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Abstract

Retrieval-augmented generation (RAG) with
large language models (LLMs) has demon-
strated strong performance in multilingual
question-answering (QA) tasks by leveraging
relevant passages retrieved from corpora. In
multilingual RAG (mRAG), the retrieved pas-
sages can be written in languages other than
that of the query entered by the user, making
it challenging for LLMs to effectively utilize
the provided information. Recent research sug-
gests that retrieving passages from multilingual
corpora can improve RAG performance, par-
ticularly for low-resource languages. However,
the extent to which LLMs can leverage differ-
ent kinds of multilingual contexts to generate
accurate answers, independently from retrieval
quality, remains understudied. In this paper, we
conduct an extensive assessment of LLMs’ abil-
ity to (i) make consistent use of a relevant pas-
sage regardless of its language, (ii) respond in
the expected language, and (iii) focus on the rel-
evant passage even when multiple ‘distracting’
passages in different languages are provided in
the context. Our experiments with four LLMs
across three QA datasets covering 48 languages
reveal a surprising ability of LLMs to extract
relevant information from passages in a differ-
ent language than the query, but a much weaker
ability to produce a full answer in the correct
language. Our analysis, based on both accu-
racy and feature attribution techniques, further
shows that distracting passages negatively im-
pact answer quality regardless of their language.
However, distractors in the query language ex-
ert a slightly stronger influence. Taken together,
our findings deepen the understanding of how
LLMs utilize context in mRAG systems, pro-
viding directions for future improvements. !

1 Introduction

Retrieval-augmented generation has shown strong
results in multilingual question-answering (QA)

LAll codes and data released at https://github.com/B
etswish/mRAG-Context-Consistency.

tasks (Chirkova et al., 2024; Thakur et al., 2024).
Given a query in the user language, informative
passages are retrieved from a reference corpus
and provided jointly with the query, promoting
the large language model (LLM) to generate more
precise responses (Lewis et al., 2020; Asai et al.,
2021). In multilingual RAG (mRAG), retrieval
can be performed either monolingually or cross-
lingually. In the former, retrieval is performed
only over passages in the same language as the
query (Asai et al., 2023; Gao et al., 2023; Fan et al.,
2024), which can be successful for high-resource
languages. However, this approach is marginally
useful, or even harmful, when the question is posed
in a low-resource language, since relevant infor-
mation is likely to be available only in different
languages (Muller et al., 2023). In addition, for
questions regarding a specific geographical region
or culture, essential information may be present
only in corpora of the languages spoken in that re-
gion. To address this issue, cross-lingual retrieval
attempts to extract useful information simultane-
ously from multiple languages (Asai et al., 2021;
Li et al., 2024), leading to visible gains in low-
resource languages (Chirkova et al., 2024)

Evaluating RAG pipelines is notoriously diffi-
cult due to the open-endedness of the retrieval task,
and to the complex interactions of retrieval quality
with model understanding and generation abilities.
On top of this, multilinguality adds another layer
of complexity. Ideally, retrieved passages should
be equally useful when the same question is posed
in different languages. Besides, LLM-generated
answers should be consistently correct across lan-
guages so that users with different language back-
grounds enjoy a similar experience. However, de-
spite the reported accuracy improvements, the abil-
ities of LL.Ms to exploit cross-lingually retrieved
contexts in mRAG remain poorly understood.

In this paper, we conduct an in-depth assess-
ment of these abilities, using standard accuracy
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Figure 1: Ilustration of the contributions and proposed assessment frameworks of this paper.

evaluation as well as feature attribution analysis.
Unlike recent mRAG evaluations (Chirkova et al.,
2024; Park and Lee, 2025), which test the LLM
performance for each language in the entire RAG
pipeline (i.e., retrieval + generation), we disentan-
gle these two factors and focus on the LLM’s abil-
ity to exploit context independently from retrieval
quality. As shown in Figure 1, our key contribu-
tions include: (a) We evaluate how LLMs lever-
age retrieved passages in different languages in
various multilingual QA tasks, revealing remark-
ably robust input understanding but much more
brittle generation abilities. (b) Besides the stan-
dard accuracy evaluation, we apply a recently pro-
posed RAG answer attribution method based on
model internals (Qi et al., 2024) to confirm that
LLMs consistently incorporate retrieved content
from various languages, providing insights from an
interpretability perspective. (c) We consider both
single-passage and multi-passage mRAG setups
and examine how distracting passages in differ-
ent languages affect model performance, shedding
light on the complex interplay between relevance
and content of the retrieved passages. Taken to-
gether, our results deepen our understanding of
how LLMs utilize context in mRAG systems and
reveal important areas for future improvements.

2 Related Work

2.1 Retrieval Strategies for mRAG

Retrieval is a key component of mRAG, which
can be performed in at least two ways: monolin-
gually (in-language) or cross-lingually. Chirkova
et al. 2024 investigated mRAG systems across
13 languages, highlighting the limited gains of
in-language retrieval in their setup. Nie et al.
2023 proposed the Prompts Augmented by Re-
trieval Crosslingually (PARC) pipeline, which

augments contexts with semantically similar sen-
tences retrieved from high-resource languages to
enhance zero-shot performance in low-resource
languages. Gao et al. 2022 introduced a retrieval-
augmented method for multilingual keyphrase gen-
eration, leveraging keyphrase annotations in En-
glish to aid keyphrase generation in low-resource
languages through cross-lingual dense passage re-
trieval.

2.2 Consistency in Multilingual LLMs

Ensuring model consistency across languages is
a key objective for multilingual LLMs. A series
of recent works has focused on the consistency
of factual knowledge encoded in the weights of
multilingually pre-trained LLMs (Fierro and S¢-
gaard, 2022; Weber et al., 2023; Qi et al., 2023;
Hupkes et al., 2023). Other work has focused
on the consistency of domain-specific QA by as-
sessing whether the questions asked by a certain
group of people (Schlicht et al., 2025) or about
domain-specific knowledge (Yin et al., 2022; Li
et al., 2025) can be correctly answered by LLMs
regardless of the query language. Very recently
and concurrently with our work, research interest
has also risen around the consistency of mRAG
pipelines (Wu et al., 2024; Sharma et al., 2024;
Park and Lee, 2025).

2.3 Context Utilization in mRAG

Although some studies (Asai et al., 2021; Nie et al.,
2023; Stap and Monz, 2023; Chirkova et al., 2024)
have demonstrated that cross-lingual retrieval can
significantly enhance mRAG answer accuracy, the
extent to which LLMs can utilize multilingual con-
texts consistently remains poorly understood, moti-
vating the present work. The concept of context uti-
lization is also not always clearly defined. Recent
and concurrent studies (Wu et al., 2024; Sharma
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QA Task . # Queries Parallel? Answer

Dataset Type # Languages | # Queries (w/ Gold Pass.) Query Answer Gold Pass. Format
XQUAD Extractive 12 1190 1190 Text
MKQA | Open Domain 24 6758 5951 X Text

GMMLU | Multi-Choice 42 14042 4136 X A/B/C/D

Table 1: Overall dataset statistics. # Queries (w/ Gold Pass.) refers to the number of queries with at least one gold
passage in any language, which is the subset used for our experiments (cf. Section 3.2).

et al., 2024; Park and Lee, 2025) use performance
of the complete mRAG pipeline to study context
utilization and find that models tend to prefer pas-
sages in the query language or Latin scripts. In
this paper, we further distinguish between input
understanding and decoding capability as key abil-
ities of an mRAG generator, and disentangle them
through our experiments, while strictly controlling
for retrieval quality.

3 Experimental Setup

Consider a multilingual QA setup where ¢’ is a
query in language £ and a’ is the gold answer in the
same language. For each query, a set of relevant
passages P, = {p1,...,pn} in multiple languages
is retrieved from a reference multilingual corpus.
A relevant passage (p € F,) is considered gold p if
it includes the necessary information to answer ¢*
correctly, or non-gold (‘distracting’) p otherwise.
To perform mRAG, a subset of relevant passages
C4 C P, is selected and provided as extra context
to the LLM along with query ¢’. In an ideal nRAG
setting, the model should answer more accurately
when provided with C but it should also be agnostic
to the languages in which the passages p € C
are provided, in terms of both answer accuracy
and feature attribution results. Following Muller
et al., 2023, we use the term ‘in-language’ for
the same language as the user query language, and
‘out-language’ for different languages than the user
language.

Given this setup, we study LLMs’ ability to han-
dle multilingual context in different retrieval scenar-
ios, which we simulate by varying (i) the number of
gold and non-gold (‘distracting’) passages provided
in C, and (ii) the languages of those passages.

3.1 Datasets

Question answering datasets can differ across many
dimensions. We choose three multilingual QA
benchmarks to cover a diverse set of languages,
three different types of QA, and different levels

of parallelism (see Table 1) allowing us to isolate
different aspects of mRAG in our evaluation.

XQUAD (Artetxe et al., 2020) is an extension
of the extractive English QA dataset SQUAD (Ra-
jpurkar et al., 2016), which contains 1190 ques-
tions, each provided with a single relevant passage
and a gold answer, all translated into 12 languages.
While not being originally designed for RAG evalu-
ation, this dataset is the only one allowing us to as-
sess LLMSs’ abilities to use the exact same informa-
tion provided in different languages, simulating an
impossible scenario where retrieval works perfectly
in all languages. MKQA (Longpre et al., 2021) is
an open domain QA dataset covering 10,000 ques-
tions across 24 languages derived from Natural
Questions (Kwiatkowski et al., 2019). Removing
the questions without any gold answers provided,
we work on a total of 6758 paralleled questions
in this paper. Global-MMLU or GMMLU (Singh
et al., 2024) is a large multilingual extension of
MMLU (Hendrycks et al., 2020) obtained by trans-
lating the English instances into 41 languages. Like
MMLU, it contains 14042 multi-choice questions
that are used to test LLMs’ understanding capabil-
ity across a range of subjects, like social sciences or
medical questions. Each question is provided with
four options to choose from. Question examples
for all datasets are given in Appendix A.

3.2 Retrieval and Filtering

XQUAD includes a single gold passage for each
query, which we can provide to the model without
performing any retrieval (Cy = P, = {D}).

