
Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025), pages 178–195
November 8-9, 2025 ©2025 Association for Computational Linguistics

Improving Language Transfer Capability of Decoder-only Architecture in
Multilingual Neural Machine Translation

Zhi Qu† Yiran Wang‡ Chenchen Ding†‡

Hideki Tanaka‡ Masao Utiyama‡ Taro Watanabe†
†Nara Institute of Science and Technology, Japan

{qu.zhi.pv5, taro}@is.naist.jp
‡National Institute of Information and Communications Technology, Japan

{yiran.wang, chenchen.ding, hideki.tanaka, mutiyama}@nict.go.jp

Abstract

Existing multilingual neural machine transla-
tion (MNMT) approaches mainly focus on im-
proving models with the encoder-decoder archi-
tecture to translate multiple languages. How-
ever, decoder-only architecture has been ex-
plored less in MNMT due to its underperfor-
mance when trained on parallel data solely. In
this work, we attribute the issue of the decoder-
only architecture to its lack of language transfer
capability. Specifically, the decoder-only archi-
tecture is insufficient in encoding source tokens
with the target language features. We propose
dividing the decoding process into two stages
so that target tokens are explicitly excluded in
the first stage to implicitly boost the transfer ca-
pability across languages. Additionally, we im-
pose contrastive learning on translation instruc-
tions, resulting in improved performance in
zero-shot translation. We conduct experiments
on TED-19 and OPUS-100 datasets, consider-
ing both training from scratch and fine-tuning
scenarios. Experimental results show that, com-
pared to the encoder-decoder architecture, our
methods not only perform competitively in su-
pervised translations but also achieve improve-
ments of up to 3.39 BLEU, 6.99 chrF++, 3.22
BERTScore, and 4.81 COMET in zero-shot
translations. We release our codes at https:
//github.com/zhiqu22/PhasedDecoder.

1 Introduction

Multilingual neural machine translation (MNMT)
(Firat et al., 2016) aims to integrate multiple lan-
guage translation directions into a single model.
Although multilingual translation systems based on
large language models have demonstrated strong
performance (Zhang et al., 2023; Yang et al., 2023;
Xu et al., 2024), current MNMT models with the
encoder-decoder architecture (Fan et al., 2020;
Goyal et al., 2022; Team et al., 2022) remain a fo-
cus of research due to the competitive performance,
fewer parameters, and reduced training costs (Zhu

342 Translation Pairs0

5

10

15

20

25

30

35

40

BL
EU

 S
co

re
s

Architectures
Encoder-Decoder
Causal Decoder-Only
Prefix Decoder-Only

(a) Performance
L1 L2 L3 L4 L5 L6

0.40

0.45

0.50

0.55

0.60

Si
m

ila
rit

y
Sc

or
es

Architectures
Encoder-Decoder
Causal Decoder-only
Prefix Decoder-only

(b) Language Feature

Figure 1: Comparison between different architectures in
preliminary experiments on TED-19. Figure 1a shows
the BLEU score. Figure 1b shows the layer-wise lan-
guage feature representations of a sentence where the
x-axis indicates the layer number and the vertical line
indicates the value range. Specifically, we follow Qu
et al. (2024) to compute a similarity score, where values
higher than 0.5 mean the representation exhibits the tar-
get language features more and lower than 0.5 indicates
showing more source language features. Appendix A
provides the details of implementation.

et al., 2023). However, in MNMT, models with the
decoder-only architecture1 have shown underper-
formance by the empirical research of Gao et al.
(2022); Zhang et al. (2022), as further evidenced
by Figure 1a. Therefore, addressing the underde-
velopment of decoder-only architectures in MNMT
is crucial due to the advantage of zero-shot gen-
eralization (Wang et al., 2022), which potentially
benefits zero-shot translation, i.e., translating lan-
guage pairs unseen during training.

We attribute the issue to the lack of language
transferability, causing generations to rely solely
on representations that always manifest the source
language features. Specifically, MNMT encoder-
decoder models typically add a language tag indi-
cating the target language at the beginning of the
source tokens as a translation instruction (Johnson
et al., 2017; Wu et al., 2021), then, Kudugunta et al.
(2019); Qu et al. (2024) show that the encoder of
MNMT models transfers source tokens to represent

1The term "decoder-only architecture" encompasses both
causal decoder-only architectures (Radford et al., 2018) and
prefix decoder-only architectures (Dong et al., 2019).

178

https://github.com/zhiqu22/PhasedDecoder
https://github.com/zhiqu22/PhasedDecoder

target language features more than source language
features. As shown in Figure 1b, the representation
of source tokens extracted from the model with the
encoder-decoder architecture mainly exhibits the
target language features at the output of the encoder
(red line), however, this characteristic is absent in
decoder-only architectures (green and blue lines).
We hypothesize that the decoder-only architectures
merely capture the surface information of source
tokens instead of transferring source tokens into a
state with more target language features.

We propose dividing the decoder-only architec-
ture into two stages, namely, Two-stage Decoder-
only (TDO). Specifically, the representations of tar-
get tokens are excluded in the first stage to enforce
language transfer using the translation instruction,
and the target tokens are fused in the second stage,
which follows the normal decoder-only manner.
Moreover, unlike the encoder-decoder architecture,
where source and target tokens are processed sep-
arately, in the decoder-only architecture, source
tokens pass through all layers. However, the train-
ing objective of MNMT only focuses on the target
tokens, leading to the degradation of the target lan-
guage features on the source token representation.
Thus, we introduce Instruction-level Contrastive
Learning (InstruCL) as a training objective to su-
pervise source tokens in the second stage.

We evaluate the proposed methodologies on two
datasets, TED-19 (Ye et al., 2018), and OPUS-100
(Zhang et al., 2020a; Yang et al., 2021), using
four automatic evaluation metrics: BLEU (Pap-
ineni et al., 2002; Post, 2018), chrF++ (Popović,
2015, 2017), BERTScore (Zhang et al., 2020b) and
COMET (Rei et al., 2020). Experimental results
show that, compared to encoder-decoder models,
our models perform competitively in supervised
translations and achieve improvements of up to
3.39 BLEU, 6.99 chrF++, 3.22 BERTScore, and
4.81 COMET in zero-shot translations. We also an-
alyze the variation of layer-wise representations at
the sentence level to demonstrate the effects of our
proposed methods. Results prove that the gains of
proposed methods in the decoder-only architecture
derived from improving language transfer.

2 Related Work

Although the large language model based on the
decoder-only architecture performs satisfactorily
in the multilingual translation (Zhu et al., 2023;
Xu et al., 2024), the SOTA models specialized on

MNMT are still based on the encoder-decoder ar-
chitecture (Fan et al., 2020; Team et al., 2022) due
to the balance between costs and performances.
Gao et al. (2022); Zhang et al. (2022) empirically
show that the decoder-only architecture does not
have a distinct advantage in MNMT, and Dabre
et al. (2020); Raffel et al. (2023) demonstrate that
the reason could be the onefold style of training
data comprising only translations, degrading the
zero-shot ability of the decoder-only architecture
(Brown et al., 2020; Wang et al., 2022).

Recent investigations of the encoder-decoder
architecture in MNMT reveal the deficiency of
the decoder-only architecture at the representation
level. Kudugunta et al. (2019); Stap et al. (2023)
point out that the sentence representations translat-
ing to two different target languages are gradually
separated with the increase of layers. Qu et al.
(2024) demonstrate that the encoder of MNMT
model transfers the source sentence representation
to the target side, leading to the representation of
source tokens used in the generation with more
target language features. This finding aligns with
the prior empirical studies (Wu et al., 2021; Qu
and Watanabe, 2022; Pires et al., 2023), which
shows that increasing target language information
can lead to performance improvements. Moreover,
this also supports our hypothesis that the weakness
of the decoder-only architecture can be attributed
to the lack of language transfer.

3 Backgrounds

3.1 Multilingual Neural Machine Translation

A parallel multilingual corpus, denoted by C, con-
sists of translation pairs in the form of (x,y). Here,
x = x1, . . . , xI is the source sentence comprising
I tokens, and y = y1, . . . , yJ is the target sentence
with J tokens. We also denote language tags by
l = l1, . . . , lK , where each tag is an artificial token
uniquely corresponding to one of the K languages
in C. To serve as a translation instruction, we add
the language tag specifying the target language at
the beginning of the source tokens (Johnson et al.,
2017; Wu et al., 2021), denoted by ly.2 Thus, the
training data comprises instances in the form of
(ly,x,y). The model is trained over all instances
in C by the standard cross-entropy objective:

Lce = −
∑

ly ,x,y∈C

J∑

j=1

log p(yj | ly,x,y<j), (1)

2Appendix B shows the comparison between different
strategies of translation instructions in MNMT.

179

Encoder
Layer

Adds&Norm

N×

Decoder-Only
Architecture

N×

2N×

Decoder-only
Layer

Adds&Norm

Masked

Self-Attention

Adds&Norm

Decoder
Layer

Adds&Norm

Masked

Self-Attention

Adds&Norm

Cross

Attention

Adds&Norm

Source Token Target Token Predicted Token

Self-Attention

Feed-Forward

 Network

Feed-Forward

 Network Enc

Feed-Forward

 Network

Dec-only

Dec

Encoder-Decoder
Architecture

Adds&Norm

Figure 2: Illustration of the encoder-decoder architec-
ture and the decoder-only architecture.

where p(yj | ly,x,y<j) is a probability distribu-
tion for each token generated by MNMT model.

