE-M3-sparse Mostly English, Chinese 568M 250,000* 8192

SPLADE++ English English 110M 30,522* 512

BM25 Sparse
(Lexical)

– – – 49,144* –
PSQ – – – 715,837* –

Table 2: Retrievers used in the study. #Params.: Number of parameters. Emb. Dim.: Document embedding
dimension. Max. Len.: Maximum number of input tokens allowed by the model. The values in the pretraining and
fine-tuning language columns mentioned are approximations; in many cases, intermediate steps are involved, such
as initializing from a pretrained model, followed by training with weak supervision and supervised fine-tuning.
However, in all cases, fine-tuning data includes some degree of French data. The specific checkpoints used are given
in footnotes in section 4.1.
*The embedding dimension of sparse methods is the underlying vocabulary size.

instruction-tuned LLMs17. The complete prompt
is provided in Table 3. We used sampling with 0.1
temperature and 1.0 top-p.

You are a highly skilled translator from French
to English.
Your task is to accurately translate the French
text I provide into English.
You will be provided with a text, and you will
output a JSON object containing the following
information:
{

translation: string // the translated text
}
Preserve the meaning, tone, and nuance of the
original text.
Please maintain proper grammar, spelling, and
punctuation in the translated version.

Table 3: Prompt used for document translation with
LLMs. We used a slight variation of this prompt for
query translation.

C Statistical signficance

Tables 4 and 5 show the 95% bootstrap confidence
intervals for MAP and Recall@100, respectively,
for each retrieval method and translation method.

17https://docs.anthropic.com/en/prompt-
library/polyglot-superpowers,
https://platform.openai.com/docs/examples/default-
translation.

For better readability, instead of showing the lower
and upper bounds of the confidence intervals, we
choose to show which systems are non-significantly
different from each other, i.e., the intervals overlap.
For example, the MAP interval of PLAID-X+DT
with GPT4 overlaps with the interval of NV-Embed-
v2+DT with GPT4, but not with the interval of
NV-Embed-v2 with no translation (Table 4).
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Retriever Translation MAP

BM25 Gold 1 0.611 2

SPLADE++ Gold 2 0.609 1

PLAID-X Gold 3 0.605
NV-Embed-v2 Gold 4 0.600
PLAID-X Docs. (G4) 5 0.586 6

NV-Embed-v2 Docs. (G4) 6 0.586 5

NV-Embed-v2 None 7 0.580 8

PLAID-X None 8 0.578 7,9

NV-Embed-v2 Query (G4) 9 0.575 8

SPLADE++ Docs. (G4) 10 0.572 11,12,13

PLAID-X Docs. (L3) 11 0.572 10,12,13,14

BGE-m-gemma2 None 12 0.571 10,11,13,14

BGE-m-gemma2 Gold 13 0.571 10,11,12,14

NV-Embed-v2 Docs. (L3) 14 0.569 11,12,13

BGE-m-gemma2 Docs. (G4) 15 0.560
Solon Gold 16 0.555
BM25 Docs. (G4) 17 0.549 18,19,20

