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Abstract
Retrieval-augmented generation (RAG) with
large language models (LLMs) has demon-
strated strong performance in multilingual
question-answering (QA) tasks by leveraging
relevant passages retrieved from corpora. In
multilingual RAG (mRAG), the retrieved pas-
sages can be written in languages other than
that of the query entered by the user, making
it challenging for LLMs to effectively utilize
the provided information. Recent research sug-
gests that retrieving passages from multilingual
corpora can improve RAG performance, par-
ticularly for low-resource languages. However,
the extent to which LLMs can leverage differ-
ent kinds of multilingual contexts to generate
accurate answers, independently from retrieval
quality, remains understudied. In this paper, we
conduct an extensive assessment of LLMs’ abil-
ity to (i) make consistent use of a relevant pas-
sage regardless of its language, (ii) respond in
the expected language, and (iii) focus on the rel-
evant passage even when multiple ‘distracting’
passages in different languages are provided in
the context. Our experiments with four LLMs
across three QA datasets covering 48 languages
reveal a surprising ability of LLMs to extract
relevant information from passages in a differ-
ent language than the query, but a much weaker
ability to produce a full answer in the correct
language. Our analysis, based on both accu-
racy and feature attribution techniques, further
shows that distracting passages negatively im-
pact answer quality regardless of their language.
However, distractors in the query language ex-
ert a slightly stronger influence. Taken together,
our findings deepen the understanding of how
LLMs utilize context in mRAG systems, pro-
viding directions for future improvements. 1

1 Introduction

Retrieval-augmented generation has shown strong
results in multilingual question-answering (QA)

1All codes and data released at https://github.com/B
etswish/mRAG-Context-Consistency.

tasks (Chirkova et al., 2024; Thakur et al., 2024).
Given a query in the user language, informative
passages are retrieved from a reference corpus
and provided jointly with the query, promoting
the large language model (LLM) to generate more
precise responses (Lewis et al., 2020; Asai et al.,
2021). In multilingual RAG (mRAG), retrieval
can be performed either monolingually or cross-
lingually. In the former, retrieval is performed
only over passages in the same language as the
query (Asai et al., 2023; Gao et al., 2023; Fan et al.,
2024), which can be successful for high-resource
languages. However, this approach is marginally
useful, or even harmful, when the question is posed
in a low-resource language, since relevant infor-
mation is likely to be available only in different
languages (Muller et al., 2023). In addition, for
questions regarding a specific geographical region
or culture, essential information may be present
only in corpora of the languages spoken in that re-
gion. To address this issue, cross-lingual retrieval
attempts to extract useful information simultane-
ously from multiple languages (Asai et al., 2021;
Li et al., 2024), leading to visible gains in low-
resource languages (Chirkova et al., 2024)

Evaluating RAG pipelines is notoriously diffi-
cult due to the open-endedness of the retrieval task,
and to the complex interactions of retrieval quality
with model understanding and generation abilities.
On top of this, multilinguality adds another layer
of complexity. Ideally, retrieved passages should
be equally useful when the same question is posed
in different languages. Besides, LLM-generated
answers should be consistently correct across lan-
guages so that users with different language back-
grounds enjoy a similar experience. However, de-
spite the reported accuracy improvements, the abil-
ities of LLMs to exploit cross-lingually retrieved
contexts in mRAG remain poorly understood.

In this paper, we conduct an in-depth assess-
ment of these abilities, using standard accuracy
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Figure 1: Illustration of the contributions and proposed assessment frameworks of this paper.

evaluation as well as feature attribution analysis.
Unlike recent mRAG evaluations (Chirkova et al.,
2024; Park and Lee, 2025), which test the LLM
performance for each language in the entire RAG
pipeline (i.e., retrieval + generation), we disentan-
gle these two factors and focus on the LLM’s abil-
ity to exploit context independently from retrieval
quality. As shown in Figure 1, our key contribu-
tions include: (a) We evaluate how LLMs lever-
age retrieved passages in different languages in
various multilingual QA tasks, revealing remark-
ably robust input understanding but much more
brittle generation abilities. (b) Besides the stan-
dard accuracy evaluation, we apply a recently pro-
posed RAG answer attribution method based on
model internals (Qi et al., 2024) to confirm that
LLMs consistently incorporate retrieved content
from various languages, providing insights from an
interpretability perspective. (c) We consider both
single-passage and multi-passage mRAG setups
and examine how distracting passages in differ-
ent languages affect model performance, shedding
light on the complex interplay between relevance
and content of the retrieved passages. Taken to-
gether, our results deepen our understanding of
how LLMs utilize context in mRAG systems and
reveal important areas for future improvements.

2 Related Work

2.1 Retrieval Strategies for mRAG

Retrieval is a key component of mRAG, which
can be performed in at least two ways: monolin-
gually (in-language) or cross-lingually. Chirkova
et al. 2024 investigated mRAG systems across
13 languages, highlighting the limited gains of
in-language retrieval in their setup. Nie et al.
2023 proposed the Prompts Augmented by Re-
trieval Crosslingually (PARC) pipeline, which

augments contexts with semantically similar sen-
tences retrieved from high-resource languages to
enhance zero-shot performance in low-resource
languages. Gao et al. 2022 introduced a retrieval-
augmented method for multilingual keyphrase gen-
eration, leveraging keyphrase annotations in En-
glish to aid keyphrase generation in low-resource
languages through cross-lingual dense passage re-
trieval.

2.2 Consistency in Multilingual LLMs

Ensuring model consistency across languages is
a key objective for multilingual LLMs. A series
of recent works has focused on the consistency
of factual knowledge encoded in the weights of
multilingually pre-trained LLMs (Fierro and Sø-
gaard, 2022; Weber et al., 2023; Qi et al., 2023;
Hupkes et al., 2023). Other work has focused
on the consistency of domain-specific QA by as-
sessing whether the questions asked by a certain
group of people (Schlicht et al., 2025) or about
domain-specific knowledge (Yin et al., 2022; Li
et al., 2025) can be correctly answered by LLMs
regardless of the query language. Very recently
and concurrently with our work, research interest
has also risen around the consistency of mRAG
pipelines (Wu et al., 2024; Sharma et al., 2024;
Park and Lee, 2025).

2.3 Context Utilization in mRAG

Although some studies (Asai et al., 2021; Nie et al.,
2023; Stap and Monz, 2023; Chirkova et al., 2024)
have demonstrated that cross-lingual retrieval can
significantly enhance mRAG answer accuracy, the
extent to which LLMs can utilize multilingual con-
texts consistently remains poorly understood, moti-
vating the present work. The concept of context uti-
lization is also not always clearly defined. Recent
and concurrent studies (Wu et al., 2024; Sharma
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Dataset QA Task # Languages # Queries # Queries Parallel? Answer
Type (w/ Gold Pass.) Query Answer Gold Pass. Format

XQUAD Extractive 12 1190 1190 ✓ ✓ ✓ Text
MKQA Open Domain 24 6758 5951 ✓ ✓ ✗ Text

GMMLU Multi-Choice 42 14042 4136 ✓ ✓ ✗ A/B/C/D

Table 1: Overall dataset statistics. # Queries (w/ Gold Pass.) refers to the number of queries with at least one gold
passage in any language, which is the subset used for our experiments (cf. Section 3.2).

et al., 2024; Park and Lee, 2025) use performance
of the complete mRAG pipeline to study context
utilization and find that models tend to prefer pas-
sages in the query language or Latin scripts. In
this paper, we further distinguish between input
understanding and decoding capability as key abil-
ities of an mRAG generator, and disentangle them
through our experiments, while strictly controlling
for retrieval quality.

3 Experimental Setup

Consider a multilingual QA setup where qℓ is a
query in language ℓ and aℓ is the gold answer in the
same language. For each query, a set of relevant
passages Pq = {p1, . . . , pn} in multiple languages
is retrieved from a reference multilingual corpus.
A relevant passage (p ∈ Pq) is considered gold p̂ if
it includes the necessary information to answer qℓ

correctly, or non-gold (‘distracting’) p otherwise.
To perform mRAG, a subset of relevant passages
Cq ⊂ Pq is selected and provided as extra context
to the LLM along with query qℓ. In an ideal mRAG
setting, the model should answer more accurately
when provided with C but it should also be agnostic
to the languages in which the passages p ∈ C
are provided, in terms of both answer accuracy
and feature attribution results. Following Muller
et al., 2023, we use the term ‘in-language’ for
the same language as the user query language, and
‘out-language’ for different languages than the user
language.

Given this setup, we study LLMs’ ability to han-
dle multilingual context in different retrieval scenar-
ios, which we simulate by varying (i) the number of
gold and non-gold (‘distracting’) passages provided
in C, and (ii) the languages of those passages.

3.1 Datasets

Question answering datasets can differ across many
dimensions. We choose three multilingual QA
benchmarks to cover a diverse set of languages,
three different types of QA, and different levels

of parallelism (see Table 1) allowing us to isolate
different aspects of mRAG in our evaluation.

XQUAD (Artetxe et al., 2020) is an extension
of the extractive English QA dataset SQUAD (Ra-
jpurkar et al., 2016), which contains 1190 ques-
tions, each provided with a single relevant passage
and a gold answer, all translated into 12 languages.
While not being originally designed for RAG evalu-
ation, this dataset is the only one allowing us to as-
sess LLMs’ abilities to use the exact same informa-
tion provided in different languages, simulating an
impossible scenario where retrieval works perfectly
in all languages. MKQA (Longpre et al., 2021) is
an open domain QA dataset covering 10,000 ques-
tions across 24 languages derived from Natural
Questions (Kwiatkowski et al., 2019). Removing
the questions without any gold answers provided,
we work on a total of 6758 paralleled questions
in this paper. Global-MMLU or GMMLU (Singh
et al., 2024) is a large multilingual extension of
MMLU (Hendrycks et al., 2020) obtained by trans-
lating the English instances into 41 languages. Like
MMLU, it contains 14042 multi-choice questions
that are used to test LLMs’ understanding capabil-
ity across a range of subjects, like social sciences or
medical questions. Each question is provided with
four options to choose from. Question examples
for all datasets are given in Appendix A.

3.2 Retrieval and Filtering

XQUAD includes a single gold passage for each
query, which we can provide to the model without
performing any retrieval (Cq = Pq = {p̂}).

As for MKQA and GMMLU, we retrieve pas-
sages from Multilingual Wikipedia Corpora2 using
the Cohere Embed Multilingual V3 retriever3, a
strong performing multilingual embedding model
with balanced language coverage (CohereAI, 2023).
Unlike previous work (Asai et al., 2021; Muller

2https://huggingface.co/datasets/wikimedia/wi
kipedia

3https://huggingface.co/Cohere/Cohere-embed-m
ultilingual-v3.0
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et al., 2023; Chirkova et al., 2024) where the num-
ber of studied languages was at most 13, our eval-
uation covers twice or more languages, making it
unfeasible to perform a full cross-lingual retrieval
for each query language. As an approximation,
we construct the set of relevant passages Pq by
performing in-language retrieval for the L parallel
versions of q in each language and taking the union
of the top-30 ranked passages in each language:
Pq =

⋃L
ℓ=1 Pqℓ .