3.2 Architectures
All architectures discussed in this work follow the
Transformer architecture (Vaswani et al., 2017),
and almost all MNMT models are based on the
encoder-decoder architecture (Johnson et al., 2017;
Fan et al., 2020; Team et al., 2022; Raffel et al.,
2023), as illustrated in Figure 2. It comprises an en-
coder and a decoder in which both are composed of
N layers with each encoder layer comprising a self-
attention mechanism and a feed-forward network
(FFN), and with each decoder layer comprising a
masked self-attention mechanism, a cross-attention
mechanism, and an FFN. The encoder receives I+1
tokens combining by (ly,x)

3, and output the rep-
resentations H = {h1, ...,hI+1},h ∈ Rd, d is the
model dimension. Then, the decoder relies on H
and y<j to generate the next token:

HN = encoder(ly,x), (2)

yj = decoder(HN ,y<j), (3)

where HN is an intermediate state used in the cross-
attention mechanism in each decoder layer without
further transformation. Thus, Equation 1 implicitly
aligns the output of the encoder in the represen-
tational subspace of the target language, i.e., the
language transfer as shown in the red line of Figure
1b, because the ideal decoder should translate two
sentences xa and xb, which have the same target
language, parallel semantics, and different source
languages, to the same target sentence y. Formally,
an ideal encoder meets the following:

encoder(ly,x
a) = encoder(ly,x

b). (4)

A decoder-only architecture refers to a model
that consists solely of a decoder (Figure 2). Each

3The operation of combining means adding ly at the be-
ginning of x. Appendix C shows the specific forms in detail.

decoder-only layer consists of a masked self-
attention mechanism and an FFN (Radford et al.,
2018), and each model has 2N layers to approx-
imately match the parameter size of an encoder-
decoder architecture. We define the decoder-only
process as follows:

yj = decoder-only(ly,x,y<j). (5)

Notably, the difference between decoder-only(·)
and decoder(·) is that decoder-only(·) fuses the
source and target information by a concatenated
input, namely, ly,x, and y are equally treated4, in-
stead of using a cross-attention mechanism. Thus,
there exists no intermediate state to align differ-
ent source languages as Equation 4, resulting in
the blue and green lines of Figure 1b. More-
over, we follow Gao et al. (2022); Raffel et al.
(2023) to distinguish the decoder-only by the man-
ner of masked self-attention mechanism as causal
decoder-only and prefix decoder-only (Appendix
D). Finally, compared to the encoder-decoder ar-
chitecture, the decoder-only architecture requires
around 10% fewer parameters (Appendix E).

4 Methodologies

4.1 Two-stage Decoder-only Architecture
The limitations of the decoder-only architecture
in MNMT likely arise from inadequate language
transfer capabilities, i.e., the absence of Equation 4.
To address this issue, we propose the Two-stage
Decoder-only (TDO) architecture, which divides
the decoder-only process into two stages to im-
plicitly align representations of different source
languages in the subspace of the target language.
Specifically, as illustrated in Figure 3, the target
tokens are explicitly excluded in the first stage, i.e.,
the first M layers, and these target tokens are fused
in the second stage, i.e., the subsequent 2N −M
layers. The process of TDO is formally expressed:

HM = decoder-only1(ly,x), (6)

yj = decoder-only2(H
M ,y<j), (7)

where decoder-only1(·) enables the implicit align-
ment as done in Equation 4. Notably, the first stage
logically acts as an encoder when prefixed masking
is applied to the self-attention mechanism. How-
ever, the first and second stages remain unified
structures, and the fusing of source and target in-
formation follows the manner of decoder-only(·)

4Appendix C compares the difference of the input and out-
put forms between encoder-decoder and decoder-only models.

180

M×

(a) Two-stage Decoder-only

[de] Hello, world! Hallo, Welt!
[fr] 每天开⼼! Heureux chaque jour!

Negative Instances:

[zh] Happy everyday! 每天开⼼!

···

[fr] Hello, world! Bonjour, le monde!

Anchor:

[fr] Bonjour, le monde! Bonjour, le monde!

Positive Instance:

Identity Pair

Source Token Target Token Predicted Token

Dec-only

Unused Token

Target Tokens
Recovered

(2N-M)×
Dec-only

Linear

Adaption Modules

Only Target

Only Source
Linear
ReLU

Linear

Linear
ReLU

(b) Instruction-level Contrastive Learning

Dec-only
(layer index > M)

Dec-only
(layer index > M+1)

···

···

Figure 3: Illustration of proposed methods. Notably, the term, Token, not only means the real token before and after
the processing of model, but also refers to the representation in the corresponding position. (a) shows the Two-stage
Decoder-only and shows the Adaption, i.e., using an additional FFN to narrow the gap between source and target
representations by non-linear transformation. (b) shows the Instruction-level Contrastive Learning. Underline marks
target tokens, and [*] means the instruction of this instance. For the anchor, negative instances in this figure meet at
least one of two features: 1) different target language and 2) unparallel semantics.

rather than decoder(·). Therefore, TDO architec-
ture preserves the decoder-only architecture.

Notably, a representational gap arises at the
M + 1 layer due to our imbalance design where
the source tokens have passed through the preced-
ing M layers, while the target tokens are not. To
bridge this gap, as shown in Figure 3, we employ
an additional FFN as an adaption module5 at the
output of the M layer to nonlinearly transform the
representation of source tokens. Similarly, since
the source and target tokens share the same repre-
sentational space in the second stage, we employ
another adapter at the output of the 2N layer to en-
sure that the output representation of target tokens
remains unaffected by the source language.

4.2 Instruction-level Contrastive Learning
Although Equation 6 transfers H, i.e., the represen-
tation of source tokens, to HM , which aligns with
the target language, H potentially tends to degrade
towards the source language in Equation 7 because
Equation 1 does not supervise H directly.6

Contrastive learning, which is a technique to en-
courage representations towards the target states
(Jaiswal et al., 2021), is helpful to mitigate this
degradation. However, two challenges remain in
this process. The first is the lack of optimization
objectives for aligning H with the target language.
For instance, the H derived by a translation from
German to English cannot be considered an anchor
to optimize another H derived by a translation from
French to English because neither adequately rep-

5Adaptation module is shared for all languages instead of
a language-specific component (Bapna and Firat, 2019).

6Although the language modeling loss (Radford et al.,
2018) can provide supervision for the representation of source
tokens, Gao et al. (2022) show that supervising the representa-
tion of source tokens does not benefit MNMT.

resents the optimal state of English. The second
challenge is that the optimization at the sentence
representation level potentially leads to suboptimal
results. For instance, Pan et al. (2021) suggest aver-
aging representations of all tokens to get a sentence
representation for contrastive learning, which loses
the syntactic information.

We propose Instruction-level Contrastive Learn-
ing (InstruCL), which only aligns ly, i.e., the
translation instruction, of each instance, given
that MNMT remains sensitive to ly (Wu et al.,
2021). As shown in Figure 3, given an anchor
(ly,x,y), we establish an identity pair in the form
of (ly,y,y), namely a pseudo pair translating the
target sentence to itself, as the positive instance
because the identity pair can serve as a proxy for
the target language (Qu et al., 2024). Specifically,
in a training batch, we have a set of representations
B = {h1

1,h
2
1, . . . } where h1 is the representation

of ly collected from H. Then, we designate one
instance of B as the anchor, denoted by hanc. Other
instances are treated as negative instances, which
meet one or both of the following features com-
pared to the anchor: different target languages or
unparallel semantics. Subsequently, the identity
pair established by the anchor would be fed into
the model and we collect the representation of ly at
the same layer, and denote it by hpos. The objective
of InstruCL is formulated as:

Lctr = −
∑

h∈B
log

exp(s+)

exp(s+) +
∑|B|−1

i=1 exp(s−i)
,

s+ = sim(hanc,hpos),

s−i = sim(hanc,hi
1),h

i
1 ̸= hanc,

(8)

where sim(·) calculates the similarity of representa-

181

tions using the cosine similarity. The final training
objective is simply jointed as:

L = Lce + Lctr. (9)

5 Experiments

5.1 Datasets and Evaluations
Following prior works (Wu et al., 2021; Zhang
et al., 2022; Tan and Monz, 2023; Stap et al., 2023;
Qu et al., 2024), we use English-centric datasets in
our experiments, where the training and validation
data consist of translation pairs both from English
and to English. It is an ideal setup for the evalua-
tion of zero-shot translation capabilities, because
non-central languages have never seen each other.
We utilize two datasets in our experiments: 1) TED-
19 (Qu et al., 2024), a sub-collection of TED Talks
(Ye et al., 2018), comprising 6.5 million instances
across 19 languages from various language fami-
lies; and 2) OPUS-100 (Zhang et al., 2020a; Yang
et al., 2021), which includes 95 languages and a
total of 92 million instances. Detailed information
about these datasets is provided in Appendix F.

We set the beam size to 4 during inference and
evaluate the output quality using four automatic
evaluation metrics for a comprehensive assessment:
SacreBLEU (Papineni et al., 2002; Post, 2018),
chrF++ (Popović, 2015, 2017), BERTScore (Zhang
et al., 2020b), and COMET (Rei et al., 2020). More-
over, we measure the target-off ratio on zero-shot
pairs, i.e., the ratio of cases where the source sen-
tence is not translated into the correct target lan-
guage, as a secondary metric. Finally, we con-
duct statistical significance testing for zero-shot
pairs by using paired bootstrap resampling (Koehn,
2004). The settings of these evaluation metrics are
described in Appendix G.