As for MKQA and GMMLU, we retrieve pas-
sages from Multilingual Wikipedia Corpora” using
the Cohere Embed Multilingual V3 retriever’, a
strong performing multilingual embedding model
with balanced language coverage (CohereAl, 2023).
Unlike previous work (Asai et al., 2021; Muller

thtps://huggingface.co/datasets/wikimedia/wi
kipedia

3https://huggingface.co/Cohere/Cohere—embed—m
ultilingual-v3.0

201


https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0
https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0

et al., 2023; Chirkova et al., 2024) where the num-
ber of studied languages was at most 13, our eval-
uation covers twice or more languages, making it
unfeasible to perform a full cross-lingual retrieval
for each query language. As an approximation,
we construct the set of relevant passages P, by
performing in-language retrieval for the L parallel
versions of ¢ in each language and taking the union
of the top-30 ranked passages in each language:
Py = Uszl P, qt

Then, we tag the gold passages in P, based on
whether they contain the gold answer as a sub-
string, following previous work (Liu et al., 2024,
2025). In our experiments, we only consider
queries for which P, contains at least one gold
passage in any of the studied languages, see result-
ing # Queries (w/ Gold Pass.) in Table 1. While it
may be possible to expand this subset by retriev-
ing more than 30 top passages or by improving
retriever quality (Chirkova et al., 2024), we believe
our setup is appropriate to study LLMs’ ability to
use a variety of multilingual context types that are
representative of competitive cross-lingual retrieval
results.*

Detailed statistics on the amount of in-language
and out-language gold passages for all queries
are shown in Appendix B. As expected, the sit-
uation is particularly serious for queries posed in
low-resource languages, where only out-language
gold passages are available for most of the queries
(e.g., 88% in Khmer MKQA and 91% in Yoruba
GMMLU), highlighting the importance of ensuring
mRAG quality across many languages.

3.3 Evaluation Metrics

For XQUAD and MKQA, we follow previous
work (Asai et al., 2021) and score answers by strict
lexical matching, that is, 1 if the entire gold an-
swer string a’ is a substring of the model response
M(q%), or 0 otherwise. Since models in mRAG se-
tups often generate the correct answer in the wrong
passage language (Chirkova et al., 2024; Zhang
et al., 2024), we also measure the proportion of
model answers that contain a gold answer in lan-
guage ¢ (a¥, ¢ #+ 0). 5 Nevertheless, as exact

4 Although a large portion of GMMLU queries are filtered
out, we argue that the remaining 4136 queries are numerous
enough to ensure a robust evaluation. We also verify the diver-
sity of this subset and find a total of 55 covered subjects. See
Appendix C for details on the question subjects and categories.

3Since we focus on the language of model responses and
outright cross-language generation (i.e., whether the gold an-
swer appears in a different language) where small orthographic

matching could be overly strict, we further adopt
two complementary metrics (BERTScore and GPT-
4.1-nano) on XQUAD. Similar results are observed,
providing more insights and enhancing the robust-
ness of our analysis. See Appendix D for more
details.

GMMLU is instead designed as a multi-choice
task, thus, accuracy can be simply evaluated by
checking if the LLM outputs the correct option
letter (A/B/C/D). To study the impact of answer
generation from that of passage understanding
across languages, we also use GMMLU as an open
QA task by providing the query without any an-
swer options, and adopting again lexical matching
for evaluation. We refer to the original dataset
as GMMLU-Choice, and the no-options one as
GMMLU-Open.

3.4 Models

We evaluate four top-performing multilingual
LLMs belonging to different model families, which
have been used in recent mRAG evaluations (Wang
et al., 2024; Thakur et al., 2024), namely: Aya-
Expanse-8B (Dang et al., 2024), Llama-3.2-3B-
Instruct (Dubey et al., 2024), Gemma-2-9B-it
(Team, 2024), and Qwen2.5-7B-Instruct (Yang
et al., 2024). Although these models do not of-
ficially support some of our studied languages, evi-
dence has shown that LLMs can generalize success-
fully to unseen languages due to the leak of training
data or shared representations (Qi et al., 2023; Bud-
nikov et al., 2024; Lu and Koehn, 2024), which we
also observed in preliminary experiments.

4 Single-Passage mRAG

We start from a simple scenario where, for each
query ¢, only one gold passage is provided to the
model either in the query language (in-language;
C = {p'}) orin a different language (out-language;
C = {p"},¢ # 0). As a baseline, we calculate
answer accuracy when no context is provided to
the model (C' = 0).

In XQUAD, where gold passages are translated
into 12 languages, we iterate over the 11 out-
language passage versions for each query and re-
port the average accuracy. We also report accuracy
for the passage language that yielded the best (or

variants can be decisive, particularly for phonologically simi-
lar languages, we do not adopt the variant of the softer lexical
metric (Chirkova et al., 2024) (3-gram recall), which tolerates
minor orthographic differences and could blur the distinctions.
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Figure 2: Performance on XQUAD, MKQA, GMMLU-Open, and GMMLU-Choice, where the LLMs are provided
with no retrieved passage or one gold passage in either in-language or out-language. The shading on the bars
represents the ratio of questions that can be correctly answered but in the wrong passage language, which does not
apply to GMMLU-Choice since the evaluation on it is not affected by the generation language.

worst) answer accuracy overall for each query lan-
guage. By contrast, the gold passages in MKQA
and GMMLU are retrieved from a Wikipedia cor-
pus as explained in Section 3.2, and are not parallel
across languages. As a solution, for each query
q*, we randomly sample 3 different out-language
passages from F,; and report accuracy averaged
over the 3 single-passage answers. To maximize
the chances of obtaining a model response in the
query language ¢, we explicitly mention ¢ in the
instruction, which is itself translated into ¢, follow-
ing Chirkova et al., 2024; Zhang et al., 2024. The
detailed prompts are listed in Appendix E.

4.1 Accuracy Results

Results averaged across all query languages are
given in Figure 2, while the full language-specific
results are given in Appendix I.

Results on XQUAD We recall that XQUAD is
a distinct dataset, originally developed to evaluate
extractive QA, rather than open-domain RAG sys-
tems. Nevertheless, it is the only dataset where
the exact same gold passage is available in dif-
ferent languages, allowing us to isolate the effect
of a passage’s language from that of its content.
As shown in Figure 2, providing the gold passage
in any language strongly improves answer accu-
racy compared to the no-context baseline, which
is likely due in part to the extractive nature of QA
in this dataset. Looking at the passage language,
however, we find that passages yield
considerably higher accuracy than all out-language
settings, including out-language (Best). Moreover,
a notable portion of questions are answered cor-
rectly but in the wrong language even though the
models were explicitly prompted to answer in the
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Figure 3: Answer accuracy (%) on XQUAD among
different query-passage language combinations. Only
model answers in the correct (i.e., query) language are
considered as correct.

target language, which is in line with previous find-
ings (Wu et al., 2024; Chirkova et al., 2024). Even
when considering these cases, a visible gap remains
between in-language and out-language accuracy
across the board on XQUAD. We further analyze
this gap through manual error analysis and find that
missed matches are often due to the use of syn-
onyms or slight paraphrases of the gold answer, or
—in the case of languages with different scripts— to
transliteration variations (Knight and Graehl, 1997).
See Appendix F for more details.

Figure 3 gives a detailed view of how answer
accuracy varies with the language of the provided
gold passage.® As expected, the highest accuracy

®Here we only consider answers in the correct language,
see Appendix I for language-specific accuracies when consid-
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is always achieved when the retrieved passage is in
the same language as the query. Concurrent work
(Sharma et al., 2024; Park and Lee, 2025) suggested
that models may prefer passage languages that use
the same script as the query language, based on
a few languages. Because script similarity is a
very coarse-grained measure of language similarity
that is not informative for many of our language
pairs, we turn to finer-grained measures that were
previously shown to strongly correlate with cross-
lingual consistency of model answers in non-RAG
setups (Qi et al., 2023). In particular, we adopt
subword vocabulary overlap computed on a refer-
ence parallel corpus’ as this was shown to correlate
better with response consistency than various typo-
logical similarity measures. We compute Pearson
and Spearman correlations between subword over-
lap and answer accuracy for each query language
(excluding the case where query and passage are
in the same language), however all correlations are
low and not statistically significant. Looking back
at Figure 3, we notice that shading (i.e., answer
accuracy) is relatively consistent within each row,
especially on Gemma and Qwen, more so than
within each column. In other words, the query lan-
guage is much more predictive of accuracy than
the passage language, suggesting that generating in
the target language is the major bottleneck in our
setup, which could dominate, if not hide, the effect
of similarity with the passage language.
Additionally, we also investigate if advanced
prompts with multi-step instructions (refer to Ap-
pendix G) or larger model scales (open-source
Gemma3-27B-IT and closed-source GPT-5-nano
estimated at 8-18B parameters®; Appendix H) can
mitigate the language mismatch issue in model
answers. However, the problem persists, further
reinforcing our finding that multilingual RAG sys-
tems face an inherent decoding limitation. Inter-
estingly, we observe that when fed with passages
in Thai, which is not officially supported by Aya-
Expanse-8B, the model always outperforms the
baseline where no context is provided for queries
in each language (cf. No-context accuracies in
Table 13). This suggests that even though the pas-
sages are written in a language that is unseen in the

ering the wrong generation language.

7Following Qi et al., 2023, we extract the vocabularies
from FLORES-200 (Costa-jussa et al., 2022), a strictly parallel
corpus covering 200 languages, and measure their pairwise
overlap via Jaccard index (Jaccard, 1912).

8ht’cps ://www.r-bloggers.com/2025/08/how-man
y-parameters-does-gpt-5-have/

pre-training phase, LLMs may be able to utilize
them.

Results on MKQA Moving to a more realistic
RAG dataset, but without parallel passages, we find
a similar trend (Figure 2) where in-language gold
passages outperform out-language ones, however
the gap is much smaller than in XQUAD and almost
disappears when also considering the portion of
questions that are answered correctly in the wrong
language. These results suggest that the passage
language is not a key factor blocking LLMs from
understanding and utilizing the context in MKQA.

Results on GMMLU Accuracy results on
GMMLU-Open (Figure 2) are in line with the two
previous datasets, with an in-/out-language gap
falling halfway, that is smaller than in XQUAD
but larger than in MKQA. To further disentangle
the impact of context understanding from that of
target language generation, we compare these re-
sults with those of GMMLU-Choice, where the
model only has to generate one of the four option
letters (A/B/C/D) provided in the prompt. Here,
we find that in- and out-language passages yield
extremely close accuracy, confirming that input un-
derstanding is not the real obstacle for high-quality
mRAG. Rather, the main barrier appears to lie on
the side of generation, namely, whether models can
formulate a proper response in the correct target
language.