Then, we tag the gold passages in Pq based on
whether they contain the gold answer as a sub-
string, following previous work (Liu et al., 2024,
2025). In our experiments, we only consider
queries for which Pq contains at least one gold
passage in any of the studied languages, see result-
ing # Queries (w/ Gold Pass.) in Table 1. While it
may be possible to expand this subset by retriev-
ing more than 30 top passages or by improving
retriever quality (Chirkova et al., 2024), we believe
our setup is appropriate to study LLMs’ ability to
use a variety of multilingual context types that are
representative of competitive cross-lingual retrieval
results.4

Detailed statistics on the amount of in-language
and out-language gold passages for all queries
are shown in Appendix B. As expected, the sit-
uation is particularly serious for queries posed in
low-resource languages, where only out-language
gold passages are available for most of the queries
(e.g., 88% in Khmer MKQA and 91% in Yoruba
GMMLU), highlighting the importance of ensuring
mRAG quality across many languages.

3.3 Evaluation Metrics

For XQUAD and MKQA, we follow previous
work (Asai et al., 2021) and score answers by strict
lexical matching, that is, 1 if the entire gold an-
swer string aℓ is a substring of the model response
M(qℓ), or 0 otherwise. Since models in mRAG se-
tups often generate the correct answer in the wrong
passage language (Chirkova et al., 2024; Zhang
et al., 2024), we also measure the proportion of
model answers that contain a gold answer in lan-
guage ℓ′ (aℓ

′
, ℓ′ ̸= ℓ). 5 Nevertheless, as exact

4Although a large portion of GMMLU queries are filtered
out, we argue that the remaining 4136 queries are numerous
enough to ensure a robust evaluation. We also verify the diver-
sity of this subset and find a total of 55 covered subjects. See
Appendix C for details on the question subjects and categories.

5Since we focus on the language of model responses and
outright cross-language generation (i.e., whether the gold an-
swer appears in a different language) where small orthographic

matching could be overly strict, we further adopt
two complementary metrics (BERTScore and GPT-
4.1-nano) on XQUAD. Similar results are observed,
providing more insights and enhancing the robust-
ness of our analysis. See Appendix D for more
details.

GMMLU is instead designed as a multi-choice
task, thus, accuracy can be simply evaluated by
checking if the LLM outputs the correct option
letter (A/B/C/D). To study the impact of answer
generation from that of passage understanding
across languages, we also use GMMLU as an open
QA task by providing the query without any an-
swer options, and adopting again lexical matching
for evaluation. We refer to the original dataset
as GMMLU-Choice, and the no-options one as
GMMLU-Open.

3.4 Models

We evaluate four top-performing multilingual
LLMs belonging to different model families, which
have been used in recent mRAG evaluations (Wang
et al., 2024; Thakur et al., 2024), namely: Aya-
Expanse-8B (Dang et al., 2024), Llama-3.2-3B-
Instruct (Dubey et al., 2024), Gemma-2-9B-it
(Team, 2024), and Qwen2.5-7B-Instruct (Yang
et al., 2024). Although these models do not of-
ficially support some of our studied languages, evi-
dence has shown that LLMs can generalize success-
fully to unseen languages due to the leak of training
data or shared representations (Qi et al., 2023; Bud-
nikov et al., 2024; Lu and Koehn, 2024), which we
also observed in preliminary experiments.

4 Single-Passage mRAG

We start from a simple scenario where, for each
query qℓ, only one gold passage is provided to the
model either in the query language (in-language;
C = {p̂ℓ}) or in a different language (out-language;
C = {p̂ℓ′}, ℓ′ ̸= ℓ). As a baseline, we calculate
answer accuracy when no context is provided to
the model (C = ∅).

In XQUAD, where gold passages are translated
into 12 languages, we iterate over the 11 out-
language passage versions for each query and re-
port the average accuracy. We also report accuracy
for the passage language that yielded the best (or

variants can be decisive, particularly for phonologically simi-
lar languages, we do not adopt the variant of the softer lexical
metric (Chirkova et al., 2024) (3-gram recall), which tolerates
minor orthographic differences and could blur the distinctions.
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Figure 2: Performance on XQUAD, MKQA, GMMLU-Open, and GMMLU-Choice, where the LLMs are provided
with no retrieved passage or one gold passage in either in-language or out-language. The shading on the bars
represents the ratio of questions that can be correctly answered but in the wrong passage language, which does not
apply to GMMLU-Choice since the evaluation on it is not affected by the generation language.

worst) answer accuracy overall for each query lan-
guage. By contrast, the gold passages in MKQA
and GMMLU are retrieved from a Wikipedia cor-
pus as explained in Section 3.2, and are not parallel
across languages. As a solution, for each query
qℓ, we randomly sample 3 different out-language
passages from Pq and report accuracy averaged
over the 3 single-passage answers. To maximize
the chances of obtaining a model response in the
query language ℓ, we explicitly mention ℓ in the
instruction, which is itself translated into ℓ, follow-
ing Chirkova et al., 2024; Zhang et al., 2024. The
detailed prompts are listed in Appendix E.

4.1 Accuracy Results

Results averaged across all query languages are
given in Figure 2, while the full language-specific
results are given in Appendix I.

Results on XQUAD We recall that XQUAD is
a distinct dataset, originally developed to evaluate
extractive QA, rather than open-domain RAG sys-
tems. Nevertheless, it is the only dataset where
the exact same gold passage is available in dif-
ferent languages, allowing us to isolate the effect
of a passage’s language from that of its content.
As shown in Figure 2, providing the gold passage
in any language strongly improves answer accu-
racy compared to the no-context baseline, which
is likely due in part to the extractive nature of QA
in this dataset. Looking at the passage language,
however, we find that in-language passages yield
considerably higher accuracy than all out-language
settings, including out-language (Best). Moreover,
a notable portion of questions are answered cor-
rectly but in the wrong language even though the
models were explicitly prompted to answer in the

Figure 3: Answer accuracy (%) on XQUAD among
different query-passage language combinations. Only
model answers in the correct (i.e., query) language are
considered as correct.

target language, which is in line with previous find-
ings (Wu et al., 2024; Chirkova et al., 2024). Even
when considering these cases, a visible gap remains
between in-language and out-language accuracy
across the board on XQUAD. We further analyze
this gap through manual error analysis and find that
missed matches are often due to the use of syn-
onyms or slight paraphrases of the gold answer, or
–in the case of languages with different scripts– to
transliteration variations (Knight and Graehl, 1997).
See Appendix F for more details.

Figure 3 gives a detailed view of how answer
accuracy varies with the language of the provided
gold passage.6 As expected, the highest accuracy

6Here we only consider answers in the correct language,
see Appendix I for language-specific accuracies when consid-
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is always achieved when the retrieved passage is in
the same language as the query. Concurrent work
(Sharma et al., 2024; Park and Lee, 2025) suggested
that models may prefer passage languages that use
the same script as the query language, based on
a few languages. Because script similarity is a
very coarse-grained measure of language similarity
that is not informative for many of our language
pairs, we turn to finer-grained measures that were
previously shown to strongly correlate with cross-
lingual consistency of model answers in non-RAG
setups (Qi et al., 2023). In particular, we adopt
subword vocabulary overlap computed on a refer-
ence parallel corpus7 as this was shown to correlate
better with response consistency than various typo-
logical similarity measures. We compute Pearson
and Spearman correlations between subword over-
lap and answer accuracy for each query language
(excluding the case where query and passage are
in the same language), however all correlations are
low and not statistically significant. Looking back
at Figure 3, we notice that shading (i.e., answer
accuracy) is relatively consistent within each row,
especially on Gemma and Qwen, more so than
within each column. In other words, the query lan-
guage is much more predictive of accuracy than
the passage language, suggesting that generating in
the target language is the major bottleneck in our
setup, which could dominate, if not hide, the effect
of similarity with the passage language.

Additionally, we also investigate if advanced
prompts with multi-step instructions (refer to Ap-
pendix G) or larger model scales (open-source
Gemma3-27B-IT and closed-source GPT-5-nano
estimated at 8-18B parameters8; Appendix H) can
mitigate the language mismatch issue in model
answers. However, the problem persists, further
reinforcing our finding that multilingual RAG sys-
tems face an inherent decoding limitation. Inter-
estingly, we observe that when fed with passages
in Thai, which is not officially supported by Aya-
Expanse-8B, the model always outperforms the
baseline where no context is provided for queries
in each language (cf. No-context accuracies in
Table 13). This suggests that even though the pas-
sages are written in a language that is unseen in the

ering the wrong generation language.
7Following Qi et al., 2023, we extract the vocabularies

from FLORES-200 (Costa-jussà et al., 2022), a strictly parallel
corpus covering 200 languages, and measure their pairwise
overlap via Jaccard index (Jaccard, 1912).

8https://www.r-bloggers.com/2025/08/how-man
y-parameters-does-gpt-5-have/

pre-training phase, LLMs may be able to utilize
them.

Results on MKQA Moving to a more realistic
RAG dataset, but without parallel passages, we find
a similar trend (Figure 2) where in-language gold
passages outperform out-language ones, however
the gap is much smaller than in XQUAD and almost
disappears when also considering the portion of
questions that are answered correctly in the wrong
language. These results suggest that the passage
language is not a key factor blocking LLMs from
understanding and utilizing the context in MKQA.

Results on GMMLU Accuracy results on
GMMLU-Open (Figure 2) are in line with the two
previous datasets, with an in-/out-language gap
falling halfway, that is smaller than in XQUAD
but larger than in MKQA. To further disentangle
the impact of context understanding from that of
target language generation, we compare these re-
sults with those of GMMLU-Choice, where the
model only has to generate one of the four option
letters (A/B/C/D) provided in the prompt. Here,
we find that in- and out-language passages yield
extremely close accuracy, confirming that input un-
derstanding is not the real obstacle for high-quality
mRAG. Rather, the main barrier appears to lie on
the side of generation, namely, whether models can
formulate a proper response in the correct target
language.

4.2 Interpretability-based Assessment
To further verify our findings that the passage lan-
guage is not a barrier to LLMs’ understanding ca-
pability of the multilingual retrieved passages, we
adopt MIRAGE (Qi et al., 2024), a model internal-
based method for attributing model responses to the
retrieved passages in RAG systems. Generally, it
consists of two components: (1) CTI for detecting
contextual sensitivity for the generated sentence
and (2) CCI for attributing the detected sentences
back to each retrieved passage. Given the single-
passage setup, in this section we only use the CTI
module for evaluating the passage dependency of
the model response. For each generated token, this
module measures the shift in output probability
distribution when no context vs. one passage is
provided, measured by KL divergence (Kullback
and Leibler, 1951), while keeping the generated
sentence prefix fixed. If at least one token is higher
than an empirically set CTI threshold, the gener-
ated sentence is marked as sensitive to the context
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Dataset AVG+1.0*SD AVG+1.5*SD AVG+2.0*SD

In. Out. In. Out. In. Out.

