
MathNLP 2025

MathNLP 2025: The 3rd Workshop on Mathematical Natural
Language Processing

Proceedings of the Workshop

November 9, 2025

©2025 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S
Suite 400 - 134
Kerrville, TX 78028
USA
Tel: +1-855-225-1962
acl@aclweb.org

ISBN 979-8-89176-348-7

i

MathNLP 2025

The articulation of mathematical arguments is a fundamental part of scientific reasoning and commu-
nication. Across many disciplines, expressing relations and interdependencies between quantities is at
the centre of scientific argumentation. Nevertheless, despite its importance, the application of contem-
porary NLP models for inference over mathematical text remains under-explored or subject to important
limitations. MathNLP represents a forum for discussing new ideas to advance research on Mathema-
tical Natural Language Processing, welcoming novel contributions on model architectures, evaluation
methods and downstream applications.
Recent advances in Natural Language Processing (NLP) enabled by Deep Learning-based architectures
bring the opportunity to support the interpretation of textual content at scale. The application of these
methods can facilitate scientific discovery, reducing the gap between current research and the available
large-scale scientific knowledge. Previous work has shown the potential of designing neural architectures
for different mathematical natural language inference tasks, such as premise selection in natural language,
expression derivation, and mathematical information retrieval.
However, there are still technical gaps that need to be addressed such as the availability of datasets and
evaluation tasks, techniques for the joint interpretation of different modalities present in mathematical
text (equational and natural language), the understanding of unique aspects of mathematical discourse
and multi-hop models for mathematical inference.
We proposed this workshop as a continuation of our previous editions, with a new emphasis on the
integration of Large Language Models (LLMs) and symbolic approaches with the goal of addressing
these challenges and connect different experts in this field.
In this edition, MathNLP accepted a total of 40 papers, of which 16 are included in the proceedings. For
additional details about MathNLP 2025, please visit the website: https://sites.google.com/
view/mathnlp2025.

ii

https://sites.google.com/view/mathnlp2025
https://sites.google.com/view/mathnlp2025

Organizing Committee

General Chair

Marco Valentino, University of Sheffield

Program Chairs

Deborah Ferreira, The MathWorks
Mokanarangan Thayaparan, The MathWorks
Leonardo Ranaldi, University of Edinburgh
Andre Freitas, Idiap Research Institute and University of Manchester

iii

Program Committee

Program Committee

Kuan Lu
Lei Xu
Surangika Ranathunga
Pierre Beckmann
Xin Quan
Nisansa de Silva
Federico Ranaldi
Aishwarya Jadhav
Pinzhen Chen
Mardhiyah Sanni
Yingji Zhang
Giulia Pucci
Lan Zhang
Joshua Ong Jun Leang
Xingwei Tan
Matt Freestone
David L. J. Ho
Wenda Li
Gautam Pendse

iv

Table of Contents

Syntactic Blind Spots: How Misalignment Leads to LLMs’ Mathematical Errors
Dane A Williamson, Yangfeng Ji and Matthew B. Dwyer . 1

Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback
Yen-Ting Lin, Di Jin, Tengyu Xu, Tianhao Wu, Sainbayar Sukhbaatar, Chen Zhu, Yun He, Yun-

Nung Chen, Jason E Weston, Yuandong Tian, Arash Rahnama, Sinong Wang, Hao Ma and Han Fang
15

BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom’s-Taxonomy-
Inspired Prompts

Maria-Eleni Zoumpoulidi, Georgios Paraskevopoulos and Alexandros Potamianos 34

Scalability of LLM-Based Multi-Agent Systems for Scientific Code Generation: A Preliminary Study
Yuru Wang, Kaiyan Zhang, Kai Tian, Sihang Zeng, Xingtai Lv, Ning Ding, Biqing Qi and Bowen

Zhou . 50

FIRMA: Bidirectional Formal-Informal Mathematical Language Alignment with Proof-Theoretic Groun-
ding

Maryam Fatima . 62

CHECK-MAT: Probing the Mathematical Reasoning and Rubric-Alignment of Vision-Language Models
on Handwritten Solutions

Ruslan Khrulev . 77

RoMath: A Mathematical Reasoning Benchmark in Romanian
Adrian Cosma, Ana-Maria Bucur and Emilian Radoi . 95

Into The Limits of Logic: Alignment Methods for Formal Logical Reasoning
Francisco Fernando Lopez-Ponce and Gemma Bel-Enguix . 112

Formula-Text Cross-Retrieval: A Benchmarking Study of Dense Embedding Methods for Mathematical
Information Retrieval

Zichao Li . 124

BanglaMATH : A Bangla benchmark dataset for testing LLM mathematical reasoning at grades 6, 7,
and 8

Tabia Tanzin Prama, Christopher M. Danforth and Peter Dodds . 134

Logically Constrained Decoding
Franklin Ma and Alan J. Hu . 150

Modeling Tactics as Operators: Effect-Grounded Representations for Lean Theorem Proving
Elisaveta Samoylov and Soroush Vosoughi .168

UniMath-CoT: A Unified Framework for Multimodal Mathematical Reasoning with Re-Inference Affir-
mation

Zhixiang Lu, Mian Zhou, Angelos Stefanidis and Jionglong Su . 176

An in-depth human study of the mathematical reasoning abilities in Large Language Models
Carolina Dias-Alexiou, Edison Marrese-Taylor and Yutaka Matsuo . 186

Synthetic Proofs with Tool-Integrated Reasoning: Contrastive Alignment for LLM Mathematics with
Lean

Mark Obozov, Michael Diskin, Aleksandr Beznosikov, Alexander Gasnikov and Serguei Baranni-
kov . 195

v

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 1–14
November 9, 2025 ©2025 Association for Computational Linguistics

Syntactic Blind Spots: How Misalignment Leads to LLMs’ Mathematical
Errors

Dane Williamson,Yangfeng Ji,Matthew Dwyer
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

{dw3zn, yj3fs, md3cn}@virginia.edu

Abstract
Large Language Models (LLMs) demonstrate
strong mathematical problem-solving abilities
but frequently fail on problems that deviate syn-
tactically from their training distribution. We
identify a systematic failure mode, syntactic
blind spots, in which models misapply fa-
miliar reasoning strategies to problems that are
semantically straightforward but phrased in un-
familiar ways. These errors are not due to gaps
in mathematical competence, but rather reflect
a brittle coupling between surface form and in-
ternal representation. To test this, we rephrase
incorrectly answered questions using syntactic
templates drawn from correct examples. These
rephrasings, which preserve semantics while
reducing structural complexity, often lead to
correct answers. We quantify syntactic com-
plexity using a metric based on Dependency
Locality Theory (DLT), and show that higher
DLT scores are associated with increased fail-
ure rates across multiple datasets. Our findings
suggest that many reasoning errors stem from
structural misalignment rather than conceptual
difficulty, and that syntax-aware interventions
can reveal and mitigate these inductive failures.

1 Introduction
Large Language Models (LLMs) show strong perfor-
mance on mathematical benchmarks like GSM8K,
SVAMP, MultiArith, and ASDiv (Cobbe et al.,
2021; Patel et al., 2021; Roy and Roth, 2015; Miao
et al., 2020), yet they frequently make systematic
errors, often reapplying familiar solution strategies
even when the problem structure changes (Zheng
et al., 2024; Bao et al., 2025; Huang et al., 2025).

These errors reflect an overreliance on surface-
level pattern matching rather than adaptive reason-
ing. We focus on a specific class of such fail-
ures, which we term syntactic misalignment, cases
where LLMs fail because a problem’s phrasing de-
viates structurally from patterns they have learned
to solve, even though the underlying logic remains

"The great dragon, Perg, sits atop mount Farbo, breathing �re within a 1000-foot radius. Polly can
throw the gold javelin, the only known weapon to defeat the dragon, for a distance of 400 feet,
within the dragon's �ames. However, when Polly holds the sapphire gemstone, she can throw
the javelin three times farther than usual. If holding the gemstone, how far outside the

dragon's �ames can Polly stand and still hit the dragon with the gold javelin?"

"The great dragon, Perg, sat high atop mount Farbo, breathing �re upon anything within a distance
of 1000 feet. Polly could throw the gold javelin, the only known weapon that could slay the

dragon, for a distance of 400 feet, well within the reach of the dragon's �ames. But when Polly
held the sapphire gemstone, she could throw the javelin three times farther than when not

holding the gemstone. If holding the gemstone, how far outside of the reach of the dragon's

�ames could Polly stand and still hit the dragon with the gold javelin?"

Answer: 1200 feet

Answer: 200 feet

Figure 1: Structural rephrasing improves model accu-
racy by reducing syntactic complexity and dependency
length.

unchanged. As shown in Figure 1, rephrasing a
problem to reduce syntactic complexity can often
reverse these failures.

Prior work has documented LLM sensitivity to
superficial variation: word order changes, para-
phrasing, or structural perturbations can all induce
performance drops (Zhang et al., 2024; Srivastava
et al., 2024; Huang et al., 2025). Models sometimes
ignore altered constraints and produce answers con-
sistent with the original phrasing.

We argue that this brittleness arises from a struc-
tural failure mode we call syntactic induction, the
tendency to treat syntactic similarity as a proxy
for problem similarity. This leads models to over-
apply familiar solution templates, even when the
problem logic has changed. Inspired by cogni-
tive science, we draw an analogy to rule-based
overgeneralizations in human learners (Ben-Zeev,
1998; Karmiloff-Smith, 1986), where errors arise
not from lack of competence but from misapplied
procedural regularities.

To study this phenomenon, we develop a
dependency-guided framework for identifying and

1

mitigating syntactic induction failures. We use
Dependency Locality Theory (DLT) to quantify
syntactic complexity and rephrase high-complexity
questions using syntactic templates drawn from suc-
cessful examples. This reveals that many reasoning
errors stem not from mathematical difficulty, but
from a mismatch between surface form and learned
problem schemas.

1.1 Contributions
This work makes four contributions:

• Introduces syntactic induction failures as a
structured, recurring error mode in LLM math-
ematical reasoning.

• Bridges LLM error behavior with cognitive sci-
ence, highlighting parallels in schema-driven
failure.

• Proposes a dependency-guided framework
for detecting and rephrasing structurally mis-
aligned problems.

• Demonstrates that rephrasing structurally com-
plex math questions significantly improves
model accuracy across datasets and models.

2 Related Work

LLM Sensitivity to Structural Variation. While
techniques like in-context learning and chain-of-
thought prompting have improved LLM math per-
formance (Brown and Mann, 2020; Wei et al., 2022),
models remain brittle under surface-level pertur-
bations. Studies have shown that modifying word
order, phrasing, or structure leads to significant per-
formance drops (Huang et al., 2025; He et al., 2024;
Kang et al., 2024; Zheng et al., 2024; Srivastava
et al., 2024). Even when semantics are preserved,
models often revert to memorized patterns (Zhang
et al., 2024), suggesting an overreliance on surface
form as a proxy for problem identity.

Beyond formatting, deeper failure modes have
been linked to data contamination (Magar and
Schwartz, 2022; Sainz et al., 2023), deductive er-
rors (Ling et al., 2023), and spurious correlations
(Zhou et al., 2024; Bao et al., 2025). Most rel-
evantly, Stechly et al. (2025) show that models
struggle when questions are phrased in unfamiliar
syntactic forms, motivating our focus on syntactic
misalignment.

Cognitive Accounts of Structural Sensitivity.
These observations parallel well-known findings in
cognitive psychology. Chi and et al (1981) distin-
guish between a problem’s surface structure (e.g.,
phrasing, grammar) and its deep structure (underly-
ing logic). Even experienced solvers often rely on
surface cues to access problem schemas (Novick,
1988; Hinsley et al., 1977), which guide solution
strategies. Analogical reasoning studies further
show that surface similarity influences both novice
and expert behavior (Holyoak and Koh, 1987; Ross,
1984).

Our work draws on this perspective, proposing
that LLMs exhibit a similar schema-triggered behav-
ior. We formalize this through syntactic induction:
the tendency to conflate surface-form similarity
with structural equivalence. To quantify this effect,
we adopt Dependency Locality Theory (DLT) (Gib-
son, 1998, 2000) and show that higher DLT scores
are associated with LLM failure. Rephrasing high-
DLT questions often recovers accuracy, supporting
a structural account of reasoning breakdown.

Toward a Taxonomy of Rational Errors. Fi-
nally, our perspective aligns with work on human
error categorization. Rule-based overgeneraliza-
tions (Ben-Zeev, 1998; Ashlock, 2002), where valid
strategies are misapplied in the wrong context, mir-
ror LLM errors under syntactic shift. We argue
that LLMs, like learners, may benefit from struc-
tured taxonomies of failure to guide robustness
interventions (see Appendix Figure 9).

3 Method: Rephrasing for Reducing
Syntactic Misalignment

LLMs often fail when problems are phrased in struc-
turally unfamiliar ways. To diagnose and mitigate
these errors, we quantify syntactic complexity using
Dependency Locality Theory (DLT) and rephrase
structurally complex questions to align with previ-
ously successful examples. This section outlines
the framework.

3.1 Quantifying Syntactic Complexity with
DLT

We define syntactic complexity using a scoring func-
tion based on Dependency Locality Theory (DLT).
For a math word problem, 𝑞 = (𝑤1, . . . , 𝑤𝑛), the
total DLT score is the sum of three costs over all
tokens:

2

DLT(𝑞) =
𝑛∑︁
𝑖=1

(
Integration(𝑤𝑖) + Storage(𝑤𝑖)

+ Discourse(𝑤𝑖)
)

(1)

Given the dependency trees of the sentences in 𝑞
each component in Equation 1 is defined as follows:

Integration : For a token 𝑤𝑖, let ℎ𝑖 be its head
token following the dependency tree. The in-
tegration cost is the number of new discourse
referents between them: Integration(𝑤𝑖) =∑

𝑤 𝑗 ∈Intervening(𝑤𝑖 ,ℎ𝑖) 1Referent(𝑤 𝑗), where
1Referent(𝑤 𝑗) = 1 if 𝑤 𝑗 has POS tag in {NOUN,
PROPN, NUM, VERB}.

Discourse : A token introduces discourse cost
if it adds a new referent: Discourse(𝑤𝑖) =
1Referent(𝑤𝑖).

Storage : This is the number of unresolved syntac-
tic expectations at 𝑤𝑖 , denoted Storage(𝑤𝑖) =
|P𝑖 |, where P𝑖 is the set of pending predic-
tions.

This formulation enables theoretically-grounded,
systematic scoring of syntactic complexity for each
question based on its dependency parse.

Example: ”Melissa brushes 12 horses on Monday.”

• Discourse: All content words (”Melissa”,
”brushes”, ”12”, ”horses”, ”Monday”) introduce
discourse referents (PROPN, VERB, NUM,
NOUN), yielding a total cost of 5.

• Integration: ”Horses” depends on ”brushes”,
with ”12” intervening. Since ”12” is a referent,
it contributes an integration cost of 1.

• Storage: ”Melissa” introduces an unresolved
expectation for a verb, resolved by ”brushes”.
New expectations (e.g., for an object) are
tracked until resolved.

3.1.1 Normalization
To ensure fair comparison across questions of vary-
ing length and content density, we normalize two
components of the DLT score. Integration cost is
divided by the number of discourse referents, and
peak storage cost is scaled by question length. The
resulting normalized DLT score is:

Sub-Parse of Incorrectly Answered Question

Luke P R OP N is A UX spending V E R B time NOUN at A DP the DE T beach NOUN building NOUN sandcastles NOUN
1 2 3 4 5 6 7 8 9

nsubj

aux dobj

prep

det

compound compound

pobjRoot: 'spending' (non-central event)

Delayed Resolution of 'spending'

Multiple Intervening Discourse referents between 'spending' and building'

Sub-Parse of Correctly Answered Question
Root: 'takes' (central event)

Immediate resolution of central verb

'that' starts relative clause - which introduces no discourse referents

resolves with referent 'total' - with minimum disruption

modifiers introduce no referents

referents immediately resolve 'total'

J ane P R OP N takes V E R B 3 NUM tests NOUN that P R ON together A DV must A UX total V E R B at A DV least A DV 42 NUM points NOUN
1 2 3 4 5 6 7 8 9 10 11 12

nsubj nummod

dobj

nsubj

advmod

aux

relcl

advmod advmod nummod

npadvmod

Sub-Parse of Rephrased Question

Luke P R OP N builds V E R B a D E T sandcastle NOUN with A DP 4 NUM levels NOUN
1 2 3 4 5 6 7

nsubj det

dobj

prep nummod

pobj

Immediate resolution of referents No intervening referents

Figure 2: Dependency parses illustrating the rephrasing
pipeline. The rephrased version reduces dependency
depth and referential interference, lowering DLT-based
processing cost.

DLTnorm(𝑞) =
(∑

Integration∑
Discourse

)

+
(
max Storage

|𝑞 |

)

+
(∑︁

Discourse
)

(2)

This yields a length-independent complexity mea-
sure. As shown in section 5, higher normalized-
DLT scores correlate with model failure, making
this a reliable predictor of syntactic brittleness.

3.2 Dependency-Guided Rephrasing
To correct syntactic misalignment, we rephrase a
failed question 𝑞incorrect to resemble a syntactically
similar, correctly answered one 𝑞match. We identify
𝑞match using the Weisfeiler-Lehman Graph Kernel
(WLK) (Shervashidze et al., 2011):

𝑞match = arg max
𝑞∈Qcorrect

WLK(𝐺 incorrect, 𝐺𝑞) (3)

We then prompt an LLM to rewrite 𝑞incorrect
to match the structure of 𝑞match, while preserving
semantics:

𝑞′incorrect = M(𝑞incorrect, 𝑞match,P) (4)

For example, consider this original question:
”Luke is spending time at the beach building sand-
castles. He eventually notices that. . .”

Its syntactic embedding leads to high DLT cost.
The rephrased version:

”Luke builds a sandcastle with 4 levels, where
each level has half the square footage. . .”

flattens dependencies, reduces referential interfer-
ence, and improves model accuracy.

3

Linus works for a trading company. He buys a mobile device for $20 and sells it for twice
 the amount of the original price. If he bought 2 devices last Monday and 4 devices last
Tuesday, how much profit was he able to earn after selling all the mobile devices he bought
 last Monday and Tuesday?

Rephrasing Prompt

Instruction:

LLM Response

[rephrased_question]:

Use the context from the previous example(s) to rephrase the following question:
[incorrect_question] to match the syntactic and grammatical structure of this example
question: [correct_question]

Linus buys mobile devices for $20 each and sells them for twice the original price. He buys
 2 devices on Monday and 4 devices on Tuesday. How much profit does he make after
 selling all the devices he bought on those two days?

[correct_question]:

Melissa works as a pet groomer. This week, she has 8 dogs that need to be bathed,
 5 cats that need their nails clipped, 3 birds that need their wings trimmed, and
12 horses that need to be brushed. If she splits the grooming jobs evenly over the days,
how many animals will she groom each day of the week?

Figure 3: Format of rephrasing prompt. The LLM
is prompted to generate a rephrased variant that more
closely matches the surface structure of the correctly
answered question.

3.3 Procedure Overview
Our pipeline consists of:

1. Query the model; collect incorrect responses
𝑄incorrect.

2. Parse all questions using spaCy to extract depen-
dency trees.

3. For each 𝑞 ∈ 𝑄incorrect, find 𝑞match ∈ 𝑄correct via
WLK similarity.

4. Prompt the LLM with 𝑘-shot examples to
rephrase 𝑞 syntactically in the form of 𝑞match.

We then re-query the model on the rephrased
versions 𝑞′ and evaluate whether failures are recov-
ered.

4 Experiment Setup
To assess the impact of syntactic restructuring,
we re-evaluate the LLM on the rephrased variants
𝑞′incorrect. If accuracy improves significantly, we
attribute the original failure to a syntactic induction
failure: the model’s inability to generalize over
unfamiliar surface forms despite semantic equiva-
lence.

This evaluation allows us to systematically char-
acterize and quantify a core weakness in LLM
reasoning and establish the importance of syntactic
alignment for mathematical understanding.

This section outlines our experimental framework
for evaluating how syntactic structure influences
LLM reasoning performance. We begin by stat-
ing our research question, (Section 4.1). We then
describe the datasets and preprocessing methods
(Section 4.2). Finally, we provide implementation

STEP 1 LLM Response + Dependency Parsing

Get the LLM Responses Parse Questions into Corresponding
Dependency Graphs

Step 2 Syntactic Matching

Match each incorrect question to the most similar correct one by
comparing dependency graphs

Step 3 Dependency-Guided Rephrasing

Prompt LLM to rephrase with structural alignment and semantic fidelity

Figure 4: Rephrasing pipeline. An incorrectly answered
question is aligned to a syntactically similar, correctly
answered one via WL Kernel matching. A 𝑘-shot prompt
then guides the LLM to generate a syntactically aligned
but semantically identical rephrasing.

details regarding parsing, tree similarity computa-
tion, and model evaluation (Section 4.3).