4.2 Interpretability-based Assessment

To further verify our findings that the passage lan-
guage is not a barrier to LLMs’ understanding ca-
pability of the multilingual retrieved passages, we
adopt MIRAGE (Qi et al., 2024), a model internal-
based method for attributing model responses to the
retrieved passages in RAG systems. Generally, it
consists of two components: (1) CTI for detecting
contextual sensitivity for the generated sentence
and (2) CCI for attributing the detected sentences
back to each retrieved passage. Given the single-
passage setup, in this section we only use the CTI
module for evaluating the passage dependency of
the model response. For each generated token, this
module measures the shift in output probability
distribution when no context vs. one passage is
provided, measured by KL divergence (Kullback
and Leibler, 1951), while keeping the generated
sentence prefix fixed. If at least one token is higher
than an empirically set CTI threshold, the gener-
ated sentence is marked as sensitive to the context
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AVG+1.0*SD  AVG+1.5%*SD AVG+2.0*SD
In. Out. In. Out. In. Out.

XQUAD 98 99 97 99 95 98
MKQA 100 100 100 100 100 100

Dataset

Table 2: Percentage (%) of context-sensitive responses
when Aya is provided with in-language (In.) vs. out-
language (Out.) gold passages, detected by MIRAGE
under different CTI thresholds.

provided in the prompt.

We select Aya-Expanse-8B as the studied model
and sample 500 instances separately from XQUAD
and MKQA. Table 2 shows the results under differ-
ent CTI thresholds. We find that nearly all gener-
ated responses are tagged as context-sensitive by
MIRAGE, even when setting a higher CTI thresh-
old (avg + 2 std_dev) than the one used in the orig-
inal paper. This confirms that the provided passage
significantly drives models’ predictions regardless
of its language.

In sum, the results in this section point to the fact
that understanding passages in different languages
and locating useful information within them is not
the main obstacle towards high-quality mRAG,
whereas generation abilities in several target lan-
guages remain a serious bottleneck. In the next
section, we study how models handle more real-
istic contexts consisting of multiple passages in
different languages.

S Multi-Passage mRAG

Real-world RAG settings are further compli-
cated by the presence of multiple passages
Cq ={p1,...,pn}, some of which may be related
to the query but not functional to answering it cor-
rectly (i.e. ‘distracting’ passages p). We investi-
gate how the language of different passages in the
context affects LLMs’ ability to locate the right
information, assuming this is included in at least
one passage of the context. In particular, we aim to
assess model robustness in a challenging scenario
where the important information is only provided
in a different language than the query, along with
several in-language distractors.

For simplicity, we set the maximum number of
passages to 4 and simulate two practical scenarios:
(i) a weak retriever finds one out-language gold
passage while the other three are distractors; (ii) a
strong retriever finds three out-language gold pas-
sages while the remaining one is a distractor. In

both cases, we compare accuracies when the dis-
tractors are in-language vs. out-language. We con-
duct experiments on MKQA and GMMLU-Choice.
XQUAD is excluded because it is an extractive QA
dataset, unsuitable for multi-passage mRAG.

5.1 Accuracy Results

Table 3 presents the results, including the no-
context baseline and single in-/out-language gold
passage results as computed in Section 4, to en-
able comparison (see Appendix I for full language-
specific results). For this analysis, we also consider
as valid the questions that were answered correctly
but in the wrong language, as they also reflect a
proper understanding of the context by the model.
Interestingly, models provided with 3 out-language
gold passages achieve higher accuracy than when
provided with a single in-language gold passage
in the query language, emphasizing the potential
of cross-lingual retrieval for mRAG. As expected,
the presence of distractors leads to lower accuracy.
Notably, this is true for all models, datasets, and se-
tups. However, the effect is considerably stronger
in MKQA than in GMMLU-Choice, likely due
to the stricter lexical-matching metric adopted for
MKQA. We also verify that a higher proportion of
distractors (3/4 vs. 1/4) is much more harmful for
answer accuracy, which confirms the importance
of having access to a high-quality cross-lingual re-
triever (Chirkova et al., 2024). When comparing
the drop between in-language distractors and out-
language distractors, we find that in-language dis-
tractors have a larger impact in most cases, match-
ing our hypothesis that this is a particularly chal-
lenging scenario for LLMs. However, differences
are small in many cases, indicating the language of
the distractor is not a major issue for multi-passage
mRAG.

5.2 Interpretability-based Evaluation

We adopt once again MIRAGE (Qi et al., 2024) to
understand how the internal model dynamics are
affected by our various simulated multi-passage
mRAG scenarios. We sample 50 instances from
each dataset and use MIRAGE to attribute Aya-
expanse-8B responses to the provided passages
via contrastive feature attribution (Yin and Neu-
big, 2022). Then, we compute # Contextual: the
average number of distracting passages that contain
at least one contextual cue for the produced answer
(i.e. a token marked by CCI in MIRAGE), and #
Influential: the average number of distractors that
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Setup MKQA GMMLU-Choice

Aya Llama Gemma Qwen Aya Llama Gemma Qwen
No Ctx 414 349 49.6 377 46.6 37.8 61.1 51.4
1 Gold (in) 73.6 599 65.5 70.6  55.0 452 66.0 58.4
1 Gold (out) 71.1  56.5 65.1 66.6 550 455 66.2 57.0
+3Dist(in) 47.0 394 53.7 496 508 41.1 65.1 54.5
+ 3 Dist (out) 47.7  38.9 56.1 53.8 514 425 64.8 54.6
3 Gold (out) 777  65.3 75.3 759 56.6 47.7 69.1 59.5
+ 1 Dist in) 68.8  56.0 71.3 70.8 55.8 45.7 68.6 58.4
+ 1 Dist (out) 69.6  57.8 72.9 729 562 46.6 68.5 58.6

Table 3: Average answer accuracy (%) without context (No Ctx), with a single in-language gold passage (1 Gold
(in)), and multi-passage mRAG setups with varying numbers of in-language or out-language gold passages and
distracting passages. Results are averaged over all query languages.

AVG Dist. MKQA GMMLU
In. Out. In. Out

1 Gold (out) + 3 Distractors
# Context. 1.77 1.74 1.89 1.82
# Influent. 0.94 0.86 1.13 1.07

3 Gold (out) + 1 Distractor

0.85 0.79 092 0.89
035 025 050 043

# Context.
# Influent.

Table 4: Average number of distractors containing con-
textual cues (# Context.) and receiving a higher sum of
CClT scores than all gold passages (# Influent.), for Aya.

receive a higher sum of CCI attribution scores than
all gold passages for each query.

The results in Table 4 support our observation
that distractors exert a comparable effect regardless
of their language, however in-language distractors
have a slightly stronger effect. When considering
the sum of attribution scores given to the distrac-
tors compared with the gold passages, the differ-
ence becomes more noticeable (e.g., Aya tends to
pay more attention to in-language distractors for
MKQA when there is 1 distractor, compared to
out-language ones).

Taken together, our results indicate that the num-
ber of distractors can be more harmful for mRAG
accuracy than the language in which those distrac-
tors are provided, when it comes to open-domain
QA. On the multi-choice task, the negative effect of
distractors is notably smaller and barely dependent
on the passage language.

6 Conclusion

In this work, we explored the challenge of consis-
tent context utilization in mRAG systems. Specif-
ically, we assessed the ability of various state-of-
the-art LL.Ms to handle various kinds of multilin-
gual context while strictly controlling for retrieval
quality. Our experiments across three diverse QA
datasets, using standard accuracy evaluation as well
as feature attribution analysis, reveal a remarkable
ability of LLMs to understand multilingual con-
texts and to locate the important information in
relevant passages regardless of their language. In
fact, models provided with multiple gold passages
in languages different from that of the query are
more likely to answer correctly than when provided
with a single gold passage in the query language,
reflecting the potential of retrieving cross-lingually
rather than monolingually for mRAG.

At the same time, we also detected some im-
portant directions for future improvement. Firstly,
poor generation abilities in many languages push
the models to respond in a different language than
that of the query, resulting in answers that would
be deemed useless by most end-users. Importantly,
we showed that this also happens when the retrieval
works optimally. This suggests that, rather than just
trying to optimize the retriever, it may be more ef-
fective to invest on the model generation abilities in
a specific (set of) user language(s) —for instance by
continued pre-training (Fujii et al., 2024; Gao et al.,
2024) on generic corpora of those languages— or
to apply techniques that push the model to decode
in a given language, such as contrastive decoding
(Li et al., 2023; O’Brien and Lewis, 2023). Sec-
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ondly, the presence of distracting passages (i.e.,
relevant to the query topic, but not directly func-
tional to answer it) in the context can have a very
negative effect on answer accuracy in open-domain
QA. While this effect is rather similar regardless of
the distractors’ language, it does highlight the im-
portance of carefully ranking the retrieved passages
and to aim for precision when selecting which pas-
sages are provided to the model.

To conclude, our work underscores the potential
of cross-lingual retrieval in enhancing multilingual
QA performance, and stresses the importance of
focusing not only on retrieval optimization but also
on improving language-specific generation. We be-
lieve this dual focus will be key to unlocking more
robust and user-friendly mRAG systems that can
operate effectively across diverse language settings.

Limitations

The limitations of our work include relying on a
strict lexical matching of the answer to compute
model accuracy and to detect gold passages. While
commonly used, this approach is sensitive to mi-
nor variations or rephrasings of the answers and
led to a serious underestimation of model perfor-
mance with out-language gold passages in one of
our QA datasets, XQUAD. In our paper, we have
tested and reported BERTScore and LLM-based
evaluation on XQUAD, as detailed in Section 3.3
to enhance the robustness of our findings. These
semantic evaluations mirror the trends observed
with the lexical metric, mitigating—if not eliminat-
ing—the risk that paraphrasing may influence the
results. Nevertheless, future work could incorpo-
rate broader metrics and benchmarks to make the
assessment more comprehensive.

Additionally, the use of lexical matching in
detecting gold passages may overlook passages
that provide valuable information but in a slightly
rephrased form compared to the gold answer.
Nonetheless, Table 3 shows that attaching even a
single distracting passage identified by this heuris-
tic method substantially degrades model accu-
racy. Thus, despite its limitations, lexical matching
proves to be a practical and effective way for locat-
ing distracting passages in our experimental setting.
Future work could explore more semantic retrieval
methods to capture paraphrased gold evidence.

On the retrieval side, simulating cross-language
retrieval by combining results of N in-language
retrievers may yield a more comprehensive set of

passages than what we could obtain from a single
run of a cross-language retriever. While this does
not affect our results on the side of context uti-
lization, it may overestimate retriever performance
when our findings are applied to real-world mRAG
systems. In terms of datasets, XQUAD was the
only one including parallel gold passages, which
allowed us to fully isolate the effect of a passage
language from that of its content. However, its
extractive QA nature makes it less representative
of realistic mRAG tasks, highlighting the need to
develop better parallel mRAG datasets in future
work.
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A Dataset Examples

Examples of instances in each dataset are shown in
Table 5.