XQUAD 98 99 97 99 95 98
MKQA 100 100 100 100 100 100

Table 2: Percentage (%) of context-sensitive responses
when Aya is provided with in-language (In.) vs. out-
language (Out.) gold passages, detected by MIRAGE
under different CTI thresholds.

provided in the prompt.
We select Aya-Expanse-8B as the studied model

and sample 500 instances separately from XQUAD
and MKQA. Table 2 shows the results under differ-
ent CTI thresholds. We find that nearly all gener-
ated responses are tagged as context-sensitive by
MIRAGE, even when setting a higher CTI thresh-
old (avg + 2 std_dev) than the one used in the orig-
inal paper. This confirms that the provided passage
significantly drives models’ predictions regardless
of its language.

In sum, the results in this section point to the fact
that understanding passages in different languages
and locating useful information within them is not
the main obstacle towards high-quality mRAG,
whereas generation abilities in several target lan-
guages remain a serious bottleneck. In the next
section, we study how models handle more real-
istic contexts consisting of multiple passages in
different languages.

5 Multi-Passage mRAG

Real-world RAG settings are further compli-
cated by the presence of multiple passages
Cq = {p1, . . . , pn}, some of which may be related
to the query but not functional to answering it cor-
rectly (i.e. ‘distracting’ passages p). We investi-
gate how the language of different passages in the
context affects LLMs’ ability to locate the right
information, assuming this is included in at least
one passage of the context. In particular, we aim to
assess model robustness in a challenging scenario
where the important information is only provided
in a different language than the query, along with
several in-language distractors.

For simplicity, we set the maximum number of
passages to 4 and simulate two practical scenarios:
(i) a weak retriever finds one out-language gold
passage while the other three are distractors; (ii) a
strong retriever finds three out-language gold pas-
sages while the remaining one is a distractor. In

both cases, we compare accuracies when the dis-
tractors are in-language vs. out-language. We con-
duct experiments on MKQA and GMMLU-Choice.
XQUAD is excluded because it is an extractive QA
dataset, unsuitable for multi-passage mRAG.

5.1 Accuracy Results

Table 3 presents the results, including the no-
context baseline and single in-/out-language gold
passage results as computed in Section 4, to en-
able comparison (see Appendix I for full language-
specific results). For this analysis, we also consider
as valid the questions that were answered correctly
but in the wrong language, as they also reflect a
proper understanding of the context by the model.
Interestingly, models provided with 3 out-language
gold passages achieve higher accuracy than when
provided with a single in-language gold passage
in the query language, emphasizing the potential
of cross-lingual retrieval for mRAG. As expected,
the presence of distractors leads to lower accuracy.
Notably, this is true for all models, datasets, and se-
tups. However, the effect is considerably stronger
in MKQA than in GMMLU-Choice, likely due
to the stricter lexical-matching metric adopted for
MKQA. We also verify that a higher proportion of
distractors (3/4 vs. 1/4) is much more harmful for
answer accuracy, which confirms the importance
of having access to a high-quality cross-lingual re-
triever (Chirkova et al., 2024). When comparing
the drop between in-language distractors and out-
language distractors, we find that in-language dis-
tractors have a larger impact in most cases, match-
ing our hypothesis that this is a particularly chal-
lenging scenario for LLMs. However, differences
are small in many cases, indicating the language of
the distractor is not a major issue for multi-passage
mRAG.

5.2 Interpretability-based Evaluation

We adopt once again MIRAGE (Qi et al., 2024) to
understand how the internal model dynamics are
affected by our various simulated multi-passage
mRAG scenarios. We sample 50 instances from
each dataset and use MIRAGE to attribute Aya-
expanse-8B responses to the provided passages
via contrastive feature attribution (Yin and Neu-
big, 2022). Then, we compute # Contextual: the
average number of distracting passages that contain
at least one contextual cue for the produced answer
(i.e. a token marked by CCI in MIRAGE), and #
Influential: the average number of distractors that
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Setup MKQA GMMLU-Choice

Aya Llama Gemma Qwen Aya Llama Gemma Qwen

No Ctx 41.4 34.9 49.6 37.7 46.6 37.8 61.1 51.4

1 Gold (in) 73.6 59.9 65.5 70.6 55.0 45.2 66.0 58.4

1 Gold (out) 71.1 56.5 65.1 66.6 55.0 45.5 66.2 57.0
+ 3 Dist (in) 47.0 39.4 53.7 49.6 50.8 41.1 65.1 54.5
+ 3 Dist (out) 47.7 38.9 56.1 53.8 51.4 42.5 64.8 54.6

3 Gold (out) 77.7 65.3 75.3 75.9 56.6 47.7 69.1 59.5
+ 1 Dist (in) 68.8 56.0 71.3 70.8 55.8 45.7 68.6 58.4
+ 1 Dist (out) 69.6 57.8 72.9 72.9 56.2 46.6 68.5 58.6

Table 3: Average answer accuracy (%) without context (No Ctx), with a single in-language gold passage (1 Gold
(in)), and multi-passage mRAG setups with varying numbers of in-language or out-language gold passages and
distracting passages. Results are averaged over all query languages.

AVG Dist. MKQA GMMLU

In. Out. In. Out.

1 Gold (out) + 3 Distractors

# Context. 1.77 1.74 1.89 1.82
# Influent. 0.94 0.86 1.13 1.07

3 Gold (out) + 1 Distractor

# Context. 0.85 0.79 0.92 0.89
# Influent. 0.35 0.25 0.50 0.43

Table 4: Average number of distractors containing con-
textual cues (# Context.) and receiving a higher sum of
CCI scores than all gold passages (# Influent.), for Aya.

receive a higher sum of CCI attribution scores than
all gold passages for each query.

The results in Table 4 support our observation
that distractors exert a comparable effect regardless
of their language, however in-language distractors
have a slightly stronger effect. When considering
the sum of attribution scores given to the distrac-
tors compared with the gold passages, the differ-
ence becomes more noticeable (e.g., Aya tends to
pay more attention to in-language distractors for
MKQA when there is 1 distractor, compared to
out-language ones).

Taken together, our results indicate that the num-
ber of distractors can be more harmful for mRAG
accuracy than the language in which those distrac-
tors are provided, when it comes to open-domain
QA. On the multi-choice task, the negative effect of
distractors is notably smaller and barely dependent
on the passage language.

6 Conclusion

In this work, we explored the challenge of consis-
tent context utilization in mRAG systems. Specif-
ically, we assessed the ability of various state-of-
the-art LLMs to handle various kinds of multilin-
gual context while strictly controlling for retrieval
quality. Our experiments across three diverse QA
datasets, using standard accuracy evaluation as well
as feature attribution analysis, reveal a remarkable
ability of LLMs to understand multilingual con-
texts and to locate the important information in
relevant passages regardless of their language. In
fact, models provided with multiple gold passages
in languages different from that of the query are
more likely to answer correctly than when provided
with a single gold passage in the query language,
reflecting the potential of retrieving cross-lingually
rather than monolingually for mRAG.

At the same time, we also detected some im-
portant directions for future improvement. Firstly,
poor generation abilities in many languages push
the models to respond in a different language than
that of the query, resulting in answers that would
be deemed useless by most end-users. Importantly,
we showed that this also happens when the retrieval
works optimally. This suggests that, rather than just
trying to optimize the retriever, it may be more ef-
fective to invest on the model generation abilities in
a specific (set of) user language(s) –for instance by
continued pre-training (Fujii et al., 2024; Gao et al.,
2024) on generic corpora of those languages– or
to apply techniques that push the model to decode
in a given language, such as contrastive decoding
(Li et al., 2023; O’Brien and Lewis, 2023). Sec-
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ondly, the presence of distracting passages (i.e.,
relevant to the query topic, but not directly func-
tional to answer it) in the context can have a very
negative effect on answer accuracy in open-domain
QA. While this effect is rather similar regardless of
the distractors’ language, it does highlight the im-
portance of carefully ranking the retrieved passages
and to aim for precision when selecting which pas-
sages are provided to the model.

To conclude, our work underscores the potential
of cross-lingual retrieval in enhancing multilingual
QA performance, and stresses the importance of
focusing not only on retrieval optimization but also
on improving language-specific generation. We be-
lieve this dual focus will be key to unlocking more
robust and user-friendly mRAG systems that can
operate effectively across diverse language settings.

Limitations

The limitations of our work include relying on a
strict lexical matching of the answer to compute
model accuracy and to detect gold passages. While
commonly used, this approach is sensitive to mi-
nor variations or rephrasings of the answers and
led to a serious underestimation of model perfor-
mance with out-language gold passages in one of
our QA datasets, XQUAD. In our paper, we have
tested and reported BERTScore and LLM-based
evaluation on XQUAD, as detailed in Section 3.3
to enhance the robustness of our findings. These
semantic evaluations mirror the trends observed
with the lexical metric, mitigating—if not eliminat-
ing—the risk that paraphrasing may influence the
results. Nevertheless, future work could incorpo-
rate broader metrics and benchmarks to make the
assessment more comprehensive.

Additionally, the use of lexical matching in
detecting gold passages may overlook passages
that provide valuable information but in a slightly
rephrased form compared to the gold answer.
Nonetheless, Table 3 shows that attaching even a
single distracting passage identified by this heuris-
tic method substantially degrades model accu-
racy. Thus, despite its limitations, lexical matching
proves to be a practical and effective way for locat-
ing distracting passages in our experimental setting.
Future work could explore more semantic retrieval
methods to capture paraphrased gold evidence.

On the retrieval side, simulating cross-language
retrieval by combining results of N in-language
retrievers may yield a more comprehensive set of

passages than what we could obtain from a single
run of a cross-language retriever. While this does
not affect our results on the side of context uti-
lization, it may overestimate retriever performance
when our findings are applied to real-world mRAG
systems. In terms of datasets, XQUAD was the
only one including parallel gold passages, which
allowed us to fully isolate the effect of a passage
language from that of its content. However, its
extractive QA nature makes it less representative
of realistic mRAG tasks, highlighting the need to
develop better parallel mRAG datasets in future
work.
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A Dataset Examples

Examples of instances in each dataset are shown in
Table 5.

B Full Statistics of the Filtered MKQA
and GMMLU Datasets

The full statistics of the filtered MKQA and
GMMLU datasets are shown in Table 6.

C Subjects Covered by the Filtered
GMMLU Set

As shown in Table 7, 55 subjects belonging to 6
categories are covered by the filtered set of Global-
MMLU, which ensures the diversity of the in-
stances evaluated in our experiments.

D Extensive Evaluation

Since exact matching could be overly strict for the
evaluation, we further adopt two complementary
metrics on XQUAD with AYA.

Semantic similarity (BERTScore) We compute
BERTScore, serving as a language-agnostic metric,
between each model response and its ground-truth

answer based on the semantic similarity of model
responses with the gold answer. Table 8 shows
that models achieve comparable F1 scores in all
query languages when fed gold passages in- or out-
language. This finding is in line with our claim
that LLMs are capable of understanding the gold
passages regardless of their languages.

LLM-based evaluation (GPT-4.1-nano) How-
ever, semantic similarity cannot capture language
mismatching. Therefore, we prompted GPT-4.1-
nano to judge whether each response matches (i)
the correct answer and (ii) its translation in the
passage language. As shown in Table 8, overall
accuracy on board is higher than lexical-matching
accuracy in our paper, but the trend remains: mod-
els score better on IN than on OUT. If we allow
“correct answer in the wrong language” as accept-
able, the IN/OUT gap almost disappears.