4.1 Research Questions
This work investigates whether syntactic complex-
ity contributes to reasoning failures in LLMs and
whether syntactic restructuring can mitigate those
failures. Specifically, we ask:

1. How effectively does the proposed DLT-
based complexity framework differentiate
between correctly and incorrectly answered
math questions?

2. To what extent does syntactic rephrasing,
guided by structural similarity to success-
fully answered questions, improve model
accuracy on previously failed examples?

Before evaluating the effects of syntactic rephras-
ing, we first investigate whether syntactic complex-
ity alone can be predictive of model failure. For
each model, we compute DLT complexity scores for
all questions and divide the dataset into two groups:
those answered correctly and those answered incor-
rectly.

To assess whether there is a statistically signif-
icant difference in complexity between the two

4

groups, we apply Welch’s t-test. This test is appro-
priate when comparing the means of two samples
with potentially unequal variances and sample sizes,
conditions that naturally arise given varying model
accuracies. The resulting t-statistic quantifies the
separation between group means relative to their
variances, while the corresponding p-value indi-
cates whether the observed difference is likely to
have occurred by chance.

This analysis allows us to test the hypothesis that
higher syntactic complexity, independent of seman-
tic content, is associated with increased model error.
A significant result would suggest that DLT com-
plexity serves as a useful predictor of LLM failure,
motivating our subsequent rephrasing intervention.

We report the results of this comparison in sub-
section 5.1 and interpret its implications in subsec-
tion 6.1.

4.2 Datasets and Pre-processing
We evaluate five open-source LLMs, LLaMA,
Mistral, Qwen, Gemma, and Granite, in a zero-
shot setting on four established math benchmarks:
GSM8K, SVAMP, MultiArith, and ASDiv (Tou-
vron et al., 2023; Jiang and et al, 2023; Yang et al.,
2024; Team et al., 2024; Mishra and et al, 2024).
These datasets span diverse reasoning skills and
syntactic forms, from simple arithmetic (GSM8K,
MultiArith) to structurally perturbed (SVAMP) and
linguistically varied (ASDiv) problems.

To analyze syntactic structure, we parse each
question using the spaCy NLP toolkit (Honnibal
and Montani, 2017), yielding dependency trees that
capture syntactic relations. Let 𝑇incorrect denote the
tree of an incorrectly answered question, and Tcorrect
the set of trees from correctly answered ones.

4.3 Implementation Details
Dependency parsing and tree similarity computa-
tions are implemented using spaCy and nltk. We
use Hugging Face implementations of all LLMs. 1

All experiments are conducted on NVIDIA RTX
2080 GPUs.

5 Experimental Results

We first test whether surface-level syntactic com-
plexity predicts model failure. We then assess
whether syntactic restructuring can recover accu-
racy on previously incorrect questions.

1See Appendix Table 4 for model and hyperparameter
details.

Dataset Model Correct Mean Incorrect Mean Δ DLT

GSM8K

Gemma 22.90 25.71 +2.81∗
Granite 22.17 25.43 +3.27∗
LLaMA 23.53 28.10 +4.57∗
Mistral 22.98 26.21 +3.23∗
Qwen 23.86 29.01 +5.15∗

SVAMP

Gemma 17.34 18.70 +1.36∗
Granite 16.95 18.58 +1.62∗
LLaMA 17.60 18.88 +1.28∗
Mistral 17.42 18.60 +1.18∗
Qwen 17.80 18.57 +0.78

MultiArith

Gemma 17.24 17.29 +0.05
Granite 17.39 17.11 -0.28
LLaMA 17.25 17.15 -0.10
Mistral 17.36 16.98 -0.38
Qwen 17.19 19.26 +2.07∗

ASDiv

Gemma 16.70 16.87 +0.17
Granite 16.10 17.37 +1.27∗
LLaMA 16.39 18.43 +2.04∗
Mistral 16.17 17.84 +1.67∗
Qwen 16.70 17.58 +0.88

Table 1: Mean DLT complexity scores for correctly
and incorrectly answered questions across datasets and
models. Δ DLT is the difference. Bolded values with ∗

indicate statistically significant differences (𝑝 < 0.01,
Welch’s 𝑡-test).2

5.1 Syntactic Complexity of Incorrect
Questions

Table 1 reports the mean normalized DLT com-
plexity scores on both sets of questions. GSM8K
exhibits unanimously higher syntactic complexity
scores on incorrectly answered questions across all
models, with Welch’s p < 0.01 in every case (full
test statistics are provided in the supplementary ma-
terial). On SVAMP, all deltas are positive, with four
reaching statistical significance. MultiArith and
ASDiv show weaker or inconsistent trends, with
smaller or statistically insignificant differences.

5.2 Accuracy Gains from Rephrasing
We define performance improvement in terms of
the change in accuracy after rephrasing, denoted by
Δ𝐴. Let 𝑄total denote the full set of questions, and
𝑄′

correct ⊆ 𝑄incorrect represent the set of previously
incorrect questions that are now answered correctly
after rephrasing. We compute:

Δ𝐴 =
|𝑄′

correct |
|𝑄total | (5)

Final model accuracy is then updated as:

New Accuracy(𝐴) (6)
= Original Accuracy(𝐴0) + Δ𝐴 (7)

2See Appendix Figure 5 for supporting visualizations.

5

Model GSM8K SVAMP MultiArith ASDiv
𝐴0 Δ𝐴 𝐴 #Recovered 𝐴0 Δ𝐴 𝐴 #Recovered 𝐴0 Δ𝐴 𝐴 #Recovered 𝐴0 Δ𝐴 𝐴 #Recovered

Gemma-7B 37.76 8.26 46.02 109 61.71 7.14 68.85 50 77.62 4.76 82.38 20 59.61 9.11 68.72 210
Granite-7B 24.03 11.68 35.71 154 44.43 11.86 56.29 83 50.00 15.48 65.48 65 64.08 9.68 73.75 223
LLaMA-8B 75.44 7.81 83.25 103 79.86 4.00 83.86 28 94.76 3.57 98.33 15 81.43 5.08 86.51 117
Mistral-7B 48.29 11.45 59.74 151 63.29 8.29 71.57 58 70.71 14.52 85.24 61 47.25 12.10 59.35 279
Qwen-7B 84.53 4.32 88.86 57 92.43 1.43 93.86 10 97.14 0.48 97.62 2 91.76 1.82 93.58 42

Table 2: Accuracy improvements and number of recovered answers from syntactic restructuring across GSM8K,
SVAMP, MultiArith, and ASDiv. 𝐴0 is baseline accuracy, Δ𝐴 is improvement after rephrasing, 𝐴 is final accuracy,
and #Recovered denotes incorrect answers corrected by rephrasing.

This formulation quantifies the overall gain at-
tributable to syntactic restructuring, allowing us to
isolate its impact.

Table 2 reports the accuracy improvements and
the number of recovered answers from syntactic
restructuring. All models improve on GSM8K
and SVAMP, with lower-performing models (e.g.,
Gemma, Granite) showing the greatest relative
gains. Improvements are less consistent on Mul-
tiArith and ASDiv, where most models already
achieve high baseline accuracy or rephrasing yields
fewer recoveries.

We observe that syntactic restructuring is most
impactful on datasets with more narrative or struc-
turally varied question phrasing (e.g., GSM8K,
SVAMP), suggesting that syntactic mismatch con-
tributes to model failures in these settings. Recov-
ery counts ranged from 2 (Qwen on MultiArith)
to 210 (Gemma on ASDiv), with rephrasing im-
proving accuracy by as much as 15.5 % (Granite
on MultiArith).

These findings provide strong empirical support
for our hypothesis that LLMs fail on syntactically
unfamiliar problems, and that rephrasing toward
familiar structures mitigates these errors.

6 Further Analysis
The section provides further analysis regarding how
syntactic structure influences LLM reasoning behav-
ior. It examines four key dimensions: First, we show
that elevated syntactic complexity, measured using
DLT, predicts failure on narrative math tasks. Sec-
ond, we demonstrate that rephrasing these complex
questions into syntactically familiar forms improves
model accuracy, supporting an interpretation of fail-
ure as schema misalignment. Third, we analyze
these errors in light of cognitive theory, arguing that
LLMs overapply familiar strategies to structurally
novel inputs, a form-function misalignment. Finally,
we outline implications for robustness and general-
ization, proposing syntax-aware interventions and
cognitively grounded training approaches.

6.1 Syntactic Complexity Predicts Failure on
Narrative Math Tasks

The results from Table 1 show that syntactic com-
plexity, as measured by DLT scores, is positively
associated with model failures, particularly on
GSM8K and SVAMP. On GSM8K, all five LLMs
exhibit statistically significant increases in com-
plexity on incorrectly answered questions. On
SVAMP, all deltas are positive, though only four
reach statistical significance. For ASDiv, all mod-
els again show positive deltas, with three of them
statistically significant. In contrast, the pattern is
weaker on MultiArith, where only two of the five
models show positive deltas and just one achieves
significance. These results support the hypothesis
that LLMs are sensitive to structural features of
problem statements, especially on narrative-heavy
datasets like GSM8K and SVAMP. By contrast,
MultiArith’s more uniform, low-complexity phras-
ing likely shifts the source of failure away from
syntactic burden and toward reasoning depth.

These findings are consistent with the previously
outlined phenomenon of syntactic induction, in
which models perform worse on problems that devi-
ate from familiar surface forms. In our experiments,
LLMs consistently exhibited higher failure rates on
syntactically complex questions, particularly when
those forms differed structurally from common pat-
terns. This suggests that model predictions are
sensitive to surface structure, and that unfamiliar
phrasing can impair accuracy even when underlying
reasoning demands remain constant.

From a cognitive perspective, these errors reflect
a failure in structural fluency. The DLT framework
quantifies this fluency as a function of integration
cost, storage cost, and discourse load. Elevated
scores among failure cases suggest that LLMs, like
human solvers, are vulnerable to breakdowns in pro-
cessing when these syntactic burdens accumulate
beyond an internalized threshold.

6

6.2 Rephrasing as Schema Alignment

Table 2 demonstrates that rephrasing structurally
complex questions into syntactically familiar forms
yields substantial accuracy improvements. This
pattern is most pronounced on GSM8K and SVAMP,
particularly among lower-performing models such
as Gemma and Granite. While high-performing
models like LLaMA and Qwen show smaller deltas,
they also exhibit measurable gains, supporting the
interpretation that rephrasing facilitates access to
familiar problem-solving patterns across models.

These improvements reinforce the interpretation
of failure as a schema alignment problem. Accord-
ing to prior work in cognitive psychology, solvers
often rely on surface cues to activate latent problem
schemas. When surface form is misaligned with
internal expectations, reasoning may fail despite
latent competence. Rephrasing appears to bridge
this gap, effectively priming models to recognize
the underlying problem structure.

The consistency of this effect across architectures
suggests that the phenomenon is not model-specific
but a general feature of current LLM design.

6.3 Syntax Cues the Wrong Strategy:
Evidence of Form-Function Misalignment

Our findings reflect a consistent pattern: models
often fail when questions are phrased in structurally
unfamiliar ways, even if the underlying reasoning
task remains the same. This aligns with cognitive
accounts of human error, such as those described
by Ben-Zeev (1998), in which solvers misapply
familiar procedures to novel input formats.

While LLMs are not rule-based agents in the
human sense, our results suggest that they similarly
rely on surface-level cues to guide problem-solving
behavior. When syntactic structure deviates from
familiar patterns, models are more likely to generate
incorrect responses, even when they demonstrate
competence on simpler or canonical formulations
of the same task.

That even high-performing models benefit from
syntactic restructuring indicates that many failures
are not due to limitations in arithmetic ability per se,
but rather in applying the right strategy under struc-
tural variation. This points to a challenge beyond
learning correct computations: models must also
determine how and when to apply learned behav-
iors, a process that appears sensitive to variations
in syntactic form.

6.4 Toward Syntax-Aware Generalization
These results carry several implications for improv-
ing LLM robustness and interpretability. First, they
emphasize the importance of training or prompting
models to abstract beyond surface form. Sensitiv-
ity to syntactic variation can limit generalization,
even in domains where the underlying reasoning is
sound.

Second, our analysis highlights the potential
of syntax-aware interventions. By measuring
DLT complexity and selectively rephrasing high-
complexity inputs, systems could anticipate and mit-
igate failure without retraining. This suggests a role
for lightweight, dynamic preprocessing pipelines
in real-world deployments.

Finally, our findings suggest promising directions
for future research (1) Syntactic curriculum learn-
ing: Gradually exposing models to varied syntactic
structures during training to improve generaliza-
tion under structural variation. (2) Schema-guided
error analysis: Building error taxonomies based
on syntactic mismatches to inform evaluation and
debugging.

Overall, our analysis suggests that syntactic in-
duction is a significant source of LLM failure in
math reasoning tasks. By quantifying structural
complexity and aligning input form with successful
patterns, we can better anticipate and mitigate a
subset of reasoning errors rooted in input formula-
tion.

Crucially, our findings suggest that syntactic
complexity is not merely correlated with failure but
may play a mediating role in model performance
on structurally complex inputs. This highlights
structurally guided rephrasing as a lightweight and
scalable strategy for recovering from such errors,
without modifying model weights or requiring ad-
ditional supervision.

7 Conclusion

This work investigated how syntactic structure influ-
ences the reasoning behavior of LLMs on mathemat-
ical problems. Across four benchmarks: GSM8K,
SVAMP, MultiArith, and ASDiv, we found that
LLMs systematically fail on syntactically complex
inputs, despite their semantic simplicity. These
failures were reliably predicted by elevated Depen-
dency Locality Theory (DLT) scores and mitigated
through targeted syntactic rephrasing.

Our findings demonstrate that many reasoning
errors stem not from a lack of mathematical compe-

7

tence, but from syntactic induction failures,
a tendency to misapply known solution strategies
when surface structure deviates from training priors.
Rephrasing misaligned questions into syntactically
familiar forms improved accuracy across all models,
with gains particularly notable in lower-performing
systems like Gemma and Granite. This supports the
view, rooted in cognitive science, that schema acti-
vation in both humans and LLMs is highly sensitive
to surface cues.

By framing these errors within a rule-based taxon-
omy and formalizing complexity through DLT, we
offer a structured explanation for inductive failure
in LLMs. Rather than viewing mistakes as isolated
or stochastic, we show they are predictable, syntax-
sensitive, and recoverable through lightweight in-
terventions.

Future Directions This work opens several di-
rections for enhancing LLM robustness and inter-
pretability. We highlight:

• Syntactic diagnostic tools: To identify
schema misalignment based on DLT complex-
ity or parse structure.

• Structure-aware input representations:
Leveraging dependency graphs or program-
matic abstractions to make problem structure
more accessible.

• Failure-aware training curricula: Introduc-
ing controlled syntactic variation to encourage
generalization beyond form-driven heuristics.

While our experiments focus on mathematical
benchmarks, the implications are broader. Syn-
tactic induction failures may underlie reasoning
brittleness across domains. Addressing these fail-
ures offers a path toward LLMs that reason more
like human experts: flexibly, structurally, and with
awareness of when form does, and does not, align
with function.

8 Ethics Statement
Our experiments were conducted on publicly avail-
able mathematical reasoning datasets, which do
not contain sensitive personal data or pose iden-
tifiable risks to individuals or groups. The work
does not involve human subjects or data collection.
No known ethical risks were introduced, and all
referenced work is properly cited and respected
under academic norms.

9 Limitations
This study focuses on mathematical word problems
and may not generalize to other domains. We eval-
uate only final-answer accuracy, without analyzing
intermediate reasoning.

8

References
Robert B. Ashlock. 2002. Error patterns in computation,

8th ed. edition. Merrill PH, New Jersy.

Guangsheng Bao, Hongbo Zhang, and et al Wang. 2025.
How Likely Do LLMs with CoT Mimic Human Rea-
soning? In Proceedings of the 31st International Con-
ference on Computational Linguistics, pages 7831–
7850, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Talia Ben-Zeev. 1998. Rational errors and the mathemat-
ical mind. Review of General Psychology, 2(4):366–
383.

Tom Brown and et al Mann. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Michelene T H Chi and Feltovich et al. 1981. Catego-
rization and representation of physics problems by
experts and novices. Cogn. Sci., 5(2):121–152.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word problems.
CoRR, abs/2110.14168.

Edward Gibson. 1998. Linguistic complexity: locality
of syntactic dependencies. Cognition, 68(1):1–76.

Edward Gibson. 2000. The Dependency Locality The-
ory: A distance-based theory of linguistic complexity.
In Image, language, brain: Papers from the first
mind articulation project symposium, pages 95–126,
Cambridge, MA. MIT Press.

Jia He, Mukund Rungta, David Koleczek, Arshdeep
Sekhon, Franklin X. Wang, and Sadid Hasan. 2024.
Does Prompt Formatting Have Any Impact on LLM
Performance? arXiv preprint. ArXiv:2411.10541
[cs].

Dan Alvin Hinsley, J. R. Hayes, and Herbert A. Si-
mon. 1977. From words to equations meaning and
representation in algebra word problems.

K J Holyoak and K Koh. 1987. Surface and struc-
tural similarity in analogical transfer. Mem. Cognit.,
15(4):332–340.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Ji-
awei Ge, Wenzhe Li, Yingqing Guo, Tianle Cai,
Hui Yuan, Runzhe Wang, Yue Wu, Ming Yin,
Shange Tang, Yangsibo Huang, Chi Jin, Xinyun
Chen, Chiyuan Zhang, and Mengdi Wang. 2025.
Math-perturb: Benchmarking llms’ math reason-
ing abilities against hard perturbations. Preprint,
arXiv:2502.06453.

Albert Q. Jiang and Alexandre Sablayrolles et al. 2023.
Mistral 7b. Preprint, arXiv:2310.06825.

Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar,
and Sergey Levine. 2024. Unfamiliar Finetuning Ex-
amples Control How Language Models Hallucinate.
arXiv preprint. ArXiv:2403.05612 [cs].

Annette Karmiloff-Smith. 1986. From meta-processes
to conscious access: Evidence from children’s met-
alinguistic and repair data. Cognition, 23(2):95–147.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reasoning.
Preprint, arXiv:2306.03872.

Inbal Magar and Roy Schwartz. 2022. Data Contam-
ination: From Memorization to Exploitation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 157–165, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings of
the 58th Annual Meeting of the ACL, pages 975–984,
Online. Association for Computational Linguistics.

Mayank Mishra and Matt Stallone et al. 2024. Granite
code models: A family of open foundation models
for code intelligence. Preprint, arXiv:2405.04324.

L R Novick. 1988. Analogical transfer, problem simi-
larity, and expertise. J. Exp. Psychol. Learn. Mem.
Cogn., 14(3):510–520.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 2021.
Are nlp models really able to solve simple math word
problems? In Proceedings of NAACL 2021: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Brian H. Ross. 1984. Remindings and their effects
in learning a cognitive skill. Cognitive Psychology,
16(3):371–416.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1743–1752, Lisbon, Por-
tugal. Association for Computational Linguistics.

Oscar Sainz, Jon Campos, Iker Garcı́a-Ferrero, Julen
Etxaniz, Oier Lopez de Lacalle, and Eneko Agirre.
2023. Nlp evaluation in trouble: On the need to
measure llm data contamination for each benchmark.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10776–10787, Sin-
gapore. Association for Computational Linguistics.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van
Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt.
2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research, 12(77):2539–2561.

9

https://aclanthology.org/2025.coling-main.524/
https://aclanthology.org/2025.coling-main.524/
https://doi.org/10.1037/1089-2680.2.4.366
https://doi.org/10.1037/1089-2680.2.4.366
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2110.14168
https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.48550/arXiv.2411.10541
https://doi.org/10.48550/arXiv.2411.10541
https://api.semanticscholar.org/CorpusID:116582787
https://api.semanticscholar.org/CorpusID:116582787
https://arxiv.org/abs/2502.06453
https://arxiv.org/abs/2502.06453
https://arxiv.org/abs/2310.06825
https://doi.org/10.48550/arXiv.2403.05612
https://doi.org/10.48550/arXiv.2403.05612
https://doi.org/10.1016/0010-0277(86)90040-5
https://doi.org/10.1016/0010-0277(86)90040-5
https://doi.org/10.1016/0010-0277(86)90040-5
https://arxiv.org/abs/2306.03872
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.1016/0010-0285(84)90014-8
https://doi.org/10.1016/0010-0285(84)90014-8
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2023.findings-emnlp.722
http://jmlr.org/papers/v12/shervashidze11a.html

Saurabh Srivastava, Annarose M. B, Anto P. V, Shashank
Menon, Ajay Sukumar, Adwaith Samod T, Alan
Philipose, Stevin Prince, and Sooraj Thomas. 2024.
Functional Benchmarks for Robust Evaluation of Rea-
soning Performance, and the Reasoning Gap. arXiv
preprint. ArXiv:2402.19450 [cs].