B Full Statistics of the Filtered MKQA
and GMMLU Datasets

The full statistics of the filtered MKQA and
GMMLU datasets are shown in Table 6.

C Subjects Covered by the Filtered
GMMLU Set

As shown in Table 7, 55 subjects belonging to 6
categories are covered by the filtered set of Global-
MMLU, which ensures the diversity of the in-
stances evaluated in our experiments.

D Extensive Evaluation

Since exact matching could be overly strict for the
evaluation, we further adopt two complementary
metrics on XQUAD with AYA.

Semantic similarity (BERTScore) We compute
BERTScore, serving as a language-agnostic metric,
between each model response and its ground-truth

answer based on the semantic similarity of model
responses with the gold answer. Table 8 shows
that models achieve comparable F1 scores in all
query languages when fed gold passages in- or out-
language. This finding is in line with our claim
that LLMs are capable of understanding the gold
passages regardless of their languages.

LLM-based evaluation (GPT-4.1-nano) How-
ever, semantic similarity cannot capture language
mismatching. Therefore, we prompted GPT-4.1-
nano to judge whether each response matches (i)
the correct answer and (ii) its translation in the
passage language. As shown in Table 8, overall
accuracy on board is higher than lexical-matching
accuracy in our paper, but the trend remains: mod-
els score better on IN than on OUT. If we allow
“correct answer in the wrong language” as accept-
able, the IN/OUT gap almost disappears.

Taken together, both semantic and LLM-based
evaluation support our claim that LLMs are able to
understand the multilingual gold passages regard-
less of their languages, but suffer from decoding
the answer correctly in the user query language.

E Prompts and Instructions

To ensure the model responses are always in
the query language, we follow previous works
(Chirkova et al., 2024; Zhang et al., 2024) and
adopt language-specific instructions to explicitly
and implicitly guide the model to generate re-
sponses in the user-readable language. The ex-
amples in English, Spanish, and Chinese are listed
in Table 9 and Table 10.

F Error Analysis on XQUAD

While our MKQA and GMMLU results strongly
suggest our studied LLMs can understand the pro-
vided passages regardless of their language, the
in-/out-language gap in XQUAD remains unex-
plained. To address this, we conduct a manual
error analysis on XQUAD with Aya-Expanse-8B,
focusing on a random sample of 20 Spanish and 20
Chinese queries that were answered correctly when
provided with in-language passages, but wrongly
with out-language passages. In most cases, we
observe that models successfully understood the
context and generated a proper response, however,
this response did not perfectly match the gold an-
swer provided in the dataset. This can be due to
the presence of synonyms or slight paraphrases
of the gold answer, or —in the case of languages
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Dataset | Context provided in the dataset | Query | Gold Answer
XQUAD The Panthers defense gave up just 308 | How many points did the Panthers de- | 308
points, ranking sixth in the league, while | fense surrender?
also leading the NFL in interceptions
with 24 and boasting four Pro Bowl se-
lections. ... also racking up 88 tackles
and Pro Bowl cornerback Josh Norman,
who developed into a shutdown corner
during the season and had four intercep-
tions, two of which were returned for
touchdowns.
MKQA - How long did it take the twin towers to | 11.0 years
be built?
GMMLU-Open - Which god supplanted the earlier | Marduk
Mesopotamian supreme god Enlil?
GMMLU-Choice | - Which god supplanted the earlier | C
Mesopotamian supreme god Enlil?
A.Horus B.Inanna C.Marduk D.Isis
Table 5: Examples of instances in each dataset.
MKQA (Total 5951 Questions = # Inlang + # Outlang - # Both)
Query Lang. | en it es de fr pt nl sV ru fi ja pl
# Q. w/ Inlang 5331 4466 4384 4352 4302 4133 4108 3984 3800 3639 3603 3594
#Q.w/Outlang | 5787 5910 5942 5946 5944 5947 5947 5940 5945 5946 5944 5945
# Overlap 5167 4425 4375 4347 4295 4129 4104 3973 3794 3634 3596 3588
Query Lang. \ no tr hu da vi he ar ms ko th zh km
# Q. w/ Inlang 3515 3515 3482 3390 3365 3343 2986 2937 2934 2539 2537 703
#Q.w/Outlang | 5949 5945 5943 5946 5951 5946 5948 5942 5947 5945 5948 5950
# Overlap 3513 3509 3474 3385 3365 3338 2983 2928 2930 2533 2534 702
GMMLU (Total 4136 Questions = # Inlang + # Outlang - # Both)
Query Lang. \ en ja it id ko nl zh vi Y pt de tr o cs
# Q. w/ Inlang 2588 2054 1864 1778 1725 1712 1695 1689 1688 1679 1611 1583 1513 1512
#Q.w/ Outlang | 4040 4064 4118 4115 4097 4125 4094 4116 4124 4118 4111 4121 4126 4116
# Overlap 2492 1982 1846 1757 1686 1701 1653 1669 1676 1661 1586 1568 1503 1492
Query Lang. | ru es ms pl uk fr ar fa el ST he hi fil It
# Q. w/ Inlang 1503 1502 1464 1462 1422 1415 1373 1350 1317 1288 1160 1142 1125 1071
#Q. w/Outlang | 4126 4109 4126 4124 4130 4122 4118 4125 4130 4130 4118 4133 4130 4132
# Overlap 1493 1475 1454 1450 1416 1401 1355 1339 1311 1282 1142 1139 1119 1067
Query Lang. \ bn ky ha te SW ig si ne am ny mg S0 sn yo
# Q. w/ Inlang 1005 985 930 924 923 831 792 746 650 634 625 559 497 389
#Q.w/Outlang | 4125 4121 4123 4130 4129 4125 4132 4132 4135 4129 4133 4129 4134 4129
# Overlap 994 970 917 918 916 820 788 742 649 627 622 552 495 382

Table 6: The statistics of the filtered subset of MKQA and

Global-MMLU where each query has gold passages in

at least one studied language. For all languages, there is a portion of queries where useful information can only
be found in out-language passages, which is particularly evident in low-resource languages. # Inlang: Number
of queries having gold passages retrieved from the corpora of the query language. # Outlang: Number of queries
having out-language gold passages. I.e. useful information is stored in the corpora of languages other than the

query language. # Overlap: Number of queries that have u
out-language corpora.

with different scripts— to transliteration variations
(Knight and Graehl, 1997). For instance, the gold
answer for a Spanish question is ‘evolucion de la
lengua y la literatura alemanas’ (i.e. ‘evolution
of the German language and literature’). In the
in-language setup, the model manages to generate
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seful information retrieved from both in-language and

this exact string as it is included in the provided
Spanish passage. However, when the same passage
is provided in English, the model generates the
semantically equivalent phrase ‘... evolucion del id-
ioma y la literatura alemana...’, or “...desarrollo del
idioma y la literatura alemana...” when the passage



Category | Subject

STEM

anatomy

high_school_computer_science, high_school_statistics, computer_security, college_biology,
college_chemistry, machine_learning, high_school_mathematics, elementary_mathematics, col-
lege_mathematics, electrical_engineering, college_physics, astronomy, conceptual_physics,
high_school_chemistry, high_school_physics, high_school_biology, college_computer_science,

Business | business_ethics, management, marketing, professional_accounting

Medical
cal_genetics, nutrition

professional_medicine, virology, college_medicine, clinical_knowledge, human_aging, medi-

Social Sciences

high_school_psychology, econometrics, sociology, high_school_microeconomics, high_school_-
geography, public_relations, security_studies, professional_psychology, high_school_govern-
ment_and_politics, high_school_macroeconomics, human_sexuality, us_foreign_policy

international_law, high_school_world_history, moral_disputes, prehistory, world_religions, ju-
risprudence, high_school_us_history, philosophy, professional_law, formal_logic, logical_falla-

Table 7: The categories and subjects covered by the filtered GMMLU.

Humanities
cies, high_school_european_history
Other | miscellaneous, global_facts
Lan BERTScore LLM-Based Score
] IN. OUT. | IN OUT.
en 90.27 82.58 | 93.19 81.54 (+12.93)
ar 82.87 8155 | 91.93 63.98 (+23.25)
de 81.60 80.69 | 90.25 71.73 (+14.86)
el 82.38  81.24 | 92.18 66.00 (+21.04)
es 82.15 81.14 | 94.37 73.05 (+14.62)
hi 83.31 82.15 | 89.75 65.78 (+16.71)
ro 81.68 80.65 | 91.93 69.11 (+18.69)
ru 83.22 8195 | 91.51 66.78 (+21.18)
th 84.21 83.23 | 86.81 57.78 (+23.02)
tr 81.31 80.18 | 88.40 63.39 (+23.37)
vi 82.81 81.62 | 89.75 65.81 (+23.05)
zh 84.07 8295 | 90.34 65.39 (+21.46)

Table 8: BERTScore (F1) and LLM-based evaluation
(Accuracy) on XQUAD with AYA. The numbers be-
tween brackets indicate the proportion of queries that
are correctly answered but in the wrong language.

is provided in Chinese. Similarly, for a Chinese
query with gold answer ‘M B T ZEFHZ (ie.
‘Aristotelian cosmology’), model responses slightly
differ when provided with different out-language
passages (e.g. ‘Y B L L MWEFE 10, i BITHE
FIF 1L, or Pl ELHFEAFFFH12° with En-
glish, Arabic, or Greek passage respectively), all
of which are correct translations of ‘Aristotelian
cosmology’. While this issue can always affect
lexical-matching evaluation, it is particularly se-
vere in XQUAD as many answers in this dataset
are named entities or sentence segments due to the
extractive nature of the task, which in turn causes
an underestimation of the models capability.

G Advanced System Prompting

In our main experiments, we follow the previous
works (Chirkova et al., 2024; Zhang et al., 2024)
and adopt the direct prompt. To test if a stronger
prompt could mitigate language-mismatch errors,
we add a two-step instruction that first allows the
model to answer in any appropriate language, then
explicitly translates the answer into the query lan-
guage. Formally: ‘Write a high-quality answer
to the given question using the provided search
results. Please respond in English. Specifically,
please follow the two steps below. Step 1: Generate
a complete answer to the question in any appropri-
ate language. Step 2: Translate your entire answer
into clear, natural-sounding English.’