5.2 Experimental Setups
We conduct experiments from two perspectives:
training from scratch and fine-tuning. Based on the
findings by Gao et al. (2022); Zhang et al. (2022),
which empirically demonstrate that the decoder-
only architecture underperforms compared to the
encoder-decoder architecture in MNMT, and our
motivation, which aims to improve the decoder-
only architecture, our baselines are vanilla models
with the encoder-decoder and decoder-only archi-
tectures. Specifically, we train models with the
encoder-decoder architecture from scratch using
TED-19 and OPUS-100 as baselines. Addition-
ally, we fine-tune three pre-trained models with the

encoder-decoder architecture: M2M-418M (Fan
et al., 2020), NLLB-600M (Team et al., 2022), and
M2M-1.2B (Fan et al., 2020), in TED-19. More-
over, although the proposed methods are not re-
stricted to a specific architecture, the adaptation
modules are not implemented for the models with
the encoder-decoder architecture, because, when
the hyper-parameters are consistent, the decoder-
only architecture with adaptation modules still con-
tains fewer learnable parameters7 to ensure fairness,
i.e., models have the same magnitude of parameters.
In addition to discussing the parameters, we further
discuss the impact of computational complexity in
Appendix J. Finally, we conduct experiments that
apply InstruCL to models with different architec-
tures, and we provide the experimental results and
discussions in Appendix I as assisted evidence to
support the motivation in Section 4.2, namely, In-
struCL supplements the inadequate supervision of
Equation 1 in the second stage.

Our models in this work conform to the manner
of the Transformer (Vaswani et al., 2017). For
training from scratch, we configure the models
with N = 6, d = 512, and an FFN inner size
of 4d for models trained on TED-19. The FFN in
the adaptation module is dimensionally matched
to the FFN in the main network. For OPUS-100,
we explore both a deeper model with N = 12
and a wider model with N = 6 and d = 1024.
Fine-tuning experiments are conducted solely on
TED-19. Given that pre-trained models for MNMT
typically employ an encoder-decoder architecture,
we initialize our model’s parameters from the de-
coder, freezing the embedding layer during training.
For M2M-418M and NLLB-600M, we set N = 6,
and for M2M-1.2B, we set N = 12, maintaining
the original settings for d and the FFN inner size.
To ensure comparability across different architec-
tures, we consistently set M = N and the layer
index of InstruCL to 1.5N in the main experiments.
Detailed settings for training and the count of learn-
able parameters can be found in Appendix H.

5.3 Results: Training from scratch
Table 1 shows the experimental results. The com-
parison between the basic architectures shows that,
first, the prefix decoder-only consistently outper-
forms the causal decoder-only, which aligns with
Raffel et al. (2023). Second, the decoder-only ar-
chitecture consistently underperforms the encoder-

7Appendix H lists the count of modeling parameters for
different cases in detail.

182

BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑ off ↓
Pref. Adap. CL en→ →en zero en→ →en zero en→ →en zero en→ →en zero zero

TED
N=6
d =512

Enc-Dec 25.46 28.31 12.32 45.96 50.86 32.13 84.10 93.37 78.03 80.49 78.15 67.26 3.82

Dec-only
22.54 24.14 7.33 42.84 45.08 23.36 82.96 92.31 74.38 76.60 72.99 57.50 6.01

✓ 24.00 26.97 8.18 44.49 48.93 25.35 83.54 92.97 74.52 78.46 76.10 56.74 5.51

TDO

25.47 28.88 13.56 45.98 51.33 34.04 84.11 93.45 78.90 80.41 78.42 69.74 3.54
✓ 25.55 28.98 13.61 46.03 51.49 34.11 84.15 93.50 78.94 80.56 78.65 70.09 3.49

✓ 25.37 28.46 13.95† 45.99 51.13 34.41† 84.09 93.40 79.15 80.35 78.26 70.43† 3.45
✓ ✓ 25.60 28.82 14.16† 46.11 51.35 34.76† 84.13 93.45 79.29† 80.52 78.47 70.98† 3.43

✓ 25.53 28.76 14.26† 46.01 51.09 34.72† 84.13 93.41 79.27† 80.43 78.18 70.82† 3.43
✓ ✓ 25.61 28.52 14.51† 46.04 50.89 35.01† 84.16 93.40 79.41† 80.60 78.16 71.48† 3.49
✓ ✓ 25.62 28.94 14.70† 46.15 51.46 35.34† 84.15 93.47 79.57† 80.55 78.55 71.94† 3.39
✓ ✓ ✓ 25.61 28.66 14.81† 46.05 51.01 35.35† 84.16 93.41 79.60† 80.61 78.22 72.07† 3.42

OPUS
N=12
d =512

Enc-Dec 25.18 29.79 5.13 44.75 48.40 12.95 82.98 92.33 72.44 76.59 76.21 58.51 64.21

Dec-only
23.09 26.80 5.42 42.18 45.05 13.55 82.19 91.72 72.48 74.66 73.65 58.17 60.22

✓ 23.96 28.41 6.62 42.98 47.22 15.36 82.47 92.06 73.57 75.48 75.34 59.56 58.91

TDO

✓ 24.88 29.97 5.32 44.72 49.39 13.29 82.91 92.41 72.50 76.26 76.73 58.30 51.56
✓ ✓ 24.79 29.22 5.97 44.69 48.35 14.30 82.87 92.34 72.97 76.04 76.25 58.33 53.80
✓ ✓ 24.35 29.52 7.93† 44.44 48.74 18.65† 82.84 92.37 73.97 75.93 76.23 58.71 48.37
✓ ✓ ✓ 24.73 29.70 8.52† 44.60 48.72 19.94† 82.90 92.38 74.32† 76.16 76.59 58.82 43.38

OPUS
N=6
d =1024

Enc-Dec 27.71 31.60 6.95 46.84 50.31 15.89 83.55 92.62 74.12 78.10 77.58 59.99 57.15

Dec-only
26.09 29.09 7.55 44.51 47.44 16.98 82.93 92.12 73.94 76.77 75.80 61.21 63.80

✓ 26.79 30.42 8.15 45.48 48.92 17.65 83.21 92.37 74.17 77.53 76.69 62.32 55.67

TDO

✓ 27.22 31.58 7.06 46.54 50.59 15.96 83.44 92.64 73.78 77.68 77.89 60.60 52.43
✓ ✓ 27.51 31.64 7.70 46.87 50.39 17.32 83.58 92.58 74.32 78.05 77.58 61.24 49.87
✓ ✓ 27.12 31.49 9.28† 46.55 50.23 21.33† 83.50 92.65 75.04† 77.63 77.64 60.84 39.71
✓ ✓ ✓ 27.45 31.36 9.36† 46.79 50.06 21.05† 83.52 92.64 74.88† 77.97 77.75 61.78† 43.36

Table 1: Averaged scores of results in the experiments of training from scratch. Enc-Dec and Dec-only are
abbreviations of encoder-decoder and decoder-only, respectively. Pref., Adap., and Cl abbreviates Prefix, Adaption
and InstruCL, respectively. ✓in the Prefix column means the masked self-attention mechanism follows Prefix
manner, conversely, follows Causal manner. en→ and →en means the supervised pairs translating from English
to non-central languages and translating from non-central languages to English, respectively. zero abbreviates
zero-shot pairs, off abbreviates the target-off ratio. The best score in each column and block is in bold and the
numbers with † are significantly better than Enc-Dec according to the significance test with p < 0.1.

decoder architecture in supervised pairs of all three
settings, with maximum deficits of -4.17, -5.78, -
1.14, and -5.16 on the BLEU, chrF++, BERTScore,
and COMET respectively. On the other hand, while
the decoder-only architecture shows weaker per-
formance on TED-19 for zero-shot translation, it
achieves higher scores in two settings on OPUS-
100. This suggests that the zero-shot capability of
the decoder-only architecture in MNMT relates to
the amount of data and parameters.

In comparison with the encoder-decoder archi-
tecture, TDO first achieves competitively super-
vised capabilities using fewer parameters. Second,
our method exhibits stronger zero-shot translation
scores, achieving scores improvements of +2.49,
+3.22, +1.57, and +4.81; +3.39, +6.99, +1.88, and
+0.31; +2.41, +5.16, +0.76, +1.79 across three set-
tings respectively. Meanwhile, the results of sig-
nificance testing endorse that our proposed meth-
ods can resolve inadequate language transfer capa-
bilities in the decoder-only architecture (Section
4.1). We also find that the Adaptation module en-
hances both supervised and zero-shot translation
performance.8 On the other hand, InstruCL signifi-

8Appendix K shows the improvement is not because of

cantly boosts zero-shot capability, though there is a
degradation in supervised translation performance.
Additionally, with the Adaptation module imple-
mented, the degree of degradation in supervised
performance is reduced.

Moreover, the prefix decoder-only architecture
achieves the highest COMET score on OPUS-100,
though, it remains weaker on BERTScore com-
pared to TDO, where both two metrics are based on
semantics. This phenomenon can be explained by
the target-off ratio, in which models with decoder-
only architecture still have a high target-off ratio
with biasing towards English primarily (Chen et al.,
2023) to hamper the evaluation of COMET by con-
sidering the source sentence at the same time.

5.4 Results: Fine-tuning

Table 2 shows the experimental results by fine-
tuning the pre-trained models, which shows a
similar tendency to Table 1 in general. First,
since we initialize the model using parameters
from the decoder, the training processes for the
encoder-decoder, decoder-only, and TDO architec-
tures are relatively fair. Thus, we can conclude

increased parameters.