Taken together, both semantic and LLM-based
evaluation support our claim that LLMs are able to
understand the multilingual gold passages regard-
less of their languages, but suffer from decoding
the answer correctly in the user query language.

E Prompts and Instructions

To ensure the model responses are always in
the query language, we follow previous works
(Chirkova et al., 2024; Zhang et al., 2024) and
adopt language-specific instructions to explicitly
and implicitly guide the model to generate re-
sponses in the user-readable language. The ex-
amples in English, Spanish, and Chinese are listed
in Table 9 and Table 10.

F Error Analysis on XQUAD

While our MKQA and GMMLU results strongly
suggest our studied LLMs can understand the pro-
vided passages regardless of their language, the
in-/out-language gap in XQUAD remains unex-
plained. To address this, we conduct a manual
error analysis on XQUAD with Aya-Expanse-8B,
focusing on a random sample of 20 Spanish and 20
Chinese queries that were answered correctly when
provided with in-language passages, but wrongly
with out-language passages. In most cases, we
observe that models successfully understood the
context and generated a proper response, however,
this response did not perfectly match the gold an-
swer provided in the dataset. This can be due to
the presence of synonyms or slight paraphrases
of the gold answer, or –in the case of languages
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Dataset Context provided in the dataset Query Gold Answer

XQUAD The Panthers defense gave up just 308
points, ranking sixth in the league, while
also leading the NFL in interceptions
with 24 and boasting four Pro Bowl se-
lections. ... also racking up 88 tackles
and Pro Bowl cornerback Josh Norman,
who developed into a shutdown corner
during the season and had four intercep-
tions, two of which were returned for
touchdowns.

How many points did the Panthers de-
fense surrender?

308

MKQA - How long did it take the twin towers to
be built?

11.0 years

GMMLU-Open - Which god supplanted the earlier
Mesopotamian supreme god Enlil?

Marduk

GMMLU-Choice - Which god supplanted the earlier
Mesopotamian supreme god Enlil?
A.Horus B.Inanna C.Marduk D.Isis

C

Table 5: Examples of instances in each dataset.

MKQA (Total 5951 Questions = # Inlang + # Outlang - # Both)

Query Lang. en it es de fr pt nl sv ru fi ja pl

# Q. w/ Inlang 5331 4466 4384 4352 4302 4133 4108 3984 3800 3639 3603 3594
# Q. w/ Outlang 5787 5910 5942 5946 5944 5947 5947 5940 5945 5946 5944 5945
# Overlap 5167 4425 4375 4347 4295 4129 4104 3973 3794 3634 3596 3588

Query Lang. no tr hu da vi he ar ms ko th zh km

# Q. w/ Inlang 3515 3515 3482 3390 3365 3343 2986 2937 2934 2539 2537 703
# Q. w/ Outlang 5949 5945 5943 5946 5951 5946 5948 5942 5947 5945 5948 5950
# Overlap 3513 3509 3474 3385 3365 3338 2983 2928 2930 2533 2534 702

GMMLU (Total 4136 Questions = # Inlang + # Outlang - # Both)

Query Lang. en ja it id ko nl zh vi sv pt de tr ro cs

# Q. w/ Inlang 2588 2054 1864 1778 1725 1712 1695 1689 1688 1679 1611 1583 1513 1512
# Q. w/ Outlang 4040 4064 4118 4115 4097 4125 4094 4116 4124 4118 4111 4121 4126 4116
# Overlap 2492 1982 1846 1757 1686 1701 1653 1669 1676 1661 1586 1568 1503 1492

Query Lang. ru es ms pl uk fr ar fa el sr he hi fil lt

# Q. w/ Inlang 1503 1502 1464 1462 1422 1415 1373 1350 1317 1288 1160 1142 1125 1071
# Q. w/ Outlang 4126 4109 4126 4124 4130 4122 4118 4125 4130 4130 4118 4133 4130 4132
# Overlap 1493 1475 1454 1450 1416 1401 1355 1339 1311 1282 1142 1139 1119 1067

Query Lang. bn ky ha te sw ig si ne am ny mg so sn yo

# Q. w/ Inlang 1005 985 930 924 923 831 792 746 650 634 625 559 497 389
# Q. w/ Outlang 4125 4121 4123 4130 4129 4125 4132 4132 4135 4129 4133 4129 4134 4129
# Overlap 994 970 917 918 916 820 788 742 649 627 622 552 495 382

Table 6: The statistics of the filtered subset of MKQA and Global-MMLU where each query has gold passages in
at least one studied language. For all languages, there is a portion of queries where useful information can only
be found in out-language passages, which is particularly evident in low-resource languages. # Inlang: Number
of queries having gold passages retrieved from the corpora of the query language. # Outlang: Number of queries
having out-language gold passages. I.e. useful information is stored in the corpora of languages other than the
query language. # Overlap: Number of queries that have useful information retrieved from both in-language and
out-language corpora.

with different scripts– to transliteration variations
(Knight and Graehl, 1997). For instance, the gold
answer for a Spanish question is ‘evolución de la
lengua y la literatura alemanas’ (i.e. ‘evolution
of the German language and literature’). In the
in-language setup, the model manages to generate

this exact string as it is included in the provided
Spanish passage. However, when the same passage
is provided in English, the model generates the
semantically equivalent phrase ‘... evolución del id-
ioma y la literatura alemana...’, or ‘...desarrollo del
idioma y la literatura alemana...’ when the passage
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Category Subject

STEM high_school_computer_science, high_school_statistics, computer_security, college_biology,
college_chemistry, machine_learning, high_school_mathematics, elementary_mathematics, col-
lege_mathematics, electrical_engineering, college_physics, astronomy, conceptual_physics,
high_school_chemistry, high_school_physics, high_school_biology, college_computer_science,
anatomy

Business business_ethics, management, marketing, professional_accounting

Medical professional_medicine, virology, college_medicine, clinical_knowledge, human_aging, medi-
cal_genetics, nutrition

Social Sciences high_school_psychology, econometrics, sociology, high_school_microeconomics, high_school_-
geography, public_relations, security_studies, professional_psychology, high_school_govern-
ment_and_politics, high_school_macroeconomics, human_sexuality, us_foreign_policy

Humanities international_law, high_school_world_history, moral_disputes, prehistory, world_religions, ju-
risprudence, high_school_us_history, philosophy, professional_law, formal_logic, logical_falla-
cies, high_school_european_history

Other miscellaneous, global_facts

Table 7: The categories and subjects covered by the filtered GMMLU.

Lang. BERTScore LLM-Based Score
IN. OUT. IN. OUT.

en 90.27 82.58 93.19 81.54 (+12.93)
ar 82.87 81.55 91.93 63.98 (+23.25)
de 81.60 80.69 90.25 71.73 (+14.86)
el 82.38 81.24 92.18 66.00 (+21.04)
es 82.15 81.14 94.37 73.05 (+14.62)
hi 83.31 82.15 89.75 65.78 (+16.71)
ro 81.68 80.65 91.93 69.11 (+18.69)
ru 83.22 81.95 91.51 66.78 (+21.18)
th 84.21 83.23 86.81 57.78 (+23.02)
tr 81.31 80.18 88.40 63.39 (+23.37)
vi 82.81 81.62 89.75 65.81 (+23.05)
zh 84.07 82.95 90.34 65.39 (+21.46)

Table 8: BERTScore (F1) and LLM-based evaluation
(Accuracy) on XQUAD with AYA. The numbers be-
tween brackets indicate the proportion of queries that
are correctly answered but in the wrong language.

is provided in Chinese. Similarly, for a Chinese
query with gold answer ‘亚里士多德宇宙学’ (i.e.
‘Aristotelian cosmology’), model responses slightly
differ when provided with different out-language
passages (e.g. ‘亚里士多德宇宙论’, ‘阿里斯托
的宇宙论’, or ‘阿里斯托特利宇宙论’ with En-
glish, Arabic, or Greek passage respectively), all
of which are correct translations of ‘Aristotelian
cosmology’. While this issue can always affect
lexical-matching evaluation, it is particularly se-
vere in XQUAD as many answers in this dataset
are named entities or sentence segments due to the
extractive nature of the task, which in turn causes
an underestimation of the models capability.

G Advanced System Prompting

In our main experiments, we follow the previous
works (Chirkova et al., 2024; Zhang et al., 2024)
and adopt the direct prompt. To test if a stronger
prompt could mitigate language-mismatch errors,
we add a two-step instruction that first allows the
model to answer in any appropriate language, then
explicitly translates the answer into the query lan-
guage. Formally: ‘Write a high-quality answer
to the given question using the provided search
results. Please respond in English. Specifically,
please follow the two steps below. Step 1: Generate
a complete answer to the question in any appropri-
ate language. Step 2: Translate your entire answer
into clear, natural-sounding English.’

Same as the main experiment in the paper, the
prompt is translated into other query languages and
explicitly specifies the desired generation language.
For instance, the prompt for Spanish queries is:

‘Escriba una respuesta de alta calidad a la pre-
gunta dada utilizando los resultados de búsqueda
proporcionados. Por favor responda en español.
Específicamente, siga los dos pasos a continuación.
Paso 1: Genere una respuesta completa a la pre-
gunta en cualquier idioma apropiado. Paso 2: Tra-
duce toda tu respuesta a un español claro y con
sonido natural.’

We run this prompt on XQUAD with AYA and
evaluate via GPT-4.1-nano, the same setups and
LLM-based evaluation as above in Appendix D.
As shown in Table 11, compared to the original
prompts, these stronger instructions reduced, but
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Language Setup Instruction

en No Ctx Write a high-quality answer to the given question. Please respond in English.

Ctx Write a high-quality answer to the given question using the provided search results. Please
respond in English.

es No Ctx Escriba una respuesta de alta calidad a la pregunta planteada. Por favor responda en español.

Ctx Escriba una respuesta de alta calidad a la pregunta planteada utilizando los resultados de búsqueda
proporcionados. Por favor, responda en español.

zh No Ctx 请对所给问题写出高质量的答案。请使用中文回答。

Ctx 使用提供的搜索结果对给定的问题写出高质量的答案。请用中文回答。

Table 9: The examples of the adopted instructions for guiding LLMs to generate responses in the user languages on
the open QA tasks (XQUAD, MKQA, GMMLU-Open).

Language Instruction

en Please choose the most suitable one among A, B, C and D as the answer to the question, and
return it in the following format:
[choice]
where [choice] must be one of [A], [B], [C] and [D].

es Elija la respuesta más adecuada entre A, B, C y D a la pregunta y devuélvala en el siguiente
formato:
[opción]
donde [opción] debe ser una de [A], [B], [C] y [D].

zh 请在A、B、C和D中选择最合适的一个作为问题的答案，并按照以下格式返回：
[choice]
其中[choice]必须是[A]、[B]、[C]和[D]之一。

Table 10: The examples of the adopted instructions for guiding LLMs to generate responses in the user languages
on the multi-choice QA task (GMMLU-Choice).

