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Abstract

Automatic speech translation (AST) promotes
seamless communication among speakers of
different languages. While current state-of-the-
art models excel with high-resource languages,
their performance on low-resource languages
(LRLs) is not well-established. We investigate
this by evaluating state-of-the-art models on
10 LRLs with varying data amounts (10-30+
hours). Through six finetuning strategies and
experimenting with three main AST paradigms,
we observe that: (1) The latest Large Language
Models (LLMs) may struggle with LRLs. (2)
Comprehensive experiments suggest that for
LRLs, more AST finetuning data is not always
beneficial. (3) Our 2-Stage with ASR correc-
tor finetuning recipe can substantially improve
AST performance on LRLs, achieving up to a
5.8x BLEU score boost on translating related
languages to English, while on par with the best
monolingual finetuning in BLEU score when
translating the target language to English. (4)
We share our effective engineering practices,
including how to effectively adapt AST models
to unseen languages.

1 Introduction

Automatic speech translation directly converts
speech from a source language into text or speech
in a target language. The field has recently ad-
vanced at a rapid pace, driven by new paradigms
like large-scale pre-training (Babu et al., 2021;
Baevski et al., 2020; Conneau et al., 2020), large
speech models, e.g. SeamlessM4T (Communica-
tion et al., 2023); Large Language Models (LLMs),
e.g. ChatGPT (OpenAl, 2023); and speech-native
audio LLMs, e.g. GPT-40 AuDIO (OpenAl, 2024),
Gemini 2.0 Flash (Google, 2025), etc. Despite
these progresses, many AST research centered
on high-resource languages like English, French,
German (Di Gangi et al., 2019; Bahar et al.,
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2019). Therefore, a most recent investigation of the
novel modeling paradigms for the low-resource lan-
guages (LRLs) for AST is needed. AST for LRLs
is constrained by scarce training data. Recent mul-
tilingual speech corpora like MuST-C (Di Gangi
et al., 2019), CoVoST 2 (Wang et al., 2021), and
FLEURS (Conneau et al., 2023) enable novel AST
paradigms for these languages.

AST modeling paradigms fall into three cate-
gories: (1) cascaded approaches that apply au-
tomatic speech recognition (ASR) followed by
machine translation (MT), (2) multimodal MT
approaches like SeamlessM4T (Communication
et al., 2023) that directly translate speech to text,
and (3) multimodal large language models such
as Gemini 2.0 Flash, which natively process text,
speech and images, can perform direct speech-
to-text translation (S2TT). Even for other LLMs
which do not natively support audio input, mapping
audio tokens to the token vocabulary (Wang et al.,
2023; Ambilduke et al., 2025) can leverage MT ca-
pabilities, such as models like SALMONN (Tang
et al., 2024), Qwen 2 Audio (Chu et al., 2024) and
SPIRE (Ambilduke et al., 2025).

We investigate which approach works best for
LRLs with small amounts of finetuning data.
Specifically, is the cascaded architecture superior
with small data when compared to multimodal MT
approaches like SeamlessM4T and Audio LLMs?
We experiment with ten LRLs from FLEURS (five
Indic, five African) translating to English, choosing
a translation direction X — English so that the mul-
tilingual capabilities of each method can be better
assessed. We then compare performances across
different AST paradigms against a high-resource
language pair, i.e. French — English.

For cascaded approach, we proposed various
finetuning strategies for all the three main mod-
eling paradigms of AST. Through comprehensive
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experiments across 11 languages, we show that the
best AST approach depends on the resource-level
of the languages: For languages with slightly better
data availability, such as all five Indic languages
and Swahili, prompting Gemini-2.0 Flash LLM
works best. While for extremely low-resource lan-
guages, such as Hausa and Yorub4, finetuning from
large MT models or sequentially finetuning ASR
and MT models can be more effective. To summa-
rize, our contributions include:

* A comprehensive evaluation of AST for low-
resource languages, establishing a general-
izable and highly effective blueprint, com-
paring three modeling paradigms across 11
languages with various finetuning recipes.

* A simple yet effective "2-stage with ASR cor-
rection" strategy, that reduces WER by 54.2 %
relative on average for African languages and
yields a 5.8 times increase in BLEU and a 2.6
times increase in BLEU for African and Indic
language groups, respectively, without addi-
tional data or model architectural changes.

* Our best recipe performs well on the target lan-
guage while preserving balanced AST per-
formance across languages, avoiding over-
optimization for a single language. This offers
practical guidelines for adapting multilingual
AST models.

* Through comprehensive experiments, we
share the finding that for low-resource lan-
guages, more AST finetuning is not always
beneficial, providing a nuanced perspective
on common practices.

We ensure full reproducibility by using only pub-
licly available data and APIs, and open-sourcing
our code and recipes.

2 Related Work

The central challenge in AST is data scarcity (Xu
et al., 2023) of high-quality paired (source speech,
target text) data. Conventional AST thus uses
cascaded approaches (Matusov, 2005) that first
transcribe speech via ASR, then translate using
MT. When it comes to the LRLs, the challenge
of data scarcity is more severe. Multiple efforts
address this challenge. Corpora like FLEURS
and Common Voice (Ardila et al., 2019) enable

lhttps ://github.com/McGill-NLP/ast-1rl-speech

AST for LRLs, while NaijaVoices (Emezue et al.,
2025) and BhasaAnuvaad (Jain et al., 2024) con-
tribute data for African and Indian languages, re-
spectively, although wide gaps persist compared to
high-resource languages.

Recent speech foundation models like
Wav2Vec?2 (Baevski et al., 2020) and multimodal
LLMs (Google, 2025) have transformed AST:
Bansal et al. (2018) and Stoian et al. (2020)
demonstrated the benefit of pre-training AST
models on high-resource ASR data to improve
performance for low-resource language pairs.

Popular parameter-efficient finetuning methods
such as LoRA (Hu et al., 2021; Liang et al., 2025),
lightweight adapter (Le et al., 2021), always re-
quire changing the model architecture. In contrast
to these studies, our research concentrates on the
curriculum design of finetuning, to uncover hidden
factors within simple full finetuning methods.