Same as the main experiment in the paper, the
prompt is translated into other query languages and
explicitly specifies the desired generation language.
For instance, the prompt for Spanish queries is:

‘Escriba una respuesta de alta calidad a la pre-
gunta dada utilizando los resultados de bisqueda
proporcionados. Por favor responda en espaiiol.
Especificamente, siga los dos pasos a continuacion.
Paso 1: Genere una respuesta completa a la pre-
gunta en cualquier idioma apropiado. Paso 2: Tra-
duce toda tu respuesta a un espafiol claro y con
sonido natural.’

We run this prompt on XQUAD with AYA and
evaluate via GPT-4.1-nano, the same setups and
LLM-based evaluation as above in Appendix D.
As shown in Table 11, compared to the original
prompts, these stronger instructions reduced, but
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Language | Setup | Instruction

en | No Ctx | Write a high-quality answer to the given question. Please respond in English.
Ctx Write a high-quality answer to the given question using the provided search results. Please
respond in English.
es ‘ No Ctx ‘ Escriba una respuesta de alta calidad a la pregunta planteada. Por favor responda en espafiol.
Ctx Escriba una respuesta de alta calidad a la pregunta planteada utilizando los resultados de busqueda
proporcionados. Por favor, responda en espafiol.
zh | NoCix | WXFTA SIS s REAER . AR EE.
| Cix | AR RE RS ERIREE & REER - ER T EE .

Table 9: The examples of the adopted instructions for guiding LLMs to generate responses in the user languages on

the open QA tasks (XQUAD, MKQA, GMMLU-Open).

Language | Instruction

en Please choose the most suitable one among A, B, C and D as the answer to the question, and

return it in the following format:
[choice]

where [choice] must be one of [A], [B], [C] and [D].

es Elija la respuesta mds adecuada entre A, B, C y D a la pregunta y devuélvala en el siguiente

formato:
[opcion]

donde [opcidn] debe ser una de [A], [B], [C] y [D].

zh TEFEA~ B~ CHID HFifE i e @i — MEAFRIE SR, HERL TR

[choice]

HH1[choice] W AAE[A]~ [B]~ [C] FI[D] Z— -

Table 10: The examples of the adopted instructions for guiding LLMs to generate responses in the user languages

on the multi-choice QA task (GMMLU-Choice).

Language LLM-Based Score
IN. OUT.
en 9471 82.52 (+11.24)
ar 87.14 64.38 (+24.85)
de 89.92 73.12 (+13.76)
el 90.59 65.11 (+22.05)
es 92.61 73.51 (+14.23)
hi 85.13  63.80 (+20.06)
ro 92.61 67.00 (+19.17)
ru 90.67 69.49 (+19.34)
th 86.89 60.04 (+25.12)
tr 85.46 63.46 (+21.35)
vi 91.34 67.16 (+22.85)
zh 90.84 69.60 (+20.28)

Table 11: LLM-based evaluation score (Accuracy) on
XQUAD with Aya, where stronger multi-step reason-
ing prompts are adopted. Nonetheless, the language-
mismatching issue persists.

did not eliminate, the gap between in-language
and out-language accuracy. Specifically, many

responses still contained correct answers but re-
mained in the wrong passage language, indicating
that even explicitly guiding the LLM to do ‘think
then translation’ cannot fully resolve decoding fail-
ures. These results underscore that decoding, rather
than understanding, remains a substantial bottle-
neck.

H Extended Evaluation on Larger Models

To enhance the robustness of our experiments, we
repeat the XQuAD evaluation (using the same
setup) on a 27B open-source model (Gemma3-27B-
IT) and a closed-source model estimated at 8-18B
parameters (GPT5-nano)®. The results in Table
12 show that, although overall accuracy of out-
language passages improves, it remains substan-
tially lower than on in-language passages. More-
over, a non-negligible fraction of questions are
answered correctly in content but produced in
the wrong language when the model receives out-

9https ://www.r-bloggers.com/2025/08/how-man
y-parameters-does-gpt-5-have/

213


https://www.r-bloggers.com/2025/08/how-many-parameters-does-gpt-5-have/
https://www.r-bloggers.com/2025/08/how-many-parameters-does-gpt-5-have/

Language ‘

Accuracy (Gemma3-27B-IT)

\ Non. In. Out. (AVG) Out. (Best) Out. (Worst)
en 21.3 86.7 67.1(+49) 729 (+5.5) 60.3(+9.4)
es 16,6 729 532(+58) 59.2(+9.4) 48.2(+7.6)
de 170 725 52.0(+4.7) 569 (+7.2) 48.2 (+7.0)
1o 145 762 52.0(+4.3) 56.6(+8.3) 47.4(+6.2)
vi 15.1 776 499 (+7.4) 53.7(+13.4) 44.3(+9.7)
tr 122 674 454(+59) 50.5(+9.8) 42.1 (+5.0)
el 104 68.9 409 (+8.3) 447 (+16.1) 38.2(+6.8)
zh 139 79.2 44.1(+13.7) 457 (+20.7) 41.5(+7.3)
ar 8.8 658 355(+9.5) 37.4(+19.6) 32.3(+5.8)
hi 13.3 748 42.6 (+6.0) 46.8 (+15.0) 38.7(+4.2)
ru 114 66.6 40.6(+9.7) 42.6(+11.8) 36.9 (+6.7)
th 11.1 74.6 354 (+14.2) 36.4(+30.0) 34.5(+9.8)

Language ‘ Accuracy (GPT5-nano)

‘ Non. In. Out. (AVG) Out. (Best) Out. (Worst)
en 25.6 740 55.1(+7.1) 583(+8.3) 51.8(+7.8)
es 20.2 64.8 50.2(+3.6) 55.1(+7.2) 463 (+2.4)
de 20.1 60.2 48.0(+1.9) 52.0(+6.2) 44.9 (+0.8)
ro 19.2 598 46.1 (+2.6) 494 (+7.3) 429 (+1.4)
vi 18.3 588 45.1(+4.4) 47.8(+5.0) 424 (+2.1)
tr 155 492 38.0(+5.6) 39.8(+7.4) 353(+24)
el 125 555 35.6(+6.1) 393(+16.2) 329 (+2.1)
zh 16.5 59.6 39.1(+89) 414 (+18.2) 37.8(+3.6)
ar 103 48.2 31.3(+8.8) 33.1(+7.1) 30.0(+3.9)
hi 12.8 452 29.8 (+10.3) 32.3(+22.6) 27.0(+13.3)
ru 12.8 48.9 34.1(+6.4) 36.4(+14.0) 31.8(+3.9)
th 11.9 534 32.6(+10.6) 34.2(+25.2) 304 (+2.1)

Table 12: Language-specific results on XQUAD with larger LLMs (Gemma3-27B-IT and GPT5-nano). Numbers
between brackets indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not

the query language).

language passages. These findings are consistent
with Section 4.1 and further strengthen the general-

ization of our findings.

I Language-specific Results

The detailed results for each query-passage lan-
guage pair on XQUAD are given in Figure 4. The
detailed single-passage mRAG results for each lan-
guage on all datasets are provided in Table 13 to
18. The detailed results for each language in the
multi-passage mRAG experiments are shown in

Table 19 to 22.
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Aya-Expanse-8B Llama-3.2-3B-Instruct Gemma-2-9B-it Qwen?2.5-7B-Instruct

50] 5256 128] 27) 21 124 14 17 15 20 e [ EHEHIB0]28)28] 20 [28] 15 12 22 7 100
561 581 551 521 B 22 20 28 [BH] 26
[
> d. 3130 31 27 24 25 [30] 10 20
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2 .I. & o
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g ro-11 7 10 0 5 5 4 4 5 7 2 5 r-6 4 6 0 8 6 4 5 1 2 3 4 ro-8 7 11 0 8 9 5 6 4 2 4 3 rp-10 5 10 0 4 8 5 4 2 2 2 2
S vil171217/17 0 12 9 6 6 7 6 8 vi-10 7 1111 0 11 5 13 3 8 532 vil17 141713 0 141011 9 6 7 8 -4 7 9 8 0 8 2 12 1 2 2 3
g’ tr-14 15 20 [8%6) 0 15 9 924 5 11 tr-13 9 11 1117 0 7 6 3 10 3 9 tr-15 1418 16 13 0 9 11 6 4 4 6 tr-14 121512 8 0 7 13 4 4 4 5 60
‘_u el-18 12 16 13 13 11 0 4 2 3 2 3 el-12 9 11 10 15 8 0 3 3 5 4 13 el-16 14 17 15 15 12 0 8 4 3 3 4 el-10 7 9 9 6 7 0 2 0 2 2 1
a zh-23 19 24 24 22 19 12 0 1024 6 8 zh-17 13 16 15 18 13 9 0 11 19 8 18 zh-18 17 21 21 18 16 13 0 7 8 5 7 zh-13 12 12 13 11 12 7 0 2 3 4 4 40
g ar-20 15 19 17 16 16 10 5 0 4 5 5 ar-11 10 10 11 16 8 7 9 0 14 4 17 ar-13 12 14 14 12 10 9 9 0 5 4 5 ar-14 11 13 12 10 7 11 0 4 4 4
o hi-15 13 15 14 16 12 8 4 1 0 2 3 hi-2 2 2 1 6 2 1 2 1 0 1 4 hi-8 7 10 7 7 7 6 3 1 0 2 3 hi-5 4 6 5 4 4 4 4 1 0 1 2 20
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Language of retrieved passage Language of retrieved passage Language of retrieved passage Language of retrieved passage

Figure 4: Model performance on XQUAD when the query is concatenated with passage in each studied language. Top: The
portion of queries that can be correctly answered in the user language. Bottom: The portion of queries for which the LLMs
generate the correct answer but in the wrong (passage) language. For a part of correctly answered queries, the gold answers are
the same words in the passage and query languages. In these cases, we only consider them in the above heatmaps to ensure that
there is no overlapping between the two vertical heatmaps and that they are addable.
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Accuracy (Aya)

Language ‘

‘ Non. In. Out. (AVG) Out. (Best) Out. (Worst)
en 194 837 23.6(+49.9) 324 (+44.1) 14.0 (+58.5)
es 139 735 43.7(+6.3) 549 (+10.1) 30.9 (+5.5)
de 122 692 425(+5.0) 534 (+7.6) 28.1(+4.4)
ro 12.0 724 409 (+5.8) 51.1(+10.8) 26.8 (+5.3)
vi 143 75.0 39.4(+10.6) 482 (+16.8) 25.5(+8.4)
tr 9.1 66.1 31.2(+16.4) 43.0(+13.9) 19.9 (+10.8)
el 85 675 31.5(+8.6) 40.5(+17.8) 20.0(+2.6)
zh 12.6  74.6 333 (+17.3) 39.0(+22.6) 25.5(+8.2)
ar 7.6 663 274 (+12.1) 35.0(+19.8) 18.7 (+5.3)
hi 6.1 624 27.3(+9.4) 36.0(+15.5) 17.2(+2.6)
ru 9.2 638 29.6(+11.0) 34.1(+16.7) 22.1(+5.2)
th 2.1 303 10.0(+9.3) 114 (+17.6) 9.1 (+5.8)