183

BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑ off ↓
en→ →en zero en→ →en zero en→ →en zero en→ →en zero zero

M2M
418M

Enc-Dec 26.59 31.62 15.73 46.79 54.07 36.25 84.48 94.02 80.12 82.39 81.30 75.11 3.24
Dec-only 25.72 30.06 14.67 45.88 52.52 34.51 84.12 93.70 79.45 81.61 79.89 73.33 3.51
TDO 26.63 32.44 15.96 46.90 54.80 36.56 84.49 94.15 80.28 82.31 81.80 75.45 3.24
+Adap. 26.87 31.93 16.12 47.08 54.21 36.73 84.58 94.08 80.35 82.62 81.54 75.80 3.31
+CL 26.61 32.34 16.01 47.03 55.07 36.87 84.51 94.16 80.37 82.29 81.82 75.70 3.31
+Adap.,+CL 26.75 31.83 16.20 46.98 54.09 36.82 84.56 94.07 80.41 82.56 81.52 75.95 3.30

NLLB
600M

Enc-Dec 26.39 32.04 15.44 46.90 54.51 36.09 84.46 94.07 79.96 81.98 81.16 74.05 3.42
Dec-only 26.35 30.20 14.69 46.36 51.96 34.16 84.35 93.72 79.45 82.20 79.94 73.62 3.63
TDO 25.82 32.15 15.48 46.42 54.76 36.35 84.30 94.10 80.09 81.34 81.28 74.17 3.28
+Adap. 26.60 32.47 15.82 47.04 54.83 36.62 84.54 94.15 80.23 82.08 81.48 74.89 3.41
+CL 25.87 32.29 15.48 46.44 54.71 36.21 84.31 94.11 80.09 81.43 81.27 74.18 3.47
+Adap.,+CL 26.58 32.37 15.85 46.94 54.69 36.52 84.52 94.14 80.24 82.12 81.44 74.93 3.36

M2M
1.2B

Enc-Dec 27.02 31.75 16.21 47.05 53.82 36.51 84.60 94.03 80.29 82.93 81.38 76.13 3.20
Dec-only 26.47 29.99 15.40 46.47 52.01 35.10 84.36 93.72 79.83 82.51 80.21 75.33 3.46
TDO 27.17 31.95 16.45 47.37 54.66 37.24 84.64 94.11 80.48 82.96 81.71 76.47 3.29
+Adap. 27.32 31.05 16.57 47.53 53.76 37.47 84.68 93.99 80.56 83.11 81.29 76.72 3.31
+CL 27.27 31.83 16.57 47.32 54.42 37.08 84.67 94.11 80.54 83.04 81.75 76.72 3.32
+Adap.,+CL 27.41 30.72 16.60 47.49 53.38 37.23 84.70 93.96 80.55 83.24 81.21 76.88 3.28

Table 2: Averaged scores of results in the experiments of fine-tuning. Abbreviations align with Table 2. Notably, the
decoder-only and TDO architectures use Prefix masked self-attention only. The best score is in bold.

that, when compared with the decoder-only archi-
tecture, the proposed TDO architecture supports an
efficient transformation from pre-trained encoder-
decoder models. Secondly, when compared with
the encoder-decoder models, TDO models achieve
the highest scores across four metrics, reaching up
to +0.39, +0.48, +0.10, and +0.31 for pairs translat-
ing to en, up to +0.82, +1.00, +0.14, and +0.52 for
pairs translating from en, and up to +0.47, +0.96,
+0.29, and +0.88 for zero-shot pairs. TDO models
also show an improvement in the off-target ratio
compared to the decoder-only models. Moreover,
we observe that InstruCL does not show significant
improvements in the case of NLLB-600M, whereas
it remains effective in the two M2M cases. This
may be attributed to that NLLB supports 205 lan-
guages, compared to 100 languages of M2M, im-
plying a denser representational space that affects
the effectiveness of InstruCL in aligning represen-
tations across languages.

6 Discussion

6.1 Representation Analysis

The limitation of the decoder-only architecture in
MNMT is due to the lack of language transfer,
which is shown in Figure 1b. To verify whether our
proposed methods can address this issue, we ana-
lyze the layer-wise sentence representations of five
models trained on TED-19: (i) a prefix decoder-
only model with N = 6; (ii) a TDO model with
M = 6; (iii) a TDO model with Adaption mod-
ules; (iv) a TDO model with InstrucCL; (v) a TDO
model with Adaption modules and InstrucCL.

As illustrated in Figure 4, the representation of

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Si

m
ila

rit
y

Sc
or

es
(i) Prefix Decoder-only
(ii) Two-stage Decoder-only
(iii) Two-stage Decoder-only + Adaption
(iv) Two-stage Decoder-only + InstruCL
(v) Two-stage Decoder-only + Adaption + InstruCL

Figure 4: Illustration of linguistic preference, which
follows Figure 1b. All cases in this figure use the Prefix
manner for the masked self-attention mechanism. The
marker of prefix decoder-only is square, and our pro-
posed methods are round. The x-axis is the index of
layers, and the vertical line indicates the value range.

(i) only exhibits a preference for the target language
in the last two layers. However, (ii) shows a prefer-
ence for the target language from the fourth layer,
and this trend continues into the second stage. Al-
though (iii) exhibits a more stable layer-wise trend
compared to (ii), it shows significant differences
in the final output across languages. Meanwhile,
(iv) exhibits smaller differences across languages.
Finally, (v) incorporates all the advantages of (iii)
and (iv). Therefore, we can conclude that the TDO
enables better language transfer by aligning dif-
ferent languages in the representational subspace
of the target language. Meanwhile, the Adaption
module and InstrucCL improve the transferability
of multilingual representations.

6.2 How to balance two stages?
In Section 5, we always set M equals N to en-
sure a fair comparison between the TDO and the

184

1 3 5 6 7 9 11
M

0

10

20

30

40

50

60

70

80
Va

ria
tio

n
Ra

tio
 (%

)
sup.bleu
zero.bleu
sup.chrf
zero.chrf
sup.bert
zero.bert
sup.comet
zero.comet

(a) TED-19

3 6 9 12 15 18 21
M

40

30

20

10

0

10

Va
ria

tio
n

Ra
tio

 (%
)

sup.bleu
zero.bleu
sup.chrf
zero.chrf

sup.bert
zero.bert
sup.comet
zero.comet

(b) OPUS-100

Figure 5: Variation in different values of M. The y-axis
is the variation ratio compared to the performance of
the model with prefix decoder-only architecture, and the
x-axis is the value of M. The values of N are 6 and 12
in TED-19 and OPUS-100 respectively. Additionally,
the line and the dotted line indicate supervised and zero-
shot translations respectively.

encoder-decoder architectures. However, the bal-
anced design is not optimal (Kasai et al., 2021;
Pires et al., 2023). Thus, we test different M on
TED-19 and OPUS-100 to investigate balancing
two stages. As shown in Figure 5a, the perfor-
mance is always improved with the increase of M
on TED-19. On OPUS-100, as depicted in Figure
5b, the case with M = 3 achieves the best zero-
shot translation scores, but there is a noticeable
decline in zero-shot translation performance with
the increase of M , although supervised translation
scores continue to rise.

Those results align with our expectations. As
shown in Table 1: 1) models with the decoder-only
architecture consistently underperform compared
to those with the encoder-decoder architecture in
supervised translation; 2) models with the decoder-
only architecture underperform in zero-shot trans-
lation on TED-19 but outperform on OPUS-100.
Moreover, based on the trends in Figure 5b, we can
state that the first stage enhances language transfer
but at the cost of learning linguistic diversity, and
the second stage benefits linguistic diversity. This
statement aligns with Zhang et al. (2022) and is
further proven by Table 1 where incorporating In-
struCL can significantly improve the performance
of zero-shot translation on OPUS-100. Thus, we
conclude that the first stage is crucial in small-scale
datasets, whereas the second stage becomes more
significant in large-scale datasets.

6.3 How to set layer index for InstruCL?

In Section 5, we set the layer index for InstruCL
to 1.5N to prevent the degradation of language
transfer in the second stage. Given that Section 6.2
shows the different roles of the first and second
stages, we test the performance of models with

1 2 3 4 5 6 7 8 9 10 11 12
Index of InstruCL

0

5

10

15

20

25

30

35

40

Va
ria

tio
n

Ra
tio

 (%
)

sup.bleu
zero.bleu
sup.chrf
zero.chrf

sup.bert
zero.bert
sup.comet
zero.comet

(a) Decoder-only

1 2 3 4 5 6 7 8 9 10 11 12
Index of InstruCL

6

4

2

0

2

Va
ria

tio
n

Ra
tio

 (%
)

sup.bleu
zero.bleu
sup.chrf
zero.chrf

sup.bert
zero.bert
sup.comet
zero.comet

(b) Two-stage Decoder-only with M = 6

Figure 6: Variation in different layer index of InstruCL.
The y-axis is the variation ratio compared to the perfor-
mance of the model without InstruCL, and the x-axis is
the index of the layer where InstruCL is employed.

different layer indexes of InstruCL for the decoder-
only and the TDO models. Figure 6a demonstrates
that InstruCL consistently yields positive gains for
the decoder-only architecture. On the other hand,
Figure 6b shows a decline in the first stage but ben-
efits in the second stage. These results indicate that
InstruCL primarily affects layers that follow the
decoder-only manner, namely, the second stage of
TDO, which is further supported by Appendix I9.
Moreover, another observation aligning our moti-
vation is that an excessively high index leads to
reduced gains. Therefore, we can conclude that the
optimal position for implementing InstruCL is the
middle layer of the second stage.

7 Conclusions

In this work, we analyzed the reasons behind the
underperformance of the decoder-only architecture
in MNMT, identifying the lack of language transfer
capability as the primary challenge. To address
this, we introduced the Two-stage Decoder-only
architecture. We also proposed Instruction-level
Contrastive Learning to overcome the issue from
the perspective of representation optimization. We
conducted experiments on two settings, i.e., train-
ing from scratch and fine-tuning, using the TED-19
and OPUS-100 datasets, and the results validate the
effectiveness of our approach. Through further ex-
periments and representation analysis, we confirm
that the improvements in our methods are derived
from enhanced language transfer capabilities.

9Appendix I shows experiments on implementing InstruCL
in different architectures and datasets as a supplement.