Language LLM-Based Score
IN. OUT.

en 94.71 82.52 (+11.24)
ar 87.14 64.38 (+24.85)
de 89.92 73.12 (+13.76)
el 90.59 65.11 (+22.05)
es 92.61 73.51 (+14.23)
hi 85.13 63.80 (+20.06)
ro 92.61 67.00 (+19.17)
ru 90.67 69.49 (+19.34)
th 86.89 60.04 (+25.12)
tr 85.46 63.46 (+21.35)
vi 91.34 67.16 (+22.85)
zh 90.84 69.60 (+20.28)

Table 11: LLM-based evaluation score (Accuracy) on
XQUAD with Aya, where stronger multi-step reason-
ing prompts are adopted. Nonetheless, the language-
mismatching issue persists.

did not eliminate, the gap between in-language
and out-language accuracy. Specifically, many

responses still contained correct answers but re-
mained in the wrong passage language, indicating
that even explicitly guiding the LLM to do ‘think
then translation’ cannot fully resolve decoding fail-
ures. These results underscore that decoding, rather
than understanding, remains a substantial bottle-
neck.

H Extended Evaluation on Larger Models

To enhance the robustness of our experiments, we
repeat the XQuAD evaluation (using the same
setup) on a 27B open-source model (Gemma3-27B-
IT) and a closed-source model estimated at 8-18B
parameters (GPT5-nano)9. The results in Table
12 show that, although overall accuracy of out-
language passages improves, it remains substan-
tially lower than on in-language passages. More-
over, a non-negligible fraction of questions are
answered correctly in content but produced in
the wrong language when the model receives out-

9https://www.r-bloggers.com/2025/08/how-man
y-parameters-does-gpt-5-have/
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Language Accuracy (Gemma3-27B-IT)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 21.3 86.7 67.1 (+4.9) 72.9 (+5.5) 60.3 (+9.4)
es 16.6 72.9 53.2 (+5.8) 59.2 (+9.4) 48.2 (+7.6)
de 17.0 72.5 52.0 (+4.7) 56.9 (+7.2) 48.2 (+7.0)
ro 14.5 76.2 52.0 (+4.3) 56.6 (+8.3) 47.4 (+6.2)
vi 15.1 77.6 49.9 (+7.4) 53.7 (+13.4) 44.3 (+9.7)
tr 12.2 67.4 45.4 (+5.9) 50.5 (+9.8) 42.1 (+5.0)
el 10.4 68.9 40.9 (+8.3) 44.7 (+16.1) 38.2 (+6.8)
zh 13.9 79.2 44.1 (+13.7) 45.7 (+20.7) 41.5 (+7.3)
ar 8.8 65.8 35.5 (+9.5) 37.4 (+19.6) 32.3 (+5.8)
hi 13.3 74.8 42.6 (+6.0) 46.8 (+15.0) 38.7 (+4.2)
ru 11.4 66.6 40.6 (+9.7) 42.6 (+11.8) 36.9 (+6.7)
th 11.1 74.6 35.4 (+14.2) 36.4 (+30.0) 34.5 (+9.8)

Language Accuracy (GPT5-nano)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 25.6 74.0 55.1 (+7.1) 58.3 (+8.3) 51.8 (+7.8)
es 20.2 64.8 50.2 (+3.6) 55.1 (+7.2) 46.3 (+2.4)
de 20.1 60.2 48.0 (+1.9) 52.0 (+6.2) 44.9 (+0.8)
ro 19.2 59.8 46.1 (+2.6) 49.4 (+7.3) 42.9 (+1.4)
vi 18.3 58.8 45.1 (+4.4) 47.8 (+5.0) 42.4 (+2.1)
tr 15.5 49.2 38.0 (+5.6) 39.8 (+7.4) 35.3 (+2.4)
el 12.5 55.5 35.6 (+6.1) 39.3 (+16.2) 32.9 (+2.1)
zh 16.5 59.6 39.1 (+8.9) 41.4 (+18.2) 37.8 (+3.6)
ar 10.3 48.2 31.3 (+8.8) 33.1 (+7.1) 30.0 (+3.9)
hi 12.8 45.2 29.8 (+10.3) 32.3 (+22.6) 27.0 (+13.3)
ru 12.8 48.9 34.1 (+6.4) 36.4 (+14.0) 31.8 (+3.9)
th 11.9 53.4 32.6 (+10.6) 34.2 (+25.2) 30.4 (+2.1)

Table 12: Language-specific results on XQUAD with larger LLMs (Gemma3-27B-IT and GPT5-nano). Numbers
between brackets indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not
the query language).

language passages. These findings are consistent
with Section 4.1 and further strengthen the general-
ization of our findings.

I Language-specific Results

The detailed results for each query-passage lan-
guage pair on XQUAD are given in Figure 4. The
detailed single-passage mRAG results for each lan-
guage on all datasets are provided in Table 13 to
18. The detailed results for each language in the
multi-passage mRAG experiments are shown in
Table 19 to 22.
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Figure 4: Model performance on XQUAD when the query is concatenated with passage in each studied language. Top: The
portion of queries that can be correctly answered in the user language. Bottom: The portion of queries for which the LLMs
generate the correct answer but in the wrong (passage) language. For a part of correctly answered queries, the gold answers are
the same words in the passage and query languages. In these cases, we only consider them in the above heatmaps to ensure that
there is no overlapping between the two vertical heatmaps and that they are addable.
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Language Accuracy (Aya)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 19.4 83.7 23.6 (+49.9) 32.4 (+44.1) 14.0 (+58.5)
es 13.9 73.5 43.7 (+6.3) 54.9 (+10.1) 30.9 (+5.5)
de 12.2 69.2 42.5 (+5.0) 53.4 (+7.6) 28.1 (+4.4)
ro 12.0 72.4 40.9 (+5.8) 51.1 (+10.8) 26.8 (+5.3)
vi 14.3 75.0 39.4 (+10.6) 48.2 (+16.8) 25.5 (+8.4)
tr 9.1 66.1 31.2 (+16.4) 43.0 (+13.9) 19.9 (+10.8)
el 8.5 67.5 31.5 (+8.6) 40.5 (+17.8) 20.0 (+2.6)
zh 12.6 74.6 33.3 (+17.3) 39.0 (+22.6) 25.5 (+8.2)
ar 7.6 66.3 27.4 (+12.1) 35.0 (+19.8) 18.7 (+5.3)
hi 6.1 62.4 27.3 (+9.4) 36.0 (+15.5) 17.2 (+2.6)
ru 9.2 63.8 29.6 (+11.0) 34.1 (+16.7) 22.1 (+5.2)
th 2.1 30.3 10.0 (+9.3) 11.4 (+17.6) 9.1 (+5.8)

AVG 10.6 67.1 31.7 (+13.5) 39.9 (+17.8) 21.5 (+10.2)

Language Accuracy (Llama)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 14.4 76.8 24.2 (+39.1) 33.7 (+34.1) 12.1 (+53.6)
es 8.8 66.2 32.3 (+6.5) 49.2 (+7.1) 24.0 (+6.0)
de 7.6 59.0 30.1 (+5.5) 45.7 (+5.0) 19.0 (+12.0)
ro 6.6 61.8 25.2 (+4.4) 40.2 (+5.8) 18.2 (+1.4)
vi 8.5 68.4 27.1 (+9.6) 41.8 (+9.7) 14.4 (+21.9)
tr 5.1 57.9 20.5 (+9.2) 30.7 (+13.1) 15.8 (+8.6)
el 2.5 57.5 18.2 (+8.4) 25.8 (+12.4) 11.8 (+12.5)
zh 5.2 62.9 18.9 (+14.2) 30.3 (+16.6) 11.8 (+18.0)
ar 2.0 45.3 12.0 (+10.7) 18.7 (+10.5) 8.2 (+17.5)
hi 2.7 55.3 19.6 (+2.3) 29.6 (+2.4) 13.4 (+0.8)
ru 4.1 49.8 15.3 (+9.8) 26.8 (+10.0) 7.6 (+20.7)
th 2.9 51.8 14.6 (+10.1) 21.6 (+16.9) 11.0 (+1.8)

AVG 5.9 59.4 21.5 (+10.8) 32.8 (+12.0) 13.9 (+14.6)

Table 13: Language-specific results on XQUAD with single-passage mRAG setup. Numbers between brackets
indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Gemma)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 17.9 80.6 61.5 (+5.0) 67.1 (+6.5) 56.6 (+5.3)
es 12.4 70.8 46.3 (+6.6) 54.5 (+9.4) 41.7 (+4.1)
de 12.1 67.7 44.1 (+4.4) 52.0 (+7.6) 39.8 (+2.3)
ro 12.1 72.1 43.3 (+6.2) 52.9 (+8.5) 37.8 (+5.9)
vi 10.8 73.4 37.7 (+11.3) 43.0 (+16.8) 33.1 (+10.8)
tr 8.4 65.2 33.7 (+10.5) 41.8 (+15.0) 29.1 (+11.1)
el 5.0 65.0 28.2 (+10.1) 34.0 (+15.7) 23.7 (+4.0)
zh 9.3 73.8 34.5 (+13.7) 38.9 (+17.6) 32.9 (+6.9)
ar 4.9 61.3 24.3 (+9.8) 27.6 (+12.9) 20.7 (+9.0)
hi 6.1 67.7 31.2 (+5.5) 38.9 (+7.6) 26.7 (+3.4)
ru 7.4 62.1 28.9 (+12.1) 32.9 (+16.8) 26.1 (+5.5)
th 5.4 71.3 24.9 (+20.0) 28.2 (+26.7) 22.8 (+11.6)

AVG 9.3 69.2 36.5 (+9.6) 42.6 (+13.4) 32.6 (+6.7)

Language Accuracy (Qwen)

Non. In. Out. (AVG) Out. (Best) Out. (Worst)

en 23.5 82.7 63.1 (+3.9) 67.6 (+4.4) 60.3 (+3.7)
es 17.2 74.3 46.6 (+5.7) 55.2 (+9.3) 42.5 (+2.4)
de 15.2 72.0 44.9 (+4.1) 51.2 (+8.3) 41.4 (+1.7)
ro 13.7 70.1 39.1 (+4.9) 46.2 (+9.8) 35.5 (+1.9)
vi 15.7 79.1 45.7 (+6.2) 50.5 (+14.2) 42.1 (+2.4)
tr 9.8 68.4 32.9 (+8.9) 40.1 (+13.5) 29.8 (+3.5)
el 4.8 51.6 20.9 (+5.0) 25.1 (+9.7) 18.1 (+0.4)
zh 18.9 83.0 43.9 (+8.5) 47.7 (+12.9) 41.2 (+12.4)
ar 9.1 65.3 27.7 (+9.1) 31.0 (+14.5) 25.7 (+10.3)
hi 5.5 66.1 25.6 (+3.7) 30.8 (+5.5) 22.1 (+0.6)
ru 9.1 62.2 32.4 (+8.5) 36.1 (+9.0) 29.6 (+2.9)
th 8.5 75.1 29.5 (+11.7) 32.2 (+22.6) 27.6 (+14.4)

AVG 12.6 70.8 37.7 (+6.7) 42.8 (+11.1) 34.7 (+4.7)

Table 14: Extension: Language-specific results on XQUAD with single-passage mRAG setup. Numbers between
brackets indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query
language).
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Language Accuracy (Aya) Accuracy (Llama)
Non. In. Out. Non. In. Out.

