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Abstract

The extent to which individual language char-
acteristics influence tokenization and language
modeling is an open question. Differences in
morphological systems have been suggested as
both unimportant and crucial to consider (e.g.,
Cotterell et al., 2018; Park et al., 2021; Arnett
and Bergen, 2025). We argue this conflicting
evidence is due to confounding factors in ex-
perimental setups, making it hard to compare
results and draw conclusions. We identify con-
founding factors in analyses trying to answer
the question of whether, and how, morphology
relates to language modeling. Next, we intro-
duce token bigram metrics as an intrinsic way
to predict the difficulty of causal language mod-
eling, and find that they are gradient proxies for
morphological complexity that do not require
expert annotation. Ultimately, we outline ne-
cessities to reliably answer whether, and how,
morphology relates to language modeling.1

1 Introduction

Are certain languages inherently easier or harder to
model (Cotterell et al., 2018; Mielke et al., 2019)?
The interplay between language modeling and in-
dividual differences among languages is an open
problem. One angle it can be approached from is
morphological complexity (Gerz et al., 2018a; Park
et al., 2021): if in one language the internal struc-
ture of words is more unpredictable according to
some standard than another, then perhaps language
models (LMs) have a harder time learning to pre-
dict text in that language.

Morphological systems are widely recognized
as being gradient, but coarse groupings are often
used, especially in NLP (Oncevay et al., 2022). Ag-
glutinative languages (ALs) tend to add one gram-
matical feature to a word with each added mor-
pheme, resulting in long words with many mor-

* Equal contribution.
1This an extended abstract of Poelman et al. (2025) which

is accepted at the EMNLP 2025 main conference.

phemes. Fusional languages (FLs) tend to express
information through inflection, where a single mor-
pheme can express multiple features, resulting in
shorter words with fewer morphemes. Results con-
trasting ALs and FLs have been mixed, with some
evidence pointing to ALs being harder to model
than FLs (e.g., Gerz et al., 2018b) whereas others
have shown that there is no difference between the
two groupings (e.g., Arnett and Bergen, 2025).

We outline what experimental conditions and
metrics are necessary to reliably answer whether,
and how, morphology relates to language modeling.
Our contributions: (1) We list confounding factors
that have to be taken into account when attempting
to answer the central question above. They can be
seen as criteria for an "ideal" experiment. (2) We
propose predicting CLM difficulty with the variety
and entropic efficiency of neighboring tokens, and
find they are proxies for morphological complexity.

2 Confounding Factors

It is not obvious how morphology impacts language
modeling. What is clear is that research that seeks
to draw reliable conclusions relating the two must
control for the following confounding factors:

1. Languages: What set of languages is un-
der consideration? If multiple hypotheses are
tested, that set should ideally stay constant.