Kocmi et al. (2024) concluded that despite the
rise of LLMs, AST still requires significant im-
provement, particularly in low-resource scenarios.

Multimodal benchmarks like SUPERB (Yang
et al.,, 2021) cover many speech tasks but ex-
clude AST, while mSTEB (Beyene et al., 2025)
analyzes AST only at the language-family level.
OWLS (Chen et al., 2025) demonstrates scaling
benefits for low-resource performance, which our
Whisper findings echo. We focus on broadly effec-
tive finetuning recipes and provide detailed analy-
sis for low-resource African and Indic languages,
underexplored in prior surveys.

Multilingual finetuning on models like Whisper
(ASR) and SeamlessM4T (Communication et al.,
2023) (AST) often degrades non-target languages,
especially with monolingual finetuning. We pro-
pose an effective 2-stage finetuning curriculum that
reduces this shift without architectural changes,
much simpler than multi-stage methods proposed
in Thillainathan et al. (2025). We also apply LLM
correction to ASR components, previously used
mainly in ASR systems (Ruder et al., 2023; Ma
et al., 2025).

Trade-offs between cascaded and end-to-end sys-
tems remain debated, with methods lacking system-
atic evaluation across diverse LRLs. Our work aims
to complement these efforts by providing a unified,
cross-paradigm evaluation across LRLs, comparing
data efficiency and generalization across cascaded,
multimodal MT, and audio-LLM systems.
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3 Experimental Setup

3.1 Model Selection and Baselines

3.1.1 Cascaded approach

We employ OpenAI’s WHISPER LARGE v3 1.5B
given its robust zero-shot performance across 98
non-English languages from 680 K hours of weakly
supervised ASR data and 125 K hours of speech-
to-English translation pairs (Radford et al., 2022).
For MT, we integrate Meta’s NLLB-200 1.3B,
trained on hundreds of billions of tokens spanning
200 languages (NLLB-Team, 2022). This setup
strikes a balance between translation quality and
computational efficiency. We evaluate WHISPER
LARGE V3 on FLEURS test of 11 target languages
to serve as a cascaded-approach baseline.

3.1.2 Multimodal machine translation

We evaluate Meta’s SEAMLESSM4T LARGE 1.6B,
pretrained on 4.1 M hours of speech and text data
over 100 languages. It enables direct speech-to-text
and speech-to-speech translation without separate
ASR/MT modules (Communication et al., 2023),
serving as our end-to-end baseline.

3.1.3 Audio LLMs

We benchmark two SOTA audio LLMs: OpenAlI’s
GPT-40 AuDIO (GPT-40 backbone with audio
pretraining), and Google’s GEMINI 2.0 FLASH,
a multimodal model that supports text and audio.
Both reflect SOTA AST via their incorporation of
leading-edge modeling and web-scale training data.

3.2 Data

Training and Evaluation data: We used the
FLEURS dataset for the initial training data.
FLEURS contains n-way parallel speech and text
in 102 typologically and geographically diverse
languages drawn from the FLoRes-101 bench-
mark (Goyal et al., 2021), with approximately 12
hours of high-quality, human-read speech per lan-
guage. Since 80% of these are low-resource lan-
guages, FLEURS is well-suited for evaluating AST
paradigms in such settings.

Data for ablation: For our ablation studies on
African languages, we added 20 hours of validated
speech from Mozilla Common Voice? (Swahili and
Luganda) and the Naija Voice corpus (Lee et al.,
2022) (Igbo, Hausa, and Yorubd). Common Voice

Zhttps://huggingface.co/datasets/mozilla-
foundation/common_voice_17_0

Model Parameters ~ Used Capabilities  Unsupported Lang.
Whisper Large v3 15B ASR Igbo, Luganda
NLLB-200 Large 1.3B MT None
SeamlessM4T Large 1.6B Multimodal MT AST Hausa
mT5-Base 580M  ASR correction (T2T) Luganda
GPT-40 Audio Unknown End-to-End AST Unknown
Gemini 2.0 Flash Unknown End-to-End AST Unknown

Table 1: Model Information. Please refer to Section 3.1
for details.

lacked sufficient validated data® for the Nigerian
languages, whereas Naija Voice offers over 600
hours per language.

3.3 Model finetuning Strategies

We detail our finetuning recipes for adapting the
ASR model of the cascaded approach and for the
general finetuning of multimodal MT.

3.3.1 ASR model finetuning

We finetuned on the FLEURS training data of each
of 11 spoken languages for 10 epochs by updating
all the parameters. To ensure consistent evaluation
across all methods, the best model was selected
after 10 epochs without using a validation set. We
also note that as Igbo and Luganda are not included
in Whisper’s original language inventory, Whisper
will reject any training examples tagged with an
out-of-vocabulary language code. Therefore, we
override the language identifier during finetuning
by mapping languages to their closest relatives in
the supported set based on phonology and lexical
similarity. For instance, we map Igbo to Lingala
and Luganda to Shona. Similar approach to fine-
tune machine translation models for unseen lan-
guages has been mentioned in (Yang et al., 2021).
We describe the different finetuning recipes below
(all parameters were updated if not specified).

* Monolingual finetuning ( “Monolingual" or
“S2"): we independently finetuned ten sepa-
rate WHISPER LARGE V3, where finetuning
uses the entire FLEURS training data of the
target language. The preprocessing pipeline
and training hyperparameters are the same as
the multilingual experiments.

* Multilingual finetuning (S3): we group our
ten target languages into two regionally and ty-
pologically coherent subsets: “Indic” (Hindi,
Punjabi, Tamil, Telugu, Malayalam), and

3Common Voice is volunteer-based, with recordings re-
quiring validation for quality.
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“African” (Swahili, Hausa, Yorub4, Igbo, Lu-
ganda), We then finetuned two WHISPER
LARGE V3 models on the combined data of all
languages from each group, motivated by po-
tential cross-language transfer (Conneau et al.,
2020): e.g. African languages using a shared
Latin script, while Indic languages use distinct
writing systems but are similar in phonology.

2-stage FT (Multilingual + Monolingual, S4):
to capture both cross-lingual transfer and
language-specific specialization, we first con-
duct a multilingual finetuning with group data
for 10 epochs, then continue finetuning on the
target language only for 10 more epochs.

