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Abstract

Large language models (LLMs) still struggle
across tasks outside of high-resource languages.
In this work, we investigate cross-lingual trans-
fer to lower-resource languages where task-
specific post-training data is scarce. Building
on prior work, we first validate that the sub-
sets of model parameters that matter most for
mathematical reasoning and multilingual capa-
bilities are distinctly non-overlapping. To ex-
ploit this implicit separability between task and
target language parameterization, we develop
and analyze numerous modular frameworks to
improve the composition of the two during fine-
tuning. These methods generally employ freez-
ing parameters or post hoc model merging to
assign math and language improvement to dif-
ferent key parts of the LLM. In the absence of
in-language math data, we demonstrate that the
modular approaches successfully improve upon
baselines across three languages, four models,
and two fine-tuning paradigms (full and LoRA).
Furthermore, we identify the most consistently
successful modular method to be fine-tuning
separate language and math experts and model
merging via Layer-Swapping (Bandarkar et al.,
2025a), somewhat surprisingly. We offer possi-
ble explanations for this result via recent works
on the linearity of task vectors. We further ex-
plain this by empirically showing that reverting
less useful fine-tuning updates after training
often outperforms freezing them from the start.

1 Introduction

Post-training large language models (LLMs) on la-
beled text data is a critical step in developing mod-
els for real-world applications. However, when
these LLMs are fine-tuned for lower-resource lan-
guages, significant challenges arise due to the pre-
trained model’s limited capabilities. Although in
recent years the broader scaling of pretraining and
increased investment in additional languages (Dang
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et al., 2024b; Llama et al., 2024) have led to ma-
jor improvements, pretrained LLMs still struggle
to understand and generate text in all but a few
languages (Romanou et al., 2025; Qin et al., 2025).

This pretraining disparity is further exacerbated
by the lack of available high-quality multilingual
fine-tuning data (Singh et al., 2024) and the sig-
nificant cost to procure such annotated data (even
through machine translation). For many of the capa-
bilities developers target during post-training (e.g.,
instruction-following, reasoning, or safety) there
are only sufficient open-source data available in
English, Chinese, and a handful of other languages.
This motivates the need for better cross-lingual
transfer: the generalization of learned capacities
from high-resource languages to lower-resource
ones (Hu et al., 2020; Philippy et al., 2023).

Despite recent releases of massive mixture-of-
expert LLMs (Team, 2024b; DeepSeek-AI et al.,
2025; Team, 2025), a large majority of modern
LLMs are dense, meaning that all parameters are ac-
tive during training and inference. However, even
within dense LLMs, recent works have found sepa-
rability in where and how varying capabilities are
represented (Yin et al., 2024; Yao et al., 2024). For
example, multilingual capabilities are typically con-
centrated in the top and bottom transformer layers
and multi-head attention parameters of an LLM
(Chang et al., 2022; Choenni et al., 2024). This no-
tably contrasts mathematical reasoning capabilities
being encoded mainly in the middle transformer
layers (Hanna et al., 2023; Stolfo et al., 2023). In
the context of cross-lingual transfer, this functional
separation motivates modular approaches to fine-
tuning, which distinct model components can be
trained, swapped, or merged (Bengio et al., 2020;
Pfeiffer et al., 2023) for efficient and flexible multi-
objective optimization.

In this work, we explore several modular ap-
proaches for composing target task and target lan-
guage capabilities in off-the-shelf dense LLMs.
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Figure 1: Illustration of the three methods that induce
modularity by imposing target language capabilities
(brown) and mathematical reasoning (blue) on separate
LLM parameters. [1] is from Bandarkar et al. (2025a)

Our goal is to induce modularity by exploiting
the differences in parameters that are most rele-
vant to mathematical reasoning versus multilingual
capabilities. We focus on the prevalent scenario
where task-specific data is scarce in the target lan-
guage but readily available in English. We address
this by working with two datasets; one English
math dataset for supervised fine-tuning (SFT) and
one general, multi-task SFT dataset in the target
language. Using the target languages of Bengali,
Swahili, and Telugu, we evaluate the methods on
the multilingual math benchmark, MGSM (Shi
et al., 2023).

With these datasets, we evaluate numerous train-
ing paradigms that incentivize the model, to vary-
ing degrees, to learn multilingual or math capa-
bilities in specific parameters. We organize the
settings along two axes: (1) whether the models
are optimized separately or together over the two

SFT datasets and (2) whether the same or separate
model parameters are trained on the datasets. When
the models are trained separately, we combine the
learned capabilities using model merging methods
such as variants of Layer-Swapping (Bandarkar
et al., 2025a). To train separate model parame-
ters, we start by dividing all parameters into two
partitions according to prior work: (1) one set al-
located to target language training and (2) one set
to English math. Only allocated parameters are
fine-tuned, while the opposite partition is frozen.
We additionally develop a method to train separate
parameters in a single, joint training by frequently
freezing and unfreezing parameters to simulate si-
multaneous training.

Despite the strong starting capabilities of the
four LLMs and the data-constrained setting, our
experimental results show that all of the modu-
lar solutions outperform our baselines, despite be-
ing subject to varying training constraints. This
implies that intentional separation of parameters
and/or training improves the compositionality of
task and language capabilities.