en 58.0 87.5 69.4 (+15.3) 61.8 82.4 63.9 (+10.2)
it 53.0 86.9 78.5 (+4.6) 44.7 70.6 63.6 (+3.7)
es 54.6 85.7 77.9 (+4.2) 46.9 72.1 66.8 (+3.1)
de 52.8 84.4 78.2 (+3.2) 46.0 70.6 65.3 (+2.2)
fr 55.4 86.9 79.1 (+3.1) 48.8 74.2 67.3 (+2.6)
pt 54.4 84.7 76.2 (+5.4) 45.0 70.1 63.8 (+3.9)
nl 55.9 85.6 76.8 (+4.2) 50.3 70.3 64.3 (+2.8)
sv 39.1 76.7 66.7 (+5.3) 44.9 69.7 63.3 (+3.4)
ru 43.6 79.6 59.7 (+14.0) 23.7 56.8 37.7 (+10.1)
fi 17.0 72.4 58.3 (+7.4) 27.2 62.4 53.9 (+4.2)
ja 46.8 82.1 54.9 (+23.3) 21.7 57.5 36.1 (+12.3)
pl 50.1 79.2 68.0 (+6.1) 35.3 60.6 51.5 (+4.4)
no 39.9 76.4 64.1 (+7.9) 43.6 66.4 58.3 (+5.3)
tr 52.0 82.3 72.2 (+7.6) 38.2 66.3 55.5 (+5.5)
hu 26.7 67.5 52.6 (+8.3) 34.4 59.3 49.2 (+5.1)
da 42.9 75.8 66.2 (+6.1) 46.4 66.5 60.3 (+4.2)
vi 54.4 79.0 71.2 (+6.5) 47.0 67.3 60.2 (+5.1)
he 36.2 78.5 46.5 (+25.4) 5.9 25.6 17.1 (+20.3)
ar 38.8 72.5 50.4 (+19.5) 17.2 46.4 27.2 (+10.7)
ms 53.6 78.4 68.4 (+7.7) 46.8 62.5 55.5 (+5.0)
ko 15.3 30.7 25.8 (+25.3) 19.2 52.9 30.2 (+17.6)
th 15.0 40.5 25.8 (+16.7) 24.2 46.9 32.0 (+13.3)
zh 48.4 78.0 56.6 (+20.2) 27.8 52.4 37.4 (+16.3)
km 7.8 19.2 14.9 (+8.2) 6.0 13.0 9.4 (+0.2)

AVG 42.2 73.8 60.8 (+10.6) 35.5 60.1 49.6 (+7.1)

Language Accuracy (Gemma) Accuracy (Qwen)
Non. In. Out. Non. In. Out.

en 65.0 79.8 75.7 (+1.3) 55.6 86.0 81.7 (+1.1)
it 59.6 80.3 75.4 (+3.7) 44.5 81.2 72.7 (+4.1)
es 61.4 78.0 73.3 (+3.8) 48.4 80.9 73.5 (+3.6)
de 58.3 75.9 73.7 (+2.4) 44.6 78.2 70.5 (+2.9)
fr 61.8 80.7 74.8 (+2.6) 49.0 82.3 74.9 (+2.6)
pt 60.1 76.5 70.5 (+5.0) 48.5 78.6 71.4 (+4.2)
nl 64.5 74.8 71.1 (+3.3) 45.7 79.0 71.1 (+3.3)
sv 59.9 73.5 70.2 (+3.6) 43.7 75.4 68.0 (+4.6)
ru 42.8 68.8 50.6 (+10.6) 30.7 71.0 51.2 (+10.3)
fi 44.6 68.3 62.4 (+4.6) 23.9 72.5 60.9 (+5.7)
ja 42.7 69.9 47.9 (+13.7) 31.1 75.2 46.3 (+17.5)
pl 55.0 67.8 62.0 (+4.6) 36.9 68.9 59.1 (+5.4)
no 59.3 68.6 63.9 (+5.8) 42.3 73.8 63.8 (+6.9)
tr 56.7 66.8 62.8 (+4.7) 36.4 72.4 64.4 (+5.7)
hu 51.2 64.9 61.9 (+5.5) 27.4 67.1 55.9 (+6.9)
da 61.1 66.8 64.4 (+4.9) 44.8 72.7 65.8 (+5.1)
vi 54.4 66.5 64.1 (+5.3) 50.9 74.3 69.3 (+4.9)
he 29.7 65.3 39.5 (+16.6) 19.9 66.6 34.3 (+18.2)
ar 30.0 61.1 42.8 (+9.9) 27.9 64.8 42.3 (+12.7)
ms 60.5 63.8 62.3 (+6.9) 47.1 68.1 63.4 (+6.4)
ko 12.2 17.5 19.7 (+9.7) 23.3 59.0 39.1 (+16.6)
th 40.0 55.9 38.2 (+18.6) 34.6 56.6 40.2 (+16.6)
zh 45.0 61.9 47.8 (+14.7) 49.5 70.0 58.5 (+12.2)
km 26.2 28.7 27.9 (+5.9) 14.0 23.2 21.1 (+6.6)

AVG 50.1 65.9 58.5 (+7.0) 38.4 70.7 59.1 (+7.7)

Table 15: Language-specific results on MKQA with single-passage mRAG setup. Numbers between brackets
indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Aya) Accuracy (Llama)
Non. In. Out. Non. In. Out.

en 47.9 70.4 32.7 (+30.8) 48.5 65.7 38.8 (+15.9)
ja 38.9 68.3 43.4 (+11.7) 19.9 46.9 23.4 (+6.6)
it 40.4 66.8 49.3 (+6.2) 26.9 51.9 34.7 (+6.1)
id 40.6 68.2 48.1 (+8.2) 27.2 46.7 30.4 (+6.0)
ko 12.4 25.7 16.6 (+11.7) 18.8 43.6 21.1 (+7.5)
nl 38.5 64.6 44.4 (+7.5) 29.2 50.2 31.0 (+5.7)
zh 40.7 65.2 47.8 (+10.8) 27.6 45.1 30.1 (+6.5)
vi 34.6 60.5 39.6 (+11.2) 26.1 45.4 28.1 (+8.6)
sv 22.4 55.6 32.7 (+8.0) 28.3 49.4 33.2 (+5.4)
pt 40.5 72.3 50.1 (+7.4) 27.3 53.7 33.7 (+6.1)
de 41.1 67.1 48.8 (+5.5) 32.0 53.4 37.6 (+5.1)
tr 36.0 65.7 39.0 (+13.7) 21.0 47.3 24.0 (+8.6)
ro 40.2 60.8 45.7 (+5.3) 26.5 44.2 32.5 (+4.6)
cs 34.2 57.2 39.0 (+7.7) 22.0 42.1 26.2 (+6.0)
ru 34.1 63.0 39.3 (+8.1) 21.0 43.3 23.3 (+6.5)
es 34.4 58.5 41.5 (+7.0) 25.7 48.4 34.3 (+5.4)
ms 35.8 64.1 44.0 (+8.7) 27.2 45.8 32.3 (+5.9)
pl 33.3 58.1 37.9 (+6.9) 20.6 39.1 24.8 (+6.3)
uk 32.8 59.4 37.4 (+6.7) 16.0 38.8 20.0 (+5.4)
fr 38.5 62.5 44.9 (+7.5) 23.8 50.7 31.5 (+5.5)
ar 29.2 59.9 36.0 (+9.4) 10.4 32.7 11.4 (+6.1)
fa 29.6 61.1 35.8 (+10.1) 15.2 43.6 16.9 (+8.7)
el 31.4 53.3 34.6 (+7.0) 15.5 35.6 17.7 (+8.1)
sr 13.4 38.4 18.9 (+7.7) 12.3 33.6 17.7 (+6.8)
he 30.9 60.6 36.6 (+9.3) 12.3 24.7 17.4 (+10.5)
hi 21.3 43.3 26.6 (+6.3) 17.9 39.0 23.4 (+1.5)
fil 23.4 44.9 30.2 (+8.7) 25.5 39.3 28.0 (+6.1)
lt 16.7 46.7 21.6 (+9.1) 14.8 35.9 19.0 (+4.9)
bn 5.1 23.9 8.2 (+5.4) 10.0 25.8 13.7 (+2.2)
ky 14.5 36.1 22.7 (+2.6) 13.9 27.4 16.6 (+5.9)
ha 15.0 43.9 24.3 (+16.0) 13.7 31.1 19.8 (+6.5)
te 4.8 15.5 6.2 (+2.9) 13.2 20.0 13.9 (+0.4)
sw 16.6 56.1 25.5 (+9.1) 20.1 34.7 25.8 (+4.7)
ig 15.5 34.9 20.8 (+13.5) 16.2 27.6 17.6 (+3.5)
si 6.1 13.3 4.4 (+3.3) 8.5 13.9 8.3 (+3.1)
ne 8.4 28.3 10.8 (+13.7) 9.2 27.7 10.2 (+14.4)
am 8.0 18.9 16.5 (+23.3) 8.5 10.3 5.8 (+0.3)
ny 21.5 44.2 29.6 (+13.8) 17.9 28.2 19.9 (+3.5)
mg 18.3 44.6 24.4 (+10.0) 20.1 40.4 22.1 (+4.6)
so 23.7 54.9 31.7 (+8.2) 19.9 40.0 22.7 (+4.6)
sn 27.5 60.2 31.9 (+15.7) 19.0 40.1 22.2 (+3.8)
yo 24.1 40.2 29.4 (+7.0) 20.2 32.9 24.7 (+1.1)

AVG 26.7 51.4 32.1 (+9.6) 20.2 39.0 23.5 (+5.8)

Table 16: Language-specific results on GMMLU-Open with single-passage mRAG setup when the model is given
no options and forced to output an open answer as the response. Numbers between brackets indicate the proportion
of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Gemma) Accuracy (Qwen)
Non. In. Out. Non. In. Out.