ASR corrector (S5 and S6): to explore
how much text-only correction can reduce
recognition errors beyond speech finetuning,
we adopt the ASR correction strategy from
XTREME-UP (Ruder et al., 2023), applying
it to the optimal models finetuned by above
recipes. We finetuned mT5-base (Xue et al.,
2021) a Text-to-Text model for 20 epochs
with earlystopping on ASR (finetuned WHIS-
PER LARGE V3 S3) prediction-reference pairs
from the FLEURS training set. This approach
ensures no data leakage, as we leverage the
same training data used in speech finetuning.
Full training details are in Appendix A.

Once ASR transcribed input speech into text of
source language, we used NLLB (NLLB-Team,
2022), an open-sourced large-scale machine trans-
lation model to translate text to the target language.

3.3.2 General MT finetuning

We finetuned SEAMLESSM4T LARGE model,
which supports speech inputs, on Indic and African
language groups separately, by updating all the pa-
rameters over 10 epochs. This method is a fully
end-to-end approach of AST.

3.4 Evaluation metrics

We use BLEU to evaluate final performances of all
machine translation systems. For cascaded systems,
we also report ASR Word Error Rate (WER)*.

4 Results & Analysis
4.1 ASR Performance

Table 2 presents an overview of ASR baseline cre-
ated by WHISPER LARGE V3, with the finetuning
recipes described in Section 3.3.1. We observed:

Monolingual finetuning is most efficient while
2-Stage better maintains generalization. Given
the same finetuning amounts of speech data, solely
finetuning on target languages significantly reduced
average baseline WER from 88.39% to 45.90%.
Multilingual finetuning (S3) also significantly re-
duced WER for the single target languages, though
slightly worse than the monolingual ones. Interest-
ingly, continuing finetuning from the multilingual
model (S3) on individual target languages, without
using any additional data, S4 not only recovered
the performance on each language but also resulted
in slightly better performance than monolingual
finetuning (S2). This might be because the design
of the 2-stage FT (S4) recipe allows the model to
better learn from the common acoustic—phonetic
and lexical properties shared by related languages.

Multilingual + Monolingual + Corrector is
most effective. The system consistently performed
best in 9 of the 10 low-resource languages. The
strategy did not introduce any additional speech
data, but leverage reference transcripts in a more
effective way. Specifically, the corrector models
learned from paired (ASR transcript, reference tran-
script) training data, leading to an average 15.2%
relative reduction in WER compared to the Multi-
lingual (S3) baseline and a significant 54.2% reduc-
tion relative to the initial Baseline (S1) models, all
without increasing the footprint of the multilingual
finetuned ASR models.

Zero-shot evaluation might be enough for
ASR of high-resource languages. We selected
French, a high-resource language, to evaluate the
off-the-shelf models’ performance and to under-
stand the performance gap when compared against
their performance on the low-resource languages
we focus on in this paper. As shown in Table 2, by
directly evaluating WHISPER LARGE V3 on French
test data, the WER already achieved 12.73%; how-
ever, the simplest monolingual finetuning nearly
doubled French WER to 24.72%. We hypothe-
size that, for languages with abundant data and
well-optimized pre-training representations, aggres-
sive monolingual adaptation can induce overfitting

4Adopted the implementation of https://huggingface.
co/spaces/evaluate-metric/wer.
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Whisper ASR Baseline and Models finetuned from IT

Multi. Multi. S4 FLEURS
Language  Baseline (S1) Mono. (S2) Multi. (S3) + Mono. (S4) + ASR Corrector (S5) + ASR Corrector (S6)  A(s1,.56) A(s3,56) Training Hours
French 12.73% 24.72% X X X X X 10.3
Hindi 46.67% 24.06% 25.00% 23.85% 23.12% 21.63% -53.6%  -13.4% 6.6
Punjabi 84.46% 33.66% 33.91% 32.68% 40.70% 43.08% -489%  +27.0% 6.3
Tamil 59.96% 45.33% 46.25% 44.40% 40.54% 38.58% -35.6%  -16.5% 8.6
Telugu 78.12% 45.75% 46.03% 44.38% 39.46% 37.63% -518%  -18.2% 79
Malayalam 138.91% 44.87% 46.20% 44.02% 43.45% 39.81% -711.3%  -13.8% 10.0
Swahili 42.88% 33.11% 35.04% 33.26% 24.86% 22.85% -46.7%  -34.8% 13.4
Hausa 112.78% 42.58% 49.27% 43.78% 40.07% 34.47% -69.4%  -30.0% 13.6
Yorubd 105.70% 68.67% 68.69% 66.36% 64.93% 61.92% -41.4% -9.8% 10.0
Igbo 106.56%* 59.26% 61.84% 56.98% 54.66% 50.93% -522%  -17.6% 13.8
Luganda 107.90%* 61.68% 47.72% 60.46% 54.16% 53.26% -50.6%  +11.6% 12.6
Average 88.39% 45.90% 47.72% 45.02% 42.59% 40.45% -542%  -15.2% 10.3

 Starred (*) WERs indicate that the target languages were unseen by the model. Bolded WERs indicate the best score across different finetuning strategies and baseline.

Table 2: Overview of WER(]) for Whisper Large ASR models using different finetuning strategies (denoted as S2 —
S6). We show A (g1 s6), the relative changes obtained by S6 using S1 as baseline. Similar notation for A (g3 s6)-
please refer to Section 3.3.1 for definitions of finetuning strategies, and Section 4.1 for detailed analysis.

or catastrophic forgetting of general acoustic pat-
terns. When comparing the output transcripts from
both models, we observed peculiar word halluci-
nations in the monolingual model (e.g. “Dans le
climat chaud” was transcribed as “Dans le chuma-
cho”). These phonetic hallucinations were similar
to those seen in other languages, but unlike those
instances, they were exacerbated rather than miti-
gated by monolingual finetuning. Such regression
suggests more thoughts in the finetuning design to
preserve the learned syntax while adapting large
speech model to the target data domain.