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-
hampati. 2025. Chain of thoughtlessness? an analysis
of cot in planning. Preprint, arXiv:2405.04776.

Gemma Team, Morgane Riviere, and Shreya Pathak et al.
2024. Gemma 2: Improving open language models
at a practical size. Preprint, arXiv:2408.00118.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

An Yang, Baosong Yang, and Binyuan Hui et al. 2024.
Qwen2 technical report. Preprint, arXiv:2407.10671.

Hugh Zhang, Jeff Da, and Lee et al. 2024. A careful
examination of large language model performance
on grade school arithmetic. In Advances in Neural
Information Processing Systems, volume 37, pages
46819–46836. Curran Associates, Inc.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin,
Keming Lu, Bowen Yu, Dayiheng Liu, Jingren Zhou,
and Junyang Lin. 2024. Processbench: Identifying
process errors in mathematical reasoning. Preprint,
arXiv:2412.06559.

Yuhang Zhou, Paiheng Xu, Xiaoyu Liu, Bang An, Wei
Ai, and Furong Huang. 2024. Explore Spurious
Correlations at the Concept Level in Language Models
for Text Classification. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 478–492,
Bangkok, Thailand. Association for Computational
Linguistics.

10

https://doi.org/10.48550/arXiv.2402.19450
https://doi.org/10.48550/arXiv.2402.19450
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2407.10671
https://proceedings.neurips.cc/paper_files/paper/2024/file/53384f2090c6a5cac952c598fd67992f-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/53384f2090c6a5cac952c598fd67992f-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/53384f2090c6a5cac952c598fd67992f-Paper-Datasets_and_Benchmarks_Track.pdf
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2412.06559
https://doi.org/10.18653/v1/2024.acl-long.28
https://doi.org/10.18653/v1/2024.acl-long.28
https://doi.org/10.18653/v1/2024.acl-long.28

A Appendix

A.1 DLT Rephrasing Algorithm (Proposed)
This subsection outlines a proposed procedure
for preemptively identifying syntactically complex
math word problems and evaluating the impact of
rephrasing. While this algorithm was not executed
in the main paper due to time constraints, it was
designed to support future ablation studies. The
pipeline filters questions based on elevated DLT
complexity, applies dependency-guided rephrasing,
and evaluates accuracy before and after restructur-
ing. This formalization supports reproducibility
and highlights a possible direction for proactive
syntax-aware model evaluation.

Algorithm 1 DLT-Guided Rephrasing and Accu-
racy Evaluation
Require: Dataset D = {(𝑞𝑖 , 𝑎𝑖)}𝑁𝑖=1 of questions

and answers
Require: Normalized DLT complexity scoring

function DLT(𝑞)
Require: Rephrasing function Rephrase(𝑞)
Require: Evaluation function Accuracy(Q,A)

1: Compute scores: {𝑠𝑖 = DLT(𝑞𝑖)}𝑁𝑖=1
2: Set threshold 𝜏 as the 75th percentile of {𝑠𝑖}
3: Define Dcomplex = {(𝑞𝑖 , 𝑎𝑖) | 𝑠𝑖 ≥ 𝜏}
4: For each (𝑞𝑖 , 𝑎𝑖) in Dcomplex, compute 𝑞′𝑖 =

Rephrase(𝑞𝑖)
5: Evaluate original accuracy:

Accorig = Accuracy ({𝑞𝑖}, {𝑎𝑖})

6: Evaluate rephrased accuracy:

Accreph = Accuracy
({𝑞′𝑖}, {𝑎𝑖})

7: Compute improvement: Δ = Accreph − Accorig
8: return 𝜏, Δ

A.2 DLT Complexity Statistical Significance
This section provides full statistical results and
supporting visualizations for the DLT complexity
gaps reported in Table 1 of the main paper. The
table below contains Welch’s 𝑡-statistics and 𝑝-
values for each dataset–model pair. Following the
table, we include full boxplots of DLT scores by
outcome (correct vs. incorrect) across all models
and datasets. These visualizations offer a more
detailed view of score distributions, variance, and
effect sizes.

Table 3: Welch’s 𝑡-test results comparing DLT complex-
ity for correctly vs. incorrectly answered questions.

Model ASDiv GSM8K MultiArith SVAMP
t-stat. p-val. t-stat. p-val. t-stat. p-val. t-stat. p-val.

Gemma -0.66 0.51 -6.97 < 0.0001 -0.18 0.86 -3.94 < 0.0001
Granite -5.29 < 0.0001 -6.22 < 0.0001 1.16 0.249 -4.87 < 0.0001
LLaMA -5.92 < 0.0001 -7.44 < 0.0001 0.28 0.861 -2.94 0.0037
Mistral -6.47 < 0.0001 -6.83 < 0.0001 1.58 0.116 -3.42 0.0007
Qwen -1.76 0.08 -6.66 < 0.0001 -2.52 0.0275 -1.13 0.2649

A.3 Manual Evaluation of Rephrased
Questions

To assess the quality and effectiveness of our syn-
tactic rephrasing method, we conducted a manual
evaluation. We selected 10 representative (original,
rephrased) question pairs sampled from GSM8K,
SVAMP, MultiArith, and ASDiv. Each pair was
reviewed by an annotator along three criteria:

• Semantic Match: Does the rephrased version
preserve the original problem’s meaning?

• Structural Simplification: Does the
rephrased version reduce syntactic complexity
(e.g., fewer clauses, flatter dependencies)?

• Answered Correctly: Did the model orig-
inally answer incorrectly but succeed after
rephrasing?

All 10 examples were rated as preserving seman-
tic fidelity while simplifying structure, and all were
answered correctly by the model post-rephrasing.
These results reinforce the claim that syntactic
restructuring can reduce complexity while main-
taining problem intent, allowing models to succeed
on previously failed inputs.

Table 5 summarizes the outcomes for each eval-
uated example.

A.4 LLM Evaluation Framework

This section lists the models and decoding parame-
ters used in our experiments. Table 4 provides full
details for both the math QA models and the rephras-
ing model. All math questions were evaluated in
a zero-shot setting using greedy decoding (temper-
ature = 0, no sampling). For rephrasing, we used
LLaMA-3 with mild sampling settings to introduce
syntactic variation while preserving semantic intent.
These parameters were fixed across all datasets to
ensure consistency and reproducibility.

11

DLT Complexity Scores Across Models on
GSM8K

correct incorrect
Set

10

20

30

40

50

60

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -5.93, p = 0.0000

(a) Gemma

correct incorrect
Set

10

20

30

40

50

60

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -6.22, p = 0.0000

(b) Granite

correct incorrect
Set

10

20

30

40

50

60

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -7.44, p = 0.0000

(c) LLaMA

correct incorrect
Set

10

20

30

40

50

60
DL

T
Co

m
pl

ex
ity

 S
co

re

DLT Complexity by Model Outcome
T = -6.83, p = 0.0000

(d) Mistral

correct incorrect
Set

10

20

30

40

50

60

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -6.66, p = 0.0000

(e) Qwen

Figure 5: DLT complexity scores by model outcome
(correct vs. incorrect) across five LLMs on GSM8K. In
each subplot, incorrectly answered questions (orange)
exhibit higher mean complexity and greater variance than
correct ones (green). Welch’s t-statistics and p-values
confirm these differences are statistically significant.

A.5 Cognitive Psychology: Rational Errors

To contextualize our findings within broader theo-
ries of reasoning failure, we draw on insights from
cognitive psychology and mathematical pedagogy.
Specifically, we reference the work of Ben-Zeev
(1998), who frames many student errors in math-
ematics not as random mistakes, but as rational
errors. systematic overgeneralizations of otherwise
valid strategies.

Figure 9 illustrates this framework. The top panel
shows a classic subtraction mistake: subtracting
each digit in place-value order without accounting
for borrowing. This type of mistake is not due to
irrationality but reflects a learner’s internalization of
an overly simplified rule. The bottom panel presents
a taxonomy of inductive failure modes, such as
syntactic induction and semantic induction, which
describe how solvers may misapply surface-level
patterns or real-world analogies inappropriately.

These mechanisms are highly relevant to our
analysis of LLM behavior. Our experiments show

DLT Complexity Scores Across Models on
ASDiv

correct incorrect
Set

10

20

30

40

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -0.66, p = 0.5099

(a) Gemma

correct incorrect
Set

10

20

30

40

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -5.29, p = 0.0000

(b) Granite

correct incorrect
Set

10

20

30

40

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -5.92, p = 0.0000

(c) LLaMA

correct incorrect
Set

10

20

30

40

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -6.47, p = 0.0000

(d) Mistral

correct incorrect
Set

10

20

30

40

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -1.76, p = 0.0802

(e) Qwen

Figure 6: DLT complexity scores by model outcome
(correct vs. incorrect) across five LLMs on ASDiv.

that LLMs often fail on syntactically novel questions
not because they lack competence, but because
they overapply strategies learned from structurally
familiar formsm precisely the type of error Ben-
Zeev characterizes as rational. In particular, what
we term syntactic induction failures in LLMs
echoes this cognitive framing, highlighting deep
parallels between human and model error patterns.

We include these diagrams to situate our findings
in a well-established theory of rule-based reasoning
errors and to support our claim that LLM failures
are often structured, interpretable, and attributable
to form-function misalignment rather than arbitrary
noise.

12

DLT Complexity Scores Across Models on
MultiArith

correct incorrect
Set

12

14

16

18

20

22

24

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -0.18, p = 0.8600

(a) Gemma

correct incorrect
Set

12

14

16

18

20

22

24

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = 1.16, p = 0.2485

(b) Granite

correct incorrect
Set

12

14

16

18

20

22

24

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = 0.18, p = 0.8610

(c) LLaMA

correct incorrect
Set

12

14

16

18

20

22

24
DL

T
Co

m
pl

ex
ity

 S
co

re
DLT Complexity by Model Outcome

T = 1.58, p = 0.1157

(d) Mistral

correct incorrect
Set

12

14

16

18

20

22

24

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -2.52, p = 0.0275

(e) Qwen

Figure 7: DLT complexity scores by model outcome
(correct vs. incorrect) across five LLMs on Multiarith.

DLT Complexity Scores Across Models on
SVAMP

correct incorrect
Set

10

15

20

25

30

35

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -3.94, p = 0.0001

(a) Gemma

correct incorrect
Set

10

15

20

25

30

35

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -4.87, p = 0.0000

(b) Granite

correct incorrect
Set

10

15

20

25

30

35

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -2.94, p = 0.0037

(c) LLaMA

correct incorrect
Set

10

15

20

25

30

35

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -3.42, p = 0.0007

(d) Mistral

correct incorrect
Set

10

15

20

25

30

35

DL
T

Co
m

pl
ex

ity
 S

co
re

DLT Complexity by Model Outcome
T = -1.13, p = 0.2649

(e) Qwen

Figure 8: DLT complexity scores by model outcome
(correct vs. incorrect) across five LLMs on SVAMP.

Model Params Max Temp Top-𝑝 Sample
LLaMA-3 8B 8192 0.0 1.0 False
Mistral 7B 8192 0.0 1.0 False
Qwen2.5 7B 8192 0.0 1.0 False
Gemma 7B 8192 0.0 1.0 False
Granite 7B 8192 0.0 1.0 False

(a) Math QA models and decoding hyperparameters. All
models use greedy decoding (temperature = 0, no sampling).

Rephrasing Model Params Max Temp Top-𝑝 Sample
LLaMA-3 8B 8192 0.1 0.9 True

(b) Rephrasing model used for syntactic restructuring.

Table 4: LLMs used in experiments.

Correct11
�2 13- 7

6

Incorrect
2 3- 7

24

Figure 9: Correct borrowing (left) vs. a common sub-
traction mistake (right). Students without instruction on
borrowing often overgeneralize the principle of subtract-
ing smaller from larger numbers.

13

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/ibm-granite/granite-7b-instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Dataset Model Original Question Rephrased Question Semantic
Match

Simplified Answered
Correctly

GSM8K LLaMA-8B A company pays each of its employees
$600 in a month. The company has a
policy of increasing the salaries of each
of its employees by 10% of the initial
salary every year for those who’ve stayed
in the company for five years. If Sylvie
just clocked 5 years in the company last
December, what’s her annual salary after
three more years of service?

A company pays its employees $600 per
month. The company has a policy of
increasing salaries by 10% of the initial
salary every year for employees who
have stayed with the company for five
years. Sylvie just completed five years
of service last December. What is her
annual salary after three more years of
service?

MultiArith Mistral-7B Roger had 68 dollars. If he spent 47
bucks on a new game, how many 7 dollar
toys could he buy with the money he had
left?

Roger has 68 dollars. He spends 47
dollars on a new game. How many 7-
dollar toys can he buy with the money
he has left?

ASDiv Qwen2.5-7B Andrew’s 4 friends decided to bring food
as well. If each of them brought 4 slices
of pizza, how many slices of pizza do
they have in total?

Andrew’s 4 friends decide to bring food
as well. They each bring 4 slices of pizza.
How many slices of pizza do they have
in total?

GSM8K Gemma-7B Brandon’s iPhone is four times as old
as Ben’s iPhone. Ben’s iPhone is two
times older than Suzy’s iPhone. If Suzy’s
iPhone is 1 year old, how old is Brandon’s
iPhone?

Brandon’s iPhone is four times as old as
Ben’s iPhone. Ben’s iPhone is two times
older than Suzy’s iPhone, which is 1 year
old. How old is Brandon’s iPhone?

SVAMP Granite-7B Edward spent $6 to buy 2 books each
book costing him the same amount of
money. Now he has $12. How much did
each book cost?

Edward spent $6 to buy 2 books, each
costing the same amount. Now he has
$12. How much did each book cost?

SVAMP Granite-7B Billy sells DVDs. He has 8 customers on
Tuesday. His first 3 customers buy one
DVD each. His next 2 customers buy 2
DVDs each. His last 3 customers don’t
buy any DVDs. How many DVDs did
Billy sell on Tuesday?

Billy sells DVDs to 8 customers on Tues-
day. His first 3 customers buy one DVD
each, and his next 2 customers buy 2
DVDs each. His last 3 customers don’t
buy any DVDs. How many DVDs does
Billy sell on Tuesday?

ASDiv Mistral-7B It’s Rachel’s birthday. Her parents
wanted her to have fun so they went
to the circus that happened to be in town
that day. Upon arriving at the circus,
they went to the ticket booth and asked
how much each ticket cost. If each ticket
costs $44.00 and they bought 7 tickets,
how much money did they spend on tick-
ets?

Rachel’s parents take her to the circus
on her birthday. They buy 7 tickets, each
costing $44.00. How much money do
they spend on tickets?

MultiArith Qwen-7B Will invited 9 friends to a birthday party,
but 4 couldn’t come. If he wanted to buy
enough cupcakes so each person could
have exactly 8, how many should he buy?

Will invites 9 friends to a birthday party,
but 4 can’t come. If he wants to give each
person 8 cupcakes, how many cupcakes
should he buy?

GSM8K LLaMA-8B Jerome had 4 friends who came to visit
him on a certain day. The first friend
pressed on the doorbell 20 times be-
fore Jerome opened, the second friend
pressed on the doorbell 1/4 times more
than Jerome’s first friend. The third
friend pressed on the doorbell 10 times
more than the fourth friend. If the fourth
friend pressed on the doorbell 60 times,
how many doorbell rings did the door-
bell make?

Jerome has 4 friends visiting him, and
the first friend rang the doorbell 20 times
before Jerome opened it. The second
friend rang the doorbell 1/4 times more
than the first friend, the third friend rang
it 10 times more than the fourth friend,
and the fourth friend rang it 60 times.
How many times did the doorbell ring in
total?

GSM8K LLaMA-8B Jam has three boxes full of pencils and
2 loose pencils which give a total of 26
pencils. If her sister, Meg, has 46 pencils,
how many boxes do Jam and Meg need
to store all their pencils?

Jam has three boxes of pencils and 2
loose pencils, which together total 26
pencils. Her sister, Meg, has 46 pencils.
How many boxes do Jam and Meg need
to store all their pencils?

Table 5: Manual evaluation of rephrased questions. A checkmark indicates success for each criterion.

14

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 15–33
November 9, 2025 ©2025 Association for Computational Linguistics

STEP-KTO: Optimizing Mathematical Reasoning through Stepwise Binary
Feedback

Yen-Ting Lin∗† Di Jin∗ Tengyu Xu∗ Tianhao Wu‡§ Sainbayar Sukhbaatar‡
Chen Zhu∗ Yun He∗ Yun-Nung Chen† Jason Weston‡ Yuandong Tian‡

Arash Rahnama∗ Sinong Wang∗ Hao Ma∗ Han Fang∗
∗Meta GenAI †National Taiwan University ‡Meta FAIR §UC Berkeley

ytl@ieee.org

Abstract
Large language models (LLMs) have recently
demonstrated remarkable success in mathe-
matical reasoning. Despite progress in meth-
ods like chain-of-thought prompting and self-
consistency sampling, these advances often fo-
cus on final correctness without ensuring that
the underlying reasoning process is coherent
and reliable. This paper introduces STEP-KTO,
a training framework that combines process-
level and outcome-level binary feedback to
guide LLMs toward more trustworthy reason-
ing trajectories. By providing binary evalua-
tions for both the intermediate reasoning steps
and the final answer, STEP-KTO encourages
the model to adhere to logical progressions
rather than relying on superficial shortcuts.
Our experiments on challenging mathematical
benchmarks show that STEP-KTO significantly
improves both final answer accuracy and the
quality of intermediate reasoning steps. For ex-
ample, on the MATH-500 dataset, STEP-KTO
achieves a notable improvement in Pass@1 ac-
curacy over strong baselines. These results
highlight the promise of integrating stepwise
process feedback into LLM training, paving the
way toward more interpretable and dependable
reasoning capabilities.

1 Introduction
Large language models (LLMs) have recently
shown remarkable capabilities in reasoning-
intensive tasks such as coding (Chen et al., 2021;
Li et al., 2022; Rozière et al., 2023) and solving
complex mathematical problems (Shao et al., 2024;
Azerbayev et al., 2024). Prompting strategies like
chain-of-thought prompting (Nye et al., 2021; Wei
et al., 2022; Kojima et al., 2022; Adolphs et al.,
2022) and self-consistency sampling (Wang et al.,
2023) enhance these models’ final-answer accuracy
by encouraging them to articulate intermediate rea-
soning steps. However, a significant issue remains:
even when these methods boost final-answer cor-
rectness, the internal reasoning steps are often unre-
liable or logically inconsistent (Uesato et al., 2022;
Lightman et al., 2024).

This discrepancy between correct final answers
and flawed intermediate reasoning limits our abil-
ity to trust LLMs in scenarios where transparency
and correctness of each reasoning stage are crucial
(Lanham et al., 2023). For example, in mathe-
matical problem-solving, a model might produce
the right answer for the wrong reasons (Lyu et al.,
2023; Zheng et al., 2024), confounding our under-
standing of its true capabilities (Turpin et al., 2023).
To address this, researchers are increasingly empha-
sizing the importance of guiding models to produce
not just correct final answers, but also verifiable
and faithful step-by-step solution paths (Uesato
et al., 2022; Shao et al., 2024; Setlur et al., 2024).

Prior work in finetuning has largely focused on
outcome-level correctness, using outcome reward
models to improve the probability of final-answer
accuracy (Cobbe et al., 2021; Hosseini et al., 2024;
Zhang et al., 2024). While effective, such an ap-
proach does not ensure that the intermediate rea-
soning steps are valid. Conversely, while process-
level supervision through process reward models
(PRMs) (Lightman et al., 2024; Wang et al., 2024;
Luo et al., 2024) can guide models to follow cor-
rect reasoning trajectories, prior work has mainly
used PRMs as a ranking method rather than a way
to provide stepwise feedback. As a result, relying
solely on process-level supervision may lead mod-
els to prioritize step-by-step correctness without
guaranteeing a correct final outcome.

In this paper, we introduce Stepwise Kahneman-
Tversky-inspired Optimization (STEP-KTO), a
training framework that integrates both process-
level and outcome-level binary feedback to pro-
duce coherent and correct reasoning steps along-
side high-quality final answers. Our approach
evaluates each intermediate reasoning step against
known correct patterns using a PRM, while simul-
taneously leveraging a rule-based reward signal for
the final answer. To fuse these signals, we em-
ploy a Kahneman-Tversky-inspired value function
(Tversky and Kahneman, 2016; Ethayarajh et al.,
2024) that emphasizes human-like risk and loss

15

Step-KTO
prompt and  
golden answer Seed model

LLM

Step-KTO training

x
y* St

ep
 1

St
ep

 2

Process RM

St
ep

 3

An
sw

er

O
ut

co
m

e
RM x, y, co, cs1 . . . cs

|y|−1

✅

❌

✅ ❌

Figure 1: STEP-KTO Training Process. Given a dataset of math problems (left), a language model (LLM)
produces both reasoning steps and a final answer. Each intermediate reasoning step is evaluated by a process reward
model (Process RM), and the final answer is assessed by an outcome reward model (Outcome RM). The binary
feedback signals from both levels (outcome-level correctness co and stepwise correctness csh) are recorded together
with the input (x) and the model’s response (y) §2.1. These signals are then used to compute the STEP-KTO loss,
guiding the LLM to not only produce correct final answers but also maintain coherent and correct reasoning steps
§2.3. Through multiple iterations of this training process §2.4, the model progressively improves both its stepwise
reasoning and final answer accuracy.

aversion, encouraging models to gradually correct
their reasoning and avoid errors. The result is a
training objective that aligns the entire reasoning
trajectory with verified solutions while ensuring
that final correctness remains a top priority.