en 54.4 69.2 61.1 (+2.6) 56.1 73.2 63.4 (+2.2)
ja 43.0 67.5 47.7 (+5.1) 33.1 66.0 41.4 (+6.9)
it 47.2 65.7 54.0 (+4.7) 36.3 64.5 45.3 (+6.1)
id 46.8 66.8 50.6 (+7.4) 38.5 63.3 44.4 (+6.5)
ko 13.2 20.4 18.4 (+6.7) 23.7 43.7 28.3 (+7.4)
nl 45.0 63.2 46.6 (+6.8) 31.9 58.4 38.8 (+6.7)
zh 48.3 66.4 54.3 (+5.1) 52.3 67.2 57.7 (+4.1)
vi 38.5 58.1 39.6 (+9.8) 34.9 59.6 41.0 (+8.1)
sv 43.6 62.5 47.0 (+5.7) 28.4 60.0 35.6 (+7.2)
pt 47.3 68.9 51.8 (+6.3) 38.6 68.5 48.7 (+5.6)
de 47.2 66.8 54.2 (+4.2) 36.8 62.9 44.4 (+5.3)
tr 40.1 59.7 42.1 (+7.3) 24.2 56.2 32.2 (+10.1)
ro 43.2 58.3 46.6 (+5.2) 30.1 52.1 36.0 (+5.7)
cs 34.7 54.1 37.1 (+6.9) 23.2 47.9 28.5 (+5.7)
ru 38.1 55.7 38.4 (+8.2) 31.3 56.2 36.0 (+6.0)
es 39.8 57.7 45.5 (+6.2) 37.0 60.5 44.0 (+5.4)
ms 44.6 61.4 46.1 (+8.8) 32.5 57.4 39.7 (+7.2)
pl 36.3 54.0 38.9 (+6.8) 25.6 51.2 30.6 (+7.2)
uk 33.3 53.1 36.5 (+7.1) 18.3 45.8 23.8 (+5.4)
fr 39.5 62.1 47.7 (+5.8) 36.5 65.1 44.8 (+6.0)
ar 24.2 56.4 29.1 (+6.9) 22.4 57.8 29.2 (+7.3)
fa 31.4 61.2 36.3 (+7.7) 14.2 48.9 19.8 (+9.0)
el 29.4 48.1 29.2 (+7.4) 10.2 25.7 11.4 (+4.8)
sr 32.1 48.9 32.1 (+5.7) 17.5 43.4 23.8 (+5.6)
he 30.4 56.4 34.9 (+8.6) 18.8 53.3 26.7 (+7.9)
hi 35.1 52.2 35.7 (+2.9) 15.5 39.2 20.0 (+2.6)
fil 45.2 52.6 44.9 (+7.3) 30.0 45.9 33.4 (+9.7)
lt 31.4 51.0 29.9 (+8.0) 16.3 42.0 20.6 (+7.4)
bn 24.4 46.9 24.7 (+6.6) 11.0 35.5 15.0 (+5.2)
ky 28.2 43.5 30.9 (+3.3) 15.7 33.7 21.1 (+4.6)
ha 29.8 42.0 31.6 (+5.6) 19.2 41.4 24.4 (+8.9)
te 24.7 43.2 29.0 (+4.4) 7.7 17.7 6.9 (+1.6)
sw 35.6 48.7 37.4 (+6.1) 17.2 44.2 23.7 (+6.8)
ig 23.7 36.1 25.9 (+4.4) 17.4 35.7 24.1 (+7.7)
si 17.0 32.1 19.9 (+1.6) 9.5 15.7 8.8 (+1.0)
ne 24.1 38.4 25.8 (+11.7) 6.1 24.0 8.0 (+13.2)
am 15.6 24.6 16.9 (+2.2) 11.9 20.8 14.1 (+4.2)
ny 29.0 35.6 29.0 (+3.2) 18.0 29.9 24.0 (+4.7)
mg 26.7 33.0 24.2 (+4.2) 19.9 40.5 27.1 (+6.0)
so 29.2 40.6 28.6 (+4.1) 23.6 42.3 27.4 (+6.1)
sn 34.3 42.6 29.2 (+5.3) 20.2 37.4 26.4 (+5.2)
yo 21.2 35.3 25.4 (+2.5) 26.7 42.7 34.1 (+2.5)

AVG 34.4 51.5 37.0 (+5.9) 24.7 47.6 30.3 (+6.1)

Table 17: Extension: Language-specific results on GMMLU-Open with single-passage mRAG setup when the
model is given no options and forced to output an open answer as the response. Numbers between brackets indicate
the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Aya) Accuracy (Llama) Accuracy (Gemma) Accuracy (Qwen)
Non. In. Out. Non. In. Out. Non. In. Out. Non. In. Out.

en 70.2 77.3 75.5 69.7 76.6 72.6 80.5 83.3 81.0 81.6 84.3 82.8
ja 61.5 71.1 71.4 44.3 58.1 57.9 69.9 77.2 75.9 66.2 74.0 71.4
it 64.6 70.7 70.7 59.2 65.8 64.6 75.5 78.6 78.9 72.2 74.9 75.1
id 61.8 69.7 68.9 50.7 57.6 57.9 72.5 76.7 75.4 69.8 74.5 73.2
ko 58.8 64.6 65.8 39.3 47.1 47.7 66.7 72.6 71.9 64.4 70.7 69.2
nl 61.7 68.8 67.9 54.3 63.6 61.5 73.2 75.9 74.9 71.0 73.6 74.3
zh 60.3 66.2 68.8 52.3 61.5 59.2 71.0 74.0 75.3 73.2 72.2 72.5
vi 55.5 62.2 62.4 48.5 57.8 56.0 65.8 71.1 70.9 66.9 70.7 69.8
sv 52.7 65.3 65.2 47.3 60.3 58.5 72.3 76.4 76.4 67.0 73.6 72.9
pt 70.1 75.5 75.0 35.1 60.7 53.3 78.2 83.2 81.6 78.6 83.0 82.1
de 67.9 75.2 74.2 60.2 70.3 69.0 78.3 81.6 81.9 74.9 80.4 78.5
tr 59.1 67.4 68.1 46.4 57.7 56.1 69.1 73.4 74.0 57.5 67.0 66.4
ro 61.8 66.2 66.5 51.4 59.2 58.4 70.9 72.8 73.0 64.9 70.2 68.3
cs 60.9 70.2 68.0 47.1 56.6 56.9 72.1 75.0 74.4 65.2 71.9 69.6
ru 60.9 70.6 70.0 40.3 49.2 50.5 72.3 77.8 77.4 74.2 76.4 76.0
es 63.9 69.5 69.7 57.5 65.8 64.0 73.5 76.3 76.4 72.4 76.9 76.0
ms 56.3 65.4 64.4 47.0 54.4 54.9 70.1 73.2 72.7 66.2 72.3 70.8
pl 59.4 68.9 67.7 47.9 55.2 51.5 71.7 75.1 74.9 67.2 71.6 70.5
uk 58.9 68.4 67.2 29.1 34.8 37.0 70.5 75.3 74.9 64.8 72.4 70.6
fr 69.5 78.1 77.1 62.3 67.2 67.0 80.4 84.1 82.8 77.9 82.0 81.0
ar 60.7 74.3 73.4 41.2 61.4 58.0 66.1 77.5 76.7 63.2 75.9 73.2
fa 58.4 68.9 69.2 38.8 53.2 53.3 69.3 78.6 78.1 58.3 71.3 68.4
el 58.1 65.0 65.2 27.8 40.8 45.1 64.7 72.4 71.9 47.3 61.4 58.0
sr 41.0 58.2 55.8 14.5 8.8 21.3 65.1 70.6 70.5 58.4 67.7 66.5
he 54.3 64.0 62.7 19.4 18.8 24.5 59.7 69.6 69.8 28.1 35.4 40.1
hi 51.0 58.3 60.8 39.1 49.1 49.7 64.4 66.8 68.6 49.0 61.2 59.1
fil 41.9 48.0 50.7 37.2 39.1 40.7 66.6 68.7 70.0 58.0 60.4 59.1
lt 39.9 55.0 50.9 34.0 48.5 46.6 65.4 71.4 70.7 46.6 61.3 56.9
bn 26.7 48.9 46.6 30.2 45.4 49.1 61.0 67.6 67.8 52.3 62.1 61.5
ky 26.4 37.1 41.9 20.4 24.3 28.5 48.2 53.5 54.1 38.7 49.9 48.2
ha 29.4 38.3 33.7 26.6 30.8 31.8 35.4 32.8 38.9 25.6 35.5 30.4
te 11.9 21.6 28.7 29.8 44.2 42.4 56.8 61.2 62.6 25.9 33.4 32.2
sw 28.5 39.8 35.7 32.0 37.0 40.9 55.2 57.4 60.1 27.2 37.2 32.8
ig 28.0 35.8 33.3 25.1 30.0 28.7 33.2 40.2 39.6 22.7 31.0 29.7
si 7.1 12.6 12.5 22.6 32.1 26.7 35.9 40.6 49.9 10.7 15.7 15.8
ne 35.6 40.7 44.1 26.5 25.7 31.9 56.2 55.9 59.6 36.7 38.7 40.7
am 3.2 5.9 17.3 15.4 5.5 8.2 36.1 45.4 44.0 10.3 25.0 17.9
ny 22.2 24.6 23.6 21.5 21.5 26.4 37.8 46.0 43.8 19.3 28.1 25.5
mg 22.5 32.5 27.4 19.3 22.1 23.7 36.5 37.0 36.2 21.1 28.2 26.2
so 28.1 38.3 34.7 24.1 27.0 26.0 26.4 35.9 36.7 25.2 36.4 31.6
sn 21.2 22.6 24.9 23.0 23.0 27.1 39.4 44.2 46.1 19.8 21.0 23.5
yo 21.7 19.8 25.7 20.7 25.0 25.0 32.7 38.7 37.1 17.0 19.2 21.5

AVG 46.5 54.8 54.8 37.6 45.1 45.5 61.1 65.8 66.1 51.4 58.3 56.9

Table 18: Language-specific results on GMMLU-Choice with single-passage mRAG setup when the model is given
options and the answer accuracy is evaluated by whether the model outputs the correct option letter. This setup
eliminates the effect of generation language on the performance evaluation.
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Accuracy (Aya)

Setups en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx 70.3 61.4 64.8 61.9 58.8 61.7 60.1 55.6 53.1 70.5 68.1 59.5 61.9 61.2

1o 75.2 71.3 71.0 69.1 65.8 68.3 67.1 63.4 65.6 75.0 74.7 67.4 66.3 68.4
1o3i 72.9 68.1 68.8 64.8 62.4 63.4 62.8 57.7 61.3 64.5 70.2 64.0 62.4 65.6
1o3o 72.2 68.0 68.4 63.7 62.9 64.6 62.8 56.6 61.6 68.7 70.3 63.0 61.1 64.6

3o 78.3 74.5 73.6 72.2 69.2 70.4 70.7 63.3 68.4 73.9 77.5 69.9 67.0 71.2
3o1i 77.2 73.5 73.5 70.9 68.7 69.3 69.0 62.0 67.7 71.2 76.0 68.7 66.8 70.8
3o1o 77.4 73.9 73.5 71.0 69.3 69.6 69.5 61.6 67.3 74.3 76.5 69.3 67.0 71.0
Setups ru es ms pl uk fr ar fa el sr he hi fil lt

No Ctx 60.9 64.0 56.4 59.6 59.1 69.6 60.9 58.3 58.2 41.3 54.3 51.0 41.6 39.7

1o 70.3 70.3 64.2 68.6 68.0 76.8 71.7 68.9 65.4 56.6 63.7 60.0 52.1 51.7
1o3i 65.1 66.6 59.3 65.6 64.4 73.6 68.0 64.6 61.9 52.5 60.6 57.7 44.3 46.3
1o3o 64.9 65.5 60.0 64.8 63.8 72.3 67.0 64.7 62.1 53.2 62.0 57.8 49.4 47.3

3o 71.9 72.3 66.8 70.4 69.8 79.7 75.8 71.8 68.7 60.3 66.9 65.0 53.5 53.1
3o1i 70.8 71.0 65.6 70.2 69.4 77.7 74.7 71.4 67.9 58.8 65.7 64.0 51.9 52.8
3o1o 71.8 71.4 66.2 70.2 68.9 78.3 74.3 70.7 68.2 59.4 66.0 64.3 52.4 52.5
Setups bn ky ha te sw ig si ne am ny mg so sn yo