185

8 Limitations

As mentioned in Section 1, this work primarily fo-
cused on addressing the challenges faced by mod-
els with a decoder-only architecture in multilin-
gual neural machine translation (MNMT), rather
than exploring how to apply large language models
(LLMs), which also have the decoder-only architec-
ture. This focus is because small models in MNMT
still offer the advantages of low training and deploy-
ment costs while remaining competitive with LLMs
(Zhu et al., 2023). With the increasing interest in
improving multilingual translation with LLMs (Xu
et al., 2024), further exploration is needed to deter-
mine whether the representation-level methods pro-
posed in this work can be extended to LLMs. How-
ever, this is beyond the scope of the current study,
as the data used to train MNMT models signifi-
cantly differs from that used to train LLMs. There-
fore, we leave this question for future research.

9 Ethical Considerations

All datasets and toolkits used in this work are pub-
lic, common, and general in the research on mul-
tilingual neural machine translation, meanwhile,
the usage of those datasets and toolkits follows the
license. Moreover, this work is foundational re-
search and is not a report of specific applications.
Therefore, this work is harmless and has no ethical
risks.

References
Ankur Bapna and Orhan Firat. 2019. Simple, scal-

able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538–
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Liang Chen, Shuming Ma, Dongdong Zhang, Furu Wei,
and Baobao Chang. 2023. On the off-target problem
of zero-shot multilingual neural machine translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 9542–9558, Toronto,
Canada. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.
2020. A survey of multilingual neural machine trans-
lation. ACM Comput. Surv., 53(5).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Preprint, arXiv:1905.03197.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Be-
yond english-centric multilingual machine transla-
tion. Preprint, arXiv:2010.11125.

Orhan Firat, Baskaran Sankaran, Yaser Al-onaizan,
Fatos T. Yarman Vural, and Kyunghyun Cho. 2016.
Zero-resource translation with multi-lingual neural
machine translation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 268–277, Austin, Texas. Associa-
tion for Computational Linguistics.

Yingbo Gao, Christian Herold, Zijian Yang, and Her-
mann Ney. 2022. Is encoder-decoder redundant for
neural machine translation? In Proceedings of the
2nd Conference of the Asia-Pacific Chapter of the As-
sociation for Computational Linguistics and the 12th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 562–574,
Online only. Association for Computational Linguis-
tics.

Naman Goyal, Jingfei Du, Myle Ott, Giri Ananthara-
man, and Alexis Conneau. 2021. Larger-scale trans-
formers for multilingual masked language modeling.
arXiv preprint arXiv:2105.00572.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation

186

https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.608
https://doi.org/10.18653/v1/2023.findings-acl.608
https://doi.org/10.1145/3406095
https://doi.org/10.1145/3406095
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://doi.org/10.18653/v1/D16-1026
https://doi.org/10.18653/v1/D16-1026
https://aclanthology.org/2022.aacl-main.43
https://aclanthology.org/2022.aacl-main.43
https://doi.org/10.1162/tacl_a_00474

benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Vic-
tor O.K. Li. 2019. Improved zero-shot neural ma-
chine translation via ignoring spurious correlations.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1258–
1268, Florence, Italy. Association for Computational
Linguistics.

Ashish Jaiswal, Ashwin Ramesh Babu, Moham-
mad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. 2021. A survey on contrastive self-
supervised learning. Preprint, arXiv:2011.00362.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah Smith. 2021. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In International Conference on Learning
Representations.

Diederik P. Kingma and Jimmy Ba. 2017. Adam:
A method for stochastic optimization. Preprint,
arXiv:1412.6980.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Sneha Kudugunta, Ankur Bapna, Isaac Caswell, and
Orhan Firat. 2019. Investigating multilingual NMT
representations at scale. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1565–1575, Hong Kong,
China. Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Preprint,
arXiv:2001.08210.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael

Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021.
Contrastive learning for many-to-many multilingual
neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 244–258, Online. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Telmo Pires, Robin Schmidt, Yi-Hsiu Liao, and Stephan
Peitz. 2023. Learning language-specific layers for
multilingual machine translation. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14767–14783, Toronto, Canada. Association
for Computational Linguistics.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Zhi Qu, Chenchen Ding, and Taro Watanabe. 2024. Lan-
guages transferred within the encoder: On represen-
tation transfer in zero-shot multilingual translation.
Preprint, arXiv:2406.08092.

Zhi Qu and Taro Watanabe. 2022. Adapting to non-
centered languages for zero-shot multilingual transla-
tion. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 5251–
5265, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

187

https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.18653/v1/P19-1121
https://doi.org/10.18653/v1/P19-1121
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/2011.00362
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D19-1167
https://doi.org/10.18653/v1/D19-1167
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2023.acl-long.825
https://doi.org/10.18653/v1/2023.acl-long.825
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://arxiv.org/abs/2406.08092
https://arxiv.org/abs/2406.08092
https://arxiv.org/abs/2406.08092
https://aclanthology.org/2022.coling-1.467
https://aclanthology.org/2022.coling-1.467
https://aclanthology.org/2022.coling-1.467
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and
Jascha Sohl-Dickstein. 2017. Svcca: Singular vec-
tor canonical correlation analysis for deep learning
dynamics and interpretability. In Proceedings of the
31st International Conference on Neural Information
Processing Systems, NIPS’17, page 6078–6087, Red
Hook, NY, USA. Curran Associates Inc.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

David Stap, Vlad Niculae, and Christof Monz. 2023.
Viewing knowledge transfer in multilingual machine
translation through a representational lens. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 14973–14987, Singapore.
Association for Computational Linguistics.

Shaomu Tan and Christof Monz. 2023. Towards a better
understanding of variations in zero-shot neural ma-
chine translation performance. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 13553–13568, Singa-
pore. Association for Computational Linguistics.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wang, Adam Roberts, Daniel Hesslow,
Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. 2022. What lan-
guage model architecture and pretraining objective
work best for zero-shot generalization? Preprint,
arXiv:2204.05832.

Liwei Wu, Shanbo Cheng, Mingxuan Wang, and Lei
Li. 2021. Language tags matter for zero-shot neural
machine translation. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3001–3007, Online. Association for Computa-
tional Linguistics.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2024. A paradigm shift in machine
translation: Boosting translation performance of
large language models. In The Twelfth International
Conference on Learning Representations.

Wen Yang, Chong Li, Jiajun Zhang, and Chengqing
Zong. 2023. Bigtranslate: Augmenting large lan-
guage models with multilingual translation capability
over 100 languages. Preprint, arXiv:2305.18098.

Yilin Yang, Akiko Eriguchi, Alexandre Muzio, Prasad
Tadepalli, Stefan Lee, and Hany Hassan. 2021. Im-
proving multilingual translation by representation
and gradient regularization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7266–7279, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Qi Ye, Sachan Devendra, Felix Matthieu, Padmanabhan
Sarguna, and Neubig Graham. 2018. When and why
are pre-trained word embeddings useful for neural
machine translation. In HLT-NAACL.

Biao Zhang, Behrooz Ghorbani, Ankur Bapna, Yong
Cheng, Xavier Garcia, Jonathan Shen, and Orhan
Firat. 2022. Examining scaling and transfer of lan-
guage model architectures for machine translation.
In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 26176–26192.
PMLR.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020a. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628–
1639, Online. Association for Computational Linguis-
tics.

Shaolei Zhang, Qingkai Fang, Zhuocheng Zhang, Zhen-
grui Ma, Yan Zhou, Langlin Huang, Mengyu Bu,
Shangtong Gui, Yunji Chen, Xilin Chen, and Yang
Feng. 2023. Bayling: Bridging cross-lingual align-
ment and instruction following through interactive
translation for large language models. Preprint,
arXiv:2306.10968.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore:

188

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2023.findings-emnlp.998
https://doi.org/10.18653/v1/2023.findings-emnlp.998
https://doi.org/10.18653/v1/2023.emnlp-main.836
https://doi.org/10.18653/v1/2023.emnlp-main.836
https://doi.org/10.18653/v1/2023.emnlp-main.836
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2204.05832
https://arxiv.org/abs/2204.05832
https://arxiv.org/abs/2204.05832
https://doi.org/10.18653/v1/2021.findings-acl.264
https://doi.org/10.18653/v1/2021.findings-acl.264
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://arxiv.org/abs/2305.18098
https://arxiv.org/abs/2305.18098
https://arxiv.org/abs/2305.18098
https://doi.org/10.18653/v1/2021.emnlp-main.578
https://doi.org/10.18653/v1/2021.emnlp-main.578
https://doi.org/10.18653/v1/2021.emnlp-main.578
https://proceedings.mlr.press/v162/zhang22h.html
https://proceedings.mlr.press/v162/zhang22h.html
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148
https://arxiv.org/abs/2306.10968
https://arxiv.org/abs/2306.10968
https://arxiv.org/abs/2306.10968
https://arxiv.org/abs/1904.09675

Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2023. Multilingual machine translation with
large language models: Empirical results and analy-
sis. Preprint, arXiv:2304.04675.

A Introduction of Illustrating Linguistic
Preference

Overview In this work, we only quantify the lan-
guage features of the sentence representation by
the similarity scores, although the analysis of Qu
et al. (2024) further quantified the semantic fea-
tures of representations. Specifically, the score
presents whether the sentence representations at a
certain state exhibit more features related to the tar-
get language or more features related to the source
language.

Setup First, quantifying the language features of
the sentence representation requires a semantically
parallel dataset. Therefore, we conduct analysis
experiments on TED-19, which provides six fully
parallel languages, including ar, he, zh, hr, vi,
and ja. We connect these languages to generate 30
zero-shot translation pairs, each pair consisting of
967 sentences. The model setup is consistent with
our main experiments (Section 5).