Figure 1 illustrates the STEP-KTO pipeline. We
start with a base LLM and repeatedly refine it
through iterative training. At each iteration, the
PRM provides step-level binary feedback that helps
the model navigate correct solution paths, while
the outcome-level binary feedback ensures that the
final answer is correct. The Kahneman-Tversky-
inspired value function transforms these binary sig-
nals into guidance that progressively reduces errors
in the chain-of-thought. Over successive rounds,
STEP-KTO yields systematically more accurate
intermediate reasoning steps and steadily improves
the final-answer accuracy.

We evaluate STEP-KTO on challenging mathe-
matical reasoning benchmarks including MATH-
500 (Hendrycks et al., 2021; Lightman et al., 2024),
AMC23 (MAA, 2023), and AIME24(MAA, 2024).
Our experiments show that incorporating both
process-level and outcome-level signals leads to
substantial improvements over state-of-the-art base-
lines that rely solely on final-answer supervision.
For example, on MATH-500, STEP-KTO improves
Pass@1 accuracy from 53.4% to 63.2%, while also
producing more coherent and trustworthy step-by-
step reasoning. Moreover, iterative training with
STEP-KTO achieves cumulative gains, demonstrat-
ing that balancing process- and outcome-level feed-
back refines reasoning quality over time. In sum-
mary, our key contributions are:

• We propose STEP-KTO, a novel finetuning
framework that combines process-level and
outcome-level feedback, encouraging both cor-
rect final answers and faithful step-by-step rea-
soning.

• We show that iterative training with STEP-
KTO yields consistent cumulative improve-
ments, showing the effectiveness of combined
process-level and outcome-level feedback in re-
fining LLM reasoning.

• We demonstrate that STEP-KTO surpasses
state-of-the-art baselines on multiple math rea-
soning tasks, delivering higher accuracy (63.2%
vs 53.4% Pass@1 on MATH-500) and more
reliable intermediate solutions.

2 Methodology

2.1 Problem Setup and Notation
We adopt the notation and setup similar to Setlur
et al. (2024). Let D = {(xi,y

⋆
xi
)}i be a dataset

of math problems, where each problem x ∈ X
has an associated ground-truth solution sequence
y⋆
x = (s⋆1, s

⋆
2, . . . , s

⋆
|y⋆|) ∈ Y . A policy model πθ,

parameterized by θ, generates a response sequence
y = (s1, s2, . . . , s|y|) autoregressively given the
problem x, where each step sh is a reasoning step
separated by a special token (e.g., ”## Step”).

The correctness of the final answer y can be au-
tomatically determined by a rule-based correctness
function Regex(y,y⋆

x) ∈ {0, 1}, which compares
the model’s final derived answer to the ground-truth
final answer (Hendrycks et al., 2021). The model’s
final answer is explicitly denoted using a special
format in the final step s|y|, such as boxed{·}, al-

16

lowing the correctness function to easily extract
and verify it. Our primary objective is to improve
the expected correctness of the final answer:

Ex∈D , y∼πθ(·|x)[Regex(y,y
⋆
x)].

Ensuring a correct final answer does not guar-
antee logically sound intermediate reasoning. To
address this, we incorporate a stepwise binary cor-
rectness signal Prm(x,y⋆

x, sh) ∈ {0, 1} for each
reasoning step sh. Unlike the final-answer correct-
ness Regex, this signal directly measures whether
each intermediate step is locally valid and aligns
with proper problem-solving principles, without
strictly mirroring the reference solution steps. We
obtain these stepwise correctness evaluations by
prompting an LLM (Llama-3.1-70B-Instruct)
as our process reward model (PRM), following the
structured template in Appendix D. In summary,
we have two levels of binary signals:

• Outcome feedback: Regex(y,y⋆
x) ∈ {0, 1}

indicates if the final answer derived from y is
correct.

• Stepwise feedback: Prm(x,y⋆
x, sh) ∈ {0, 1}

indicates if the intermediate reasoning step sh
is correct.

Our goal is to integrate both of these signals into
the training objective of πθ. By doing so, we guide
the model to produce not only correct final answers
but also to maintain correctness, coherence, and
reliability throughout its reasoning trajectory. This
integrated approach will be formalized through the
STEP-KTO framework.

2.2 KTO Background

KTO (Ethayarajh et al., 2024) aims to align a pol-
icy πθ with binary feedback using a Kahneman-
Tversky-inspired value function (Tversky and Kah-
neman, 2016). Rather than maximizing the log-
likelihood of preferred outputs or directly using
reinforcement learning, KTO defines a logistic
value function that is risk-averse for gains and risk-
seeking for losses.

The original KTO loss focuses on the final-

answer level. Let:

rθ(x, y) = log
πθ(y | x)
πref(y | x)

, (1)

z0 = KL
(
πθ(y

′ | x) ∥ πref(y
′ | x)

)
, (2)

v(x, y) =





λD σ
(
β(rθ(x, y)− z0)

)

if Regex(y,y⋆
x) = 1,

λU σ
(
β(z0 − rθ(x, y))

)

if Regex(y,y⋆
x) = 0.

(3)

Here, πref is a reference policy (typically the ini-
tial model checkpoint) that provides a baseline for
comparison, σ is the logistic function, β > 0 con-
trols risk aversion, and λD, λU are weighting coef-
ficients. The z0 term, where y′ denotes an arbitrary
output sequence, serves as a reference point to en-
sure balanced optimization. The KTO loss at the
outcome level is:

LKTO(πθ, πref) = Ex,y∼D[λy − v(x, y)], (4)

where λy = λD if Regex(y,y⋆
x) = 1 and λy =

λU if Regex(y,y⋆
x) = 0.

2.3 STEP-KTO

While KTO ensures correctness of final answers,
many reasoning tasks require validity at each in-
termediate step. We extend KTO by incorporating
stepwise binary feedback Prm(x,y⋆

x, sh) to assess
the quality of each reasoning step. We begin by
defining an implied reward at the step level:

rθ(x, sh) = log
πθ(sh | x, s<h)

πref(sh | x, s<h)
.

This quantity can be viewed as the incremental ad-
vantage of producing step sh under πθ compared to
πref. It captures how much more (or less) reward is
implied by choosing sh over the reference model’s
baseline likelihood, conditioned on the same con-
text (x, s<h). Next, we introduce a stepwise KL
baseline:

z
(step)
0 = KL

(
πθ(s

′
h | x, s′<h) ∥ πref(s

′
h | x, s′<h)

)
.

Analogous to z0 at the outcome level, z(step)0 serves
as a local reference point. It prevents the model
from gaining reward merely by diverging from
the reference and ensures that improvements are
grounded in genuine reasoning quality. Given the

17

binary stepwise feedback Prm(x,y⋆
x, sh), we de-

fine a value function that parallels the outcome-
level case. If a step sh is deemed stepwise-
desirable, the model should increase its implied re-
ward rθ(x, sh) relative to z

(step)
0 (Huang and Chen,

2024). Conversely, if sh is stepwise-undesirable,
the model is encouraged to lower that implied re-
ward. Formally:

v(step)(x, sh) =




λ
(step)
D σ

(
βstep(r(x, sh)− z

(step)
0)

)
if Prm(x,y⋆

x, sh) = 1,

λ
(step)
U σ

(
βstep(z

(step)
0 − r(x, sh))

)
if Prm(x,y⋆

x, sh) = 0.

(5)
Here, λ

(step)
D , λ

(step)
U and βstep mirror their

outcome-level counterparts, controlling the
strength of the reward or penalty at the granularity
of individual steps. By leveraging these signals,
the stepwise value function v(step) directs the
model’s distribution toward steps deemed correct
and coherent, and away from those that are not.
With these definitions, the stepwise loss is:

Lstep(,) = Ex,y,sh∼D(step)

[
λ(step)
y − v(step)(x, sh)

]
.

(6)
where λ(step)

y = λ
(step)
D if Prm(x,y⋆

x, sh) = 1 and
λ
(step)
y = λ

(step)
U if Prm(x,y⋆

x, sh) = 0.
Combining the stepwise objective with the

outcome-level KTO loss (Eq. 4) yields the final
STEP-KTO objective:

LSTEP-KTO(πθ, πref) = LKTO(πθ, πref)

+ Lstep(πθ, πref).
(7)

This composite loss encourages the model to pro-
duce not only correct final answers but also to re-
fine each intermediate step. By jointly optimizing
outcome-level and stepwise-level feedback, STEP-
KTO ensures that the model’s entire reasoning tra-
jectory—from the earliest steps to the final solu-
tion—is both correct and coherent.

2.4 Iterative Training

We train our models using an iterative proce-
dure inspired by previous alignment methods
that refine a model’s parameters over multiple
rounds (Zelikman et al., 2022; Yuan et al., 2024;
Pang et al., 2024; Prasad et al., 2024). For
Llama-3.3-70B-Instruct, we use it directly as
our seed model M0. For Llama-3.1 models, we
first perform supervised finetuning on the training
data before using them as M0. Starting from M0,
we refine it iteratively to obtain M1,M2, . . . ,MT

using the following procedure:

1. Candidate Generation: For each problem x ∈
D , we sample 8 candidate solutions yk ∼
πMt(· | x) using temperature T = 0.7 and nu-
cleus sampling with p = 0.95 (Holtzman et al.,
2020). This stochastic decoding strategy encour-
ages diverse candidate solutions, aiding both pos-
itive and negative sample selection.

2. Outcome Assessment: We evaluate each can-
didate yk against the ground-truth solution
y⋆
x using the outcome correctness function

Regex(yk,y⋆
x). If no sampled solutions are cor-

rect, we include the ground-truth solution y⋆
x as

a positive sample, as suggested by Pang et al.
(2024). If all sampled solutions are correct, we
discard this problem in the current iteration to pri-
oritize learning from problems where the model
can still improve.

3. Stepwise Evaluation: For the selected solu-
tions, we apply the stepwise correctness function
Prm(x,y⋆

x, sh) to assess the quality of each rea-
soning step. This yields a set of binary signals
indicating whether each intermediate step aligns
with desirable reasoning patterns.

4. Dataset Construction: We aggre-
gate these annotated samples into
DMt = {(x,y, cout, cstep1 , . . . , cstepS−1) | y ∈ D},
where cout = Regex(y,y⋆

x) is the outcome-
level correctness, and csteph = Prm(x,y⋆

x, sh)
are the stepwise correctness indicators for the
S − 1 intermediate steps of the solution y. 1

5. Parameter Update: Using DMt , we update the
model parameters according to the chosen align-
ment objective—either our STEP-KTO loss or a
baseline method (e.g., IRPO).

6. Iteration: We repeat this process for T itera-
tions, each time producing a new model Mt+1

refined from Mt.

While KTO and STEP-KTO does not inherently
require balanced positive and negative samples, we
impose this constraint for fairness when comparing
against pairwise preference-based baselines like
DPO. Specifically, we randomly sample at most
two pairs per problem per iteration, ensuring a
consistent number of training examples across dif-
ferent alignment strategies. This controlled sam-
pling regime facilitates direct comparisons between

1At each iteration t, the dataset DMt is constructed specif-
ically from Mt. Thus, M1 is trained on the dataset derived
from seed model M0 shared by all methods, M2 on the dataset
derived from M1 specifically for method testing, and so forth.

18

methods and clarifies the impact of stepwise and
outcome-level feedback on the model’s refinement
process.

3 Experiments

3.1 Task and Datasets

We evaluate our approach on established math rea-
soning benchmarks from high school competitions,
testing the model’s ability to solve challenging
problems across various domains and difficulties.
All problems require a final answer, typically a
number, simplified expression (e.g., π

2 , 1±
√
19),

or short text (e.g., “east”).

• MATH-500: A 500-problem subset of the
MATH dataset (Hendrycks et al., 2021), se-
lected as in Lightman et al. (2024). It covers
diverse subjects (e.g., Algebra, Geometry, Pre-
calculus) for a broad evaluation of mathematical
reasoning.

• AMC23: A test set of 40 problems from the
American Mathematics Competitions (AMC 12,
2023)2. These problems are known for their sub-
tlety and depth, providing a stringent reasoning
test.

• AIME24: A test set of 30 problems from the
American Invitational Mathematics Examina-
tion (AIME, 2024)3, typically requiring intri-
cate multi-step reasoning and posing a higher-
level challenge.

Following standard mathematical LLM evalua-
tion practices (Hendrycks et al., 2021), we extract
final answers from model outputs using regular
expressions and verify their mathematical equiva-
lence to ground-truth solutions with SYMPY4, ac-
commodating minor stylistic differences. We re-
port Pass@1 (accuracy of a single greedy comple-
tion from πθ) and Maj@8 (accuracy from the major-
ity answer among 8 solutions sampled at T = 0.7
(Ackley et al., 1985; Ficler and Goldberg, 2017;
Wang et al., 2023))5. These metrics provide a
comprehensive assessment on challenging math-
ematical reasoning tasks, reflecting direct accuracy
(Pass@1) and sampled robustness (Maj@8).

2https://github.com/QwenLM/Qwen2.5-Math/blob/
main/evaluation/data/amc23/test.jsonl

3https://github.com/QwenLM/Qwen2.5-Math/blob/
main/evaluation/data/aime24/test.jsonl

4https://github.com/sympy/sympy
5Varying temperature (T = 0.5− 1.0) had limited impact

on Maj@8 in pilot experiments.

In addition to these evaluation benchmarks, all
experiments are conducted using a large-scale
prompt set, DNumina, referred to as NuminaMath
(LI et al., 2024). NuminaMath comprises a broad
range of math problems and their solutions, total-
ing 438k examples, spanning difficulty levels from
elementary to high school competition standards.
To ensure the integrity of final answers, we remove
subsets of synthetic questions and Orca Math prob-
lems (Mitra et al., 2024), as their correctness are
not verified by human.

3.2 Baseline Methods
We evaluate our proposed STEP-KTO against sev-
eral strong baseline approaches for mathematical
reasoning. All methods are trained using offline
iterative optimization, with online preference learn-
ing left as future work:

• RFT (Rejection Finetuning) (Yuan et al.,
2023): Performs supervised finetuning exclu-
sively on solutions with correct final answers,
relying on outcome-level filtering without ex-
plicit preference signals.

• IRPO (Iterative Reasoning Preference Opti-
mization) (Pang et al., 2024): An iterative DPO
(Rafailov et al., 2023) variant using outcome-
level pairwise preferences, stabilized by an NLL
loss, but lacks stepwise feedback.

• KTO (Kahneman-Tversky Optimization)
(Ethayarajh et al., 2024): Employs an outcome-
level, Kahneman-Tversky-inspired value func-
tion (see §2.2) for alignment, focusing on risk
aversion but not incorporating stepwise signals.

• SimPO and IPO (Meng et al., 2024; Azar
et al., 2024): DPO variants that utilize simpli-
fied outcome-level preference mechanisms for
more stable optimization, without targeting step-
wise correctness or advanced reasoning perfor-
mance.

• Step-DPO (Lai et al., 2024): A DPO variant
that optimizes stepwise preferences instead of
outcome-level ones for granular supervision,
but requires significant data processing and re-
jection sampling for intermediate steps.

3.3 Main Results
Table 1 presents our main results, comparing STEP-
KTO with various baseline methods and commer-
cial systems across the MATH-500, AMC23, and
AIME24 benchmarks. We report both Pass@1
and Maj@8 accuracy, as described in §3. Overall,

19

https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/data/amc23/test.jsonl
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/data/amc23/test.jsonl
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/data/aime24/test.jsonl
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/data/aime24/test.jsonl
https://github.com/sympy/sympy

Method MATH-500 AMC23 AIME24
Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama-3.1-8B-Instruct
Seed model M0 53.4 55.0 35.0 37.5 3.3 6.7
Rejection Finetuning M3 53.8 56.0 30.0 32.5 10.0 6.7
IRPO M3 55.4 59.2 35.0 40.0 6.7 6.7
KTO M3 60.6 61.6 35.0 32.5 16.7 16.7
STEP-KTO (ours) M3 63.2 64.6 47.5 47.5 16.7 16.7

Llama-3.1-70B-Instruct
Seed model M0 74.6 76.2 40.0 60.0 13.3 16.7
Rejection Finetuning M1 74.8 73.6 55.0 60.0 13.3 13.3
IRPO M1 74.4 74.8 55.0 57.5 10.0 13.3
KTO M1 75.6 77.2 55.0 65.0 13.3 13.3
STEP-KTO (ours) M1 76.2 78.4 60.0 67.5 16.7 20.0

Llama-3.3-70B-Instruct M0 75.8 77.6 57.5 60.0 26.7 30.0
Rejection Finetuning M1 77.4 78.4 60.0 65.0 20.0 23.3
IRPO M1 78.6 80.8 55.0 57.5 23.3 26.7
KTO M1 78.6 79.8 60.0 65.0 20.0 23.3
STEP-KTO (ours) M1 79.6 81.6 70.0 75.0 30.0 33.3

Llama-3.1-8B-Instruct 51.4 55.2 15.0 27.5 3.3 3.3
Llama-3.1-70B-Instruct 64.8 70.4 37.5 47.5 10.0 30.0
Llama-3.1-405B-Instruct 68.8 74.4 47.5 52.5 30.0 26.6
O1 94.8 - - - 78.0 -
O1-Mini 90.0 - 90.0 90.0 33.3 46.7
Gemini 1.5 Pro 79.4 83.0 75.0 82.5 26.7 26.7
GPT-4o 73.0 76.4 57.5 70.0 10.0 16.7
Claude 3.5 Sonnet 70.0 74.4 62.5 67.5 23.3 26.7
Grok-Beta 67.0 72.2 50.0 52.5 10.0 13.3

Table 1: Math problem solving performance comparing Llama models of different sizes and proprietary models.
Results show accuracy on MATH-500, AMC23, and AIME24 test sets using both greedy decoding (Pass@1) and
majority voting over 8 samples (Maj@8). Models highlighted in blue are 8B parameter models, green are 70B
parameter models, and gray are commercial models.

STEP-KTO consistently outperforms the baselines
that rely solely on outcome-level correctness, such
as KTO, IRPO, SimPO, and IPO, as well as simpler
methods like RFT.

For instance, on MATH-500 with the 8B Llama-
3.1-Instruct model, STEP-KTO achieves a Pass@1
of 63.2%, improving from the baseline KTO
model’s 60.6% and substantially surpassing IRPO
and RFT. On AMC23, STEP-KTO attains a
Pass@1 of 47.5%, outperforming baselines by a no-
table margin. On AIME24, where problems require
especially intricate multi-step reasoning, STEP-
KTO sustains its advantage, demonstrating that
the stepwise supervision is particularly valuable for
more challenging tasks. Scaling to the 70B further
improves results. Llama-3.1-70B-Instruct with
STEP-KTO reaches a Pass@1 of 76.2% on MATH-
500 and continues to excel on AMC23 (60.0%)
and AIME24 (16.7%). Llama-3.3-70B-Instruct
with STEP-KTO model pushes performance higher
still, with STEP-KTO achieving 79.6% on MATH-
500, 70.5% on AMC23, and 29.6% on AIME24.
Although larger models also benefit from outcome-
only alignment techniques, STEP-KTO still deliv-

ers consistent gains, indicating that even power-
ful models trained on extensive data can be fur-
ther improved by targeting intermediate reasoning
quality. Compared to strong proprietary models,
STEP-KTO-enhanced Llama models remain com-
petitive and close the performance gap. For exam-
ple, while GPT-4o achieves a respectable 73.0%
Pass@1 on MATH-500, O1 series pushes this ac-
curacy to 90.0% and higher but requires a sub-
stantially larger inference budget. In contrast, our
STEP-KTO-enhanced Llama-3.1-70B-Instruct
model attains 76.2% Pass@1 on MATH-500 using
only a 5k-token budget.

3.4 Iterative Training

Table 2 illustrates how model performance
evolves over multiple iterative training rounds
(M1,M2,M3) when starting from the same seed
model M0 (Llama-3.1-8B-Instruct). We com-
pare STEP-KTO against other iterative methods
such as IRPO, KTO, and Rejection Finetuning.