Amongst our modular solutions, we surpris-
ingly find that post hoc model merging via Layer-
Swapping outperforms more coordinated multi-
task fine-tuning approaches. To contextualize this
counterintuitive result, we explore recent academic
literature that help explain the phenomenon. We
provide empirical evidence for training all model
parameters, even if large portions will be discarded
during Layer-Swapping. While these subsets of
task vectors are unproductive, freezing them dur-
ing fine-tuning leads to less optimal updates to
the target parameters. Notably, we rationalize
that the fine-tuning task vectors (∆s) are quite lin-
ear within individual parameter blocks (Dai et al.,
2025), meaning they can be added, scaled, or inter-
polated as linear components (Adilova et al., 2024).

Overall, we enumerate the following principal
contributions of this work:

• We develop and synthesize a number of mod-
ular solutions that each increase composition-
ality for cross-lingual transfer compared to
non-modular baselines, demonstrated through
extensive experiments.

• Of the modular methods, we find that fine-
tuning all parameters and then merging via
Layer-Swapping performs best on average.

• We provide a mix of theoretical and empirical
explanations to explain the surprising success
of Layer-Swapping relative to alternatives.
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2 Background

2.1 Cross-Lingual Transfer

The relative abundance of textual data available
in English in comparison to other languages has
long motivated research in developing methods to
efficiently transfer learned capabilities across lan-
guages (Koehn and Knight, 2002). Typically, some
capabilities transfer naturally across languages, as
evidenced by the superior performance of multilin-
gual models on low-resource languages compared
to monolingual models (Firat et al., 2016; Pires
et al., 2019; Artetxe et al., 2020). In encoder mod-
els, the text embedding could be aligned across lan-
guages to improve transfer using methods such as
contrastive learning (Mikolov et al., 2013; Artetxe
et al., 2018; Muller et al., 2021).

However, cross-lingual alignment in more mod-
ern decoder-only models has become less method-
ical because of the lack of universal embedding
(Kargaran et al., 2025). Since most popular LLMs
have been trained on a majority English corpora,
recent works have examined how much intrinsic
cross-lingual transfer occurs at different training
stages (Choenni et al., 2023; Wang et al., 2024).
These large models have broader generalization and
robustness, but still fail to transfer much of their
capabilities across languages (Philippy et al., 2023).
Recent works have identified prompting methods
(Shi et al., 2023; Zhang et al., 2024) or post-training
data augmentation (Dang et al., 2024a; She et al.,
2024; Lai et al., 2024) to help generalization.

2.2 Modularity in Multilingual NLP

A major constraint for models being able to process
many languages has been the number of parameters
available to represent them. As a result, improving
a language model in one language risks undermin-
ing its knowledge of another, termed the curse of
multilinguality (Conneau et al., 2020; Pfeiffer et al.,
2022). Naturally, numerous methods have been
proposed to increase the model’s parametric ca-
pacity without increasing the inference cost, such
as mixture-of-expert architectures (Fedus et al.,
2022) that route tokens according to their language
(NLLB et al., 2022). Methods that leverage mod-
ular parameters were developed to compose capa-
bilities for transfer learning by inserting trainable
adapters within model layers (Houlsby et al., 2019;
Pfeiffer et al., 2021). These methods were modi-
fied for multilinguality by allocating adapters for
particular languages and switching them in or out

depending on the input (Bapna and Firat, 2019;
Pfeiffer et al., 2020). Pfeiffer et al. (2022) extended
these methods by pretraining an adapter-based mul-
tilingual model from scratch. In decoder models,
cross-lingual adapters have also been proposed at
the token embedding level (Jiang et al., 2025).

Even in dense LLMs, however, interpretability
research has identified the emergence of effective
modularity (Csordás et al., 2021) as LLM parame-
ters scale (Zhang et al., 2022; Qiu et al., 2024; Chen
et al., 2025). Principally, numerous recent works
have identified that just a few transformer layers
at the top and bottom of English-centric LLMs are
responsible for multilingual capabilities, notably
by mapping input and output into a universal rep-
resentation (Kojima et al., 2024; Wendler et al.,
2024; Tang et al., 2024b; Alabi et al., 2024; Wu
et al., 2025). Similar patterns are observed in mod-
ern sparse mixture-of-experts LLMs, where it is
also observed that language-specialized experts are
completely distinct from task/domain-specialized
ones (Bandarkar et al., 2025b).

2.3 Model Merging
Model merging is the practice of combining the
weights of multiple checkpoints of the same model
architecture into a singular model. While averag-
ing models is a fundamental machine learning ap-
proach to increase statistical robustness (Breiman,
1996), the averaging of model checkpoints, dubbed
a model soup by Wortsman et al. (2022), has re-
emerged in large-scale LLMs as a method to in-
crease model robustness. More importantly, it also
increases the search space of valid model variants
at any given training step without additional costly
training runs (Llama et al., 2024). However, simple
weight averaging is vulnerable to negative trans-
fer, or interference, between checkpoints so numer-
ous methods have been presented to selectively
merge parameters (Ilharco et al., 2023a; Yadav
et al., 2023; Yu et al., 2024a). Surprisingly, training
models on separate data and then merging can of-
ten outperform a single training run on mixed data
(Tang et al., 2024a; Aakanksha et al., 2024) and has
shown to be highly effective in large-scale multi-
lingual pretraining (Dang et al., 2024b). For cross-
lingual transfer in particular, Ansell et al. (2022)
showed that sparse fine-tuning can lead to better
composition. Bandarkar et al. (2025a) extended
this by notably identifying that mathematical rea-
soning was concentrated in parameters different
from multilingual capabilities. As a result, model
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Training Description Base Model Partial LoRA Partial SFT LoRA Full SFT