Similar language serves as a good proxy when
adapting to an unseen language. A key challenge
in finetuning the Whisper ASR model for Igbo and
Luganda was that they are not among the 98 lan-
guages Whisper supports. We notice that both the
two unseen languages use Latin writing system,
so we hypothesized that a similar language label
could serve as a proxy. Specifically, we selected
Lingala and Shona as the proxy language label for
Igbo and Luganda respectively, considering their
phonetic and regional similarities. Experimental re-
sults prove the method’s effectiveness, with relative
improvements of up to 52.2% for Igbo and 50.6%
for Luganda achieved by the best finetuning recipe.
This success suggests a strong potential to expand
Whisper’s coverage to 20+ additional low-resource
languages beyond its current 98 non-English ones,
with careful selection of proxy language: To verify
the effect of proxy choices, we also conducted a
comparative experiment by labeling Igbo as French:
while both use Latin alphabet, they differ phoneti-
cally. The dramatic increase in WER indicates the
importance of a proper proxy language.

4.2 Translation Quality

All three AST modeling paradigms, cascaded
ASR+MT (with various finetuned ASR mod-
els), multimodal SeamlessM4T, and audio-centric
LLMs (GPT-40 Audio and Gemini 2.0 Flash), have
been evaluated in terms of BLEU in Table 4.

Gemini works best for Indic speech transla-
tion. For the five Indic languages (Hindi, Punjabi,
Tamil, Telugu, Malayalam) and Swahili, Gemini
2.0 Flash achieves the highest BLEU in every case
(e.g. 35.38 on Hindi, 30.78 on Telugu, and 31.91
on Swahili), outperforming both GPT-40 Audio
and all cascaded or multimodal MT baselines.

Cascaded ASR+MT models and expert MT
models seem more effective to finetune for
under-represented languages. For lower-resource
African languages (Hausa, Yorub4, Igbo, Luganda),
the best results are obtained by finetuned Whisper
variants + NLLB and SeamlessM4T, rather than
audio LLMs: Whisper Multi. + Mono. + ASR Cor-
rector reaches 13.93 on Igbo and 20.05 on Hausa,
and SeamlessM4T Multilingual peaks at 18.92
on Luganda — each exceeding Gemini 2.0 Flash’s
corresponding 2.19, 16.29, and 11.93. When av-
eraging across all languages except French, the
cascaded Whisper Monolingual (21.26), Whisper
Multilingual + ASR Corrector (21.82), and Seam-
lessM4T Multilingual (21.28) nearly match Gem-
ini 2.0 Flash’s 22.09, while Whisper Multilingual +
Monolingual + ASR Corrector (i.e. T6), actually
outperforms Gemini with 22.24 BLEU, indicating
targeted finetuning on low-resource corpora can
rival SOTA audio LLMs in AST performance.

Zero-shot evaluation might be enough for the
translation of high-resource languages. As stated
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Monolingual Multilingual + Monolingual Monolingual Multilingual + Monolingual
Source
Language X WER(X) Average WER(Others) WER(X) Average WER(Others) BLEU(X) Average BLEU(Others) BLEU(X) Average BLEU(Others)
Hindi 24.06% 56.07% 23.85% 22.76% 31.18 14.81 30.90 23.86
Punjabi 33.66% 80.50% 32.68% 34.22% 26.59 342 26.68 19.50
Tamil 45.33% 74.32% 44.40% 40.25% 22.65 4.69 22.78 16.85
Telugu 45.75% 87.83% 44.38% 43.70% 25.12 2.96 25.15 18.32
Malayalam 44.87% 98.13% 44.02% 41.39% 27.07 1.77 27.68 20.66
Indic Group 38.73% 79.37% 37.87% (-2%) 36.46% (-54%) 26.52 5.53 26.64 (+0.5%) 19.84 (+259%)
Swahili 33.11% 76.52% 33.26% 30.33% 27.55 4.58 27.70 20.80
Hausa 42.58% 87.31% 43.78% 44.74% 18.45 0.61 18.34 12.22
Yorubd 68.67% 80.75% 66.36% 62.80% 11.14 0.88 11.04 6.53
Igbo 59.26% 83.92% 56.98% 56.30% 11.46 1.03 11.60 7.05
Luganda 61.68% 117.59% 60.46% 53.78% 11.36 1.05 11.56 8.69
African Group  53.06% 89.22% 52.17% (-2%) 49.59% (-44%) 15.99 1.63 16.05 (+0.4%) 11.06 (+579%)

Table 3: A comparison of Monolingual and Multilingual+Monolingual models. The table displays WER (]) and
BLEU scores (1) for various Indic and African languages. Highlighted cells show the performance for the grouped
languages. “Others" refers to the other languages in the same group except target language X.

Multimodal
ASR (Whisper) + MT (NLLB) Speech Translation Audio LLMs
Cascaded Cascaded Cascaded  Cascaded Multi. Cascaded Multi. T4 + SeamlessM4T ~ SeamlessM4T GPT-40  Gemini 2.0

Language Baseline (T1) Mono. (T2) Multi. (T3) + Mono. (T4)  + ASR Corrector (T5) ASR Corrector (T6) Baseline Multi. audio Flash
French 38.30 31.49 X X X X 33.77 X 37.49 36.16
Hindi 27.79 31.18 30.85 30.90 31.08 31.48 24.62 28.71 29.28 35.38
Punjabi 13.87 26.59 26.65 26.68 25.38 24.62 28.71 28.10 19.15 29.58
Tamil 19.53 22.65 22.48 22.78 23.10 2343 19.93 21.87 15.17 25.14
Telugu 17.51 25.12 25.26 25.15 27.37 27.53 23.27 24.93 19.83 30.78
Malayalam 1.32 27.07 27.05 27.68 27.79 28.45 21.20 25.95 23.55 30.31
Swahili 25.01 27.55 27.18 27.70 28.40 28.38 14.81 31.22 19.37 31.91
Hausa 3.36 18.45 15.90 18.34 18.04 20.05 1.01* 6.07 1.07 16.29
Yorubd 2.62 11.14 10.66 11.04 10.62 11.18 12.64 15.36 2.31 7.35

Igbo 1.80* 11.46 9.86 11.60 13.23 13.93 0.19 11.65 1.63 2.19

Luganda 4.07* 11.36 11.34 11.56 13.14 13.35 5.95 18.92 4.95 11.93
Average 11.69 21.26 20.72 21.34 21.82 22.24 1523 21.28 13.63 22.09

 Starred (*) BLEUs indicate that the target languages were unseen by the model. Bolded BLEUs indicate the best score across different finetuning strategies and baseline.