Overall, STEP-KTO not only achieves higher
final performance but also improves more consis-
tently across iterations. For instance, on MATH-

20

Method MATH-500 AMC23 AIME24
Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama-3.1-8B-Instruct
Seed model M0 53.4 55.0 35.0 37.5 3.3 6.7

IPO M1 52.6 55.8 22.5 30.0 3.3 3.3
SimPO M1 55.8 57.2 25.0 25.0 6.7 10.0
Step-DPO M1 56.8 58.4 27.5 30.0 6.7 10.0

Rejection Finetuning M1 55.0 57.0 30.0 35.0 10.0 10.0
Rejection Finetuning M2 54.0 56.2 22.5 20.0 3.3 6.7
Rejection Finetuning M3 53.8 56.0 30.0 32.5 10.0 6.7
IRPO M1 58.2 59.6 35.0 35.0 10.0 10.0
IRPO M2 57.2 62.4 32.5 40.0 6.7 10.0
IRPO M3 55.4 59.2 35.0 40.0 6.7 6.7
KTO M1 56.2 55.6 32.5 32.5 6.7 10.0
KTO M2 59.4 62.8 35.5 35.0 16.7 16.7
KTO M3 60.6 61.6 35.0 32.5 16.7 16.7
STEP-KTO (ours) M1 59.4 60.6 22.5 32.5 13.3 10.0
STEP-KTO (ours) M2 63.6 63.0 40.0 40.0 13.3 16.7
STEP-KTO (ours) M3 63.2 64.6 47.5 47.5 16.7 16.7

Table 2: Iterative training performance comparing different methods on Llama-3.1-8B-Instruct model. Results
show accuracy across multiple iterations (M1, M2, M3) of training on MATH-500, AMC23, and AIME24 test sets
using both greedy decoding (Pass@1) and majority voting over 8 samples (Maj@8).

500, STEP-KTO progresses from 59.4% Pass@1
at M1 to 63.2% at M3, surpassing the gains ob-
served by IRPO and KTO at the same check-
points. Similarly, on AMC23 and AIME24, STEP-
KTO shows steady iterative improvements, re-
flecting the cumulative value of integrating both
process- and outcome-level feedback. In contrast,
Rejection Finetuning (RFT) and IRPO exhibit less
stable gains across iterations, with performance
sometimes plateauing or even regressing at later
rounds. KTO does improve over iterations, but not
as robustly as STEP-KTO, highlighting that step-
wise feedback adds tangible benefits beyond what
outcome-level optimization alone can achieve.

These results underscore the importance of itera-
tive refinement. While simply applying preference-
based or rejection-based finetuning may yield some
initial improvements, STEP-KTO’s combined step-
wise and outcome-level guidance drives steady, sus-
tained enhancements in mathematical reasoning
quality, iteration after iteration.

3.5 Comparison with Step-DPO

Step-DPO (Lai et al., 2024) also targets intermedi-
ate steps but relies on computationally intensive
rejection sampling for error correction. STEP-
KTO contrasts by efficiently combining stepwise
and outcome signals for global solution coher-
ence. Empirically, Step-DPO achieved 56.8%
Pass@1 on MATH-500 (M1), whereas STEP-KTO
reached 59.4%. Our Step-DPO implementation
used Llama-3.3-70B-Instruct for error identifi-

cation and rejection sampling (filtering unsolved
after 8 attempts), underscoring STEP-KTO’s ad-
vantage in sustained improvement via integrated
optimization.

3.6 Preference Optimization Variants
Table 2 compares STEP-KTO against baselines
over iterative training from the 8B M0. On
MATH-500 (M1), STEP-KTO (59.4% Pass@1)
outperformed IPO (52.6%), SimPO (55.8%), IRPO
(58.2%), and KTO (56.2%). While its initial M1

gains on AMC23 and AIME24 were comparable or
more modest, STEP-KTO demonstrated stronger
subsequent improvements. By M3, STEP-KTO
achieved 47.5% Pass@1 on AMC23, surpassing all
baselines, and tied for the highest Pass@1 (16.7%)
on AIME24, highlighting the value of integrating
stepwise and outcome-level signals.

3.7 Evaluating Reasoning Quality

8B Model Stepwise Errors in Correct Solutions

KTO STEP-KTO

M0 27.3% 27.3%
M1 24.6% 22.9%
M2 22.6% 20.8%
M3 21.1% 19.9%

Table 3: Reasoning Quality Analysis comparing the
ratio of solutions that arrive at correct final answers
despite containing erroneous intermediate steps on the
MATH-500.

To assess the internal consistency of solutions
with correct final answers, we evaluate the propor-

21

tion of solutions that, despite having correct final
answer Regex(y,y⋆

x) = 1, contain at least one
erroneous intermediate step. We use the Process-
Bench (Zheng et al., 2024) as our evaluation frame-
work, which is prompted to identify the earliest
error in the generated solution y, as detailed in its
benchmark construction. Additionally, we utilize
the critique capabilities of the QwQ-32B-Preview
model (Qwen, 2024) to identify the first error in the
reasoning. We prompt QwQ using the prompt de-
tailed in Appendix D. We then measure the percent-
age of correctly answered problems where QwQ
identifies at least one erroneous intermediate step.

Table 3 shows the percentage of correctly an-
swered solutions containing errors in reasoning
steps, starting from the initial 8B seed model M0,
which produces reasoning steps containing errors
in 27.3% of its correctly answered solutions on the
MATH-500 test set. Both STEP-KTO and KTO
reduce the prevalence of such errors across itera-
tions, with STEP-KTO showing a greater and more
consistent reduction from 27.3% at M0 to 19.9%
at M3, compared to KTO’s more modest improve-
ment to 21.1%.

4 Related Work

Outcome-Oriented Methods. Many efforts refine
LLMs using only final outputs. Instruction tuning
(Ouyang et al., 2022; Touvron et al., 2023) and
outcome-level feedback via Reinforcement Learn-
ing from Human Feedback (RLHF) (e.g., Instruct-
GPT (Ouyang et al., 2022)) or direct preference op-
timization (DPO (Rafailov et al., 2023), KTO (Etha-
yarajh et al., 2024), SimPO (Meng et al., 2024),
IPO (Azar et al., 2024)) improve final answer accu-
racy using human or synthetic labels. AI-generated
feedback (RLAIF (Lee et al., 2023)) or predefined
rules (Constitutional AI (Bai et al., 2022b)) aim to
reduce human annotation. While refinements like
CGPO (Xu et al., 2024) offer richer signals, they
primarily evaluate entire outputs. A key limitation
is that correct final answers do not guarantee sound
intermediate reasoning (Wu et al., 2024), poten-
tially yielding untrustworthy solution paths (Turpin
et al., 2023; Lanham et al., 2023).

Process-Level Feedback and Verification. Pro-
cess Reward Models (PRMs) (Lightman et al.,
2024; Uesato et al., 2022; Xiong et al., 2024; Luo
et al., 2024) focus on stepwise correctness, assign-
ing local feedback to guide models toward logi-
cally consistent solutions. This is prevalent in math

reasoning, supported by datasets like PRM800K
(Lightman et al., 2024), CriticBench (Lin et al.,
2024), and ProcessBench (Zheng et al., 2024) that
facilitate step-level evaluations. PRM-based tech-
niques influence decoding (Li et al., 2023; Chuang
et al., 2024; Wang et al., 2024), re-ranking (Cobbe
et al., 2021), filtering (Dubey et al., 2024; Shao
et al., 2024), and iterative loops like STaR (Zelik-
man et al., 2022) and ReST (Gülçehre et al., 2023;
Singh et al., 2024). Synthetic feedback helps scale
annotations (Wang et al., 2024; Lightman et al.,
2024; Chiang and Lee, 2024; Huang and Chen,
2024). Yet, focusing solely on process may not
yield correct final answers, as local rewards can be
exploited or chains may fail to converge (Gao et al.,
2024).

Integrating Outcome- and Process-Level Sig-
nals. Recognizing the limitations of supervising
only outcomes or processes, recent studies com-
bine both signals. FactTune (Tian et al., 2024) and
FactAlgin (Huang and Chen, 2024) integrate PRMs
with factuality evaluators for alignment, enhancing
factual accuracy. In math reasoning, Uesato et al.
(2022) and Shao et al. (2024) also leveraged com-
bined step and outcome feedback. While the prin-
ciple of multi-granularity supervision is broadly
applicable, especially to math reasoning, these com-
bined approaches can still face challenges in scal-
ing, balancing feedback types, and avoiding prema-
ture performance plateaus (Bai et al., 2022a; Xu
et al., 2023; Singh et al., 2024).

5 Conclusion

This work proposes STEP-KTO, a training frame-
work that leverages both outcome-level and
process-level binary feedback to guide large lan-
guage models toward more coherent, interpretable,
and dependable reasoning. By integrating step-
wise correctness signals into the alignment process,
STEP-KTO improves the quality of intermediate
reasoning steps while maintaining or even enhanc-
ing final answer accuracy. Our experiments on
challenging mathematical reasoning benchmarks
demonstrate consistent gains in performance, par-
ticularly under iterative training and for complex
reasoning tasks. These findings underscore the
value of aligning not only final outcomes but also
the entire reasoning trajectory. We envision STEP-
KTO as a stepping stone toward more reliable rea-
soning in LLMs.

22

Limitations

Despite STEP-KTO’s promise, several limitations
persist. First, outcome-level feedback can be noisy;
for instance, automated math answer verification
may misjudge valid but unconventional represen-
tations, limiting training signal precision. Second,
STEP-KTO currently presumes access to ground-
truth solutions for outcome and (implicitly) for
guiding stepwise correctness. Generating meaning-
ful stepwise feedback is challenging without high-
quality reference reasoning or in domains with in-
herently ambiguous intermediate steps. Learning
from weaker signals or pure preferences remains
an open area. Finally, our experiments assume
some baseline correctness. If initial outcomes are
consistently incorrect and intermediate steps are
invalid, STEP-KTO’s ability to bootstrap perfor-
mance is uncertain. Such scenarios might require
complementary techniques like curriculum learn-
ing or stronger initialization before stepwise feed-
back becomes effective.

Acknowledgements

We thank the anonymous reviewers for their help-
ful comments. This paper’s writing received mi-
nor language-polishing suggestions from ChatGPT.
In addition, parts of our experimental code were
drafted or refactored with assistance from Meta AI;
all final implementations were manually reviewed
and verified by the authors.

References
David H. Ackley, Geoffrey E. Hinton, and Terrence J.

Sejnowski. 1985. A learning algorithm for boltz-
mann machines. Cogn. Sci., 9(1):147–169.

Leonard Adolphs, Kurt Shuster, Jack Urbanek, Arthur
Szlam, and Jason Weston. 2022. Reason first, then
respond: Modular generation for knowledge-infused
dialogue. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
7112–7132. Association for Computational Linguis-
tics.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Rémi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Artifi-
cial Intelligence and Statistics, 2-4 May 2024, Palau
de Congressos, Valencia, Spain, volume 238 of Pro-
ceedings of Machine Learning Research, pages 4447–
4455. PMLR.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen Marcus McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean
Welleck. 2024. Llemma: An open language model
for mathematics. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and
1 others. 2022a. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. arXiv preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
and 32 others. 2022b. Constitutional AI: harmless-
ness from AI feedback. CoRR, abs/2212.08073.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. CoRR, abs/2107.03374.

Cheng-Han Chiang and Hung-yi Lee. 2024. Merging
facts, crafting fallacies: Evaluating the contradic-
tory nature of aggregated factual claims in long-form
generations. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 2734–2751,
Bangkok, Thailand. Association for Computational
Linguistics.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James R. Glass, and Pengcheng He. 2024.
DoLa: Decoding by contrasting layers improves fac-
tuality in large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82
others. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

23

https://doi.org/10.1207/S15516709COG0901_7
https://doi.org/10.1207/S15516709COG0901_7
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.527
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.527
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.527
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://doi.org/10.48550/ARXIV.2212.08073
https://doi.org/10.48550/ARXIV.2212.08073
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2407.21783

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Model align-
ment as prospect theoretic optimization. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
In Proceedings of the Workshop on Stylistic Variation,
pages 94–104, Copenhagen, Denmark. Association
for Computational Linguistics.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu,
Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. 2024. On designing effective RL re-
ward at training time for LLM reasoning. CoRR,
abs/2410.15115.

Çaglar Gülçehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
CoRR, abs/2308.08998.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C.
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. CoRR, abs/2402.06457.

Chao-Wei Huang and Yun-Nung Chen. 2024. FactAl-
ign: Long-form factuality alignment of large lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages
16363–16375, Miami, Florida, USA. Association for
Computational Linguistics.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
llms. CoRR, abs/2406.18629.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan,
Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jack-
son Kernion, Kamile Lukosiute, Karina Nguyen,
Newton Cheng, Nicholas Joseph, Nicholas Schiefer,
Oliver Rausch, Robin Larson, Sam McCandlish,
Sandipan Kundu, and 11 others. 2023. Measuring
faithfulness in chain-of-thought reasoning. CoRR,
abs/2307.13702.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. RLAIF: scaling
reinforcement learning from human feedback with
AI feedback. CoRR, abs/2309.00267.

Jia LI, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024. Numinamath. [https://huggingface.co/
AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina dataset.pdf).

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023. Inference-
time intervention: Eliciting truthful answers from
a language model. In Thirty-seventh Conference on
Neural Information Processing Systems.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, and 7 others. 2022. Competition-
level code generation with alphacode. Science,
378(6624):1092–1097.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo andG
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking llms for critique-correct reasoning. In
Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pages 1552–1587. As-
sociation for Computational Linguistics.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi.
2024. Improve mathematical reasoning in language
models by automated process supervision. CoRR,
abs/2406.06592.

24

https://openreview.net/forum?id=iUwHnoENnl
https://openreview.net/forum?id=iUwHnoENnl
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.48550/ARXIV.2410.15115
https://doi.org/10.48550/ARXIV.2410.15115
https://doi.org/10.48550/ARXIV.2308.08998
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.18653/v1/2024.findings-emnlp.955
https://doi.org/10.18653/v1/2024.findings-emnlp.955
https://doi.org/10.18653/v1/2024.findings-emnlp.955
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2307.13702
https://doi.org/10.48550/ARXIV.2307.13702
https://doi.org/10.48550/ARXIV.2309.00267
https://doi.org/10.48550/ARXIV.2309.00267
https://doi.org/10.48550/ARXIV.2309.00267
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.91
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.91
https://doi.org/10.48550/ARXIV.2406.06592
https://doi.org/10.48550/ARXIV.2406.06592

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics, IJCNLP 2023 -Volume 1: Long Papers,
Nusa Dua, Bali, November 1 - 4, 2023, pages 305–
329. Association for Computational Linguistics.

MAA. 2023. American mathematics competitions
(amc).

MAA. 2024. American invitational mathematics exami-
nation (aime).

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. CoRR, abs/2405.14734.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. CoRR,
abs/2402.14830.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-
Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten
Bosma, David Luan, Charles Sutton, and Augustus
Odena. 2021. Show your work: Scratchpads for inter-
mediate computation with language models. CoRR,
abs/2112.00114.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730–27744.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho,
He He, Sainbayar Sukhbaatar, and Jason Weston.
2024. Iterative reasoning preference optimization.
CoRR, abs/2404.19733.

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang,
Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal, Sain-
bayar Sukhbaatar, Jason Weston, and Jane Yu. 2024.
Self-consistency preference optimization. Preprint,
arXiv:2411.04109.

Qwen. 2024. Qwq-32b preview. https://qwenlm.
github.io/blog/qwq-32b-preview/. Accessed:
2024-06-17.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, and
6 others. 2023. Code llama: Open foundation models
for code. CoRR, abs/2308.12950.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar. 2024.
Rewarding progress: Scaling automated process veri-
fiers for LLM reasoning. CoRR, abs/2410.08146.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Peter J Liu, James Harrison, Jae-
hoon Lee, Kelvin Xu, Aaron Parisi, and 1 others.
2024. Beyond human data: Scaling self-training for
problem-solving with language models. Transac-
tions on Machine Learning Research. Expert Certifi-
cation.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-
pher D Manning, and Chelsea Finn. 2024. Fine-
tuning language models for factuality. In The Twelfth
International Conference on Learning Representa-
tions.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explanations
in chain-of-thought prompting. In Advances in Neu-
ral Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023.

Amos Tversky and Daniel Kahneman. 2016. Advances
in Prospect Theory: Cumulative Representation of
Uncertainty, pages 493–519. Springer International
Publishing, Cham.

Jonathan Uesato, Nate Kushman, Ramana Kumar,
H. Francis Song, Noah Y. Siegel, Lisa Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins.
2022. Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce LLMs

25

https://doi.org/10.18653/V1/2023.IJCNLP-MAIN.20
https://doi.org/10.18653/V1/2023.IJCNLP-MAIN.20
https://doi.org/10.48550/ARXIV.2405.14734
https://doi.org/10.48550/ARXIV.2405.14734
https://doi.org/10.48550/ARXIV.2402.14830
https://doi.org/10.48550/ARXIV.2402.14830
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://doi.org/10.48550/ARXIV.2404.19733
https://arxiv.org/abs/2411.04109
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2410.08146
https://doi.org/10.48550/ARXIV.2410.08146
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=WPZ2yPag4K
https://openreview.net/forum?id=WPZ2yPag4K
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://doi.org/10.1007/978-3-319-20451-2_24
https://doi.org/10.1007/978-3-319-20451-2_24
https://doi.org/10.1007/978-3-319-20451-2_24
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.18653/v1/2024.acl-long.510

step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426–9439, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Ja-
son Weston, and Sainbayar Sukhbaatar. 2024. Think-
ing llms: General instruction following with thought
generation. CoRR, abs/2410.10630.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-
berg, Zhen Qin, Daniele Calandriello, Misha Khal-
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh,
Chi Jin, Tong Zhang, and Tianqi Liu. 2024. Build-
ing math agents with multi-turn iterative preference
learning. CoRR, abs/2409.02392.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason
Weston. 2023. Some things are more CRINGE than
others: Preference optimization with the pairwise
cringe loss. CoRR, abs/2312.16682.

Tengyu Xu, Eryk Helenowski, Karthik Abinav
Sankararaman, Di Jin, Kaiyan Peng, Eric Han, Shao-
liang Nie, Chen Zhu, Hejia Zhang, Wenxuan Zhou,
Zhouhao Zeng, Yun He, Karishma Mandyam, Arya
Talabzadeh, Madian Khabsa, Gabriel Cohen, Yuan-
dong Tian, Hao Ma, Sinong Wang, and Han Fang.
2024. The perfect blend: Redefining RLHF with
mixture of judges. CoRR, abs/2409.20370.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son Weston. 2024. Self-rewarding language models.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scaling
relationship on learning mathematical reasoning with
large language models. CoRR, abs/2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. STaR: Bootstrapping reasoning
with reasoning. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS

2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024.
Generative verifiers: Reward modeling as next-token
prediction. CoRR, abs/2408.15240.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

26

https://doi.org/10.18653/v1/2024.acl-long.510
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2410.10630
https://doi.org/10.48550/ARXIV.2410.10630
https://doi.org/10.48550/ARXIV.2410.10630
https://doi.org/10.48550/ARXIV.2409.02392
https://doi.org/10.48550/ARXIV.2409.02392
https://doi.org/10.48550/ARXIV.2409.02392
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2409.20370
https://doi.org/10.48550/ARXIV.2409.20370
https://openreview.net/forum?id=0NphYCmgua
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2408.15240
https://doi.org/10.48550/ARXIV.2408.15240

A Implementation Details

We use AdamW (β1 = 0.9, β2 = 0.95, weight decay = 0.1) with a linear warmup for the first 100 steps
and a cosine decay schedule that reduces the learning rate to 0.1× its initial value. The starting learning
rate is 1.0× 10−6, and we apply global norm gradient clipping of 1.0. The effective global batch size is
set to approximately one million tokens, and we train for about 2000 steps, periodically evaluating our
models during training on the hold-out test set from MATH (Hendrycks et al., 2021)6 to select the best
checkpoint for each method. For IRPO, we use an NLL weight of 0.2. We set β = 0.1 for all methods.
All training jobs are run on 64 H100 GPUs.

B Decontamination

To prevent data leakage between training and test sets, we perform standard decontamination by normal-
izing text (converting to lowercase and removing non-alphanumeric characters) and checking for exact
string matches between test questions and training prompts (Dubey et al., 2024). We remove any matching
examples from the training data. This process is applied to all datasets in our evaluation. Even if mild
contamination were present, we expect any resulting performance inflation to be small and consistent
across all conditions, leaving the relative comparisons between our methods largely unaffected.

C Details of API Usage for Proprietary Models

In our experiments, we evaluated several proprietary models via their respective APIs: O1
(metrics are self-reported), O1-Mini (o1-mini-2024-09-12, MATH-500 is self-reported 7),
Gemini 1.5 Pro (gemini-1.5-pro-002), GPT-4o (gpt-4o-2024-08-06), Claude 3.5 Sonnet
(claude-3-5-sonnet-20241022), and Grok-Beta. These experiments took place on November 15 and
16, 2024. For each model, questions were used directly as user prompts. For greedy decoding, we set the
temperature to 0.0 to ensure deterministic outputs, except for o1 models where we used temperature 1.0
due to API restrictions (only temperature 1.0 is allowed) and took the first sample. For sampling, we set
the temperature to 0.7 and performed 8 generations per question to enable majority voting.