Math-only 19.0% 18.0% 19.5% 18.9% 19.6%
Language-only 19.0% 19.2% 19.8% 19.7% 20.3%
Data mixing 19.0% - - 19.7% 20.4%
Simultaneous SFT 19.0% 20.4% 21.0% - -
Layer-Swapping 19.0% 20.0% 20.4% 20.8% 21.5%

Table 1: Summary Table of Results. Each value represents the average across four models, three languages, and
multiple training runs on MGSM in 2-shot evaluations. The last row represents “Separate Training” while the
“Partial” trainings correspond to “Separate Parameters” trainings. All results shown here and in all other tables of
this paper display exact-match (EM) accuracy (↑) as a percentage.

variants trained on English math data and multilin-
gual data can be combined by Layer-Swapping, or
swapping the transformer layers most important to
each.

3 Experimental Setup

3.1 Evaluation

Limited by the lack of task-specific benchmarks
for medium- and low-resource languages, we focus
on MGSM (Shi et al., 2023) as the target task of
this project. MGSM is a mathematical reasoning
benchmark parallel across 10 languages as a re-
sult of high quality translations from the popular
English benchmark, GSM8K (Cobbe et al., 2021).
For MGSM, we report exact match accuracy in
two-shot, as one- and zero-shot led to inconsistent
results. More few-shot examples did not display
substantial gain. For target languages, we choose
the languages in MGSM where the four LLMs per-
form the worst: Bengali, Telugu, and Swahili. In
addition, the lack of open-source math SFT data
available in these languages motivates the need for
more effective cross-lingual transfer. For a given
fine-tuned model, we also evaluate the two-shot
MGSM performance in English to evaluate its math
performance irrespective of target language capa-
bility. Conversely, we use the multilingual MCQA
benchmarks GLOBAL MMLU (Singh et al., 2025)
and BELEBELE (Bandarkar et al., 2024) as pure lan-
guage understanding signals, independent of math.

3.2 Models

We run experiments on four state-of-the-art
instruction-finetuned LLMs: FALCON 3 7B (Team,
2024a), QWEN2.5 7B Instruct (Yang et al., 2024),
LLAMA 3.1 8B Instruct (Llama et al., 2024), and
AYA Expanse 8B (Dang et al., 2024b). All have
similarly high performance on MGSM in English.

LLAMA 3.1 and FALCON 3 are English-centric,
QWEN2.5 bilingual with Chinese, and AYA Ex-
panse explicitly multilingual. However, all offi-
cially cover numerous other languages (up to 23 for
AYA) and perform reasonably on such languages,
which we verify using BELEBELE and GLOBAL

MMLU. Bengali, Swahili, and Telugu are amongst
the official languages for none of these models.
As a result, the four models are all low-scoring in
MGSM in these languages, with the exception of
LLAMA on Swahili (See Appendix A.8).

3.3 Parameter Allocation
To determine which parameters to “allocate” to
each capability, we rely on a mix of interpretability
papers and small-scale empirical tests. As men-
tioned in Section 2.2, numerous papers have identi-
fied the most important parameters for multilingual
capabilities to be the first few and last few trans-
former layers of LLMs. These works, however,
typically discuss mostly English-centric models
(such as LLAMA 3.1 and FALCON 3). We therefore
need to evaluate this for bilingual and multilingual
models like QWEN2.5 and AYA Expanse. For math-
ematical reasoning, we note that Bandarkar et al.
(2025a) identifies the middle and late-middle trans-
former layers as being the most important. This
work, and numerous others (Voita et al., 2019; Ma
et al., 2021; Zhao et al., 2024), similarly identi-
fies multi-head attention parameters as critical to
multilingual capabilities, as opposed to multi-layer
perceptron parameters.

To empirically verify these assumptions on our
selected models, we run SFT over our datasets with
different subsets frozen. We evaluated numerous
ways to partition the parameters and find a number
of splits that enable improvements on English math
and on language-specific signals (e.g. BELEBELE).
To validate that the good performance when freez-
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Parameters that are
frozen or reset

Frozen
during

Reset
after

base (no SFT) 78.4% 78.4%

[Z] only top-4 and bottom-8
layers (inverse of intuition)

78.2% 78.9%

[A] all MHA parameters +
MLP parameters in top-2
and bottom-6 layers

79.4% 79.8%

[B] only top-4 and
bottom-8 layers

79.8% 79.8%

[C] only top-2 and
bottom-6 layers

79.7% 80.0%

None 80.1% 80.1%

Table 2: MGSM 2-shot results (↑) on the English split
after SFT on the English math data averaged across
four models. These results (1) validate that our intu-
ition leading to our parameter allocations [A, B, C] is
reasonable seeing as results are close to full fine-tuning
and are significantly higher than the inverse allocation
[Z]. Additionally, (2) these results demonstrate that full
fine-tuning then reverting parameters (second column)
is more effective than freezing those parameters from
the start (first column).

ing parameters is because the trainable parameters
are particularly useful for a target task, we also run
experiments with the opposite allocation (e.g. mid-
dle layers frozen during mathematical reasoning
training) and find that it works poorly.