AVG ‘ 10.6  67.1 31.7(+13.5) 39.9(+17.8) 21.5(+10.2)
Language ‘ Accuracy (Llama)

‘ Non. In. Out. (AVG) Out. (Best) Out. (Worst)
en 144 76.8 242 (+39.1) 33.7(+34.1) 12.1(+53.6)
es 8.8 662 323(+6.5) 492(+7.1) 24.0(+6.0)
de 7.6 59.0 30.1(+5.5) 457 5.0) 19.0(+12.0)
ro 6.6 618 252(+4.4) 402(+58) 18.2(+1.4)
vi 85 684 27.1(+9.6) 41.8(+9.7) 14.4(+21.9)
tr 51 579 20.5(+#9.2) 30.7(+13.1) 15.8 (+8.6)
el 25 575 182(+8.4) 258 (+12.4) 11.8(+12.5)
zh 52 629 189 (+14.2) 30.3(+16.6) 11.8 (+18.0)
ar 2.0 453 12.0(+10.7) 18.7(+10.5) 8.2(+17.5)
hi 277 553 19.6(+2.3) 29.6(+2.4) 13.4(+0.8)
ru 4.1 49.8 153(+9.8) 26.8(+10.0) 7.6 (+20.7)
th 29 51.8 14.6(+10.1) 21.6(+16.9) 11.0(+1.8)

AVG 59 594 21.5(+10.8) 32.8(+12.0) 13.9(+14.6)

Table 13: Language-specific results on XQUAD with single-passage mRAG setup. Numbers between brackets
indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language ‘

Accuracy (Gemma)

‘ Non. In. Out. (AVG) Out. (Best) Out. (Worst)
en 179 80.6 61.5(+5.0) 67.1(+6.5) 56.6(+5.3)
es 124 708 463 (+6.6) 545(+9.4) 41.7(+4.1)
de 12.1 677 44.1(+4.4) 52.0(+7.6) 39.8 (+2.3)
ro 12.1 72.1 433 (+6.2) 529 (+8.5) 37.8(+5.9)
vi 10.8 73.4 37.7(+11.3) 43.0(+16.8) 33.1(+10.8)
tr 84 652 33.7(+10.5) 41.8(+15.0) 29.1(+11.1)
el 5.0 650 282 (+10.1) 34.0(+15.7) 23.7(+4.0)
zh 93 73.8 34.5(+13.7) 38.9(+17.6) 32.9(+6.9)
ar 49 613 243(+9.8) 27.6(+12.9) 20.7 (+9.0)
hi 6.1 677 31.2(+5.5) 389(7.6) 26.7(+3.4)
ru 74 62.1 289 (+12.1) 32.9(+16.8) 26.1(+5.5)
th 54 713 249 (+20.0) 28.2(+26.7) 22.8 (+11.6)

AVG ‘ 93 692 36.5(+9.6) 42.6(+13.4) 32.6(+6.7)
Language ‘ Accuracy (Qwen)

‘ Non. In. Out. (AVG) Out. (Best) Out. (Worst)
en 235 827 63.1(+3.9) 67.6(+4.4) 60.3(+3.7)
es 172 743 46.6 (+5.7) 552(+9.3) 42.5(+24)
de 152 72.0 449 (+4.1) 51.2(+8.3) 41.4+1.7)
ro 13.7 70.1 39.1(+49) 46.2(+9.8) 355 (+1.9)
vi 157 79.1 457 (+6.2) 50.5(+14.2) 42.1 (+2.4)
tr 98 684 329(+8.9 40.1(+13.5) 29.8(+3.5)
el 48 51.6 209 (+5.0) 25.1(+9.7) 18.1(+0.4)
zh 189 83.0 439 (+8.5) 47.7(+129) 41.2(+12.4)
ar 9.1 653 27.7+9.1) 31.0(+14.5) 25.7(+10.3)
hi 5.5 66.1 256 (+3.7) 30.8(+5.5) 22.1(+0.6)
ru 9.1 622 324(+8.5) 36.1(+9.0) 29.6(+2.9)
th 85 751 295(+11.7) 322(+22.6) 27.6(+14.4)

AVG 126 70.8 37.7(+6.7) 428 (+11.1) 34.7 (+4.7)

Table 14: Extension: Language-specific results on XQUAD with single-passage mRAG setup. Numbers between
brackets indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query

language).

217



Accuracy (Aya) Accuracy (Llama)

Language Non. In. Out. Non. In. Out.
en 580 87.5 694(+153) | 61.8 824 63.9(+10.2)
it 53.0 86.9 78.5(+4.6) 447 70.6  63.6 (+3.7)
es 54.6 857 779 (+4.2) 469 72.1 66.8 (+3.1)
de 52.8 844 78.2(+3.2) 46.0 70.6 65.3(+2.2)
fr 554 869 79.1(+3.1) 48.8 742 67.3 (+2.6)
pt 544 847 762 (+5.4) 450 70.1 63.8(+3.9)
nl 559 85.6 76.8(+4.2) 503 703 64.3(+2.8)
sV 39.1 76.7 66.7 (+5.3) 449 69.7 63.3(+3.4)
ru 436 79.6 59.7(+14.0) | 237 568 37.7(+10.1)
fi 17.0 724 58.3(+7.4) 272 624 539 (+4.2)
ja 46.8 82.1 549(+23.3) | 21.7 575 36.1(+12.3)
pl 50.1 79.2 68.0 (+6.1) 353 60.6 51.5(+4.4)
no 399 764 64.1(+7.9) 436 664 58.3(+5.3)
tr 52.0 823 72.2(+7.6) 38.2 66.3 555 (45.5)
hu 267 67.5 52.6(+8.3) 344 593 492 (+5.1)
da 429 758 66.2(+6.1) 464 66.5 60.3(+4.2)
vi 544  79.0 71.2(+6.5) 47.0 673 60.2(+5.1)
he 36.2 78.5 46.5(+25.4) 59 256 17.1 (+20.3)
ar 38.8  72.5 50.4(+19.5) 172 464 27.2(+10.7)
ms 53.6 784 68.4(+7.7) 46.8 62.5 555(+5.0)
ko 153  30.7 25.8(+25.3) 19.2 529 30.2 (+17.6)
th 150 405 258(+16.7) | 242 469 32.0(+13.3)
zh 484 78.0 56.6(+20.2) | 27.8 524 37.4(+16.3)
km 7.8 19.2 149 (+8.2) 6.0 13.0 9.4 (+0.2)
AVG \ 422 73.8 60.8 (+10.6) \ 355 60.1 49.6 (+7.1)
Accuracy (Gemma) Accuracy (Qwen)
Language Non. In. Out. Non. In. Out.
en 65.0 79.8 75.7 (+1.3) 556 86.0 81.7(+1.1)
it 59.6  80.3 754 (+3.7) 445 812 727 (+4.1)
es 61.4 78.0 73.3(+3.8) 484 809 73.5(+3.6)
de 58.3 759 73.7 (+2.4) 446 782 70.5(+2.9)
fr 61.8 80.7 74.8 (+2.6) 49.0 823 749 (+2.6)
pt 60.1 76.5 70.5(+5.0) 485 78.6 71.4(+4.2)
nl 645 748 71.1(+3.3) 457 79.0 71.1(+3.3)
sV 599 735 70.2(+3.6) 437 754 68.0 (+4.6)
ru 428 68.8 50.6(+10.6) | 30.7 71.0 51.2(+10.3)
fi 446 683 62.4(+4.6) 239 725 60.9 (+5.7)
ja 427 699 479 (+13.7) | 31.1 752 46.3 (+17.5)
pl 55.0 67.8 62.0(+4.6) 369 68.9 59.1 (+5.4)
no 59.3 68.6 63.9 (+5.8) 423 73.8 63.8(+6.9)
tr 56.7 66.8 62.8 (+4.7) 364 724 644 (+5.7)
hu 51.2 649 61.9 (+5.5) 274 67.1 559 (+6.9)
da 61.1 668 64.4(+4.9) 448 7277 658 (+5.1)
vi 544  66.5 64.1(+5.3) 50.9 743 69.3 (+4.9)
he 29.7 653 39.5(+16.6) 199 66.6 34.3(+18.2)
ar 30.0 61.1 42.8(+9.9) 279 64.8 423 (+12.7)
ms 60.5 63.8 62.3(+6.9) 47.1 68.1 63.4(+6.4)
ko 122 17.5 19.7(#9.7) 233  59.0 39.1(+16.6)
th 40.0 559 38.2(+18.6) | 346 56.6 40.2(+16.6)
zh 450 619 478 (+14.7) | 49.5 70.0 58.5(+12.2)
km 262 287 27.9(+5.9) 14.0 232 21.1(+6.6)
AVG \ 50.1 65.9 58.5(+7.0) \ 384 707 59.1 (+7.7)