No Ctx 26.7 26.5 28.2 12.2 28.3 28.1 6.6 35.3 3.2 22.3 23.5 28.1 22.4 23.5

1o 47.1 39.8 33.9 28.9 37.0 34.2 12.7 44.5 17.3 24.8 28.5 35.9 23.5 24.5
1o3i 42.6 34.2 33.1 14.7 31.9 30.1 12.1 41.1 9.0 21.2 25.2 33.9 23.8 23.0
1o3o 46.1 37.5 32.7 17.7 33.5 31.1 11.7 43.4 10.1 20.9 26.4 33.0 23.5 26.2

3o 53.5 44.4 34.3 22.1 38.0 33.0 12.0 47.2 11.7 21.9 27.6 38.2 23.8 25.5
3o1i 51.4 40.2 35.8 20.4 37.0 34.0 13.3 44.5 7.8 22.6 30.1 36.0 26.9 25.8
3o1o 53.5 41.9 34.5 22.0 39.0 33.7 11.7 47.2 10.3 20.5 28.4 37.0 26.0 28.0

Table 19: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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Accuracy (Llama)

Setups en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx 70.0 43.6 58.9 51.1 39.4 54.7 52.2 48.7 47.8 34.2 60.3 46.4 51.4 48.1

1o 73.0 57.5 64.5 58.7 48.1 62.2 58.9 56.6 59.2 51.0 69.3 56.6 58.4 57.1
1o3i 72.5 56.7 63.5 52.8 45.4 61.0 57.7 53.9 48.6 48.7 65.5 52.5 56.5 54.3
1o3o 71.3 55.2 60.1 53.7 45.5 60.6 56.5 54.9 53.1 49.3 66.3 53.3 56.8 54.3

3o 75.5 63.9 68.3 59.4 52.2 65.4 63.6 61.1 59.0 53.0 73.6 60.0 62.8 60.3
3o1i 75.7 62.7 67.4 56.8 50.3 64.8 62.7 59.2 55.7 49.6 73.1 58.4 61.4 58.4
3o1o 75.2 63.1 66.6 58.1 51.8 65.3 62.4 60.4 57.8 53.1 73.3 58.5 61.3 59.5
Setups ru es ms pl uk fr ar fa el sr he hi fil lt

No Ctx 41.0 57.2 47.3 48.2 29.1 62.9 41.2 38.6 27.3 14.5 20.6 39.2 37.6 34.5

1o 49.7 64.2 55.0 53.0 36.7 67.3 59.0 52.5 46.4 22.6 25.8 48.4 41.5 45.7
1o3i 33.1 64.6 49.4 36.7 16.5 65.4 58.3 46.1 21.9 5.1 28.2 46.1 39.5 36.9
1o3o 41.9 62.1 52.3 46.6 19.7 65.0 57.8 45.0 30.3 11.6 26.9 48.1 38.4 42.7

3o 49.1 68.6 58.7 52.7 25.0 71.5 67.3 52.6 39.9 14.3 35.4 54.7 42.6 49.2
3o1i 41.1 67.7 56.0 47.1 18.4 71.9 65.8 51.7 30.0 6.7 34.8 51.8 43.3 45.6
3o1o 47.3 67.6 56.6 52.5 21.6 70.9 65.5 50.2 33.8 12.5 32.0 53.6 42.6 47.9
Setups bn ky ha te sw ig si ne am ny mg so sn yo

No Ctx 30.3 21.1 26.2 28.7 32.3 25.0 22.1 26.8 15.9 22.3 19.8 23.9 24.8 21.4

1o 48.2 28.7 30.6 42.6 41.7 29.0 25.1 30.2 8.1 26.0 24.0 28.5 26.2 24.4
1o3i 49.3 23.3 28.6 43.1 42.3 28.2 25.8 21.4 7.8 22.0 21.0 24.9 20.7 29.5
1o3o 48.7 20.3 30.6 40.0 45.2 28.0 26.9 24.5 8.5 27.6 22.5 27.1 28.3 26.1

3o 55.9 21.5 34.1 47.3 49.4 28.7 28.9 29.3 8.6 26.9 25.5 28.8 29.2 28.3
3o1i 56.4 19.6 32.4 49.5 48.1 26.9 30.2 27.5 9.2 24.1 22.6 28.2 26.2 30.3
3o1o 56.0 21.8 33.9 47.7 50.4 28.7 28.7 27.5 9.1 26.8 23.3 27.9 29.9 26.5

Table 20: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.

223



Accuracy (Gemma

Setups en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx 80.6 69.8 75.6 72.8 66.7 73.1 71.0 65.9 72.3 78.3 78.4 69.0 71.0 72.3

1o 81.2 76.4 78.6 75.9 72.1 74.6 75.1 71.7 76.1 82.1 81.7 74.3 73.8 74.7
1o3i 80.4 76.3 78.2 74.8 71.4 74.8 73.2 70.1 75.1 78.2 80.1 72.9 72.6 74.3
1o3o 80.2 74.4 77.1 74.2 71.4 73.4 72.6 68.7 73.9 74.7 80.4 71.5 71.7 73.1

3o 83.1 78.6 80.8 78.6 75.9 76.8 77.1 73.7 77.8 81.7 83.7 76.4 74.7 77.7
3o1i 82.9 78.9 81.2 78.3 75.8 77.4 76.9 72.4 77.6 80.5 83.1 76.2 75.4 77.3
3o1o 82.9 78.7 80.8 78.4 76.1 76.7 76.3 73.1 77.5 79.5 84.1 75.8 74.5 76.9
Setups ru es ms pl uk fr ar fa el sr he hi fil lt

No Ctx 72.2 73.5 70.4 72.0 70.7 80.5 66.1 69.3 64.9 65.3 59.5 64.4 66.9 65.6

1o 77.6 76.8 72.5 75.5 75.4 83.2 75.8 77.4 72.4 70.3 70.2 68.2 69.8 70.2
1o3i 75.6 76.2 71.1 74.8 73.1 81.9 74.8 75.3 71.3 70.5 68.7 67.5 69.5 69.3
1o3o 75.5 75.0 70.8 73.4 73.2 82.0 72.6 75.2 71.0 68.7 69.1 67.3 67.3 66.5

3o 80.1 78.9 74.8 76.9 77.8 85.8 79.2 79.9 75.1 73.6 73.8 71.9 71.7 72.2
3o1i 79.3 78.4 74.7 76.8 76.8 85.2 78.9 80.0 74.1 74.0 73.7 71.4 71.7 72.7
3o1o 79.5 78.4 74.1 76.7 76.5 85.1 78.5 79.9 74.3 72.9 72.8 71.0 71.5 71.3
Setups bn ky ha te sw ig si ne am ny mg so sn yo

No Ctx 61.1 48.1 34.6 56.8 55.2 33.3 36.2 56.2 35.5 38.1 36.5 25.7 39.8 32.5

1o 69.3 53.3 39.0 62.2 59.4 41.5 51.0 58.0 45.1 44.2 35.9 34.6 45.1 38.5
1o3i 68.3 52.3 35.4 60.1 58.8 35.7 49.5 58.7 44.1 45.4 30.7 42.7 44.2 37.9
1o3o 68.2 52.4 44.1 60.4 56.9 37.1 53.4 56.1 47.6 42.3 32.7 44.2 45.7 37.7

3o 73.3 59.8 45.5 66.7 61.8 40.8 59.2 59.9 48.9 45.8 34.3 49.3 49.0 41.2
3o1i 72.2 58.0 41.1 66.0 61.3 39.0 53.9 60.3 48.4 47.7 34.4 49.1 48.1 40.5
3o1o 72.8 58.2 45.4 65.8 62.2 40.1 57.2 59.5 49.6 44.1 34.4 48.9 47.8 38.6

Table 21: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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Accuracy (Qwen)

Setups en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx 81.6 66.2 72.4 70.1 64.4 71.2 73.7 66.8 67.0 78.8 75.0 57.7 65.0 65.4

1o 83.0 71.2 75.4 73.6 69.9 73.7 72.4 69.8 72.7 81.9 77.8 66.8 69.0 70.1
1o3i 80.8 70.3 74.4 72.0 68.8 70.9 69.0 65.3 71.0 79.5 76.1 65.0 65.3 68.8
1o3o 80.2 69.3 75.9 71.5 66.9 71.5 68.6 65.2 71.2 79.2 75.4 64.9 64.4 67.3

3o 83.9 75.4 78.2 75.8 72.6 75.5 74.1 70.8 76.1 83.5 81.3 71.2 70.4 73.0
3o1i 83.7 74.7 77.7 75.3 71.9 74.9 74.1 69.9 75.9 83.8 81.3 69.2 69.3 72.9
3o1o 83.9 74.9 78.2 75.9 71.8 75.7 73.0 70.7 75.4 83.4 80.6 69.7 69.8 72.7
Setups ru es ms pl uk fr ar fa el sr he hi fil lt

No Ctx 74.3 72.5 66.5 67.3 65.0 77.9 63.2 58.2 47.3 58.3 28.6 48.9 58.0 46.7

1o 76.1 75.7 70.2 71.8 70.8 81.4 72.6 68.4 58.1 66.6 40.5 57.9 59.4 56.1
1o3i 72.0 74.4 67.0 69.2 68.4 79.1 69.8 63.9 57.0 64.0 41.2 55.5 57.2 54.3
1o3o 72.2 74.6 67.9 67.9 68.5 78.6 67.6 62.9 54.8 63.9 40.4 56.9 56.5 54.3

3o 78.5 78.1 73.3 72.8 73.2 83.5 75.3 73.4 62.4 69.6 44.2 63.5 62.4 60.0
3o1i 77.5 77.0 72.0 73.4 71.9 82.9 74.0 71.0 59.7 69.1 41.5 62.4 60.6 58.9
3o1o 77.2 77.4 72.5 73.1 72.6 83.4 73.4 70.6 60.4 68.5 42.4 62.3 61.1 59.5
Setups bn ky ha te sw ig si ne am ny mg so sn yo

No Ctx 52.2 38.9 26.0 25.6 27.3 22.5 9.8 36.5 9.4 18.9 21.3 26.2 19.7 15.8

1o 61.6 48.0 30.8 33.2 33.2 29.0 15.5 41.0 18.6 27.4 25.4 31.5 24.5 20.5
1o3i 52.4 45.0 29.4 23.9 30.4 26.5 16.1 40.1 16.0 26.5 22.0 26.8 22.9 21.7
1o3o 49.7 43.6 31.6 20.2 29.7 28.8 19.4 42.5 18.1 28.9 24.9 29.0 27.4 22.7

3o 60.8 50.1 33.3 28.5 35.0 31.5 20.7 48.9 20.7 29.5 26.2 31.4 27.2 24.7
3o1i 55.2 46.6 32.5 23.1 33.3 29.3 20.8 45.9 22.1 29.5 25.8 30.0 26.9 25.3
3o1o 55.0 47.2 33.1 25.0 34.2 29.5 21.1 48.1 20.7 29.0 25.2 30.7 27.6 23.5

Table 22: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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