While the search space of which parameters to
freeze is large, we settle on three partitions that
show sufficient empirical success:

• [A] All multi-head attention parameters allo-
cated to the target language. Then, amongst
the multi-layer perceptron parameters, those
in the first six and last two transformer layers
still allocated to language, while those in the
rest of the 32- or 36-layer LLM for math.

• [B] The first eight and last four transformer
layers allocated to language, the rest for math.

• [C] The first six and last two transformer lay-
ers allocated to language, the rest for math.

In these three settings, both mathematical rea-
soning and target language capabilities improve
similarly to full SFT with a fraction of trainable
parameters (See Table 2 for results for math). We
evaluate the three for each of our experimental set-
tings and, unless noted, report the highest scoring.

3.4 Training

For SFT data, we create four datasets, one for math
in English and one instruction dataset for each of
the three target languages. The math instruction
dataset consists of English math word problems
from the Orca-Math synthetic dataset (Mitra et al.,
2024). For the language datasets, we replicate
the creation of “generic” instruction fine-tuning
datasets from Bandarkar et al. (2025a) by com-
bining samples from open-source instruction and
task-specific datasets. Importantly, there are no
math samples in these multi-task language datasets.
We provide specific details and citations for these
data collections in Appendix A.6.

Due to constraints on the amount of verifiable-
quality data available in each of the target lan-
guages, our datasets are controlled at 80k samples,
2k of which is reserved for validation. Because
of significantly diminishing returns exhibited by
the validation loss and downstream evaluations, we
only train for one epoch for each of our settings.

We additionally duplicate all experiments us-
ing Low-Rank Adapters (LoRA) (Hu et al., 2022).
Specifically, we use rank-stabilized LoRA (Kala-
jdzievski, 2023) applied to both multi-layer per-
ceptron and multi-head attention parameters. In
general, the adjustments of our methods to be com-
patible with LoRA were minor unless noted other-
wise. With four models, three languages, and two
fine-tuning approaches (full and LoRA), we have a
total of 24 experimental settings. For each, we do
hyperparameter search over several runs to ensure
comparability (See Appendix A.4 for details).

4 Experiments

We describe numerous methods that modularize
off-the-shelf, dense LLMs in different ways. We
describe separate training as when we conduct sep-
arate SFT runs on different datasets, albeit starting
from the same off-the-shelf model. As previously
mentioned, the separately trained checkpoints are
then merged via Layer-Swapping. Separate pa-
rameters implies that only the partition of parame-
ters allocated (See Section 3.3) to that dataset are
trained while the rest remain frozen.

4.1 Baselines (Math-only and Language-only)

For comparison, we evaluate a number of straight-
forward SFT setups to serve as baselines. We do
full-parameter training runs for each of the target
language generic SFT datasets and the English
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math SFT dataset. For further baselines, we re-
run the above when leaving only parameters allo-
cated to that capability trainable, and the rest are
frozen. In addition, we replicate both full training
and partial training in LoRA, where parameters are
“frozen” if no adapter is added for that parameter.

4.2 Data Mixing (Same Training, Same
Parameters)

As an additional baseline, we randomly mix the two
datasets together and jointly optimize over the two
disjoint tasks with all parameters left trainable.

4.3 Layer-Swapping (Separate Training,
Same Parameters)

For this setting, we exactly recreate the method
presented by Bandarkar et al. (2025a). Starting
from the same base model, separate variants are
trained on different tasks, dubbed “experts”. Con-
cretely, one expert has been trained on the English
math data, and the other on the target language
instruction dataset. To recompose a single model,
the top and bottom transformer layers from the
target language expert replace those in the math ex-
pert, while the math experts’ middle layers remain.
We additionally implement the equivalent of this
methodology with LoRA, where the set of adapters
is merged by combining the adapters correspond-
ing to parameters that would be swapped. Note that
we do not retrain these experts and simply use the
checkpoints from our baseline trainings.

4.4 Layer-Swapping with Partial SFT
(Separate Training, Separate Parameters)

We modify Layer-Swapping so that only the pa-
rameters involved in the model merging are trained,
and all those eventually ignored are kept frozen dur-
ing training. The idea for this is that no parameters
are unnecessarily trained and we can incentivize
the training to focus the learned capabilities into
the desired parameters. Similar to above, we do
not retrain experts and simply merge checkpoints
from our frozen parameter baselines.

4.5 Simultaneous Partition SFT (Same
Training, Separate Parameters)

We design a methodology to “simultaneously" fine-
tune two partitions of LLM parameters on two dif-
ferent datasets. To do so, we apply a gradient step
on a batch from one dataset on the corresponding
partition of parameters. Then, we switch which
parameters are frozen and sample a batch from

the other dataset for the next gradient step. This
frequent back-and-forth is intended to ensure the
coordination of parameter updates during multi-
task optimization. The validation set contains an
equal amount from each datasets.