Response Generation for Proprietary Models

User:
Please answer the following question step-by-step. Once you have the final answer,
place it on a new line as: The final answer is \$\boxed{answer}\$.
Question: {{ question }}

6MATH-500 questions are excluded.
7Numbers from https://github.com/openai/simple-evals

27

https://github.com/openai/simple-evals

D Prompts

Prompt templates 8 for generating solutions are given below in Appendix D.

Response Generation Template from (Dubey et al., 2024)

User:
Solve the following math problem efficiently and clearly:

For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

For complex problems (3 steps or more):
Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: \$\boxed{answer}\$. I hope it is correct.

Where [answer] is just the final number or expression that solves the problem.

Problem: {{ question }}

Prompt for Llama-3.1-70B-Instruct to provide stepwise feedback on candidate solutions y. The
model analyzes each step sh of a potential solution against the correct answer y⋆, evaluating the reasoning
and accuracy of each step. The feedback is structured in JSON format with fields for step number,
reflection on the reasoning, and a binary decision on whether the step contributes positively to reaching
the solution.

8The prompt template was from https://huggingface.co/datasets/meta-llama/Llama-3.1-70B-Instruct-evals

28

https://huggingface.co/datasets/meta-llama/Llama-3.1-70B-Instruct-evals

Generation Prompt for Stepwise Feedback

User:
Please analyze the following problem and its potential solution step-by-step.
Provide feedback on each step and determine if it contributes positively to reaching the
correct solution.

<problem>
{{ problem }}
</problem>

<correct solution>
{{ answer }}
</correct solution>

<potential answer>
{% for step in steps %}
<step {{ loop.index }}>
{{ step }}
</step {{ loop.index }}>
{% endfor %}
</potential answer>

Analyze your **potential solution** as if you had originally generated it.
Carefully review each step, considering its reasoning, accuracy, and execution.
Assess whether the step contributes positively to reaching the correct solution.
Where necessary, refine the step to address any flaws or gaps. Use the correct answer
as a ground truth reference to guide your analysis.

Provide your output in JSON format, where each element represents a step of the solution.
Use the fields below:

- **step**: The step order number in the reasoning process.
- **reflection**: A concise evaluation of the accuracy of the reasoning in this step
(point out why it helps or hinders the solution).
- **decision**: The evaluation of the step, either "positive" or "negative".

The expected output format follows:

```json
[

{
"step": 1,
"reflection": "[evaluation of step 1 reasoning]",
"decision": "positive"

},
{

"step": 2,
"reflection": "[evaluation of step 2 reasoning]",
"decision": "negative"

},
...\\

]
```

Notes

- Assign **"negative"** only to steps that are clearly incorrect and prevent the
solution from progressing.
- Use the correct answer as one of the ground truth references.
- Ensure the reflections remain concise, with the total explanation under 200 words
across all steps combined.

29

Process Critique Prompt from ProcessBench (Zheng et al., 2024)

User:
The following is a math problem and a solution (split into paragraphs, enclosed with
tags and indexed from 0):

<problem>
{{ problem }}
</problem>

<solution>
{% for step in steps %}
<step {{ loop.index }}>
{{ step }}
</step {{ loop.index }}>
{% endfor %}
</solution>

Your task is to review and critique the solution paragraph by paragraph. Once you
identify an error in a paragraph, return the index of the paragraph where the
earliest error occurs. Otherwise, return the index of -1 (which typically denotes
"not found").

Please put your final answer (i.e., the index) in \boxed{{}}.

30

E Qualitative Examples

We analyze several examples from Llama-3.3-70B-Instruct STEP-KTO M1 on MATH-500 to un-
derstand how Step-KTO helps improve mathematical reasoning. The examples demonstrate three key
scenarios where Step-KTO provides effective feedback: (1) when all steps and the final answer are
correct, (2) when intermediate steps contain errors but lead to the correct final answer, and (3) when both
intermediate steps and the final answer are incorrect.

Step-KTO Generation Example 1: Final Answer is Right and All Steps are Right

problem: For a point $P,$ let $d_1,$ d_2 and d_3 represents the distances from P
to the planes $x - z = 0,$ $x - 2y + z = 0,$ and $x + y + z = 0.$ Let S be
the set of points P such that\n\\[d_1ˆ2 + d_2ˆ2 + d_3ˆ2 = 36.\\]Find the region
of the volume enclosed by $S.$

answer: "288 \\pi",
subject: "Precalculus",
level: 4,
unique_id: "test/precalculus/1056.json"

Model prediction:
Step 1: Understand the problem and the equation given
The problem provides an equation $d_1ˆ2 + d_2ˆ2 + d_3ˆ2 = 36$ where $d_1,$ $d_2,$ and
d_3 represent the distances from a point P to the planes $x - z = 0,$ $x - 2y + z
= 0,$ and $x + y + z = 0$ respectively. We need to find the region of the volume enclosed by
the set S of points P that satisfy this equation.

Step 2: Calculate the distance of a point to each plane
The distance d from a point (x_0, y_0, z_0) to a plane $Ax + By + Cz + D = 0$ is given by
the formula $d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{Aˆ2 + Bˆ2 + Cˆ2}}$. Applying this formula
to each plane, we get:
- $d_1 = \frac{|x - z|}{\sqrt{1ˆ2 + (-1)ˆ2}} = \frac{|x - z|}{\sqrt{2}}$
- $d_2 = \frac{|x - 2y + z|}{\sqrt{1ˆ2 + (-2)ˆ2 + 1ˆ2}} = \frac{|x - 2y + z|}{\sqrt{6}}$
- $d_3 = \frac{|x + y + z|}{\sqrt{1ˆ2 + 1ˆ2 + 1ˆ2}} = \frac{|x + y + z|}{\sqrt{3}}$

Step 3: Substitute the distance formulas into the given equation
Substituting $d_1,$ $d_2,$ and d_3 into the equation $d_1ˆ2 + d_2ˆ2 + d_3ˆ2 = 36$, we get:
$\left(\frac{x - z}{\sqrt{2}}\right)ˆ2 + \left(\frac{x - 2y + z}{\sqrt{6}}\right)ˆ2 +
\left(\frac{x + y + z}{\sqrt{3}}\right)ˆ2 = 36$

Step 4: Simplify the equation
Expanding and simplifying, we have:
$\frac{(x - z)ˆ2}{2} + \frac{(x - 2y + z)ˆ2}{6} + \frac{(x + y + z)ˆ2}{3} = 36$

Step 5: Further simplification and rearrangement
Multiplying through by 6 to clear the denominators gives:
$3(x - z)ˆ2 + (x - 2y + z)ˆ2 + 2(x + y + z)ˆ2 = 216$

Step 6: Expand the terms
Expanding each term yields:
$3(xˆ2 - 2xz + zˆ2) + (xˆ2 - 4xy + 4yˆ2 + zˆ2 + 2xz - 4yz) + 2(xˆ2 + 2xy + 2xz + yˆ2 + 2yz + zˆ2) = 216$

Step 7: Combine like terms
Combining like terms, we get:
$3xˆ2 - 6xz + 3zˆ2 + xˆ2 - 4xy + 4yˆ2 + zˆ2 + 2xz - 4yz + 2xˆ2 + 4xy + 4xz + 2yˆ2 + 4yz + 2zˆ2 = 216$

Step 8: Simplify further
This simplifies to:
$6xˆ2 + 6yˆ2 + 6zˆ2 + 0xy + 0xz + 0yz = 216$

Step 9: Divide by 6
Dividing the entire equation by 6 gives:
$xˆ2 + yˆ2 + zˆ2 = 36$

Step 10: Interpret the result
The equation $xˆ2 + yˆ2 + zˆ2 = 36$ represents a sphere with radius 6 centered at the origin (0,0,0).

The final answer is: $\boxed{288\pi}$

31

Step-KTO Generation Example 2: Final Answer is Right but Step 2 is Wrong

problem: For how many real values of $\sqrt{120-\sqrt{x}}$ is an integer?
answer: "11"
subject: "Algebra"
level: 5
unique_id: "test/algebra/1282.json"

Model prediction:
Step 1: Understand the problem and identify the condition for $\sqrt{120-\sqrt{x}}$ to be an
integer. We need $\sqrt{120-\sqrt{x}}$ to be an integer, which means $120-\sqrt{x}$ must be a perfect
square.

Step 2: List all perfect squares less than or equal to 120.
The perfect squares less than or equal to 120 are: 0, 1, 4, 9, 16, 25, 36, 49, 64,
81, 100, and 121. However, since we are considering $120-\sqrt{x}$, the relevant
perfect squares are from 0 to 120, which are 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
and 121 is not included because it exceeds 120.

Step 3: Calculate the possible values of \sqrt{x}.
For each perfect square y from the list, we calculate $\sqrt{x} = 120 - y$. This
gives us the possible values of \sqrt{x} as: 120, 119, 116, 111, 104, 95, 84, 71, 56, 39, 20.

Step 4: Consider the validity of each possible value of \sqrt{x}.
Since \sqrt{x} cannot be negative and must be real, all calculated values in step
3 are valid because they are all positive or zero. However, we should also consider
that \sqrt{x} itself must be real, meaning $x \geq 0$. Given that $\sqrt{x} = 120
- y$, the smallest value of \sqrt{x} is when $y = 100$, giving $\sqrt{x} = 20$.
For $y = 121$, \sqrt{x} would be negative, which is not valid for real x. Thus,
we only consider perfect squares up to 100.

Step 5: Count the number of valid values of \sqrt{x} that make
$\sqrt{120-\sqrt{x}}$ an integer.
From step 3 and considering the correction in step 4, we see that for each perfect
square up to 100 (inclusive), we get a valid \sqrt{x}. Thus, we count the number
of perfect squares from 0 to 100, which are 11 (0, 1, 4, 9, 16, 25, 36, 49, 64, 81,
100).

The final answer is: $\boxed{11}$

QwQ Critique:
\boxed{2}

The error in the solution occurs in the 2nd paragraph, where the reasoning incorrectly
states "The perfect squares less than or equal to 120 are: 0, 1, 4, 9, 16, 25, 36, 49,
64, 81, 100, and 121." It's incorrect because 121 is greater than 120, not less than or
equal to, and shouldn't be included in the list.

32

Step-KTO Generation Example 3: Final Answer is Wrong

Problem: Find the greatest integer less than $(\sqrt{7} + \sqrt{5})ˆ6.$
(Do not use a calculator!)

answer: "13535"
subject: "Intermediate Algebra"
level: 3
unique_id: "test/intermediate_algebra/607.json"

Model prediction:
Step 1: Understand the problem and identify the key elements
We need to find the greatest integer less than $(\sqrt{7} + \sqrt{5})ˆ6$ without using a
calculator. This involves expanding the given expression and simplifying it to a form where
we can estimate its value.

Step 2: Apply the Binomial Theorem to expand the expression
The Binomial Theorem states that for any non-negative integer n, \((a + b)ˆn =
\sum_{k=0}ˆ{n} \binom{n}{k}aˆ{n-k}bˆk\). Applying this to our problem with $a =
\sqrt{7}$, $b = \sqrt{5}$, and $n = 6$, we get \((\sqrt{7} + \sqrt{5})ˆ6 =
\binom{6}{0}(\sqrt{7})ˆ6 + \binom{6}{1}(\sqrt{7})ˆ5(\sqrt{5}) +
\binom{6}{2}(\sqrt{7})ˆ4(\sqrt{5})ˆ2 + \binom{6}{3}(\sqrt{7})ˆ3(\sqrt{5})ˆ3 +
\binom{6}{4}(\sqrt{7})ˆ2(\sqrt{5})ˆ4 + \binom{6}{5}(\sqrt{7})(\sqrt{5})ˆ5 +
\binom{6}{6}(\sqrt{5})ˆ6\).

Step 3: Calculate each term of the expansion
Calculating each term:
- \(\binom{6}{0}(\sqrt{7})ˆ6 = 1 \cdot 7ˆ3 = 343\)
- \(\binom{6}{1}(\sqrt{7})ˆ5(\sqrt{5}) = 6 \cdot 7ˆ2 \cdot 7 \cdot \sqrt{5} = 6
\cdot 49 \cdot 7 \cdot \sqrt{5} = 2058\sqrt{5}\)
- \(\binom{6}{2}(\sqrt{7})ˆ4(\sqrt{5})ˆ2 = 15 \cdot 7ˆ2 \cdot 5 = 15 \cdot 49 \cdot 5
= 3675\)
- \(\binom{6}{3}(\sqrt{7})ˆ3(\sqrt{5})ˆ3 = 20 \cdot 7 \cdot 7 \cdot 5 \cdot \sqrt{5}
= 20 \cdot 49 \cdot 5 \cdot \sqrt{5} = 4900\sqrt{5}\)
- \(\binom{6}{4}(\sqrt{7})ˆ2(\sqrt{5})ˆ4 = 15 \cdot 7 \cdot 5ˆ2 = 15 \cdot 7 \cdot 25
= 2625\)
- \(\binom{6}{5}(\sqrt{7})(\sqrt{5})ˆ5 = 6 \cdot \sqrt{7} \cdot 5ˆ2 \cdot \sqrt{5} =
6 \cdot \sqrt{7} \cdot 25 \cdot \sqrt{5} = 150\sqrt{35}\)
- \(\binom{6}{6}(\sqrt{5})ˆ6 = 1 \cdot 5ˆ3 = 125\)

Step 4: Combine like terms and simplify
Combining like terms, we notice that terms with \(\sqrt{5}\) and \(\sqrt{35}\) will
contribute to non-integer values, but we can simplify the expression by recognizing
that the integer part of the expansion will come from the terms without square roots
(since they are multiplied by integers) and the terms with square roots will contribute
to the fractional part. The terms without square roots are \(343 + 3675 + 2625 + 125 =
6768\).

Step 5: Estimate the value of the expression with square roots
To estimate the value of the terms with square roots, we note that \(2058\sqrt{5}
\approx 2058 \cdot 2.236 = 4599.33\), \(4900\sqrt{5} \approx 4900 \cdot 2.236 =
10943.4\), and \(150\sqrt{35} \approx 150 \cdot 5.916 = 886.4\). Summing these
approximations gives us an estimate of the non-integer contributing terms: \(4599.33 +
10943.4 + 886.4 \approx 15429.13\).

Step 6: Combine the integer and non-integer parts
Adding the integer part (from step 4) to the estimated value of the non-integer part
(from step 5), we get \(6768 + 15429.13 \approx 22197.13\).

Step 7: Determine the greatest integer less than the result
The greatest integer less than \(22197.13\) is \(22197\).

The final answer is: $\boxed{22197}$

33

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 34–49
November 9, 2025 ©2025 Association for Computational Linguistics

BloomWise: Enhancing Problem-Solving capabilities of Large Language
Models using Bloom’s-Taxonomy-Inspired Prompts

Maria-Eleni Zoumpoulidi1 Georgios Paraskevopoulos1 Alexandros Potamianos2
1Institute for Language and Speech Processing, Athena Research Center, Greece

2Speech and Language Processing Group, National Technical University of Athens, Greece
{m.zoumpoulidi, g.paraskevopoulos}@athenarc.gr, potam@central.ntua.gr

Abstract
Despite the remarkable capabilities of large lan-
guage models (LLMs) across a range of tasks,
mathematical reasoning remains a challenging
frontier. Motivated by the observation that hu-
mans learn more effectively when prompted not
what to think but how to think, we introduce
BloomWise, a cognitively-inspired prompting
technique designed to enhance LLMs’ per-
formance on mathematical problem solving
while making their solutions more explainable.
BloomWise encourages LLMs to generate so-
lutions - in the form of explanations - by pro-
gressing through a sequence of cognitive op-
erations—from basic (e.g., remembering) to
more advanced reasoning skills (e.g., evaluat-
ing)—mirroring how humans build understand-
ing. The process iterates through these lev-
els, halting early if a convergence criterion
is met: specifically, if two or more consec-
utive levels yield the same answer, the solu-
tion from the earliest such level is output; oth-
erwise, the process continues until all levels
are completed. Through extensive experiments
across five popular math reasoning datasets, we
demonstrate the effectiveness of BloomWise.
We also present comprehensive ablation stud-
ies to analyze the strengths of each component
within our system.

1 Introduction

Mathematical reasoning has long been regarded as
a pinnacle of human intellect—demanding abstrac-
tion, logical structure, and creativity. As LLMs
achieve remarkable fluency in natural language,
empowering them with robust mathematical rea-
soning skills is crucial for scientific and technolog-
ical progress. Yet, mastering the complexity and
nuance of mathematical problem solving remains
a formidable challenge for LLMs, motivating new
approaches.

Numerous research efforts have leveraged in-
context learning (ICL) (Brown et al., 2020) to im-
prove the problem-solving capabilities of LLMs.

Some of the most widely used techniques involve
encouraging the LLM through prompts to develop a
textual rationale with Chain-of-Thought prompting
(Wei et al., 2022) (CoT) or Python functions with
Program-Aided Language Model (Gao et al., 2022)
and Program-of-Thought prompting (Chen et al.,
2022) (PAL or PoT). Each of these methods comes
with its own strengths and limitations: CoT enables
flexible, sequential narrative-style reasoning but of-
ten struggles with precise numerical computation
(Wei et al., 2022), (Lewkowycz et al., 2022), while
code-based approaches like PoT and PAL offer ac-
curate calculations via Python interpreters but lack
the ability to handle unknown variables.

For this reason, research efforts have pivoted
towards integrating multiple methodologies, aim-
ing to identify the most suitable approach for each
specific problem, while harnessing the collective
strengths of various techniques. One such method,
X of Thoughts (Liu et al., 2023), selects from CoT,
PoT, or EoT (Equations of Thought) depending on
the nature of the problem, applies the selected ap-
proach, and verifies the result (iteratively, until a
correct solution is reached).

Building on the integration of diverse rea-
soning strategies—and aiming for more struc-
tured, human-aligned, and explainable mathemat-
ical problem solving in LLMs—we introduce
BloomWise, a novel cognitively inspired prompt-
ing method. BloomWise guides LLMs to generate
solutions in the form of explanations by method-
ically engaging higher-order cognitive functions
in a hierarchical manner, persisting through the
process until the correct solution is reached via
a convergence criterion: if two consecutive lev-
els yield the same result, the process halts and
outputs the solution from the earliest such level.
The motivation behind this approach is that, while
encouraging LLMs to follow a specific methodol-
ogy or approach can be effective, prompting them
how—rather than what—to think enables more in-

34

depth processing.
To demonstrate the effectiveness of our ap-

proach, we conduct extensive experiments on
five popular mathematical reasoning datasets and
achieve consistent improvements. Additionally,
we explore several variants of our method, includ-
ing majority voting among levels, and Program of
Bloom, that combines Bloom prompting with PoT.

The main contributions are:

1. We introduce a novel cognitively-inspired
multi-level prompting method for solving
mathematical (and potentially other types of)
problems based on Bloom’s taxonomy, com-
bining robust reasoning and enhanced explain-
ability. Our code is available to the research
community under the Apache 2.0 license1.

2. We incorporate the idea of early stopping in
prompting, motivated by recent work on dy-
namically adjusting test-time compute during
inference (Snell et al. (2025), Manvi et al.
(2024)): the execution of our method termi-
nates before iterating through all levels of
Bloom’s taxonomy when a correct solution
is reached.

3. We investigate the performance of various
LLMs at each cognitive level of the Bloom
taxonomy for five popular math datasets.

Our results offer valuable insights into the cognitive
skills exhibited by each LLM, as well as the skills
required to solve different types of mathematical
problems. Furthermore, we demonstrate the poten-
tial of muti-level cognitively-inspired prompting
for improving accuracy and enhancing explainabil-
ity.

2 Related Work

As Large Language Models (LLMs) continue to
advance, an array of prompting strategies has
emerged to strengthen their reasoning abilities.
Early progress was made through chain-of-thought
prompting, which encourages step-by-step reason-
ing (Wei et al., 2022), utilizing programming to ad-
dress procedural challenges (Gao et al., 2022; Chen
et al., 2022) and employing zero-shot prompts that
rely on a single guiding sentence to elicit com-
plex responses (Kojima et al., 2022). Furthermore,
the Tree-of-Thoughts approach (Yao et al., 2023)

1
https://github.com/marilena1123/BloomWise

navigates through various reasoning pathways and
traverses tree-like structures of reasoning states.
Moreover, X of Thoughts (Liu et al., 2023) selects,
applies and verifies the most suitable among the
techniques of CoT (Chain of Thought), PoT (Pro-
gram of Thought), and EoT (Equations of Thought)
iteratively, until a correct solution is reached.