Table 4: Overview of BLEU scores (1) achieved by SOTA

models with different finetuning strategies. please refer

to Section 3.3 for definitions of finetuning strategies, and Section 4.1 for detailed analysis.

before, French is an exception: the Whisper-Large-
v3 baseline attains the highest BLEU of 38.30,
surpassing GPT-40 Audio (37.49) and Gemini 2.0
Flash (36.16). This underscores the robustness of
Whisper’s original capacity on high-resource lan-
guages — further finetuning may introduce degrada-
tion in such well-represented language settings.

4.3 Generalization vs. Specialization

A typical challenge for finetuned multilingual mod-
els is balancing specialization and generalization.
While finetuning solely on a target language might
yield the lowest ASR WER and the highest BLEU
score for that language, severe performance degra-
dation in other languages must be avoided. This
consideration is also critical for practical applica-
tions. When serving a speech translation model
for Hindi to English, users in the same region
might not always speak Hindi but may use other
local languages such as Punjabi. Even predomi-
nantly Hindi speakers might code-switch between
Hindi and other local languages — this is a signif-

icant concern in the engineering and application
of speech translation models. Therefore, we mea-
sured the ASR and MT performances not only on
target languages but also on their average perfor-
mance across other languages within the same ge-
ographical region (dubbed “Average Other"). As
shown in Table 3, for monolingual finetuned ASR
models, even if their WER for a single target lan-
guage is slightly lower than that of multilingual +
monolingual finetuned models (e.g. 23.85% WER
vs. 24.06% WER on Hindi, obtained by the two
finetuned models, respectively), the monolingual
model clearly shifts too heavily toward Hindi. This
specialization causes finetuned model to fail to per-
form well on other Indic languages, as indicated
by the 56.07% average WER on other languages.
In contrast, the first stage of multilingual finetun-
ing allows the final finetuned models to maintain
their performance on the other Indic languages,
with a 22.76% average WER, which is a 59% rela-
tive improvement over their monolingual finetuned
counterparts. We found similar patterns in terms
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of BLEU scores among the MT models. The ne-
cessity of a two-stage finetuning approach is thus
highlighted by two significant benefits: it maintains
ASR and MT performance on related languages
and offers potential gains from sharing common
cross-lingual features.

4.4 Effect of finetuning Data Volume

Acquiring finetuning speech data for extremely
LRLs is highly challenging. Therefore, we con-
ducted an ablation study to investigate the mini-
mum hours of speech required to develop a speech
translation model with acceptable performance. We
use all five African languages as examples, and
present ablation studies in terms of both WER and
BLEU, across different finetuning data amount: 0,
1,2.5, 5, 10, and 20 hours per language, in Figure 1
and 2 for ASR and MT component of cascaded
system respectively.

Zero-shot evaluation is a better choice when
finetuning data is too limited. While the initial
one hour of fine-tuning on Common Voice or Naija
Voice indeed yields a marked degradation in ASR
quality and downstream translation — evidenced
by WER jumps (Hausa 42.5 % — 54.4%, Yoruba
68.6% — 70.5%) and BLEU drops (Hausa 18.45
— 16.87, Yoruba 11.14 — 10.26) — subsequent
training yields recovery and improvement: at 2.5
h, WER for all five languages recedes toward or
below baseline (Igbo 59.2% — 55.7%) and BLEU
surpasses the baseline model (Igbo 11.46 — 12.38).

Gains are most pronounced between 2.5 -5 h,
as BLEU increases by up to +1.30 points (Yoruba
11.14 — 12.44), while WER reduces by up to -
8.4% (Hausa 54.4% — 46.0%). Between 5-10
h, improvements continue but at a reduced rate
(e.g. Swahili BLEU plateaus at 28.20, Luganda
WER only marginally improves from 59.5% to
59.0%), indicating that the model rapidly ingests
new acoustic-textual patterns within the first 10 h.
Beyond 10 h, additional data yields diminishing, or
even slightly negative returns (Hausa BLEU 19.13
— 19.01; Luganda BLEU 12.42 — 12.13), sug-
gesting an inflection point where the domain shift
of the supplemental corpus begins to outweigh its
benefit. Nonetheless, we observe that on average,
the addition of new unseen data to the monolingual
model matches best scores shown in Tables 2 and 4.

Especially for the ablation on MT, results
showed a “U-shaped” curve, suggesting initial over-
fitting to new data followed by swift adaptation. We
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Swahili Hausa Igbo
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Figure 1: Sample efficiency measured by ASR WER
(%) scores () with varying amounts of finetuning hours;
dashed bars indicate the best system for each language.
Please refer to Section 4.4 for details.
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Figure 2: Sample efficiency measured by MT BLEU
scores (1) with varying amounts of finetuning hours;
dashed bars indicate the best system for each language.
Please refer to Section 4.4 for details.

identified an optimal fine-tuning window of 2.5-10
h for maximizing ASR robustness and translation
fidelity in African low-resource languages.

4.5 Beyond BLEU: Part-of-speech Tag
Steering Analysis

To gain insights beyond a single BLEU score, we
analyzed part-of-speech (POS)-specific translation
errors for our baseline cascaded model (T1) and
the cascaded architecture with ASR correction (T6),
across five African languages. POS tagging was
performed using spaCy>’s large English statistical
model, which produced Universal Dependencies
tags for each token.