Switching We default to a single step before
switching to best simulate fully simultaneous train-
ing, but additionally experiment with more steps
between. We set the effective batch size 1 to 64. At
the end of each step, all parameters just updated are
frozen for the next step and conversely, all frozen
parameters are unfrozen. In addition, a flag for the
data iterator is switched to ensure the next batch of
data will be sampled from the appropriate dataset.
For LoRA training, the same logic is implemented.

Optimizer We consider numerous approaches
to adapt the AdamW optimizer (Loshchilov and
Hutter, 2019) used in all previous experiments. Al-
though we technically employ a single optimizer
initialized on all parameters during training, we
configure it to function as two independent opti-
mizers, each exclusively managing its own separate
subset of parameters. Namely, when a subset of
parameters A is frozen, the corresponding AdamW
optimizer states ΩA (momentum and variance es-
timates) are also frozen in time. As a result, when
the parameters in A are unfrozen, the correspond-
ing momentum and variance estimates of ΩA still
reflect only the gradients steps previously applied
to A. However, the other parameters Ac have been
updated in the meantime, meaning ΩA risks being
outdated given the modified loss landscape. To test
the impact of this inconsistency, we ablate over
different numbers of steps between switches and
find that the differences are very negligible (See
Appendix A.3). We conclude that the optimizer
restarting on an outdated loss landscape is of min-
imal concern, presumably because of the smooth-
ness of the loss topology. Since there is a single
optimizer, the learning rate schedule is the same for
all (constant with warmup). And while the gradi-
ents tend to be larger for the multilingual data, we
set a maximum gradient norm of 1.0 for clipping.

5 Results

Our experimental setting was designed to replicate
a real-world scenario where multilingual LLM de-
velopers would take a post-trained LLM and are

1Effective batch size is the product of the batch size per
GPU, number of GPUs, and gradient accumulation steps.
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Performance Comparison of Modular Solutions

SFT Type Base Full Simultaneous SFT Layer-Swapping
Full LoRA Full SFT LoRA Part. SFT Part. LoRA

Swahili 23.5% 25.1% 25.9% 25.2% 26.7% 25.8% 25.1% 24.8%
Bengali 25.6% 27.9% 27.9% 26.9% 28.7% 27.5% 27.0% 26.7%
Telugu 7.9% 8.2% 9.3% 9.0% 9.2% 9.2% 9.0% 8.6%

English 78.4% 80.4% 81.8% 80.5% 80.9% 80.8% 79.9% 80.0%
sw,bn,te AVG 19.0% 20.4% 21.0% 20.4% 21.5% 20.8% 20.4% 20.0%

Table 3: All values presented above are MGSM 2-shot EM accuracy (↑), averaged across four models. The baseline
presented for comparison in the 3rd column is the full SFT on the mix of the two datasets.

limited by the amount of in-language post-training
data. This constrained scenario means only mod-
est improvements are achievable. However, we
do observe several conclusive patterns. Across
our different four models and three languages (12
conditions), we can summarize into 6 treatments
discussed in Sections 4.1 to 4.5. Despite the small
magnitude of differences, the rank-based Friedman
test (non-parameteric) shows statistically signifi-
cant differences between the treatments at the 0.05
significance level.

In our setting, we find that only training on the
language dataset is more effective in improving the
target language MGSM score than only on the math
dataset (details in Appendix A.1). This implies,
perhaps, that what our four models need most, is
improved Swahili, Bengali, or Telugu abilities as
opposed to math improvement.

We validate the lack of need for full-parameter
training when doing both language adaptation and
math SFT. Once the most useful parameters have
been identified for such a skill, as discussed in Sec-
tion 3.3, comparable performance to full SFT can
be achieved with a fraction of the trainable param-
eters. Beyond potentially contributing to compo-
sitionality, this leads to faster and more memory-
efficient training. More details on these baselines
can be seen in Appendix A.1. We do note, how-
ever, that in the absence of resource limitations,
SFT with less trainable parameters converged a
bit slower and full fine-tuning still performed best.
This is also true for LoRA, which has much less
trainable parameters by nature.

A significant result is that all our modular solu-
tions perform statistically-significantly better than
the non-modular baselines, as can be seen in Ta-
ble 1. This is strongly the case for Telugu and

Swahili in the displayed four-model averages, but
varies more by specific modular method for Ben-
gali in comparison to the top baseline (data mixing)
(See Appendix A.5 for per-language results).

Within our modular solutions, however, we find
numerous surprising results. First, freezing the
unused parameters in training experts before Layer-
Swapping does not improve upon full training.
As detailed in the last four columns of Table 3,
the difference in performance is better when all
modules are being finetuned for both LoRA and
full-parameter SFT (statistically significant). This
is counter-intuitive because the layers eventually
merged are potentially dependent on parameter
changes that are being replaced. Second, Layer-
Swapping surprisingly outperforms the simultane-
ous SFT. This is surprising because in our simulta-
neous SFT, the modularity is being imposed cohe-
sively as opposed to the ad hoc merging of layers
from separate training runs. We note, however, that
the simultaneous SFT performs second-best.