SPLADE++ Docs. (L3) 18 0.548 17,19,20

PLAID-X Query (G4) 19 0.548 17,18,20

BGE-m-gemma2 Docs. (L3) 20 0.548 17,18,19

BGE-m-gemma2 Query (G4) 21 0.543 22

NV-Embed-v2 Docs. (Op) 22 0.541 21,23

PLAID-X Docs. (Op) 23 0.539 22

Solon Docs. (G4) 24 0.536 25

BGE-EN-ICL Gold 25 0.535 24,26

BGE-m-gemma2 Docs. (Op) 26 0.533 25,27

SPLADE++ Docs. (Op) 27 0.530 26

mE5 Gold 28 0.526
Solon Docs. (L3) 29 0.520
Solon Query (G4) 30 0.516 31

BM25 Docs. (L3) 31 0.513 30,32

BGE-M3-sparse Gold 32 0.511 31

BGE-EN-ICL None 33 0.507 34

Solon None 34 0.507 33

Solon Docs. (Op) 35 0.502 36

BGE-EN-ICL Docs. (G4) 36 0.501 35

mGTE-dense Gold 37 0.496
mE5 Docs. (G4) 38 0.490 39,40

BM25 Docs. (Op) 39 0.488 38,40,41,42

Retriever Translation MAP

mGTE-sparse Gold 40 0.487 38,39,41,42

BGE-EN-ICL Docs. (L3) 41 0.486 39,40,42

Lajavaness Gold 42 0.486 39,40,41

mE5 Docs. (L3) 43 0.480
Lajavaness None 44 0.472 45

Lajavaness Docs. (G4) 45 0.470 44,46

mGTE-dense Docs. (G4) 46 0.468 45

BGE-M3-sparse Docs. (G4) 47 0.460 48,49,50

mGTE-dense Docs. (L3) 48 0.459 47,49,50

BGE-M3-sparse Query (G4) 49 0.458 47,48,50

Lajavaness Docs. (L3) 50 0.457 47,48,49

Lajavaness Query (G4) 51 0.454
mGTE-dense Docs. (Op) 52 0.452 53

mGTE-dense None 53 0.450 52,54

mE5 Docs. (Op) 54 0.448 53

mGTE-dense Query (G4) 55 0.445
BGE-EN-ICL Query (G4) 56 0.441
BGE-M3-sparse Docs. (L3) 57 0.434 58,59,60

mGTE-sparse Query (G4) 58 0.434 57,59,60

mE5 None 59 0.434 57,58,60

Lajavaness Docs. (Op) 60 0.431 57,58,59

mGTE-sparse Docs. (G4) 61 0.428 62

SPLADE++ Query (G4) 62 0.426 61

BGE-M3-sparse Docs. (Op) 63 0.413 64,65

mE5 Query (G4) 64 0.412 63,65

BGE-EN-ICL Docs. (Op) 65 0.411 63,64

mGTE-sparse Docs. (L3) 66 0.405
mGTE-sparse Docs. (Op) 67 0.401
BM25 Query (G4) 68 0.390
Croissant Gold 69 0.376
Croissant Query (G4) 70 0.365
Croissant None 71 0.358 72

Croissant Docs. (G4) 72 0.357 71

Croissant Docs. (L3) 73 0.345
Croissant Docs. (Op) 74 0.325
SPLADE++ None 75 0.284
BM25 None 76 0.181
BGE-M3-sparse None 77 0.177
mGTE-sparse None 78 0.169
PSQ None 79 0.123

Table 4: 95% bootstrap confidence intervals for MAP, using 1000 resamples. Numbers in subscripts indicate the
95% interval of the system of the row overlaps with the interval of the systems in the subscripts.
G4: GPT-4o-mini. L3: Llama-3.2. Op: OpusMT.
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Retriever Translation Recall@100

BGE-m-gemma2 Gold 1 0.917
BGE-m-gemma2 Docs. (G4) 2 0.910
BGE-m-gemma2 Docs. (L3) 3 0.908
BGE-m-gemma2 None 4 0.903
NV-Embed-v2 None 5 0.895 6,7,8

BGE-m-gemma2 Query (G4) 6 0.895 5,7,8

BGE-m-gemma2 Docs. (Op) 7 0.894 5,6,8

NV-Embed-v2 Gold 8 0.894 5,6,7,9

NV-Embed-v2 Docs. (G4) 9 0.892 8

NV-Embed-v2 Query (G4) 10 0.889
NV-Embed-v2 Docs. (L3) 11 0.887
PLAID-X Gold 12 0.879
SPLADE++ Gold 13 0.875 14