Computing the similarity score First, we follow
the process of Qu et al. (2024) to measure repre-
sentation similarity in MNMT, employing singular
value canonical correlation analysis (Raghu et al.,
2017). As the definition in Section 3, we obtain
the token-wise hidden representations of the source
sentence, i.e. H, from a translation pair. Notably,
for a decoder-only model, we cut out the source
part, namely, |H| is always I + 1. Then, we derive
the sentence-level representation h using average
pooling h =

∑q
i=1 hi

q . Given Ha and Hb derived
from two sentences, we first perform singular value
decomposition on h

a
and h

b
to obtain subspace

representations h
a ∈ Rda and h

b ∈ Rdb . Then
we perform canonical correlation analysis to deter-
mine Wa ∈ Rd′×da and Wb ∈ Rd′×db . Formally,
we compute correlation ρ between h

a
and h

b
as

ρ =
⟨Wah

a
,Wbh

b⟩
∥Wah

a∥∥Wbh
b∥
, (10)

where ⟨·, ·⟩ indicates the inner product. We use
ρ to represent the similarity of two sentences.

(1) (2) (3) (4) (5)
23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

BL
EU

 S
co

re
s

(a) supervised
(1) (2) (3) (4) (5)

0

2

4

6

8

10

12

BL
EU

 S
co

re
s

(b) zero-shot

Figure 7: Averaged BLEU scores in different architec-
tures. The palette follows Figure 1, i.e., red is encoder-
decoder, green is causal decoder-only, and blue is prefix
decoder-only.

Subsequently, we get the similarity ρx between
(ly,x,y) and (lx,x,x) and the similarity ρy be-
tween (ly,x,y) and (ly,y,y), respectively. There-
fore, a similarity score of linguistic preference is
computed as follows:

s(ly ,x,y) =
ρy

ρy + ρx
, (11)

where s(ly ,x,y) is the similarity score for the given
translation pair. Finally, we compute the set-level
score by taking the average scores of all sentences
over the test set.

Meaning of the similarity score Equation 11
simply compares the importance of source infor-
mation and target information in the representation.
Therefore, a value higher than 0.5 means the repre-
sentation prefers the target language, otherwise the
representation prefers the source language. More-
over, the value reflects the degree of linguistic pref-
erence, for example, compared to 0.6, 0.7 means
the representation presents much more features of
the target language or fewer features of the source
language. In addition, we also denote the high-
est and lowest values by the vertical lines on each
point in Figures 1b and 4 to show the value range,
which can present stability. Finally, we can find
that models with decoder-only architecture cannot
align the representation of the source tokens in the
representational subspace of the target language,
and they try to align source and target languages to
be a language-agnostic state.

B Comparison between Different
Instruction Strategies in MNMT

MNMT is sensitive to the strategy of translation in-
struction (Wu et al., 2021). We summarize the pos-
sible strategies as follows: (1) Adding a language
tag specified to the target language at the beginning

189

https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675

Encoder Decoder

y1 y2 y3

ly x1 x2 x3 [eos] [eos] y1 y2 y3

Decoder-only

y1 y2 y3

[eos] y1 y2 y3 ly x1 x2 x3 [eos]

ly x1 x2 x3 [eos]

(a) Encoder-Decoder

(b) Decoder-only
[eos]

[eos]

Figure 8: Illustration of input and output forms in
MNMT. Subfigures are for the encoder-decoder archi-
tecture and the decoder-only architecture, respectively.
[eos] is a special token, which means the end of a sen-
tence and is regarded as a token of x and y.

of source tokens; (2) Adding a language tag speci-
fied to the target language at the beginning of target
tokens; (3) Based on the (2), using the language tag
to replace the [eos] token, which is used to be the
trigger of inference; (4) Adding two language tag
specified to the target language at the beginning of
source tokens and the beginning of target tokens, si-
multaneously; (5) Adding a language tag specified
to the source language and a language tag specified
to the target language at the beginning of source
tokens and target tokens, respectively. Then, we
conduct preliminary experiments on three architec-
tures: encoder-decoder, causal decoder-only, and
prefix decoder-only, to support the validity of using
approach (1). As shown in Figure 7, the perfor-
mance of encoder-decoder architecture meets the
analysis of Wu et al. (2021). However, a language
tag at the beginning of target tokens, i.e., (2), (3),
and (4), is more beneficial for the zero-shot capa-
bility in Decoder-only architecture. Considering
that (1) also benefits decoder-only architectures in
the supervised translation, using (1) in this work is
reasonable.

C Different Input and Output Forms

Figure 8 illustrates input and output forms for two
architectures involved in this work. Initially, within
the encoder-decoder architecture, the encoder re-
ceives parallel input from source tokens, including
ly, x, and a special token [eos]. As a supplement
of Section 3.2, for the I + 1 tokens feeding to the
encoder, ly is the first token and corresponds to the
h1, then, each index of x is shifted, namely, x cor-
responds to {h2, ...,hI+1}. Furthermore, the input

x1 x2 x3 y1 y2

y2

y1

x3

x2

x1
x1 x2 x3 y1 y2

Causal Prefix

y2

y1

x3

x2

x1

Figure 9: Different manners of the masked self-attention
mechanism in the decoder-only architectures. Black
blocks mean visible and white blocks mean masked.
Thus, source tokens are masked in the causal decoder-
only while are visible in the prefix decoder-only.

of the decoder is shifted. Specifically, in training,
[eos] is placed at the beginning of the target tokens,
and the output at each position always points to
the token in the next position; in inference, [eos]
serves as the trigger, and the model would gener-
ate the next token step by step until the predicted
token is [eos]. Finally, the output of the encoder-
decoder architecture only includes target tokens,
i.e., y. On the other hand, the decoder-only archi-
tecture combines source tokens and target tokens
as the input. In this work, we follow Zhang et al.
(2022); Gao et al. (2022) to employ MNMT loss
instead of language modeling loss, namely, cutting
off the source tokens and saving the target tokens
only in the ouput,

D Attention Mechanisms of
Decoder-Only Architectures

As illustrated in Figure 9, the causal attention mech-
anism in the decoder-only architecture treats source
and target tokens equally, meaning that each token
is influenced solely by preceding tokens and it-
self. In contrast, the prefix attention mechanism
maintains bi-directional attention for source tokens
where source tokens are influenced by each other,
while target tokens use mono-directional attention,
meaning they are influenced only by prior tokens
and themselves.

E Estimation of Parameters

We follow the notation in Section 5.2, that is, d
is the dimension of the model and the inner size
of FFN is 4d. Therefore, each attention mecha-
nism has 4d2 parameters because there are 4 ma-
trices with dimensions of d × d, and each FFN
has 8d2 parameters (Vaswani et al., 2017). Then,
all layers have the structure illustrated in Figure
2. Given N =1, the model with encoder-decoder
architecture has 28d2 parameters and the model

190

with Decoder-only architecture has 24d2 parame-
ters. Thus, considering the fixed parameters of nor-
malization modules and embedding layer, Decoder-
only architecture is implemented with around 10%
fewer parameters than encoder-decoder architec-
ture.

F Detailed Information of Datasets

First, the language codes used in our descriptions
adhere to ISO 639-110. As described in Section
5.1, the first dataset is TED-19 (Qu et al., 2024),
a subset of TED Talks (Ye et al., 2018) contain-
ing 6.5 million instances across 19 languages from
various language families. This dataset includes
32 supervised translation pairs and 306 zero-shot
translation pairs. Detailed information about TED-
19 is provided in Table 7. The second dataset is
the revised version of OPUS-100 (Zhang et al.,
2020a; Yang et al., 2021), which includes 95 lan-
guages and a total of 92 million instances. No-
tably, the zero-shot translation in OPUS-100 in-
volves only six languages (ar, nl, de, zh, ru, and
fr), resulting in 30 translation pairs. Additionally,
we further cleaned the dataset by removing noisy
instances containing unreadable characters, even
though Yang et al. (2021) had already removed
repetitions from the original OPUS-100 dataset
(Zhang et al., 2020a). Detailed information about
OPUS-100 can be found in Table 8. Generally, each
pair of validation and test sets in these two datasets
contains 2,000 instances, though several pairs in
OPUS-100 have fewer instances. Finally, we used
SentencePiece (Kudo and Richardson, 2018) to
generate the vocabulary for training, with the vo-
cabulary size set to 50,000 for TED-19 and 64,000
for OPUS-100.

G Evaluation Metrics

First, SacreBLEU (Post, 2018), an implementa-
tion of BLEU (Papineni et al., 2002), measures
the lexical overlap between generated translations
and reference translations. chrF++ evaluates over-
lap at the character level and accounts for a bal-
ance between precision and recall. These two met-
rics can corroborate each other’s results. On the
other hand, BERTScore11 (Zhang et al., 2020b)

10https://www.loc.gov/standards/iso639-2/php/
code_list.php

11For BERTScore, en is computed using xlmr.large (Con-
neau et al., 2019; Goyal et al., 2021), while other languages are
computed using bert-base-multilingual-cased (Devlin et al.,
2018).

measures the similarity between generated trans-
lations and references at the representation level.
COMET12 (Rei et al., 2020) also evaluates repre-
sentational similarity, with an additional empha-
sis on the source text for enhanced semantic rel-
evance. Intuitively, BERTScore may penalize in-
stances that do not translate into the expected target
language, while COMET is more sensitive to se-
mantic relevance. To validate this intuition, we
employ fasttext-langdetect13 to measure the target-
off ratio on zero-shot pairs, i.e., the ratio of cases
where the source sentence is not translated into
the correct target language, as a secondary met-
ric. Notably, it is considered secondary because
the testing tools are not entirely accurate, partic-
ularly when recognizing low-resource languages,
as they rely on language-specific tokens. Finally,
to show whether the improvements of zero-shot
translations brought by proposed methods are sig-
nificant, we also conduct the statistical significance
testing (Koehn, 2004) using paired bootstrap re-
sampling with 1,000 iterations and 0.5 resampling
ratios, consequently, the case of p < 0.1 means that
the difference is significant.

H Detailed Model Settings

We implement models by Fairseq (Ott et al., 2019),
an open-source toolkit. First of all, in this work,
we apply independent sinusoidal positional embed-
dings for source tokens and target tokens (Vaswani
et al., 2017) for the input of the decoder-only archi-
tecture. Notably, the estimation of parameters in
modeling is introduced in Appendix E.