Table 15: Language-specific results on MKQA with single-passage mRAG setup. Numbers between brackets
indicate the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Accuracy (Aya) Accuracy (Llama)
Language Non. In. Out. Non. In. Out.
en 479 704 32.7(+30.8) | 48.5 657 38.8(+15.9)
ja 389 683 434 (+11.7) | 19.9 469 234 (+6.6)
it 404 66.8 49.3 (+6.2) 269 519 347 (+6.1)
id 40.6 68.2 48.1 (+8.2) 272 46.7 304 (+6.0)
ko 124 257 16.6(+11.7) | 188 43.6 21.1(+7.5)
nl 38.5 64.6 444 (+7.5) 29.2 502 31.0(+5.7)
zh 40.7 652 47.8(+10.8) | 27.6 45.1 30.1(+6.5)
vi 346 60.5 39.6(+11.2) | 26.1 454 28.1(+8.6)
Y 224 55.6 32.7(+8.0) 283 494 332(+54)
pt 40.5 723 50.1 (+7.4) 273 5377 33.7(+6.1)
de 41.1 67.1 48.8(+5.5) 32.0 534 37.6(+5.1)
tr 36.0 65.7 39.0(+13.7) | 21.0 47.3 24.0(+8.6)
10 40.2 60.8 45.7(+5.3) 26.5 442 32.5(+4.6)
cs 342 572 39.0(+7.7) 22.0 42.1 26.2 (+6.0)
ru 34.1 63.0 39.3(+8.1) 21.0 433 23.3(+6.5)
es 344 585 41.5+7.0) 257 484 343 (+5.4)
ms 358 64.1 44.0(+8.7) 27.2 458 32.3(+5.9)
pl 333 58.1 379 (+6.9) 20.6 39.1 24.8 (+6.3)
uk 32.8 594 37.4(+6.7) 16.0 38.8 20.0(+5.4)
fr 38.5 625 449 (+7.5) 23.8 50.7 31.5(+5.5)
ar 29.2 599 36.0(+9.4) 104 327 11.4 (+6.1)
fa 29.6 61.1 35.8(+10.1) | 152 43.6 16.9 (+8.7)
el 314 533 34.6 (+7.0) 155 356 17.7 (+8.1)
ST 134 384 189 (+7.7) 123 33.6 17.7 (+6.8)
he 309 60.6 36.6(+9.3) 123 247 17.4 (+10.5)
hi 21.3 433 26.6 (+6.3) 17.9 39.0 23.4(+1.5)
fil 23.4 449 30.2 (+8.7) 25.5 393 28.0 (+6.1)
It 16.7 46.7 21.6 (+9.1) 14.8 359 19.0(+4.9)
bn 5.1 239 82(+54) 10.0 25.8 13.7(+2.2)
ky 145 36.1 22.7 (+2.6) 13.9 274 16.6(+5.9)
ha 150 439 243(+16.0) | 13.7 31.1 19.8 (+6.5)
te 4.8 155 6.2 (+2.9) 132 20.0 13.9 (+0.4)
SW 16.6 56.1 25.5(+9.1) 20.1 3477 25.8 (+4.7)
ig 155 349 208 (+13.5) | 162 27.6 17.6 (+3.5)
si 6.1 133 4.4(+3.3) 85 139 83(+3.1)
ne 84 283 10.8(+13.7) 9.2 277 10.2(+14.4)
am 8.0 18.9 16.5(+23.3) 85 103 5.8(+0.3)
ny 21.5 442 29.6 (+13.8) | 179 282 199 (+3.5)
mg 183 446 24.4(+10.0) | 20.1 404 22.1(+4.6)
o) 23.7 549 31.7(+8.2) 19.9 40.0 22.7 (+4.6)
sn 27.5 60.2 31.9H+15.7) | 19.0 40.1 22.2(+3.8)
yo 241 402 294 (+7.0) 202 329 247 (+1.1)
AVG 26.7 514 32.1 (+9.6) ‘ 20.2 39.0 23.5(+5.8)

Table 16: Language-specific results on GMMLU-Open with single-passage mRAG setup when the model is given
no options and forced to output an open answer as the response. Numbers between brackets indicate the proportion
of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Accuracy (Gemma) Accuracy (Qwen)
Language Non. In. Out. Non. In. Out.
en 544 692 61.1(+2.6) 56.1 732 63.4(+2.2)
ja 43.0 675 47.7(+5.1) 33.1 66.0 41.4(+6.9)
it 472 657 54.0(+4.7) 36.3 64.5 453 (+6.1)
id 46.8 668 50.6 (+7.4) 38.5 63.3 44.4(+6.5)
ko 13.2 204 18.4 (+6.7) 237 437 28.3(+7.4)
nl 45.0 632 46.6 (+6.8) 319 58.4 38.8(+6.7)
zh 483 664 543 (+5.1) 523 672 57.7(+4.1)
vi 38.5 58.1 39.6(+9.8) 349 59.6 41.0(+8.1)
sV 43.6 625 47.0(+5.7) 284 60.0 35.6(+7.2)
pt 473 689 51.8(+6.3) 38.6 68.5 48.7(+5.6)
de 472 668 542 (+4.2) 36.8 629 44.4(+5.3)
tr 40.1 59.7 42.1(+7.3) 242 56.2 322 (+10.1)

ro 432 583 46.6(+5.2) 30.1 52.1 36.0(+5.7)
cs 347 54.1 37.1(+6.9) 232 479 285 (+5.7)
ru 38.1 55.7 38.4(+8.2) 313 56.2 36.0(+6.0)
es 39.8 5777 45.5(+6.2) 37.0 60.5 44.0(+5.4)
ms 446 614 46.1(+8.8) 325 574 39.7(+7.2)
pl 36.3 54.0 38.9 (+6.8) 25.6 51.2 30.6 (+7.2)
uk 333 53.1 36.5(+7.1) 183 458 23.8(+5.4)
fr 395 62.1 47.7(+5.8) 36.5 65.1 44.8 (+6.0)
ar 242 564 29.1(+6.9) 224 57.8 29.2(+7.3)
fa 314 612 36.3(+7.7) 142 48.9 19.8 (+9.0)
el 294 48.1 29.2(+7.4) 10.2 257 11.4(+4.8)
sr 32.1 48.9 32.1(+5.7) 17.5 434 23.8 (+5.6)
he 304 56.4 349 (+8.6) 18.8 533 26.7(+7.9)
hi 35.1 522 35.7(+2.9) 155 39.2 20.0(+2.6)
fil 452 52.6 449 (+7.3) 30.0 459 33.4(+9.7)
It 314 51.0 29.9(+8.0) 163 42.0 20.6 (+7.4)
bn 244 46.9 24.7 (+6.6) 11.0 355 15.0(+5.2)
ky 28.2 435 30.9 (+3.3) 157 33.7 21.1(+4.6)
ha 29.8 42.0 31.6(+5.6) 19.2 414 24.4(+8.9)

te 247 432 29.0(+4.4) 7.7 177 6.9 (+1.6)
SW 35,6 48.7 37.4(+6.1) 17.2 442 23.7 (+6.8)
ig 23.7 36.1 259 (+4.4) 174 357 24.1(7.7)

si 170 32.1 199 (+1.6) 9.5 157 8.8(+1.0)
ne 24.1 38.4 258 (+11.7) 6.1 240 8.0(+13.2)
am 156 24.6 169 (+2.2) 119 20.8 14.1(+4.2)
ny 29.0 35.6 29.0(+3.2) 18.0 29.9 24.0(+4.7)
mg 26.7 33.0 24.2(+4.2) 199 40.5 27.1(+6.0)
SO 292 40.6 28.6(+4.1) 23.6 423 27.4(+6.1)
sn 343 42,6 29.2(+5.3) 20.2 374 264 (+5.2)
yo 212 353 25.4(+2.5) 267 427 34.1(+2.5)
AVG 344 51.5 37.0(+5.9) ‘ 247 47.6 30.3(+6.1)

Table 17: Extension: Language-specific results on GMMLU-Open with single-passage mRAG setup when the
model is given no options and forced to output an open answer as the response. Numbers between brackets indicate
the proportion of queries that are correctly answered but in the wrong language (i.e., not the query language).
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Language Accuracy (Aya) Accuracy (Llama) Accuracy (Gemma) Accuracy (Qwen)
Non. In. Out. | Non. In. Out. ‘ Non. In. Out. ‘ Non. In. Out.

en 702 773 755 | 69.7 76,6 72.6 | 80.5 833 810 81.6 843 828
ja 615 71.1 714 | 443 581 579 | 699 772 759 662 740 714
it 64.6 70.7 70.7 | 59.2 658 64.6 | 755 78.6 789 722 749 75.1
id 61.8 69.7 689 | 507 57.6 579 | 72,5 7677 754 69.8 745 73.2
ko 588 64.6 658 | 393 47.1 477 | 66.7 72.6 719 644 70.7 69.2
nl 617 68.8 679 | 543 636 61.5 | 732 759 749 71.0 73.6 743
zh 603 662 688 | 523 615 59.2 | 71.0 740 753 732 722 725
vi 555 622 624 | 485 578 560 | 658 71.1 709 669 70.7 69.8
Y 5277 653 652 | 473 603 585 | 723 764 764 67.0 736 729
pt 70.1 755 750 | 351 607 533 | 782 832 8l1.6 78.6 83.0 82.1
de 67.9 752 742 | 602 703 69.0 | 783 81.6 819 749 804 78.5
tr 59.1 674 68.1 | 464 577 56.1 | 69.1 734 740 575 670 664
ro 61.8 662 665 | 514 592 584 | 709 728 173.0 649 70.2 68.3
cs 609 702 680 | 47.1 566 569 | 72.1 750 744 652 719 69.6
ru 609 70.6 700 | 403 492 505 | 723 718 774 742 764 76.0
es 639 69.5 69.7 | 575 658 64.0 | 73.5 763 764 724 769 76.0
ms 563 654 644 | 47.0 544 549 | 70.1 732 72.7 66.2 723 70.8
pl 594 689 67.7 | 479 552 515 | 717 751 749 672 71.6 70.5
uk 589 684 672 | 29.1 348 37.0 | 705 753 749 64.8 724 170.6
fr 69.5 78.1 77.1 | 623 672 67.0 | 804 84.1 828 779 82.0 81.0
ar 60.7 743 734 | 412 614 580 | 66.1 775 76.7 632 759 732
fa 584 689 69.2 | 388 532 533 | 693 786 78.1 583 713 684
el 58.1 65.0 652 | 27.8 408 451 | 647 724 719 473 614 58.0
st 41.0 582 558 | 145 88 213 | 651 706 70.5 584 677 66.5
he 543 64.0 627 | 194 188 245 | 59.7 69.6 69.8 28.1 354 40.1
hi 51.0 583 60.8 | 39.1 49.1 49.7 | 644 668 68.6 49.0 61.2 59.1
fil 41.9 48.0 50.7 | 37.2 39.1 40.7 | 66.6 68.7 70.0 58.0 604 59.1
It 399 550 509 | 340 485 466 | 654 714 70.7 46.6 61.3 569
bn 26.7 489 46.6 | 302 454 49.1 | 61.0 676 6738 523 62.1 615
ky 264 37.1 419 | 204 243 285 | 482 535 54.1 38.7 499 482
ha 294 383 337 | 266 30.8 31.8 | 354 328 389 25.6 355 304
te 119 21.6 287 | 298 442 424 | 56.8 612 62.6 259 334 322
SW 285 39.8 357 | 320 37.0 409 | 552 574 60.1 272 372 328
ig 280 358 333 | 251 300 28.7 | 332 402 39.6 227 31.0 29.7
si 7.1 126 125 | 22.6 32.1 267 | 359 40.6 49.9 10.7 157 158
ne 356 40.7 44.1 | 26.5 257 319 | 562 559 59.6 36.7 38.7 40.7
am 32 59 173 | 154 55 82 36.1 454 44.0 10.3 25.0 17.9
ny 222 246 236 | 215 215 264 | 378 460 438 19.3 28.1 255
mg 225 325 274 | 193 221 237 | 365 370 362 21.1 28.2 262
SO 28.1 383 347 | 241 270 260 | 264 359 36.7 252 364 31.6
sn 21.2 22,6 249 | 23.0 230 27.1 | 394 442 46.1 19.8 21.0 23.5
yo 217 19.8 257 | 20.7 250 250 | 327 38.7 37.1 170 19.2 215