Following the methodology of (Popovi¢ and Ney,
2007), we computed POS-specific WER, which re-
flects sequence-level accuracy and highlights error
patterns across linguistic categories. Our analysis
(Tables 5-6) shows that T1 exhibits high WER for
NOUN, PUNCT, and DET categories, especially

3spaCy is a library for NLP in Python and Cython.
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POS Tag Swahili  Hausa Igbo  Luganda Yorubd Avg

ADJ 531% 1029% 1039%  7.79%  9.68%  8.69%
ADP 6.55% 1632% 13.65% 11.56% 16.41% 12.89%
ADV 249%  821%  6.99% 5.55% 530%  5.71%
AUX 334%  9.22%  9.13% 6.30%  14.23%  8.44%
CCONJ 1.70%  592%  591% 3.15% 544%  4.42%
DET 591% 17.57% 24.76% 1491% 16.72% 15.97%
NOUN 13.04% 31.54% 34.15% 2597% 31.96% 27.33%
NUM 1.20% 1.86%  2.10% 1.56% 1.55% 1.65%
PART 1.50%  3.12%  3.01% 287%  797%  3.69%
PRON 2.68% 10.05% 10.71%  523% 19.50%  9.63%
PROPN 391% 14.01%  9.04% 8.57%  10.02%  9.11%
PUNCT 472% 2392% 2841% 1590% 21.68% 18.93%
SCONJ 0.77%  1.88% 1.68% 1.68% 2.95% 1.79%
VERB 6.78% 13.36% 12.44% 10.27% 20.84% 12.74%
Macro Avg 5.04% 12.60% 12.80%  9.17%  13.47% 10.62%
Weighted Avg  5.99% 16.86% 17.27% 12.14% 18.44% 14.14%

Table 5: WER (|) over English POS tags of translation
by Whisper Baseline (T1) for all five African languages.

POS Tag Swahili ~ Hausa Igbo Luganda  Yorubd Avg

ADJ 4.64% 5.84%  697% 6.39% 6.54%  6.08%
ADP 5.64%  748%  8.76% 7.45% 779%  7.42%
ADV 2.36%  2.77%  3.42% 3.26% 3.11%  2.98%
AUX 2.77%  3.93%  4.25% 3.64% 4.03%  3.72%
CCONJ 1.72%  2.65%  2.61% 2.23% 237%  2.32%
DET 497%  8.58%  8.48% 7.37% 7.61%  7.40%
NOUN 12.38% 16.51% 18.53% 16.74% 16.91% 16.21%
NUM 0.86%  1.35% 1.45% 1.21% 1.08% 1.19%
PART 1.40% 1.50% 1.97% 1.75% 1.66% 1.66%
PRON 247%  330%  3.57% 3.40% 339%  3.23%
PROPN 375% 541%  6.53% 5.54% 526%  5.30%
PUNCT 538%  7.54%  821% 8.69% 7.09%  1.38%
SCONJ 0.69%  0.81% 1.17% 1.02% 1.03%  0.94%
VERB 590% 7.86%  8.78% 8.06% 8.69%  7.86%
Macro Avg 418%  579%  6.47% 5.81% 6.05%  5.66%
Weighted Avg  549%  7.56%  8.48% 7.68% 7.66%  1.37%

Table 6: WER (|) over English POS tags of translation
by our best recipe (T6) for all five African languages.

for Yorub4, the lowest-BLEU language. This indi-
cates frequent issues with content words, determin-
ers, and punctuation, limiting translation quality.
Setting a threshold of 15% for POS-wise WER,
then as highlighted in Table 5, the most com-
mon errors were made over NOUN, PUNCT, and
DET classes, indicating the deficiencies of Whisper
model, on the African language group. For Yorub4,
the language with the lowest BLEU score, high
WERs are observed across multiple POS classes.
This unveils underlying error patterns and suggests
that these specific word types require focused at-
tention to improve translation performance.
Comparing Table 6 to Table 5, we observed a
large reduction in errors for PUNCT and DET,
along with a smaller, yet significant, reduction
for NOUN. These substantial improvements across
all five languages—particularly in Yorub4, Hausa,
Igbo, and Luganda—further demonstrate the effec-
tiveness of the best T6 recipe. We also conducted
more detailed analysis of position-independent er-
ror, inflectional error and missing words, details

are in Appendix B.

4.6 Summary of Trends

Across our experiments, three consistent patterns
were observed. First, in the cascaded method,
finetuning from SOTA ASR model Whisper on
even modest amounts of in-domain data produces
substantial WER reductions for low-resource lan-
guages (Table 2). The Multi. + Mono. + ASR
Corrected variant yielded the best WER for 9 of
10 lanaguages, as it leverages extended exposure
and cross-lingual transfer. Only French deviates
from this trend, underscoring the risk of overfitting
when pretraining already provides ample coverage.
Second, in multimodal machine translation quality
(Table 4), a complementary pattern appears: audio-
LLMs like Gemini 2.0 Flash can translate well
in Indic languages — English and Swahili — En-
glish, achieving BLEU gains of 4-7 points over cas-
caded baselines, whereas finetuned translation ex-
pert models (either built multimodaly or ASR+MT
cascadedly) excel on low-resource African lan-
guages, often exceeding Gemini’s scores by 2—10
BLEU points. Third, our ablation on finetuning vol-
ume (Figs. 1-2) reveals a pronounced “U-shaped”
curve: an initial performance dip at 1 h, rapid recov-
ery and peak gains between 2.5-10 h, and plateau
or slight regression beyond 10 h. This identifies an
optimal finetuning window for balancing adapta-
tion speed against domain shift.

Together, these trends suggest a best recipe for
speech-translation in low-resource contexts: (1) ap-
ply multilingual finetuning followed by targeted
monolingual finetuning, with Corrector to min-
imize WER and maximize the final translation
performances on related languages; (2) reserve
audio-LLMs for languages with ample training
data, while relying on cascaded or multimodal MT
systems for under-represented tongues; (3) allo-
cate finetuning budgets within the identified “sweet
spot” of 2.5-10 h to maximize returns without in-
curring diminishing gains.