To validate results further, we also evaluate
more expensive Continual Pretraining (CPT) for
QWEN2.5 in Bengali across the experimental de-
signs and find agreement with our SFT results (See
details in Appendix A.2, A.7). However, we limit
discussion of these results because of the small
scale of experimental results.

We additionally analyze the composability of
individual experts under Layer-Swapping. We de-
fine a good merging indicator as an evaluation
signal of an expert that correlates with the perfor-
mance of the merged model. We find that perfor-
mance on general NLU benchmarks—BELEBELE

and GLOBAL MMLU—is a stronger indicator of
a language expert’s merge quality than MGSM
results in the target language. Similarly, MGSM
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performance in English is a better predictor for a
math expert than MGSM in the target language.
This is notable because MGSM in the target lan-
guage is the target task of course, yet results more
directly related to the training data tends to be more
important for proper task composition.

6 Discussion

Given the rejection of our hypothesis that simulta-
neous fine-tuning would most effectively compose
task and language capabilities, we discuss potential
explanations for this outcome.

Train-then-Revert vs. Freeze-then-Train Intu-
ition may dictate that fine-tuning parameters and
then later reverting part of them should be less
effective than simply freezing those parameters
from the start. In the former, the fine-tuning is
unaware of future edits while the latter provides
hard constraints during optimization. However,
empirically, we find that across models, training-
then-resetting outperforms freezing-then-resetting.
We display this for our English math fine-tuning
in Table 3.3. This explains why Layer-Swapping
with full training (Section 4.3) may be preferen-
tial to solutions involving freezing parameters. We
conclude that while a large portion of fine-tuning
weight updates are not needed in the end, either
because they are noisy or redundant (Yu et al.,
2024b), they enable optimization in a very high-
dimensional space. This is analogous to recent
papers discussing the Lottery Ticket Hypothesis
(Frankle and Carbin, 2019), where it has been con-
cluded that training a full neural network and then
pruning it leads to stronger models than the same
pruning before training (Frankle et al., 2021).

Concatenating Components in Layer-Swapping
We seek to explain why concatenating transformer
layers from separately fine-tuned “experts" is so
seamless. Task vectors (Ilharco et al., 2023b) are
the ∆s that result from fine-tuning (i.e., θFT − θ0).
Task vector linearity refers to the property that lin-
ear combinations of such task vectors form a co-
herent, effective model. Ortiz-Jimenez et al. (2023)
identifies that linearized task vectors exhibit better
mergeability. Meanwhile, when fine-tuning heavily
post-trained models like those used in our experi-
ments, recent works show that updates to individ-
ual model layers exhibit significant linearity (Zhou
et al., 2024; Razzhigaev et al., 2024; Dai et al.,
2025). Furthermore, research on mode connectivity

(Frankle et al., 2020; Garipov et al., 2018) shows
individual transformer layers can be smoothly in-
terpolated (Zhou et al., 2023; Adilova et al., 2024).
These works provide explanation for why ad hoc
Layer-Swapping is not more degradative.

Further Considerations We note that model
merging is convenient because the configuration
(e.g., what parameters to swap), can be determined
after training. This enables fast iteration through
configurations without retraining. This flexibility
is sacrificed for our “separate parameters" methods,
which require fixing parameter allocations. How-
ever, an inconvenience of merging methods is the
need to train two experts, potentially doubling the
amount of training runs for hyperparameter search.

7 Conclusions

Our results demonstrate that imposing modularity
into dense LLMs for cross-lingual transfer is quite
effective in low-data scenarios. We empirically val-
idate this with numerous ways to impose such mod-
ularity through fine-tuning with frozen parameters
or model merging, all of which prove more effec-
tive than non-modular baselines. Furthermore, we
discover the surprising success of Layer-Swapping
over other modular methods that fine-tune task and
language together or do not ad hoc revert param-
eter updates. We conjecture that the success of
this ad hoc merging method is because the math
and language experts, when represented as task
vectors, exhibit a high degree of linearity. As a re-
sult, this method benefits from more robust training
over all parameters while also leading to effective
compositionality. We also empirically demonstrate
that the success of Layer-Swapping is in part due
to frozen-parameter fine-tunings underperforming
full fine-tunings followed by parameter resets.

8 Future Work

We encourage further work in multilingual NLP
that leverages implicit modularity in LLMs, in-
duces it during training, or designs explicitly modu-
lar architectures. Our parameter allocation strategy
relied on previous interpretability work and limited
empirical evidence, and the search space of modu-
lar configurations is largely unexplored. With post
hoc model merging, iterating through many abla-
tions can be quick. Although we focused on math-
ematical reasoning—due to limited multilingual
task-specific datasets—future work should exam-
ine other tasks that may warrant different parameter
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allocations. More broadly, these results underscore
the importance of improving interpretability around
how capabilities are parameterized in LLMs, such
as multilinguality. If we can better localize and sep-
arate parameters by function, our findings suggest
that modularization may yield significant improve-
ments.