Model settings of training from scratch In the
case of training from scratch on TED-19, we set
N to 6, d to 512, inner size of FFN to 4d. Thus,
the model with an encoder-decoder architecture
has 70 million parameters, while the model with a
decoder-only architecture has 63 million parame-
ters. Moreover, the FFN in the adaptation module
matches the dimensions of the FFN in the main part,
so in this case, the model has 67 million parameters.
In the training, we set the learning rate to 0.0005
and the model is trained for 30 epochs on eight
NVIDIA V100 GPUs with a batch size of 4,000
per GPU to ensure full convergence. Moreover, we
set the head number of the attention mechanism
to 8, the dropout rate to 0.1, label smoothing to

12All COMET scores are computed using Unbabel/wmt22-
comet-da (Rei et al., 2022).

13https://pypi.org/project/fasttext-langdetect

191

https://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.loc.gov/standards/iso639-2/php/code_list.php
https://pypi.org/project/fasttext-langdetect

BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑
#enc #dec idx. en→ →en zero en→ →en zero en→ →en zero en→ →en zero

TED
d =512

Enc-Dec
6 6 - 25.46 28.31 12.32 45.96 50.86 32.13 84.10 93.37 78.03 80.49 78.15 67.26
6 6 6 24.92 28.39 12.96 45.56 50.97 33.42 83.94 93.68 79.10 79.99 78.21 70.37

Dec-only
0 12 - 24.00 26.97 8.18 44.49 48.93 25.35 83.54 92.97 74.52 78.46 76.10 56.74
0 12 6 24.16 27.18 10.12 44.61 49.11 28.49 83.63 93.01 76.32 78.80 76.30 61.41
0 12 9 24.26 27.31 10.94 44.69 49.24 29.55 83.69 93.05 77.05 79.08 76.45 63.77

TDO
0 12 - 25.53 28.76 14.26 46.01 51.09 34.72 84.13 93.41 79.27 80.43 78.18 70.82
0 12 6 25.46 29.02 14.06 45.98 51.44 34.38 84.10 93.48 79.15 80.47 78.54 70.51
0 12 9 25.62 28.94 14.70 46.15 51.46 35.34 84.15 93.47 79.57 80.55 78.55 71.94

OPUS
d =512

Enc-Dec
12 12 - 25.18 29.79 5.13 44.75 48.40 12.95 82.98 92.33 72.44 76.59 76.21 58.51
12 12 12 24.98 29.61 6.56 44.65 48.30 15.49 82.97 92.34 73.45 76.46 76.23 59.61

Dec-only
0 24 - 23.96 28.41 6.62 42.98 47.22 15.36 82.47 92.06 73.57 75.48 75.34 59.56
0 24 12 24.22 28.26 6.99 43.23 46.83 15.98 82.49 92.04 73.66 75.55 74.94 59.42
0 24 18 23.98 28.22 6.73 43.18 46.80 16.17 82.52 92.07 73.67 75.60 75.12 59.37

TDO
0 24 - 24.88 29.97 5.32 44.72 49.39 13.29 82.91 92.41 72.50 76.26 76.73 58.30
0 24 12 24.61 29.37 6.46 44.68 48.72 15.14 82.87 92.37 73.30 76.16 76.21 59.41
0 24 18 24.35 29.52 7.93 44.44 48.74 18.65 82.84 92.37 73.97 75.93 76.23 58.71

OPUS
d =1024

Enc-Dec
6 6 - 27.71 31.60 6.95 46.84 50.31 15.89 83.55 92.62 74.12 78.10 77.58 59.99
6 6 6 27.74 31.52 7.75 46.92 49.91 18.06 83.56 92.66 74.44 78.07 77.69 60.43

Dec-only
0 12 - 26.79 30.42 8.15 45.48 48.92 17.65 83.21 92.37 74.17 77.53 76.69 62.32
0 12 6 26.87 30.72 8.47 45.58 49.18 17.78 83.53 92.51 74.38 77.74 77.82 61.61
0 12 9 26.72 30.09 8.42 45.34 48.52 17.33 83.16 91.83 74.23 77.31 76.61 61.55

TDO
0 12 - 27.22 31.58 7.06 46.54 50.59 15.96 83.44 92.64 73.78 77.68 77.89 60.60
0 12 6 26.72 31.05 7.43 45.49 49.54 16.25 83.19 92.40 74.00 77.45 77.49 61.89
0 12 9 27.12 31.49 9.28 46.55 50.23 21.33 83.50 92.65 75.04 77.63 77.64 60.84

Table 3: Averaged scores of results in experiments of training from scratch and verifying InstruCL across different
architectures. Both the decoder-only and TDO architectures adopt the prefix attention mechanism. All terms,
settings, and abbreviations follow the Table 1. Moreover, #enc, #dec, and idx. indicate the number of encoder
layers, the number of decoder layers, and the layer index where to implement InstruCL, respectively. In addition,
the placeholder (-) in the collum of idx. means that InstruCL is not implemented in this row. The best score in each
column and block is in bold.

0.1, and weight decay to 0.0001. We also employ
Adam (Kingma and Ba, 2017) as our optimizer and
set share-all-embeddings of Fairseq. We evaluate
by averaging the top-5 best checkpoints selected
based on validation loss. In the case of training
from scratch on OPUS-100, we first increase N to
12, resulting in parameter counts of 121 million,
108 million, and 113 million, respectively. In the
training, we set the number of gradient accumula-
tion steps to 16 to increase the batch size and train
for 50,000 steps with a learning rate of 0.0007. We
also consider a wider model where N is 6, d is
1024, and the head number of the attention mech-
anism is 16, resulting in parameter counts of 242
million, 217 million, and 234 million, respectively.
When, we additionally set an attention dropout to
0.05 and reduce the learning rate to 0.0005 for a
stable gradient. Moreover, we reduce the batch
size per GPU to 2,000, set the number of gradient
accumulation steps to 32, and train for 100,000
steps due to GPU memory constraints. For two
cases of OPUS-100, we test the checkpoint with
the best validation loss. Additionally, in training
on OPUS-100, we set encoder-normalize-before

and decoder-normalize-before in Fairseq and re-
duce the weight decay to 0, which lead to a quick
convergence in a complex data condition (Liu et al.,
2020; Fan et al., 2020; Team et al., 2022).

Model settings of fine-tuning In the model set-
tings of fine-tuning, M2M-418M has 12 layers
for encoder and decoder, respectively, where d of
M2M-418M is 1024, and the inner size of FFN
is 4096, based on the description in Section 5.2,
we set N to 6, resulting in parameter counts of
307 million, 282 million, and 299 million, respec-
tively. In the training, the label smoothing is 0.2,
the dropout is 0.3, the attention dropout is 0.05,
and the batch size and the learning rate keep the
settings of training from scratch. Then, given that
NLLB-600M has the same configuration as M2M-
418M but with a larger vocabulary size, the same
setting of hyper-parameters leads to the count of
parameters increased to 439 million, 413 million,
and 430 million, respectively, and, we reduce the
batch size to 2000 and set gradient accumulation
to 2 for NLLB-600M because of the GPU memory
constraints. In M2M-1.2B, which has 24 decoder

192

layers and a larger inner size of FFN compared to
M2M-418M, we set N to 12, leading to parameter
counts of 685 million, 635 million, and 668 million,
respectively, and our experiments are conducted on
four NVIDIA A6000 GPUs, and we set gradient
accumulation to 2. We also reduce the learning rate
to 0.0002 and the number of training epochs to 10
because of more parameters.

I The Effectiveness of InstruCL on
Encoder-Decoder Architecture

As a supplementary trail for Sections 5.3 and 6.3,
we conduct experiments on applying InstruCL to
the encoder-decoder, the prefix decoder-only, and
TDO architectures, and then compare their per-
formances on three cases of training from scratch
described in Section 5.2. The layer index where
InstruCL is implemented at the TDO is 1.5N . We
also implement InstruCL for the decoder-only ar-
chitecture at the same layer as a comparison. How-
ever, given that the number of encoder layers in an
encoder-decoder architecture is N , InstruCl is im-
plemented at the output of the encoder, namely, the
layer index is N . Therefore, as comparison groups,
we also implement InstruCL for the decoder-only
and TDO architectures at the N layer.

Tabel 3 shows the experimental results. The first
observation is that the encoder-decoder architec-
ture can be gained from InstruCL due to the im-
proved performance in all cases. Notably, the first
observation is not violated from the statement in
Section 6.3 that InstruCL mainly affects the layer
following the decoder-only manner, because of the
performance of TDO in TED-19 and OPUS-100.
Specifically, considering the decoder-only architec-
ture, first, in the TED-19, when the index is set to
N , Dec-only shows a significant improvement in
zero-shot translations with BLEU scores increas-
ing by 1.94, while TDO degraded by 0.64. Second,
in two cases from the OPUS-100, when the index
is set to 1.5N , TDO achieves significant improve-
ments of 2.61 and 2.22, respectively. Third, in
three cases, compared to setting the index to N , the
decoder-only model showed smaller gains or even
degradations when the index is set to 1.5N , with
scores increasing by 0.82, -0.26, and -0.05.

These results are consistent with our statement
in Section 4.2. Specifically, the first stage of TDO
overlaps with InstruCL in terms of facilitating the
learning of target language representations, which
explains the suboptimal performance when both

Scenario Model Seconds

TED
N=6
d =512

Enc-dec 22854
Dec-only 24277

TDO 22359

OPUS
N=12
d =512

Enc-dec 102509
Dec-only 114514

TDO 101826

OPUS
N=6
d =1024

Enc-dec 258845
Dec-only 298344

TDO 247964

Table 4: Training times of different models in three
experimental settings. The smallest value is in bold.

are used together. Additionally, InstruCL is most
effective when applied in the middle layers, which
align with the decoder-only manner. On the other
hand, considering the performance of the vanilla
models, i.e., Enc-Dec and Dec-only, we can assert
that InstruCL, which does not require additional
data costs, generally benefits all architectures.