PLAID-X Docs. (G4) 14 0.874 13

PLAID-X None 15 0.870 16,17

Solon Gold 16 0.870 15,17

PLAID-X Docs. (L3) 17 0.869 15,16

Solon Docs. (G4) 18 0.866 19

NV-Embed-v2 Docs. (Op) 19 0.866 18,20

SPLADE++ Docs. (G4) 20 0.864 19

BGE-EN-ICL Gold 21 0.861 22,23

BM25 Gold 22 0.861 21,23

Solon Docs. (L3) 23 0.860 21,22,24

Solon Query (G4) 24 0.858 23,25,26

BGE-EN-ICL None 25 0.857 24,26

Solon None 26 0.856 24,25,27

PLAID-X Query (G4) 27 0.854 26,28

SPLADE++ Docs. (L3) 28 0.853 27

mGTE-dense Gold 29 0.849 30,31

Lajavaness Gold 30 0.849 29,31

Lajavaness None 31 0.848 29,30

PLAID-X Docs. (Op) 32 0.845 33

Solon Docs. (Op) 33 0.845 32,34

Lajavaness Docs. (G4) 34 0.843 33

mE5 Gold 35 0.840
Lajavaness Query (G4) 36 0.838 37,38,39,40

mGTE-dense Docs. (G4) 37 0.837 36,38,39,40

BGE-EN-ICL Docs. (G4) 38 0.837 36,37,39,40

Lajavaness Docs. (L3) 39 0.836 36,37,38,40,41

Retriever Translation Recall@100

SPLADE++ Docs. (Op) 40 0.836 36,37,38,39,41

mGTE-dense Docs. (L3) 41 0.834 39,40,42

BM25 Docs. (G4) 42 0.832 41,43

BGE-EN-ICL Docs. (L3) 43 0.831 42

mE5 Docs. (G4) 44 0.823
mGTE-dense None 45 0.820 46

mGTE-dense Docs. (Op) 46 0.820 45

mE5 Docs. (L3) 47 0.817 48,49

Lajavaness Docs. (Op) 48 0.817 47,49

BM25 Docs. (L3) 49 0.815 47,48,50

mGTE-dense Query (G4) 50 0.813 49

BGE-EN-ICL Query (G4) 51 0.810
BGE-M3-sparse Gold 52 0.807 53

mGTE-sparse Gold 53 0.805 52

Croissant Query (G4) 54 0.794 55,56

Croissant Gold 55 0.794 54,56

Croissant None 56 0.793 54,55

mE5 Docs. (Op) 57 0.790 58

BM25 Docs. (Op) 58 0.789 57

mE5 None 59 0.784
Croissant Docs. (G4) 60 0.781 61

BGE-M3-sparse Query (G4) 61 0.781 60

BGE-M3-sparse Docs. (G4) 62 0.778
Croissant Docs. (L3) 63 0.773 64

mGTE-sparse Docs. (G4) 64 0.771 63

mGTE-sparse Query (G4) 65 0.763 66,67

BGE-M3-sparse Docs. (L3) 66 0.763 65,67,68

mGTE-sparse Docs. (L3) 67 0.760 65,66,68,69

BGE-EN-ICL Docs. (Op) 68 0.760 66,67,69

mE5 Query (G4) 69 0.760 67,68,70

PSQ None 70 0.757 69

SPLADE++ Query (G4) 71 0.753
Croissant Docs. (Op) 72 0.748
BGE-M3-sparse Docs. (Op) 73 0.738 74

mGTE-sparse Docs. (Op) 74 0.737 73

BM25 Query (G4) 75 0.706
SPLADE++ None 76 0.604
BGE-M3-sparse None 77 0.449
mGTE-sparse None 78 0.443
BM25 None 79 0.417

Table 5: 95% bootstrap confidence intervals for Recall@100, using 1000 resamples. Numbers in subscripts indicate
the 95% interval of the system of the row overlaps with the interval of the systems in the subscripts
G4: GPT-4o-mini. L3: Llama-3.2. Op: OpusMT.
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