Limitations

Small ∆s Our decision to use the instruction fine-
tuned version of each of the open-source LLMs for
our experiments was a conscious one that came
with many considerations. We prioritized replicat-
ing a real-life practical scneario, where model de-
velopers would start from already fine-tuned LLM
versions because of their broader capabilities. How-
ever, as a result, this meant that our fine-tuning ex-
periments only led to relatively small performance
improvements with respect to the starting check-
point. Such checkpoints have undergone extensive
post-training, notably with significant mathemati-
cal reasoning samples and varying amounts of mul-
tilingual samples. Therefore, possible model im-
provements with these small datasets were small,
risking results that were not statistically signifi-
cant. Nevertheless, this allowed us to control for
the amount of improvement on benchmarks that
was simply a result of the LLMs’ improved abil-
ity to follow instructions after SFT, in addition to
reflecting a more practical setting.
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A Appendix

A.1 Detailed Baseline Results

Detailed Performance of Non-Modular Baselines

SFT Dataset None Data-Mixing Math-Only Language-Only
SFT Type Base Full LoRA Full LoRA Part. FT Full LoRA Part. FT

Swahili 23.5% 25.1% 24.8% 25.2% 24.4% 25.0% 24.8% 23.8% 24.3%
Bengali 25.6% 27.9% 26.0% 26.1% 24.8% 25.6% 28.3% 26.6% 26.9%
Telugu 7.9% 8.2% 8.4% 7.4% 7.4% 8.0% 7.9% 8.6% 8.2%

English 78.4% 80.4% 80.0% 81.3% 81.0% 80.6% 79.9% 78.8% 79.0%
sw,bn,te AVG 19.0% 20.4% 19.7% 19.6% 18.9% 19.5% 20.3% 19.7% 19.8%

Table 4: All values presented above are MGSM 2-shot EM accuracy (↑), averaged across four models. Generally,
we find that data mixing is the most effective, but with very small difference in comparison to language-only SFT.
We exclude Partial LoRA results for space considerations, but report here that the results were for all numbers, 0-1%
lower than LoRA results.

A.2 CPT Results for QWEN2.5 in Bengali

Detailed Performance of CPT Experiments

SFT Dataset None Mix Math-Only Lang-Only Simult. Layer-Swapping
SFT Type Base Full Full Part.FT Full Part.FT Part.FT Full Part.FT

Bengali 37.6% 38.2% 33.2% 34.2% 37.6% 37.8% 38.8% 39.4% 38.8%

English 76.8% 77.6% 80.0% 79.8% 74.0% 73.8% 80.2% 79.2% 79.6%

Table 5: All values presented above are MGSM 2-shot EM accuracy (↑), averaged across two runs. We find that our
main results from SFT mostly stand, but limit our conclusions as the small number of runs prevent the findings from
being statistically significant. We note that CPT trainings more substantially degrade performance in the opposite
capability than SFT. “Mix" is “Data-Mixing" and “Simult." is “Simultaneous FT", shortened for space.

A.3 Number of Gradient Steps Between Switches

Table 6: Ablation over the number of gradient steps to do on a single dataset and single partition of model
parameters before switching back to the other data and parameters. All runs were controlled to have the same exact
hyperparameter settings on QWEN2.5 7B Instruct with the target language Swahili. Four upper layers and eight
lower layers were allocated for the target language, and a learning rate 1.2e−06

Gradient Steps per
Switch

Starting Validation
Loss

Ending Validation
Loss

∆ for MGSM,
Swahili

1 2.301 1.605 +3.2%
5 2.301 1.612 +2.4%
10 2.301 1.613 +2.8%
50 2.301 1.613 +2.0%
200 2.301 1.602 +0.8%
500 2.301 1.565 +1.2%
1171 2.301 1.536 −1.2%
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These results indicate no negligible differences between the tested step counts. This implies the concern
discussed in Section 4.5 of the optimizer unfreezing with an outdated loss landscape is minimal. Or at
least, it implies that the ability to do numerous steps without interruption in the same setting outweighs
this concern. And while increasing the gradient steps per switch does provide no negligible difference on
the validation loss, intuitively it leads to a training paradigm farther from a truly simultaneous training.
We find that on the target task, MGSM in Swahili, performance goes down progressively as the gradient
steps per switch is increased. This implies the composition of math and Swahili capabilities are working
less effectively.

A.4 Details for Reproducibility
For reproducibility, we detail our implementation and hyperparameters for training. The datasets them-
selves are outlined in Sections A.6 and A.7.

• Training is run on a single cluster of A100s, typically with only one GPU per training run.

• Training methods are developed using the trl python package (von Werra et al., 2020) and models
accessed via HuggingFace.

• Learning rate ranged across training runs, but was typically in the range [1.0, 2.0]× 10−6.

• For LoRA, it ranged from [4.0, 9.0] × 10−6. Rank and Alpha parameters were either (64, 16) or
(32, 8).

• Sequence length was either 512 or 1024. Effective batch size was typically 32, except for effective
batch size of 64 for simultaneous training, as described in Section 4.5.

• Evaluation is performed using the Language Model Evaluation Harness (Gao et al., 2024).