J The Impact of Computational
Complexity

Intuitively, when comparing the decoder-only archi-
tectures, TDO model exhibits lower computational
complexity than the vanilla decoder-only model.
This is due to the removal of the first M layers
from the vanilla decoder-only model when gener-
ating target token sequences. Despite the reduced
computational complexity, TDO achieves superior
performance compared to the vanilla decoder-only
architecture. Second, we present an empirical com-
parison of training times across different models.
Table 4 summarizes the results, showing that TDO
has the shortest training time, comparable to the
encoder-decoder model.

Next, we formally estimate the computational
complexity for each architecture. For simplicity,
we omit the layer normalization and output pro-
jection components from the analysis. Let the
model dimension be denoted by d, the inner size
of the feed-forward network by 4d, and the to-
tal number of tokens be 2n, where n represents
both the source and target tokens. The number
of layers is assumed to be one encoder layer, one
decoder layer, and two decoder-only layers. As
shown in Table 5, the estimated FLOPs for TDO
fall between those of the encoder-decoder (enc-dec)
model and the vanilla decoder-only model. Specifi-
cally, the computational cost of TDO is lower than
the vanilla decoder-only model but higher than the

193

enc-dec model. Despite this, TDO achieves signif-
icantly better performance than the decoder-only
model and competitive performance with the enc-
dec model.

Component or Architecture Estimated FLOPs

multi-head self-attention 4 · n · d2 + 2 · n2 · d
feed-forward network 8 · n · d2

encoder layer 12 · n · d2 + 2 · n2 · d
decoder layer 12 · n · d2 + 4 · n2 · d

decoder-only layer 24 · n · d2 + 8 · n2 · d
Enc-dec 24 · n · d2 + 6 · n2 · d
Dec-only 48 · n · d2 + 16 · n2 · d

TDO 36 · n · d2 + 10 · n2 · d

Table 5: Estimated FLOPs for various components and
architectures.

Furthermore, the discrepancy between training
time and theoretical FLOP counts can be attributed
to the fact that TDO contains approximately 10%
fewer parameters compared to the encoder-decoder
architecture. This reduction in parameters con-
tributes to faster training times, as discussed in Ap-
pendix K and cited in Section 4.1 of our manuscript.
In conclusion, the observed improvements in model
performance are not the result of increased com-
putational complexity but rather due to the archi-
tectural design choices in the TDO model. The
combination of empirical results and theoretical
analysis demonstrates that TDO offers a more com-
putationally efficient alternative to the decoder-only
model, with competitive performance comparable
to the encoder-decoder model.

K Adaption Modules Do Not Equal
Simply Increasing Parameters

Adding adaptation modules increases the number
of parameters, so it is crucial to determine whether
the gains from these modules are primarily due to
the increased parameters. As shown in Table 6,
we directly increased the parameters of the TDO
model using various strategies, ensuring that the
number of parameters is comparable to or even
greater than that of the TDO model with adapta-
tion modules. The results demonstrate that the
TDO model with adaptation modules outperforms
in zero-shot translation and in translating super-
vised pairs from English to non-central languages.
Notably, considering the previous point, the reason
why adaptation modules do not achieve the best
performance when translating from non-central lan-
guages to English can be attributed to their effec-

d d1ffn d2ffn en→ →en zero

TDO+adapt. 512 2048 2048 25.61 28.52 14.51

TDO

544 2048 2048 25.55 28.28 14.22
512 2432 2432 25.51 28.51 14.31
512 2048 2816 25.32 27.98 13.89
512 2816 2048 25.56 28.95 14.01

Table 6: Averaged BLEU scores of models with TDO
architecture trained on TED-19. Abbreviations in this
table follow Table 1. In addition, d1ffn is the inner size
of FFN in the first stage, and d2ffn is in the second stage.
The best score is in bold.

tiveness in preventing overfitting of English, which
dominates the multilingual representations due to
most of the training data being in English (Gu et al.,
2019; Qu and Watanabe, 2022). Therefore, the re-
sults in this table support our assertion that the
gains from adaptation modules cannot be simply
attributed to increasing parameters.

194

Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train

es Spanish Indo-European Romance 196026 ar Arabic Afro-Asiatic Semitic 214111
fr French Indo-European Romance 192304 he Hebrew Afro-Asiatic Semitic 211819
ro Romanian Indo-European Romance 180484 ru Russian Indo-European Slavic 208458
nl Dutch Indo-European Germanic 183767 ko Korean Koreanic 205640
de German Indo-European Germanic 167888 it Italian Indo-European Romance 204503
pl Polish Indo-European Slavic 176169 ja Japanese Japonic 204090
hr Croatian Indo-European Slavic 122091 zh Chinese Sino-Tibetan Sinitic 199855
cs Czech Indo-European Slavic 103093 tr Turkish Turkic 182470
fa Persian Indo-European Iranian 150965 vi Vietnamese Austroasiatic Vietic 171995

Table 7: Detailed information of TED-19 datasets. #Train indicates the number of training instances.

Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train

fa Persian Indo-European Iranian 934413 yi Yiddish Indo-European Romance 1865
bn Bengali Indo-European Iranian 724719 ga Irish Indo-European Celtic 187967
ur Urdu Indo-European Iranian 724226 br Breton Indo-European Celtic 96951
si Sinhala Indo-European Iranian 613702 cy Welsh Indo-European Celtic 92615
hi Hindi Indo-European Iranian 374472 gd Scottish Gaelic Indo-European Celtic 11104
tg Tajik Indo-European Iranian 183216 lt Lithuanian Indo-European Baltic 797693
ne Nepali Indo-European Iranian 144520 lv Latvian Indo-European Baltic 779972
gu Gujarati Indo-European Iranian 108564 tr Turkish Turkic 918838
ku Kurdish Indo-European Iranian 107110 az Azerbaijani Turkic 237533
pa Punjabi Indo-European Iranian 72160 uz Uzbek Turkic 148319
as Assamese Indo-European Iranian 58009 tt Tatar Turkic 97746
mr Marathi Indo-European Iranian 26117 ug Uyghur Turkic 71241
ps Pashto Indo-European Iranian 14254 kk Kazakh Turkic 62227
or Oriya Indo-European Iranian 13410 ky Kyrgyz Turkic 12724
de German Indo-European Germanic 968252 tk Turkmen Turkic 98
nl Dutch Indo-European Germanic 936611 ar Arabic Afro-Asiatic Semitic 959868
sv Swedish Indo-European Germanic 916259 he Hebrew Afro-Asiatic Semitic 913493
no Norwegian Indo-European Germanic 914187 mt Maltese Afro-Asiatic Semitic 672134
da Danish Indo-European Germanic 911156 ha Hausa Afro-Asiatic Chadic 91869
is Icelandic Indo-European Germanic 813820 am Amharic Afro-Asiatic Semitic 64369
nn Norwegian Nynorsk Indo-European Germanic 172187 el Greek Indo-European Hellenic 932811
af Afrikaans Indo-European Germanic 146600 sq Albanian Indo-European Albanian 855095
nb Norwegian Bokmål Indo-European Germanic 128374 ml Malayalam Dravidian 633920
fy Frisian Indo-European Germanic 42372 ta Tamil Dravidian 184699
li Limburgish Indo-European Germanic 3331 te Telugu Dravidian 37792
ru Russian Indo-European Slavic 951611 kn Kannada Dravidian 13777
sr Serbian Indo-European Slavic 935342 xh Xhosa Niger-Congo Bantu 231708
hr Croatian Indo-European Slavic 927541 rw Kinyarwanda Niger-Congo Bantu 62159
pl Polish Indo-European Slavic 926940 zu Zulu Niger-Congo Bantu 6834
bg Bulgarian Indo-European Slavic 925647 ig Igbo Niger-Congo Volta-Niger 691
cs Czech Indo-European Slavic 924282 fi Finnish Uralic Finnic 938601
bs Bosnian Indo-European Slavic 921232 et Estonian Uralic Finnic 893074
sl Slovenian Indo-European Slavic 912248 hu Hungarian Uralic Finno-Ugric 920592

mk Macedonian Indo-European Slavic 881176 se Northern Sami Uralic Sami 32289
sk Slovak Indo-European Slavic 878540 vi Vietnamese Austroasiatic Vietic 883581
uk Ukrainian Indo-European Slavic 759826 id Indonesian Austronesian Malayo-Polynesian 881198
sh Serbo-Croatian Indo-European Slavic 209379 ms Malay Austronesian Malayo-Polynesian 819431
be Belarusian Indo-European Slavic 61862 mg Malagasy Austronesian Malayo-Polynesian 292520
fr French Indo-European Romance 963140 km Khmer Austroasiatic Khmeric 101294
es Spanish Indo-European Romance 929677 zh Chinese Sino-Tibetan Sinitic 954358
it Italian Indo-European Romance 928427 my Burmese Sino-Tibetan Lolo-Burmese 5326
pt Portuguese Indo-European Romance 919755 th Thai Kra-Dai Tai 892433
ro Romanian Indo-European Romance 913451 ko Korean Koreanic 892064
ca Catalan Indo-European Romance 633826 ja Japanese Japonic 886850
gl Galician Indo-European Romance 353596 eu Basque Language isolate 786645
wa Walloon Indo-European Romance 48894 eo Esperanto Constructed 257560
oc Occitan Indo-European Romance 27773 ka Georgian Kartvelian 240335

Table 8: Detailed information of OPUS-100 datasets. #Train indicates the number of training instances.

195