2. Grouping: If results/languages are grouped,
is there enough in-group agreement?

3. Tokenization algorithm: What subword to-
kenization algorithm is used? What are its
hyperparameters?

4. Vocabulary size vs. data size: How does the
amount of subword types relate to the amount
of training data?

5. Corpus domain: Are tokenizers and mod-
els trained on the same data? Are datasets
comparable across languages (ideally, multi-
parallel), or made to be so?
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Token Bigrams Token Unigrams Words
Language Grouping∗ AV η (↓) AU LR MATTR MTL RE S MWL
English Fusional 2.12 15.92 61.08 59.29 31.78 4.89 36.68 9.27 5.54
French Fusional 2.39 19.11 57.77 51.55 34.27 5.08 40.30 2.30 5.91
Dutch Fusional 3.33 20.75 60.61 43.60 33.85 5.17 37.83 8.36 6.01
Portuguese Fusional 3.06 21.31 52.64 51.49 35.38 4.91 36.38 10.64 5.79
Spanish Fusional 2.95 22.70 56.97 52.62 33.85 5.05 36.16 9.05 5.72
Danish Fusional 3.84 24.12 57.44 38.71 33.32 4.78 35.53 11.91 5.82
Bulgarian Fusional 3.37 24.12 52.91 40.74 36.37 4.86 34.88 12.21 5.97
Swedish Fusional 3.84 24.18 57.29 35.71 35.90 5.11 39.79 8.73 6.10
Greek Fusional 4.20 24.48 51.62 46.81 38.71 5.11 37.44 10.35 6.15
Romanian Fusional 3.12 25.09 51.81 51.01 37.80 5.04 36.98 10.52 5.95
German Fusional 4.04 26.33 57.29 33.66 35.83 5.28 35.14 12.12 6.52
Italian Fusional 3.65 27.10 61.54 59.88 37.56 5.22 38.85 9.39 6.21
Latvian Fusional 4.45 28.07 50.99 43.81 41.75 5.00 32.29 15.76 6.41
Czech Fusional 4.58 30.07 50.71 41.32 43.06 4.70 35.15 13.67 6.01
Polish Fusional 4.74 30.85 50.61 43.80 44.51 5.25 35.76 12.75 6.68
Slovak Fusional 4.70 31.12 51.43 44.68 43.04 4.82 34.91 13.39 6.13
Slovenian Fusional 4.09 32.04 52.85 48.35 40.42 4.77 33.74 13.66 5.88
Lithuanian Fusional 6.26 33.62 52.82 44.35 44.11 5.00 32.26 16.58 6.61
Finnish Agglutinative 7.14 36.83 55.05 28.95 45.72 5.37 34.60 16.23 7.78
Hungarian Agglutinative 6.69 39.11 56.24 31.37 41.73 5.05 34.10 14.63 6.78
Estonian Agglutinative 6.27 40.31 55.89 34.39 43.66 5.22 34.58 14.87 6.96

Table 1 – We propose to use gradient proxies of morphology that operate on token bigrams: the variety of a type’s accessors
(AV), their uniqueness (AU), and the Shannon efficiency of their distribution (η). We report averages over types in the
tokenizer’s vocabulary that appear at least once and were not filtered; the fraction of types excluded from each average is
its lexicalization ratio (LR). We also give existing metrics operating on token unigrams: micro-average characters per token
(MTL), moving-average type-token-ratio (MATTR), and Rényi efficiency (RE). Last are word-based metrics: tokens per
character averaged per word (S) and mean word length (MWL). All metrics are calculated on EuroParl (Koehn, 2005)
using monolingual tokenizers from the Goldfish suite of models (Chang et al., 2024). ∗Groupings taken from Arnett and
Bergen (2025). The gradient in the columns ranges from its minimum to maximum and are intended to highlight how well
a metric corresponds with the "Grouping" column. For AU and LR, the top three are highlighted yellow, the bottom orange.

6. Performance indicator: What metric is used
to evaluate and compare tokenizers and mod-
els across languages? Is the setup monolingual
or multilingual? Is the metric comparable be-
tween any two languages?

These factors show a way towards an ideal exper-
imental setup. Practically, one must work back-
wards from this to a feasible setup.

3 Accessor Variety

We need a reliable proxy for morphological com-
plexity. Harris (1955) first suggested to count the
variety of predecessor and successor units of a
given string, where unusual spikes would imply
the string’s edges delineated something meaningful
like a morpheme. Feng et al. (2004) coined acces-
sor variety (AV) as the minimum of predecessor
and successor variety. Wu and Zhao (2018) applied
this to learn BPE merges. We use ULM tokens.

In Table 1, we calculate our metrics on a multi-
parallel aligned subset of EuroParl (Koehn, 2005).
AV recovers the coarse groupings, with ALs having
the highest AV. Additionally, within FLs, a more
fine-grained view of morphological complexity is
revealed. For instance, higher AV values point to

languages using compounding (e.g., German vs En-
glish). The shape of the accessor distribution (η)
follows the same trend, being higher (more uni-
form) for ALs. These results for AV and η suggest
that the difficulty of causal language modeling, and
hence higher PPLs regardless of models, is having
more and more equally likely follow-up options at
each token. This is what AV and η measure.

The word-based metrics recover the groupings
somewhat, but are less reliable for CLMs, unless
those models also use words instead of subword
tokens. The token unigram metrics MTL, RE, and
MATTR look rather even across the languages in
EuroParl. Since these estimators become more ac-
curate with more data, their low variance calls
into question higher-variance results computed for
much smaller corpora like FLORES-200.

Lastly, AV operates on tokens, which means it’s
applicable to other units. For character- or byte-
level tokenizers, AV can still provide an estimate of
the degree of choice of accessors for a given type.

In the full paper, we discuss hypotheses of other
papers, present results for a larger set of languages,
and suggest general methodological improvements
for future investigations.
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