A.5 Bar Graph of Per-Language Results

Figure 2: Per-language breakdown of the average performance gain seen during our different types of training,
averaged across four models. We see that while math-only SFT (green) does well for Swahili and mixed-data SFT
(red) does well for Bengali, our two modular solutions work consistently well across the three languages. Note: the
y-axis is a percentage because the evaluation score is accuracy, not because this table displays percent change.
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A.6 SFT Datasets

Table 7: Datasets used for supervised-fine-tuning (SFT) in this project

Category Datasets URL
Math Orca Math word problems dataset from

Microsoft (Mitra et al., 2024)
https://huggingface.co/datasets/microsoft/
orca-math-word-problems-200k

Telugu
Aya Dataset from Cohere for AI (Singh
et al., 2024)

https://huggingface.co/datasets/CohereForAI/
aya_dataset

NLLB English-Telugu translation data
from FAIR (NLLB et al., 2022)

https://huggingface.co/datasets/allenai/nllb

Synthetic English instruction dataset,
machine translated to Telugu by Telugu-
LLM-Labs

https://huggingface.co/
collections/Telugu-LLM-Labs/
indic-alpaca-datasets-65f2a3687d5cdbce8880c581

Bengali

Aya Dataset by Cohere for AI (Singh
et al., 2024)

https://huggingface.co/datasets/CohereForAI/
aya_dataset

NLLB English-Bengali translation data
from FAIR (NLLB et al., 2022)

https://huggingface.co/datasets/allenai/nllb

IndicShareLlama dataset from
AI4Bharat (Khan et al., 2024)

https://huggingface.co/datasets/ai4bharat/
indic-align

BongChat dataset from Lumatic AI https://huggingface.co/datasets/lumatic-ai/
BongChat-v1-253k

Swahili

Aya Dataset by Cohere for AI (Singh
et al., 2024)

https://huggingface.co/datasets/CohereForAI/
aya_dataset

NLLB English-Swahili translation data
from FAIR (NLLB et al., 2022)

https://huggingface.co/datasets/allenai/nllb

Inkuba dataset from Lelapa (Tonja et al.,
2024)

https://huggingface.co/datasets/lelapa/
Inkuba-instruct

xP3 MT dataset from BigScience, with
FLORES samples removed (Muen-
nighoff et al., 2023)

https://huggingface.co/datasets/bigscience/
xP3mt

All datasets listed above were verified to be used in compliance with their respective licenses. Each
dataset was properly attributed according to its license requirements.

A.7 CPT Datasets

Table 8: Datasets used for continual pretraining (CPT) in this project

Category Datasets URL
Math Open Web mathematical texts collected

by the University of Toronto and Cam-
bridge (Paster et al., 2024)

https://huggingface.co/datasets/
open-web-math/open-web-math

Bengali The ROOTS corpus subset of Bengali
Wikipedia from BigScience (Laurençon
et al., 2022)

https://huggingface.co/datasets/
bigscience-data/roots_indic-bn_wikisource

All datasets listed above were verified to be used in compliance with their respective licenses. Each
dataset was properly attributed according to its license requirements.
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https://huggingface.co/collections/Telugu-LLM-Labs/indic-alpaca-datasets-65f2a3687d5cdbce8880c581
https://huggingface.co/collections/Telugu-LLM-Labs/indic-alpaca-datasets-65f2a3687d5cdbce8880c581
https://huggingface.co/collections/Telugu-LLM-Labs/indic-alpaca-datasets-65f2a3687d5cdbce8880c581
https://huggingface.co/datasets/CohereForAI/aya_dataset
https://huggingface.co/datasets/CohereForAI/aya_dataset
https://huggingface.co/datasets/allenai/nllb
https://huggingface.co/datasets/ai4bharat/indic-align
https://huggingface.co/datasets/ai4bharat/indic-align
https://huggingface.co/datasets/lumatic-ai/BongChat-v1-253k
https://huggingface.co/datasets/lumatic-ai/BongChat-v1-253k
https://huggingface.co/datasets/CohereForAI/aya_dataset
https://huggingface.co/datasets/CohereForAI/aya_dataset
https://huggingface.co/datasets/allenai/nllb
https://huggingface.co/datasets/lelapa/Inkuba-instruct
https://huggingface.co/datasets/lelapa/Inkuba-instruct
https://huggingface.co/datasets/bigscience/xP3mt
https://huggingface.co/datasets/bigscience/xP3mt
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/bigscience-data/roots_indic-bn_wikisource
https://huggingface.co/datasets/bigscience-data/roots_indic-bn_wikisource


A.8 Off-the-shelf Model Results
To motivate the use of our four models and the three target languages, we provide preliminary results of
these models prior to any fine-tuning.

Model Size MGSM BELEBELE
EN SW BN TE EN SW BN TE

LLAMA 3.1 8B 79.6% 52.0% 32.8% 11.2% 88.6% 56.1% 59.3% 53.6%
QWEN2.5 7B 76.8% 12.8% 37.6% 13.6% 91.1% 37.2% 64.7% 41.3%

AYA Expanse 8B 78.8% 10.8% 21.6% 3.2% 81.6% 32.3% 42.3% 29.9%
FALCON 3 7B 78.4% 14.4% 10.4% 3.6% 85.9% 36.3% 34.8% 30.1%

Table 9: The results on the MGSM (2-shot, EM accuracy (↑)) and BELEBELE (0-shot accuracy (↑)) benchmarks for
the four models used in our experiments. We note that for all models, we use the instruction-finetuned version.
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