3 Preliminaries: Bloom’s Taxonomy

Bloom’s Taxonomy provides a hierarchical classifi-
cation of thinking according to six levels of cogni-
tive complexity. The original model, introduced in
the 1950s, organizes cognitive processes based on
the following order: remembering, understanding,
applying, analyzing, synthesizing, and evaluating.
The taxonomy is hierarchical, as shown in Fig. 1,
where each level is subsumed by the higher levels.
In 2001, the taxonomy was revised by Anderson
and Krathwohl (2001), resulting in a new sequence:
remembering, understanding, applying, analyzing,
evaluating, and creating. Our work is based on
the revised taxonomy of Anderson and Krathwohl
(2001). The steps used in the Taxonomy are de-

Figure 1: Bloom’s Taxonomy (as revised by Anderson
and Krathwohl (2001)).

fined as follows (Forehand et al., 2005):
Remembering: Retrieving, recognizing, and re-
calling relevant knowledge from long-term mem-
ory.
Understanding: Constructing meaning from oral,
written, and graphic messages through interpreting,
exemplifying, classifying, summarizing, inferring,
comparing, and explaining.
Applying: Carrying out or using a procedure
through executing, or implementing.
Analyzing: Breaking material into constituent
parts, determining how the parts relate to one an-
other and to an overall structure or purpose through
differentiating, organizing, and attributing.

35

https://github.com/marilena1123/BloomWise

Input problem: Raymond and Samantha are cousins. Raymond was born 6 years before Samantha. Raymond had a
son at the age of 23. If Samantha is now 31, how many years ago was Raymond's son born?

Okay, let's tackle this problem. We're working at the "Remembering" level, which means I'm going to try and recall facts and procedures I already know to solve this,
rather than doing a lot of complex thinking. First, let's just read the problem carefully and pull out the key facts. I remember that good problem-solving starts with

understanding what's given. We know: Raymond was born 6 years before Samantha. Raymond had a son at age 23. Samantha is currently 31 years old. We want to know
how many years ago Raymond's son was born. Now, I'm trying to remember similar problems I've seen. This feels like a series of simple calculations, not something that
requires a complicated strategy. I remember needing to find Raymond's current age first. Since Raymond was born 6 years before Samantha, and Samantha is 31, I recall

simply subtracting to find Raymond’s age: 31 - 6 = 25. So Raymond is currently 25 years old.
Okay, good. Now, I remember the problem states Raymond had a son at age 23. So, the son was born when Raymond was 23. Since Raymond is now 25, I recall I need to

find the difference between his current age and the age he was when his son was born. That's 25 - 23 = 2.
Therefore, Raymond’s son was born 2 years ago. The final answer is: 2.

Alright, let's tackle this word problem together. We're working at the Applying level today, which means we'll focus on using procedures we already know to solve this. We
won’t be creating a new solution, just applying existing knowledge. Okay, so the problem gives us a few pieces of information. Let's write those down to keep things

organized: 1) Raymond is 6 years older than Samantha. 2) Raymond had a son at age 23. 3) Samantha is currently 31 years old.4) We want to know how many years ago
Raymond's son was born. The key here is to break this down into smaller steps. We need to figure out Raymond's current age first. Since Raymond is 6 years older than
Samantha, and Samantha is 31, we can simply add 6 to Samantha\u2019s age to find Raymond’s age. So, 31 + 6 = 37. Raymond is currently 37 years old. Now we know
Raymond had his son when he was 23. We also know Raymond is now 37. To find out how many years ago his son was born, we need to find the difference between his

current age and the age he was when his son was born. That means we need to subtract: 37 - 23 = 14. Therefore, Raymond's son was born 14 years ago.
The final answer is: 14

Alright, let's tackle this word problem together. We're working on understanding the problem, so we won’t be jumping to solutions right away. We'll focus on what the
problem is telling us and what it's asking us to find. Okay, first sentence: "Raymond and Samantha are cousins." That's good to know, but it doesn't seem directly

relevant to finding our answer. It's background information. We can just keep that in mind. Second sentence: "Raymond was born 6 years before Samantha." This is
important! It establishes a relationship between their ages. If Samantha is a certain age, we can figure out Raymond's age. We can infer that Raymond is older than

Samantha. Third sentence: "Raymond had a son at the age of 23." This is another key piece of information. It tells us when Raymond became a father. We'll need this to
figure out when his son was born. Fourth sentence: "If Samantha is now 31, how many years ago was Raymond's son born?" This is the question! It's asking us to find a
difference in time. Specifically, it wants to know how many years have passed between the son's birth and now. Let’s summarize what we know: Samantha is currently

31 years old. Raymond is 6 years older than Samantha. Raymond had his son when he was 23 years old. Now, let's interpret this. We need to find Raymond’s current age
first. Since he’s 6 years older than Samantha, and Samantha is 31, we can calculate Raymond's age: 31 + 6 = 37. So, Raymond is currently 37 years old. Now we know

Raymond had a son when he was 23, and he's currently 37. To find out how many years ago the son was born, we need to find the difference between Raymond’s current
age and the age he was when his son was born. That's 37 - 23. This is a subtraction problem, and it directly addresses what the question is asking for the number of years

ago the son was born. Let's calculate: 37 - 23 = 14. Therefore, Raymond's son was born 14 years ago. The final answer is: 14

REMEMBERING

UNDERSTANDING

APPLYING

Figure 2: Overview of BloomWise Early Stop algorithm. The math problem is shown on top, followed by the
output at each Bloom taxonomy level (blue box, orange and gray box). Input prompts are not shown, please refer to
Appendix A. The model generates responses corresponding to the first 2 levels of Bloom’s taxonomy (blue and
orange boxes, Remembering and Understanding respectively). Since there is no consensus between the two, it
generates an answer corresponding to the next level (Applying, gray box). Now, there is consensus between the 2
consecutive levels (Understanding and Applying), so the process halts and the response corresponding to the earliest
such level (Understanding) is returned.

Evaluating: Making judgments based on criteria
and standards through checking and critiquing.
Creating: Putting elements together to form a co-
herent or functional whole; reorganizing elements
into a new pattern or structure through generating,
planning, or producing.

4 BloomWise Early Stop (BLES)

Our goal is to develop a generalized problem solv-
ing framework that iterates through prompts, each
corresponding to a level of Bloom’s taxonomy, un-
til the correct solution is reached. Next, we de-
scribe the overall framework and introduce each
module in detail.

4.1 The Framework

In this framework, the system progresses through
the levels of Bloom’s taxonomy in sequence for a
given problem. At each level, the LLM is provided
with the problem along with a prompt specifically
designed for that level. The model then generates a
response—an explanatory solution. In case of con-
sensus between two consecutive levels’ numerical
results, the process concludes successfully at the

earliest of the two levels, and no further levels are
explored. Otherwise, the process continues to the
next level until either consensus is reached or all
levels have been exhausted. The overall pipeline is
described in Algorithm 1 and an overview of the
framework can be found in Figure 2.

4.2 Prompts

We designed prompts corresponding to each level
of Bloom’s Taxonomy:

Remembering: The model is prompted to solve
the problem by retrieving, recognizing, and recall-
ing relevant math facts, formulas, definitions, simi-
lar problems or the exact same problem from mem-
ory.

Understanding: The model is prompted to solve
the problem by constructing meaning from the
problem statement and relevant math concepts and
demonstrate the thinking process by interpreting,
exemplifying, classifying, summarizing, inferring,
comparing, and explaining the concepts involved
and what the problem is asking for.

Applying: The model is prompted to solve the

36

Algorithm 1 BloomWise Early Stop (BLES)

1: Input: i
2: results← []
3: for level in levels do
4: res← Reasoning(level_prompt, i)
5: Append res to results
6: if |results| ≥ 2 and results[−1] =

results[−2] then
7: break
8: end if
9: end for

10: if there exists k such that results[k] =
results[k + 1] then

11: return results[min{k : results[k] =
results[k + 1]}]

12: else
13: return results[−1] ▷ If no convergence,

return the last result
14: end if

problem by carrying out or using a known proce-
dure.

Analyzing: The model is prompted to solve the
problem by breaking it into parts, determining how
the parts relate to one another, and identifying pat-
terns or relationships.

Evaluating: The model is prompted to solve the
problem by making judgments about different ap-
proaches or potential solutions.

Creating: The model is prompted to solve the
problem by putting together elements to form a
new solution strategy or structure.
Our prompts are zero-shot.
The detailed prompts are shown in Tables 7 and 6
in Appendix A. Examples of outputs can be found
in Appendix B.

4.3 Convergence
The verification module determines the correctness
of a solution based on a convergence criterion. For
each problem, the framework progresses through
the levels of Bloom’s taxonomy in sequence. At
each level, the LLM is given the problem along
with a prompt tailored for that specific cognitive
level, and generates an explanatory solution. After
each level, the numerical result is compared with
this from the previous level. If two consecutive lev-
els yield the same result, this consensus is taken as
sufficient evidence of correctness, and the process
halts at the earliest such level.

4.4 Iteration and Early Stopping

For each problem, the LLM is guided by prompts
crafted to align with the respective levels of
Bloom’s taxonomy. The model continues this pro-
cess until it produces a correct solution or all levels
have been explored. This approach operates on
the premise that prompts associated with higher
taxonomy levels encourage the LLM to engage
with the problem more deeply than those at lower
levels. Moreover, if a correct solution is obtained
at a lower level, it suggests that more advanced
cognitive effort is unnecessary for that particular
problem, making early termination of the process
a logical choice. This procedure is illustrated in
Figure 2.

4.5 BloomWise Majority Voting (BLM)

As an alternative to early stopping, we also ex-
plored an approach where the final output is de-
termined by a majority vote of the outputs corre-
sponding to all levels of Bloom’s taxonomy. This
strategy utilizes the collective reasoning of mul-
tiple cognitive stages. For a given question q,
each reasoning stage s ∈ S of Bloom’s taxonomy
produces a numerical result Rs(q). The majority
vote approach selects the final answer as the value
that occurs most frequently among these outputs.
R̂majority(q) ∈ 0, 1 compared to the gold label. We
define the accuracy under the majority vote setting
for N questions as:

Accmajority =
1

N

∑

q

R̂(q), (1)

where

R̂(q) = R̂majority(q).

The majority vote setting represents a consensus-
based approach where the model aims to solve a
given problem based on the most frequent results
from the methods employed. In cases where there
is a tie (i.e., two or more answers have the same
highest frequency), the first encountered answer
among those with the highest frequency is chosen.

37

Dataset CoT PoT XoT BloomWise EarlyStop (BLES) BloomWise Majority Voting (BLM)

GPT-4o-mini

GSM8K 93.9 88.2 93.6 94.2 94.9
SVAMP 93.4 92.0 93.3 95.1 95.0
Algebra 95.0 83.3 95.9 95.9 96.4
GSM-hard 52.2 71.6 54.7 56.0 55.9
aime24 10.0 3.3 10.0 13.3 13.3

LLaMA 3.1 70B

GSM8K 94.5 90.0 93.6 95.3 95.7
SVAMP 92.8 94.2 94.8 95.0 94.9
Algebra 95.9 77.9 96.4 96.4 98.2
GSM-hard 46.0 66.5 69.9 47.5 48.8
aime24 23.3 6.7 16.7 20.0 23.3

LLaMA 3.1 8B

GSM8K 79.2 56.2 78.9 87.9 89.9
SVAMP 84.0 65.8 83.6 90.6 92.3
Algebra 81.5 52.7 79.3 91.0 92.8
GSM-hard 27.5 42.4 27.1 35.0 36.3
aime24 3.3 6.7 3.3 6.7 6.7

Gemma3 27B

GSM8K 94.7 86.5 91.6 95.5 96.3
SVAMP 94.6 92.7 94.2 96.5 96.2
Algebra 98.6 70.7 96.4 98.6 99.1
GSM-hard 61.3 65.6 69.2 62.0 63.1
aime24 13.3 3.3 6.6 23.3 20.0

Table 1: Solution accuracy across various models and math reasoning datasets. Best performer is shown in bold,
and second best is underlined. Our methods (BLES and BLM) are zero-shot while the baselines (CoT, PoT, and
XoT) few-shot.

5 Experiments

5.1 Experimental Setting

Dataset # Samples

GSM8K (Cobbe et al., 2021) 1,319
SVAMP (Patel et al., 2021) 1,000
Algebra (He-Yueya et al., 2023) 222
GSM-hard (Gao et al., 2022) 1,319
AIME24 (MAA, 2024) 30

Table 2: Statistics of the datasets we used

Datasets We conduct our experiments on a di-
verse collection of five math reasoning datasets,
each covering different challenging problem
types: GSM8K, SVAMP, Algebra, GSM-hard and
AIME24. The GSM-hard dataset is a modified
version of GSM8K, where small numerical values
have been replaced with larger ones to introduce
greater computational difficulty. The details of the
statistics of the datasets can be found in Table 2.

Models For our experiments, we query gpt-4o-
mini 2, Llama3.1 8b/70b (Grattafiori et al., 2024)
and Gemma3 27b (Team et al., 2025).

5.2 Comparison to state-of-the-art
In Table 1, we report solution accuracy across the
five math datasets for the four LLMs we tested.
We consider three prompting methods as baselines,

2https://openai.com

namely CoT (Wei et al., 2022), PoT (Chen et al.,
2022) and XoT (Liu et al., 2023) (all in the 8-shot
setting used in Liu et al. (2023)), and compare with
BloomWise Early Stop (BLES) and BloomWise
Majority Voting (BLM) (both in zero-shot setting).
Overall, averaged over all datasets and models,
BLM is the top performer, achieving 70.5% accu-
racy, followed by BLES at 69.8%, XoT at 67.5%,
CoT at 66.8%, and PoT at 60.8%. These results un-
derscore the potential of Bloom-Inspired methods
in zero-shot settings.

5.2.1 Performance per task

BLM is the top performer across almost all datasets,
followed closely by BLES, while CoT and XoT
achieve comparable performance. More specifi-
cally, for GSM8K, BLM achieves 94.2, BLES 93.2,
CoT 90.6, XoT 89.4, and PoT 80.2. For SVAMP,
the scores are 94.6 for BLM, 94.3 for BLES, 91.2
for CoT, 91.5 for XoT, and 86.2 for PoT. In Algebra,
BLM achieves 96.6, BLES 95.5, CoT 92.8, XoT
92.0, and PoT 71.2. In AIME, which is the most
demanding in terms of difficulty, BLM and BLES
both achieve 15.8, followed by CoT at 12.5, XoT
at 9.2, and PoT at 5.0. For GSM-hard, the most
challenging dataset in terms of calculation diffi-
culty, methods employing Python programming
excel, with PoT being the top performer at 61.5,
followed by XoT at 55.2, BLM at 51.1, BLES at
50.1, and CoT at 46.7. These results position our

38

https://openai.com

Model Remembering Understanding Applying Analyzing Evaluating Creating

GPT-4o-mini 79.3 80.1 80.3 80.7 79.2 79.6
Llama 3.1 70b 76.6 76.4 77.3 75.9 73.7 72.6
Llama 3.1 8b 63.2 64.2 63.4 63.3 60.4 59.1
Gemma 3 27b 81.0 57.7 83.3 83.2 81.6 79.7

Table 3: Aggregated scores (%) per model for each Bloom’s taxonomy level across all datasets (n = 3,890).

method as the best performer on problems requir-
ing thoughtful reasoning, while methods involv-
ing programming excel specifically in calculation-
intensive tasks.

5.2.2 Performance per model
While BLES and BLM generally achieve the
highest performance, the best-performing method
varies by model. For GPT-4o-mini, BLM is the top
performer with 71.1, followed by BLES at 70.9,
XoT at 69.5, CoT at 68.9, and PoT at 67.7. For
LLaMA 3.1 70B, XoT achieves the highest score
with 74.3, followed by BLM at 72.2, BLES at 70.8,
CoT at 70.5, and PoT at 67.1. For LLaMA 3.1
8B, BLM leads with 63.6, followed by BLES at
62.2, CoT at 55.1, XoT at 54.4, and PoT at 44.8.
For Gemma3 27B, BLES is the top performer with
75.2, followed by BLM at 74.9, CoT at 72.5, XoT
at 71.6, and PoT at 63.8.

5.3 Trade-offs Between BLM and BLES

While the top-performing variant varies depend-
ing on the model and dataset—meaning there is no
universal winner between BLM and BLES—BLM
achieves the best overall performance. Nonethe-
less, BLES presents a compelling alternative when
computational efficiency is a priority. Unlike BLM,
which requires generating responses for all levels
of Bloom’s Taxonomy, BLES terminates the rea-
soning process as soon as convergence is detected,
reducing the number of generated outputs and thus
lowering computational cost.

6 Ablation studies and Improved
Handling of computations

The analysis of the results will be structured along
two axes. The first concerns the study of the results
by Bloom taxonomy level. The second focuses on
closing the performance gap between BloomWise
and Program-aided Techniques (eg PoT, XoT) on
challenging datasets from a computational point of
view.

6.1 Performance at each cognitive level
For this analysis, we executed the prompts corre-
sponding to each of the levels of the taxonomy
(without early stopping). A problem might be cor-
rectly solved in more than one levels.

6.1.1 LLMs and cognitive abilities
In Table 3, we show the percentage (%) of cor-
rectly solved problems per Bloom’s level for the
LLMs tested. From this table, we can draw several
conclusions about the cognitive skills demonstrated
by the LLMs:

Performance consistency across levels varies sig-
nificantly among models : GPT-4o-mini demon-
strates homogeneous performance, with scores
ranging narrowly between 79.2% (Evaluating) and
80.7% (Analyzing), indicating a consistent abil-
ity to tackle tasks at any level of cognitive com-
plexity. In contrast, Llama3.1 8b’s performance,
for instance, ranges from 59.1 to 64.2. Addition-
ally, Gemma 3 27b achieves peak performance in
procedural tasks (Applying: 83.3%; Analyzing:
83.2%) and factual recall (Remembering: 81.0%)
and performs poorly in Understanding (57.7%).
This might be an indication of a critical weakness
in conceptual comprehension despite procedural
proficiency, probably implying limited training on
such tasks.

Model scale substantially improves overall capa-
bility : The Llama 3.1 70B model outperforms
its 8B counterpart by an average margin greater
than 10.0% across all levels, confirming parameter
count as a key performance factor.

The best performing level is Applying : Al-
though the best performing level is not the same
across models, Applying is generally the top per-
former. This behavior is expected due to exten-
sive training on similar methods such as Chain of
Thought.

All models exhibit declining performance at
higher taxonomy levels : all models’ perfor-

39

Dataset Remembering Understanding Applying Analyzing Evaluating Creating
GSM8K 90.0 82.7 90.8 91.1 88.2 88.0
SVAMP 91.1 88.7 90.4 90.2 90.0 87.7
Algebra 83.1 79.0 92.3 92.1 91.2 90.8

GSM-hard 48.0 41.8 49.1 48.4 45.4 44.7
AIME 8.4 8.4 12.5 12.5 10.0 10.0

Table 4: Aggregated scores (%) per dataset for each Bloom’s taxonomy level across all models.

mance drops in Evaluating and Creating. This
universal trend confirms that these skills remain
challenging for the LLMs in mathematical domains,
irrespective of scale or architecture. This is prob-
ably due to both the inherent difficulty of these
cognitive processes and limited training on such
tasks.

6.1.2 Problem type and cognitive depth
Table 4 presents the scores for each dataset and
Bloom’s taxonomy level. Several trends and in-
sights emerge from these results.

Performance Across Datasets : The models
achieve the highest performance on the GSM8K
and SVAMP datasets, consistently scoring above
87% across all Bloom’s taxonomy levels. This in-
dicates that current LLMs are highly proficient in
standard grade-school math, regardless of the spe-
cific cognitive skill being assessed. Performance
on the Algebra dataset is also strong, with scores
ranging from 79.0% to 92.3%, showing that models
handle symbolic and procedural tasks well but with
slightly more variation than GSM8K or SVAMP.
In contrast, GSM-hard and AIME represent a stark
drop in accuracy, with all Bloom level scores for
GSM-hard in the 41.8% to 49.1% range, and for
AIME in the 8.4% to 12.5% range. These results
highlight that state-of-the-art LLMs still struggle
substantially with high-complexity, olympiad-style
and challenging in terms of calculations problems.

Dataset difficulty and patterns : For the easier
datasets from a reasoning perspective—GSM8K,

SVAMP, Algebra, and GSM-hard—models achieve
their highest accuracy on Applying and Analyz-
ing tasks, indicating strong proficiency with strate-
gies that closely resemble techniques heavily em-
phasized during training, such as chain-of-thought
(CoT) reasoning. Scores for Remembering are also
high, suggesting that even pure recall is often suffi-
cient for such problems, but these scores generally
do not surpass those for Applying or Analyzing. In
contrast, performance consistently dips for Under-
standing, which emerges as the weakest category in
these datasets, and declines moderately for Evaluat-
ing and Creating, though these higher-order skills
often still outperform Understanding.