5 Conclusions

Our systematic comparison of cascaded ASR+MT,
multimodal speech translation, and audio-centric
LLMs across 11 diverse languages yields several
important insights: (1) Our 2-stage FT strategy
can improve translation performances on target lan-
guage, and offer the additional performance benefit
on regional related languages for both ASR and
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MT, with a up to 5.8x boost in BLEU on them
than monolingual FT. This approach is particularly
effective for meeting the demands of practical, real-
world scenarios. (2) Our 2-stage FT + ASR Correc-
tor recipe can further improve WER across 9 of 10
languages, and carry on the additional gains to ulti-
mate MT task. (3) While SOTA audio-LLMs excel
on higher-resource languages, our evaluations un-
veil that they may struggle on truly low-resource
languages such as African ones. Finetuned Whis-
per variants and SeamlessM4T can match or ex-
ceed audio-LLM performance by up to 10 BLEU,
suggesting the most reliable choices for AST of
under-represented spoken languages. (4) Our abla-
tion study reveals that not always “the more fine-
tuning data, the better" in low-resource ASR. Fu-
ture work should focus on expanding high-quality
parallel speech—text resources and developing reg-
ularized, domain-aware adaptation techniques to
ensure robust translation across the full spectrum
of the world’s languages.
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7 Limitations

This study provides valuable insights into speech-
to-text translation for low-resource languages, but
its scope is bounded by several factors. There is
bias introduced the selection of low-resource lan-
guages, e.g. we experimented with clean speech
rather than noisy speech to initialize the compara-
tive studies. Future work with diverse, in-the-wild
data is crucial for robust systems. Secondly, while
we selected 10 typologically diverse African and
Indic languages to evaluate low-resource perfor-
mance, our findings may not extend to all such
languages, especially those with different linguistic
features or data availability. Thirdly, we focused
on selected architectures (Whisper+NLLB, Seam-
lessM4T, GPT-40 Audio, Gemini 2.0 Flash). While
proprietary APIs offered state-of-the-art insights,
their closed nature and cost limited extensive test-

ing. Open models were finetuned within practical
compute budgets, constraining exploration of larger
variants and complex adaptation. These choices,
driven by resource constraints, introduce selection
bias in model coverage and task prioritization.
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A ASR Corrector Training Details

Goal. We train a text-to-text ASR corrector to
reduce recognition errors made by the ASR model.
The corrector is a language-specific mT5-Base
model that maps noisy ASR hypotheses to cor-
rected transcripts.

Data and pairing. For each language, we take
predictions from the finetuned WHISPER LARGE
v3 (83, see §3.3.1) on the FLEURS training split
and pair them with their gold references to form
(hypothesis, reference) examples. The FLEURS
dev split is used only for early stopping and hyper-
parameter selection. This ensures no data leakage:
the corrector never sees dev/test references during
training.

Model and objective. We finetune mT5-Base for
up to 20 epochs with early stopping on the dev
set. The model is trained as a standard seq2seq text
editor: input is the ASR hypothesis; target is the
reference transcript.

Compute. All runs use 2x A100L GPUs, 6
CPUs, and 32 GB RAM.

Setting Value

Base model mT5-base (Text-to-Text)

Task framing ASR post-correction (seq2seq)
Max src / tgt length 200

Epochs 20 (early stopping on dev loss)
Batch size (per device) 8

Decoding Beam search, num_beams=10

Model selection
Eval / Save strategy
Optimizer / LR / Scheduler

metric_for_best_model=loss
epoch
HF defaults (not overridden)

Table 7: Hyperparameters for the mT5-base ASR cor-
rector (Hausa).

Outputs. At inference, the corrector takes WHIS-
PER LARGE V3 outputs and returns corrected text.
Training and decoding hyperparameters are sum-
marized in Table 7.

B More Detailed POS-specific Metrics

In addition to WER, we compute the F-Based
Position-independent Error Rate (FPER) (Popovié¢
and Ney, 2007), which disregards word order and
instead captures errors in the distribution of POS
classes. FPER is defined as:
1
N*.+ N, hyp

ref

FPER(p) =

Mx

n (p,rerry) + n (p, herrg)) (1)
k:l

where p is a POS class, N ; and Nyy,, are the
reference and hypothesis token counts (excluding
punctuation), and n(-) counts errors of class p
in reference (rerr) or hypothesis (herr) for each
sentence k. The metric gives the proportion of
position-independent errors for p over the corpus.
WER and FPER together capture complementary
aspects of translation quality: WER is sensitive
to word order and thus reflects overall sequence-
level accuracy, while FPER disregards position and
focuses on the distribution of POS-specific errors.
Using both allows us to assess not only how closely
a translation matches the reference in form, but also
which linguistic categories contribute most to the
errors, providing a more targeted diagnostic of sys-
tem performance.

The POS-specific FPER results (Tables 8-
9) complement WER by highlighting position-
independent mismatches. T6 cuts errors sharply for
PUNCT and DET, indicating fewer spurious or
missing tokens regardless of order. Reductions for
AUX and PROPN further suggest stronger preser-
vation of grammatical auxiliaries and named enti-
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POS Tag Swahili  Hausa Igbo  Luganda Yoruba Avg

ADJ 4.11% 4.97% 5.09% 4.94% 4.41% 4.70%
ADP 4.79% 7.62% 6.27% 6.47% 7.23% 6.48%
ADV 1.66%  3.61%  2.96%  294%  224%  2.69%
AUX 2.48% 4.97% 4.85% 4.31% 6.51% 4.62%
CCONJ 1.22% 2.62% 2.82% 1.88% 2.41% 2.19%
DET 4.07% 8.03% 11.16%  8.84% 7.22% 7.86%
NOUN 10.62% 15.38% 16.49% 15.89% 14.35% 14.55%
NUM 0.92% 0.84% 1.01% 0.99% 0.69% 0.89%
PART 1.11% 1.73% 1.53% 1.95% 3.32% 1.93%
PRON 2.18% 5.24% 5.03% 3.58% 8.65% 4.94%
PROPN 2.75% 7.44% 4.37% 4.48% 4.73% 4.75%
PUNCT 420% 11.45% 13.11% 9.53% 10.04% 9.67%
SCONJ 0.64% 0.91% 0.78% 1.00% 1.39% 0.94%
VERB 5.23% 6.59% 5.97% 6.31% 9.20% 6.66%
Macro Avg 3.87% 5.87% 5.74% 5.45% 6.23% 5.43%
Weighted Avg  4.60% 8.21% 8.16% 7.32% 8.25% 7.31%

Table 8: FPER (|) over English POS tags of translation
by Whisper Baseline (T1) for all five African languages.