AVG 46.5 548 548 | 37.6 451 455 | 61.1 658 66.1 514 583 569

Table 18: Language-specific results on GMMLU-Choice with single-passage mRAG setup when the model is given
options and the answer accuracy is evaluated by whether the model outputs the correct option letter. This setup
eliminates the effect of generation language on the performance evaluation.
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Accuracy (Aya)

Setups ‘ en ja it id ko nl zh vi sv pt de tr ro cs

No Ctx ‘ 703 614 648 619 588 61.7 60.1 556 531 705 68.1 595 619 612
lo 752 713 710 69.1 658 683 67.1 634 656 750 747 674 663 68.4
103i 729 68.1 688 64.8 624 634 628 577 613 645 702 64.0 624 65.6
1o3o0 722 68.0 684 63.7 629 646 628 56.6 61.6 68.7 703 630 61.1 646
30 783 745 736 722 692 704 70.7 633 684 739 775 699 670 71.2
3o0li 772 735 735 709 687 693 69.0 62.0 67.7 712 76.0 68.7 66.8 70.8
3olo 774 739 735 71.0 693 69.6 69.5 61.6 673 743 765 693 67.0 710
Setups ‘ ru es ms pl uk fr ar fa el sr he hi fil It

No Ctx ‘ 60.9 64.0 564 59.6 59.1 69.6 60.9 583 582 413 543 51.0 41.6 39.7
lo 70.3 703 642 68.6 68.0 76.8 71.7 689 654 56.6 637 60.0 52.1 51.7
1o3i 65.1 66.6 593 656 644 736 68.0 646 619 525 606 577 443 463
lo3o0 64.9 655 60.0 64.8 63.8 723 67.0 647 62.1 532 620 57.8 494 473
30 719 723 668 704 698 797 758 718 6877 603 669 650 535 53.1
3oli 70.8 71.0 656 702 694 777 747 7T14 679 588 657 64.0 519 528
3olo 71.8 714 662 702 689 783 743 70.7 682 594 660 643 524 525
Setups ‘ bn ky ha te SW ig si ne am ny mg o} sn yo

No Ctx ‘ 267 265 282 122 283 281 6.6 353 32 223 235 28.1 224 235
lo 47.1 39.8 339 289 37.0 342 1277 445 173 248 285 359 235 245
103i 426 342 331 147 319 30.1 12.1 41.1 90 212 252 339 238 230
1030 46.1 375 327 1777 335 31.1 11.7 434 101 209 264 33.0 235 262
30 535 444 343 221 380 33.0 12.0 472 11.7 219 276 382 238 255
3oli 514 402 358 204 370 340 133 445 7.8 22,6 30.1 360 269 258
3olo 53,5 419 345 220 39.0 337 11.7 472 103 205 284 370 260 280

Table 19: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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Accuracy (Llama)

Setups ‘ en ja it id ko nl zh vi sv pt de tr ro cs
No Ctx ‘ 70.0 43.6 589 51.1 394 547 522 487 478 342 603 464 514 48.1
lo 73.0 575 645 587 48.1 622 589 566 59.2 510 693 56.6 584 57.1
103i 72.5 56.7 635 528 454 61.0 577 539 48.6 487 655 525 565 543
1o3o0 713 552 60.1 53.7 455 60.6 56.5 549 531 493 663 533 56.8 543
30 755 639 683 594 522 654 63.6 6l1.1 59.0 530 736 60.0 628 60.3
3o0li 75.7 6277 674 568 503 648 627 592 557 49.6 731 584 614 584
3olo 752 63.1 66.6 58.1 51.8 653 624 604 57.8 53.1 733 585 613 595
Setups ‘ ru es ms pl uk fr ar fa el sr he hi fil It
No Ctx ‘ 41.0 572 473 482 29.1 629 412 38.6 273 145 20.6 392 37.6 345
lo 49.7 642 550 53.0 36.7 673 59.0 525 464 22,6 258 484 415 457
1o3i 33.1 646 494 367 165 654 583 46.1 219 51 282 46.1 395 369
lo3o0 419 62.1 523 46.6 19.7 650 57.8 450 303 11.6 269 48.1 384 42.7
30 49.1 68.6 58.7 527 250 715 673 52,6 399 143 354 547 42.6 492
3oli 41.1 67.7 560 47.1 184 719 658 51.7 300 6.7 348 518 433 456
3olo 473 67.6 56.6 525 21.6 709 655 502 338 125 32.0 53.6 42.6 479
Setups ‘ bn ky ha te SW ig si ne am ny mg o} sn yo
No Ctx ‘ 303 21.1 262 287 323 250 221 268 159 223 198 239 248 214
lo 482 287 30.6 426 41.7 290 251 302 8.1 260 240 285 262 244
103i 493 233 28.6 43.1 423 282 258 214 7.8 220 21.0 249 20.7 295
lo3o 48.7 203 30.6 40.0 452 280 269 245 85 276 225 271 283 26.1
30 559 215 341 473 494 287 289 293 86 269 255 28.8 292 283
3oli 564 19.6 324 495 48.1 269 302 275 92 241 226 282 262 303
3olo 56.0 21.8 339 477 504 28.7 28.7 275 91 268 233 279 299 265

Table 20: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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Accuracy (Gemma

Setups ‘ en ja it id ko nl zh vi sv pt de tr ro cs
No Ctx ‘ 80.6 69.8 756 728 667 731 710 659 723 783 784 690 710 723
lo 81.2 764 786 759 721 74.6 751 7177 76.1 821 81.7 743 738 747
lo3i 804 763 782 748 714 748 732 70.1 751 782 80.1 729 726 743
1o3o0 802 744 771 742 714 734 726 687 739 747 804 715 7T1.7 73.1
30 83.1 786 80.8 78.6 759 76.8 77.1 737 718 817 837 764 747 T1.
3o0li 829 789 812 783 758 774 769 724 776 805 831 762 754 713
3olo 829 787 80.8 784 76.1 767 763 731 775 795 841 758 745 769
Setups ‘ ru es ms pl uk fr ar fa el st he hi fil It
No Ctx ‘ 722 735 704 720 70.7 805 66.1 693 649 653 595 644 669 656
lo 77.6 76.8 725 755 754 832 758 774 724 703 702 682 69.8 702
1o3i 756 762 71.1 748 73.1 819 748 753 713 70.5 687 675 69.5 693
lo3o0 75.5 75.0 70.8 734 732 820 726 752 710 68.7 69.1 673 673 66.5
30 80.1 789 748 769 778 858 792 799 751 736 738 719 717 722
3oli 793 784 747 768 76.8 852 789 80.0 741 74.0 737 714 7T1.7 727
3olo 79.5 784 74.1 76.7 765 851 785 799 743 729 728 710 715 713
Setups ‘ bn ky ha te SW ig si ne am ny mg o} sn yo
No Ctx ‘ 61.1 48.1 34.6 56.8 552 333 362 562 355 381 365 257 398 325
lo 69.3 533 39.0 622 594 415 51.0 58.0 451 442 359 346 451 385
lo3i 68.3 523 354 60.1 58.8 357 495 587 44.1 454 307 427 442 379
lo3o 68.2 524 441 604 569 371 534 56.1 47.6 423 327 442 457 37.7
30 733 59.8 455 66.7 61.8 40.8 59.2 599 489 458 343 493 490 412
3oli 722 58.0 41.1 66.0 61.3 390 539 603 484 477 344 49.1 48.1 405
3olo 72.8 582 454 658 622 40.1 572 595 49.6 441 344 489 478 38.6

Table 21: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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Accuracy (Qwen)

Setups ‘ en ja it id ko nl zh vi sv pt de tr ro cs
No Ctx ‘ 816 662 724 70.1 644 712 737 668 670 788 750 577 650 654
lo 83.0 712 754 73,6 699 737 724 698 7277 819 778 66.8 69.0 70.1
lo3i 80.8 703 744 720 68.8 709 690 653 710 795 76.1 650 653 6838
1o3o0 802 693 759 715 669 715 686 652 712 792 754 649 644 673
30 839 754 782 758 726 755 741 708 76.1 835 813 71.2 704 73.0
3o0li 837 747 777 753 719 749 741 699 759 838 813 692 693 729
3olo 839 749 782 759 71.8 757 730 707 754 834 80.6 69.7 698 72.7
Setups ‘ ru es ms pl uk fr ar fa el st he hi fil It
No Ctx ‘ 743 725 665 673 650 779 632 582 473 583 28.6 489 58.0 46.7
lo 76.1 757 702 71.8 70.8 814 72.6 684 58.1 66.6 405 579 594 56.1
1o3i 720 744 670 692 684 79.1 69.8 639 570 640 412 555 572 543
lo3o0 722 746 679 679 685 78.6 67.6 629 548 639 404 569 565 543
30 785 78.1 733 728 732 835 753 734 624 69.6 442 635 624 60.0
3oli 775 770 720 734 719 829 740 710 59.7 69.1 415 624 60.6 589
3olo 712 774 725 73.1 72.6 834 734 70.6 604 685 424 623 61.1 595
Setups ‘ bn ky ha te SW ig si ne am ny mg o} sn yo
No Ctx ‘ 522 389 260 256 273 225 98 365 94 189 213 262 19.7 158
lo 61.6 48.0 30.8 332 332 29.0 155 410 18.6 274 254 315 245 205
103i 524 450 294 239 304 265 16.1 40.1 160 265 220 268 229 217
lo3o 49.7 43.6 31.6 202 29.7 288 194 425 181 289 249 29.0 274 227
30 60.8 50.1 333 285 35.0 31.5 20.7 489 20.7 295 262 314 272 247
3oli 552 46.6 325 23.1 333 293 20.8 459 221 295 258 30.0 269 253
3olo 55.0 472 331 25.0 342 295 21.1 481 20.7 29.0 252 30.7 27.6 235

Table 22: Extension: Full performance on GMMLU-Choice with multiple-passage mRAG setup.
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