POS Tag Swahili ~ Hausa Igbo Luganda  Yoruba Avg

ADJ 3.80% 459%  541% 5.16% 5.25%  4.84%
ADP 423%  5.06%  6.23% 5.76% 590%  5.44%
ADV 1.71% 1.98%  2.28% 2.33% 222%  2.10%
AUX 227%  287%  3.19% 3.01% 337%  2.94%
CCONJ 1.22% 1.71% 1.77% 1.64% 1.70% 1.61%
DET 349%  546%  5.85% 5.30% 5.54%  5.13%
NOUN 10.17% 13.31% 1533% 14.36% 14.37% 13.51%
NUM 0.61% 1.01% 1.10% 1.00% 0.89%  0.92%
PART 1.04% 1.06% 1.42% 1.44% 1.41% 1.27%
PRON 1.90%  239%  2.70% 2.59% 291%  2.50%
PROPN 2.53%  348%  3.83% 3.68% 359%  3.42%
PUNCT 411%  444%  4.62% 5.53% 498%  4.74%
SCONJ 0.56%  0.64%  0.90% 0.83% 0.85%  0.76%
VERB 489%  6.03%  6.74% 7.09% 7.08%  6.37%
Macro Avg 299%  398%  4.54% 4.40% 455%  4.09%
Weighted Avg  4.26%  541%  6.14% 5.98% 6.01%  5.56%

Table 9: FPER (]) over English POS tags of translation
by our best recipe (T6) for all five African languages.

ties. Even NOUN exhibits modest improvements,
consistent with its WER gains. Together, WER
and FPER reveal that T6 improves both ordering
accuracy and lexical coverage.

Beyond WER and FPER, Popovi¢ and Ney
(2007) introduced two additional complementary
diagnostics: Inflectional POS Error Rates (IFPER)
and Missing Words Distribution.

IFPER evaluates morphological competence by
identifying cases where a system produces the cor-
rect lemma but with the wrong inflection. As
shown in Tables 10 and 11, this analysis highlights
the POS categories most prone to inflectional er-
rors, thus uncovering weaknesses not visible in
WER/FPER alone.

Missing words analysis distinguishes between
truly omitted words and those simply reordered.
Results in Tables 12 and 13 indicate which
grammatical categories are systematically under-
produced. These findings can directly inform tar-
geted improvements in model design, such as han-
dling of phrase coverage and language modeling.

POS Tag Swahili Hausa Igbo Luganda Yoruba Average
ADJ 047% 0.14% 0.13% 021%  0.13%  0.22%
ADP 0.10% 0.07% 0.05% 0.10% 0.11%  0.09%
ADV 0.15% 040% 0.03% 0.04%  0.05% 0.13%
AUX 0.72% 221% 292% 2.04%  2.10% 2.01%
CCONJ  0.06% 0.02% 0.02% 0.03%  0.04%  0.03%
DET 0.13% 0.08% 0.05% 0.08%  0.12%  0.09%
NOUN 2.67% 1.02% 0.84% 225% 1.70% 1.70%
NUM 0.10% 0.03% 0.14% 0.06%  0.14%  0.09%
PART 0.17% 0.06% 0.07% 0.08%  0.12%  0.10%
PRON 028% 0.17% 0.08% 0.17%  030%  0.20%
PROPN  0.73% 094% 0.51% 0.67% 057%  0.68%
SCONJ  0.00% 0.01% 0.01% 0.00% 0.01% 0.01%
VERB 093% 044% 031% 0.54% 042%  0.53%

Table 10: IFPER (J) over English POS tags of transla-
tion by T1 for all five African languages.

POS Tag Swahili Hausa Igbo Luganda Yorubd Average
ADJ 0.50% 045% 0.46% 043% 042%  0.45%
ADP 0.12% 0.14% 0.12%  0.14%  0.15%  0.13%
ADV 025% 0.24% 0.16% 0.12%  0.12%  0.18%
AUX 0.74% 1.00% 1.25% 1.01% 132% 1.06%
CCONJ  0.08% 0.08% 0.06% 0.07%  0.06% 0.07%
DET 0.13% 0.19% 0.12%  0.13%  0.08%  0.13%
NOUN 357% 3.20% 3.08% 2.84% @ 2.65% 3.07%
NUM 024% 029% 024% 0.19% 023%  0.24%
PART 0.19% 0.09% 0.12% 0.11%  0.15%  0.13%
PRON 029% 023% 027% 0.13%  0.26%  0.24%
PROPN  0.82% 0.85% 0.83% 0.80% 0.63% 0.79%
SCONJ  0.01% 0.01% 0.02% 0.01% 0.02% 0.01%
VERB 1.01% 1.10% 1.00% 1.10% 1.04% 1.05%

Table 11: IFPER (J) over English POS tags of transla-
tion by T6 for all five African languages.

POS Tag Swahili Hausa Igbo Luganda Yorubd Total
ADJ 122 204 283 198 210 1017
ADP 163 233 357 264 226 1243
ADV 70 87 132 128 108 525

AUX 91 133 207 124 140 695

CCONJ 59 65 80 58 82 344
DET 146 241 283 234 272 1176
NOUN 302 449 642 483 503 2379
NUM 22 33 56 29 54 194
PART 39 48 93 59 56 295

PRON 93 119 207 111 123 653

PROPN 63 172 266 166 182 849
PUNCT 101 169 215 143 169 797
SCONJ 22 40 74 36 47 219
VERB 166 218 332 250 238 1204

Table 12: Missing word counts by POS tag for English
POS tagging across the five African languages for T1
translations.

POS Tag Swahili Hausa Igbo Luganda Yorubd Total
ADJ 118 184 237 295 308 1142
ADP 178 239 336 437 358 1548
ADV 66 91 137 186 159 639
AUX 74 93 145 173 203 688
CCONJ 77 85 121 131 137 551
DET 161 224 327 417 344 1473
NOUN 320 443 677 795 701 2936
NUM 20 47 62 47 52 228
PART 43 44 63 94 79 323
PRON 73 115 164 183 165 700
PROPN 69 173 172 185 209 808
PUNCT 109 170 231 253 266 1029
SCONIJ 20 20 37 45 26 148
VERB 149 216 327 337 356 1385

Table 13: Missing word counts by POS tag for English
POS tagging across the five African languages for T6
translations.

160