For the more difficult dataset, AIME, Remember-
ing and Understanding are the lowest-performing
categories, while Applying and Analyzing remain
the strongest. Notably, for these challenging prob-
lems, Evaluating and Creating sometimes yield bet-
ter results than lower-order skills (Remembering,
Understanding), suggesting that as difficulty and
unfamiliarity increase, deeper reasoning may be
required for success.

6.2 Program of Bloom

In order to reduce errors in calculations, we incor-
porated Python code into our framework. More
specifically, we used the same approaches (BLES
and BLM) but modified the prompts to request
answers in the form of Python code, which was
then safely executed. For the sake of simplic-
ity for this analysis, we only report the results
concerning Gemma3 2.7B. On the GSM-Hard

Dataset BLES BLM Program of BLES Program of BLM

GSM8K 95.5 96.3 92.0 91.5
SVAMP 96.5 96.2 94.1 93.9
Algebra 98.6 99.1 89.6 88.3

GSM-hard 62.0 63.1 65.0 65.3
aime 23.3 20.0 20.0 23.3

Table 5: Comparison between Program of Bloom and BloomWise-Results for Gemma3 27B

40

dataset—the most challenging in terms of calcu-
lations—accuracy improved slightly, with gains
of 3% for BLES and 2.2% for BLM. However,
for the remaining datasets, accuracy was consid-
erably lower—or, in the case of AIME, equiva-
lent—compared to the performance achieved with
BloomWise (BLES and BLM). Results can be
found in Table 5. A possible explanation for the
reduced performance of this variant is that the
prompts are not be well-suited to generating an-
swers in code format. The strict structure required
for executable code can limit the model’s ability
to follow the intended prompting, whereas textual
rationales provide more flexibility and are often
better aligned with the task structure.

7 Conclusion

We propose BloomWise, a problem-solving frame-
work that uses prompts inspired by the levels
of Bloom’s Taxonomy to reach the correct solu-
tion. We introduce three variants of our method:
EarlyStop (BLES), which halts the process if a
solution is deemed as correct based on a conver-
gence criterion, preventing progression to higher
levels of the taxonomy; Majority Voting (BLM),
where the final solution is determined by a con-
sensus across the outputs; and Program of Bloom,
similar to BLES and BLM but requiring the an-
swer in the form of Python code. Experiments
conducted on five math reasoning datasets demon-
strated the efficiency of our method, showcasing
not only accuracy-exceeding the state of the art
methods- but also providing valuable insights into
the cognitive abilities of LLMs. Among the vari-
ants, BLM achieved the highest accuracy, while
BLES prioritized computational efficiency. The
Program of Bloom variant achieved the best accu-
racy only on the GSM-hard dataset, while it per-
formed the lowest on the rest of the datasets.

Our findings highlight the promise of
cognitively-grounded prompting strategies
for enhancing LLM performance in zero-shot
settings. In future work, we plan to extend
BloomWise to additional domains beyond math
reasoning, exploring its generalizability and
broader applicability.

Limitations

We acknowledge that, although our method
achieves top performance on most datasets, it strug-
gles with problems that require complex computa-

tions. Additionally, while our evaluation focused
on mathematics to enable a more targeted analy-
sis, applying our framework to a broader range of
tasks would further validate its generalizability and
practical utility.

Acknowledgments

This project has received funding from the [Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme][European Research Council
(ERC) under the European Union’s Horizon 2020
research and innovation programme][Euratom re-
search and training programme 2019-2020] under
grant agreement No 101234269.

References
L. W. Anderson and D. R. Krathwohl. 2001. A Taxon-

omy for Learning, Teaching, and Assessing: A Revi-
sion of Bloom’s Taxonomy of Educational Objectives.
Longman.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020. NeurIPS 2020, December 6-12, 2020,
virtual conference.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588. Preprint available at arXiv.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. CoRR, abs/2110.14168.

Mary Forehand and 1 others. 2005. Bloom’s taxon-
omy: Original and revised. Emerging Perspectives
on Learning, Teaching, and Technology, 8:41–44.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. PAL: Program-Aided Language
Models. CoRR, abs/2211.10435. Preprint available
at arXiv.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh

41

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.48550/arXiv.2211.10435
https://doi.org/10.48550/arXiv.2211.10435

Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and
Noah D. Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. CoRR, abs/2304.09102.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems (NeurIPS).
NeurIPS 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay V. Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur,
Guy Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models. In
NeurIPS.

Tengxiao Liu, Qipeng Guo, Yuqing Yang, Xiangkun
Hu, Yue Zhang, Xipeng Qiu, and Zheng Zhang. 2023.
Plan, verify and switch: Integrated reasoning with
diverse X-of-thoughts. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2807–2822, Singapore. As-
sociation for Computational Linguistics.

MAA. 2024. American invitational
mathematics examination - aime 2024.
https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime.
Accessed: 2025-07-11.

Rohin Manvi, Anikait Singh, and Stefano Ermon. 2024.
Adaptive inference-time compute: Llms can predict
if they can do better, even mid-generation. Preprint,
arXiv:2410.02725.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling llm test-time compute opti-
mally can be more effective than scaling parameters
for reasoning. In The Thirteenth International Con-
ference on Learning Representations.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey
Cideron, Jean bastien Grill, Sabela Ramos, Edouard
Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev,
and 197 others. 2025. Gemma 3 technical report.
Preprint, arXiv:2503.19786.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems
(NeurIPS). Presented at NeurIPS 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. CoRR,
abs/2305.10601. Preprint available at arXiv.

A Prompts of BloomWise

In this section, we provide the prompts used for
each Bloom’s Level (table 6) and the System
Prompt (table 7).

B Examples of BloomWise

In this section, we provide output examples for
each level of Bloom’s taxonomy in Tables 9, 10,
11, 12, 13 and 14. The problem is stated in Table
8.

42

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2304.09102
https://doi.org/10.48550/arXiv.2304.09102
https://doi.org/10.48550/arXiv.2304.09102
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.emnlp-main.169
https://doi.org/10.18653/v1/2023.emnlp-main.169
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://arxiv.org/abs/2410.02725
https://arxiv.org/abs/2410.02725
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://arxiv.org/abs/2503.19786
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601

Bloom’s Level Prompt

Remembering You are at the Remembering level. Solve the problem by retrieving, recognizing, and
recalling relevant math facts, formulas, definitions, similar problems or the exact same
problem from memory. Clearly express what information or problems you recall that is
relevant to solving this specific problem.

Understanding You are at the Understanding level. Solve the problem by constructing meaning from
the problem statement and relevant math concepts. Show your thinking by interpreting,
exemplifying, classifying, summarizing, inferring, comparing, and explaining the con-
cepts involved and what the problem is asking for.

Applying You are at the Applying level. Solve the problem by carrying out or using a known
procedure. Clearly show how to apply this procedure to this specific problem step by
step.

Analyzing You are at the Analyzing level. Solve the problem by breaking it into parts, determining
how the parts relate to one another, and identifying patterns or relationships. Show your
thought process by differentiating, organizing, and attributing relationships between the
math elements.

Evaluating You are at the Evaluating level. Solve the problem by making judgments about different
approaches or potential solutions. Express your thought process by checking, critiquing,
and explaining why one approach or answer is better or more appropriate than others.

Creating You are at the Creating level. Solve the problem by putting together elements to form a
new solution strategy or structure. Show your thinking as you generate, plan, or produce
a novel approach to this problem.

Table 6: Bloom’s level Specific Prompts

System Prompt

You are a tutor. Solve the given math problem in class using only cognitive skills associated with the
specified Bloom’s level. Explicitly express your thought process out loud as you solve it, so the student
can follow your reasoning.
Bloom’s level specific prompt
Problem: problem
Provide the final numerical answer at the end in the format: "The final answer is:"

Table 7: System Prompt

Problem
A candle melts by 2 centimeters every hour that it burns. How many centimeters shorter will a candle
be after burning from 1:00 PM to 5:00 PM?

Table 8: Problem Statement

43

Level Solution
Remembering Okay, let’s tackle this problem together. We’re working at the Remembering level,

which means we’re going to rely on things we already know: facts, definitions,
and maybe similar problems we’ve seen before. We’re not going to do a lot of
complex thinking right now. First, let’s read the problem carefully: A candle
melts by 2 centimeters every hour that it burns. How many centimeters shorter
will a candle be after burning from 1:00 PM to 5:00 PM? Okay, what do I
remember about solving problems like this? I remember that when we have a
rate, something happening per unit of time and a duration of time, we can find the
total change by multiplying. That’s a key fact! I remember doing problems like
Ïf a car travels 60 miles per hour for 2 hours, how far does it travel?.̈ That feels
similar. Now, let’s identify what we know. The problem tells us the candle melts
at a rate of 2 centimeters per hour. That’s our rate. Next, we need to figure out
how long the candle is burning. It burns from 1:00 PM to 5:00 PM. I remember
how to figure out time differences. I can count the hours: 1 PM to 2 PM is 1 hour,
2 PM to 3 PM is another hour, 3 PM to 4 PM is another, and 4 PM to 5 PM is the
last hour. That’s a total of 4 hours. Alternatively, I remember I can just subtract
the start time from the end time: 5 - 1 = 4. So, the candle burns for 4 hours. Now
I recall the multiplication fact we discussed earlier. Rate times time equals total
change. We have a rate of 2 centimeters per hour, and a time of 4 hours. So, we
multiply: 2 centimeters/hour * 4 hours. The hours cancel out, leaving us with
centimeters. 2 * 4 = 8. Therefore, the candle will be 8 centimeters shorter. The
final answer is: 8

Table 9: Example of a response corresponding to Remembering Level

44

Level Solution
Understanding Okay, let’s tackle this problem together. We’re working at the Understanding

level, which means we need to show we get what’s happening in the problem,
not just jump to a calculation. So, I’m going to talk through my thinking as I
go. First, let’s interpret the problem. What’s the problem telling us? It’s telling
us about a candle and how it changes over time. Specifically, it says the candle
gets shorter. That’s important, it’s decreasing in length. The rate of change is
key: it melts 2 centimeters every hour. That’s a consistent rate, a rule we can use.
Now, let’s summarize what we need to find out. The problem asks: How many
centimeters shorter will a candle be? This means we need to find the total amount
the candle decreases in length. Let’s exemplify with a simpler case. If the candle
burned for just one hour, how much shorter would it be? The problem tells us 2
centimeters. If it burned for two hours, it would be 2 + 2 = 4 centimeters shorter.
See? We’re just repeatedly applying that 2 cm/hour rule. Okay, now let’s get
back to the original problem. We need to figure out how many hours the candle
is burning. The candle burns from 1:00 PM to 5:00 PM. Let’s infer the number
of hours. We can count it out: 1 PM to 2 PM is one hour, 2 PM to 3 PM is
another hour, 3 PM to 4 PM is another, and 4 PM to 5 PM is the last hour. That’s
a total of 4 hours. Now we can compare this to our simpler example. We know it
melts 2 cm per hour. We now know it burns for 4 hours. So, it’s like adding 2
cm four times. Finally, let’s explain how to calculate the total change in length.
We’ll multiply the rate of melting (2 cm/hour) by the number of hours it burns (4
hours). That’s 2 cm/hour * 4 hours. So, 2 multiplied by 4 is 8. Therefore, the
candle will be 8 centimeters shorter. The final answer is: 8

Table 10: Example of a response corresponding to Understanding Level

45

Level Solution
Applying Alright, let’s tackle this problem together. We’re working at the ’Applying’ level,

which means we need to use a procedure we already know to solve this. In this
case, the procedure is understanding rate and using multiplication. First, let’s
identify what we know. We know the candle melts at a rate of 2 centimeters per
hour. That’s our key piece of information. Next, we need to figure out how long
the candle is burning. The problem tells us it burns from 1:00 PM to 5:00 PM.
Let’s count the hours: 1:00 PM to 2:00 PM is one hour, 2:00 PM to 3:00 PM
is another hour, 3:00 PM to 4:00 PM is another hour, and 4:00 PM to 5:00 PM
is the final hour. So, that’s a total of 4 hours. Now we can apply the procedure.
We know the rate (2 cm/hour) and the time (4 hours). To find the total change
in length, we multiply the rate by the time. So, we’ll do: 2 centimeters/hour
* 4 hours. The ’hour’ units cancel out, leaving us with centimeters. 2 * 4 = 8.
Therefore, the candle will be 8 centimeters shorter. The final answer is: 8

Table 11: Example of a response corresponding to Applying Level

46

Level Solution
Analyzing Alright class, let’s tackle this candle problem. We’re working on analyzing today,

which means we need to break this problem down into its pieces and see how
they connect. Don’t just jump to a calculation, let’s understand what’s happening
first. Okay, what information are we given? We know the candle melts at a rate
2 centimeters per hour. That’s important. That’s our key relationship. We also
know a time period: from 1:00 PM to 5:00 PM. Now, let’s differentiate. We have
a change in length (how much shorter the candle gets) and a change in time (the
duration it burns). Our rate connects these two. Melting rate is essentially change
in length divided by change in time. Let’s organize this. We need to figure out
the total change in time. How many hours are there between 1:00 PM and 5:00
PM? Let’s see: 1:00 to 2:00 is one hour, 2:00 to 3:00 is another, 3:00 to 4:00,
and 4:00 to 5:00. That’s four hours. So our change in time is 4 hours. Now, let’s
attribute the relationship. We know the candle melts 2 centimeters for every hour.
That ’for every’ signals a multiplicative relationship. We can set up a sort of
proportion, even though we don’t need to formally write it out as one. If it melts
2 cm in 1 hour, then in 4 hours, it will melt, well, four times as much, right? So,
we are multiplying the rate of melting (2 cm/hour) by the number of hours (4
hours). This will give us the total change in length. 2 cm/hour * 4 hours = 8 cm.
Therefore, the candle will be 8 centimeters shorter. The final answer is: 8

Table 12: Example of a response corresponding to Analyzing Level

47

Level Solution
Evaluating Okay, let’s tackle this candle problem. We’re at the ’Evaluating’ level today,

which means we’re not just doing the math, but thinking about how we’re doing
it and whether our approach makes sense. First, let’s quickly identify what the
problem is asking. It wants to know the total amount the candle shrinks after
burning for a certain period. Seems straightforward. Now, a really quick, almost
automatic thought might be to just multiply 2 centimeters (the melt rate) by 5
(because 5 PM is 5 hours after 1 PM). That would give us an answer, and it’s a
common way to approach rate problems. Let’s hold that thought 2 x 5 = 10. But,
let’s evaluate that. Does that just automatically feel right? Yes, it seems logical,
but we should always double-check our assumptions. The problem clearly states
the candle melts every hour it burns. We need to make sure we’ve correctly
calculated the number of hours. Looking at the times, 1:00 PM to 5:00 PM. Let’s
think through it. 1 PM to 2 PM is one hour. 2 PM to 3 PM is another. 3 PM
to 4 PM, and 4 PM to 5 PM. That’s four hours, not five. So, that initial quick
calculation of multiplying by 5 was incorrect. That’s a good example of why
evaluating is important! We caught a potential mistake. Okay, so let’s revisit. We
have a melt rate of 2 cm/hour and a burn time of 4 hours. Now, multiplying 2
cm/hour by 4 hours seems much more solid. Let’s think about units too, which
is a good evaluating habit. Centimeters per hour * hours- the hours cancel out,
leaving us with just centimeters. That makes sense- we want an answer in length!
So, 2 * 4 = 8. Let’s quickly critique again. Does 8 centimeters seem reasonable?
If a candle melts 2cm an hour, and burns for four hours, 8cm seems perfectly
plausible. It’s a manageable number, not ridiculously large or small. Therefore,
after burning from 1:00 PM to 5:00 PM, the candle will be 8 centimeters shorter.
The final answer is: 8

Table 13: Example of a response corresponding to Evaluating Level

48

Level Solution
Creating Okay, let’s tackle this candle problem! Now, we’re aiming for the Creating level

of Bloom’s Taxonomy, which means we aren’t just recalling facts or applying
a formula directly. We need to build a solution. I want to think beyond just
ḧours times melt rate.Ẅhile that is part of it, let’s see if we can frame this in
a slightly more robust way, maybe thinking about how we represent time and
change. First, let’s identify what we know. We know the candle melts at a
constant rate: 2 centimeters per hour. That’s our core piece of information. We
also know the start and end times: 1:00 PM and 5:00 PM. Now, usually, we ’d
jump to subtraction, right? 5 minus 1 is 4. But let’s pause and think... what is
subtraction actually doing in this context? It’s finding the difference between two
points in time. That difference represents the duration of burning. So, instead
of immediately calculating 5-1, let’s explicitly define a variable. Let’s say ’t’
represents the burning time in hours. We can create a little formula for ’t’: t =
End Time - Start Time. Okay, that’s a bit abstract for this problem, honestly, but
it’s getting us to think about the components. Now we can plug in our numbers:
t = 5:00 PM - 1:00 PM = 4 hours. See? We didn’t just know to subtract; we
defined the subtraction as a way to calculate the burning time. That’s a small step
towards creating a more generalized approach. Now, we know the burning time,
and we know the melt rate. Let’s create another relationship. Let ’L’ represent
the total length the candle melts. We can say: L = Burning Time * Melt Rate, L
= t * 2 cm/hour. Again, this seems obvious, but we’re building the logic from
first principles, which is what ’Creating’ is about. Now, we can substitute the
value of ’t’ we found earlier:L = 4 hours * 2 cm/hour = 8 cm. So, the candle
will be 8 centimeters shorter. We didn’t just apply a formula; we constructed
the formulas to represent the relationships in the problem. That’s the difference
between applying and creating. We could have just done 5-1=4, then 4*2=8, but
this way we ’ve explicitly broken down why we ’re doing each step. The final
answer is: 8

Table 14: Example of a response corresponding to Creating Level

49

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 50–61
November 9, 2025 ©2025 Association for Computational Linguistics

Scalability of LLM-Based Multi-Agent Systems for Scientific Code
Generation: A Preliminary Study

Yuru Wang1*, Kaiyan Zhang1*, Kai Tian1, Sihang Zeng2

Xingtai Lv1, Ning Ding1, Biqing Qi3†, Bowen Zhou1,3†

1Tsinghua University, 2University of Washington, 3Shanghai AI Laboratory
wangyuru25@mails.tsinghua.edu.cn

Abstract

Recent studies indicate that LLM-based Multi-
Agent Systems (MAS) encounter scalability
challenges in complex mathematical problem-
solving or coding tasks, exhibiting issues such
as inconsistent role adherence and ineffective
inter-agent communication. Moreover, the
performance advantages of LLM-based MAS
over a single agent employing test-time scal-
ing methods (e.g., majority voting) remain
marginal. This raises a critical question: Can
LLM-based MAS scale effectively to achieve
performance comparable to standalone LLMs
or even Large Reasoning Models (LRMs) un-
der optimal test-time compute? In this paper,
we conduct a preliminary investigation into
the scalability of LLM-based MAS for scien-
tific code generation. We propose a simple yet
scalable two-player framework based on itera-
tive critic-in-the-loop refinement. Our experi-
ments demonstrate that a minimalist actor-critic
framework based on DeepSeek-V3 can out-
perform DeepSeek-R1 under equivalent com-
putational budgets. Surprisingly, more com-
plex frameworks fail to yield significant gains.
These findings corroborate recent insights into
multi-agent system limitations and highlight
the importance of scalable workflows for ad-
vancing scientific code generation.

1 Introduction

In recent years, LLM-based Multi-Agent Systems
(MAS) (Guo et al., 2024) have demonstrated sig-
nificant potential in complex problem-solving and
system coding tasks (Qian et al., 2023; Huang et al.,
2023; Qi et al., 2023; Islam et al., 2024; Parmar
et al., 2025). In such systems, each agent is as-
signed a specific role, working collaboratively to
achieve predefined objectives, which mirrors hu-
man teamwork in real-world scenarios.

*Equal contribution.
†Corresponding author.

However, recent studies (Cemri et al., 2025) re-
veal that LLM-based MAS often struggle with com-
plex tasks due to issues such as specification ambi-
guities, inter-agent misalignment, and inadequate
task verification. Furthermore, with the growing
interest in Test-Time Scaling (TTS) (Zhang et al.,
2025b), where performance improves via inference-
time compute (e.g., majority voting or best-of-N
sampling with reward models) (Snell et al., 2024;
Liu et al., 2025; Zhao et al., 2025), the advantages
of LLM-based MAS over single-agent systems
with TTS diminish under equivalent computational
budgets (Zhang et al., 2025a).

Meanwhile, Large Reasoning Models (LRMs)
(e.g., DeepSeek-R1 (Guo et al., 2025), OpenAI-
o1 (Jaech et al., 2024)) exhibit superior TTS ca-
pabilities through extended chain-of-thought rea-
soning. Yet, these models suffer from high latency
and excessive token costs. This raises a critical
question: Can we develop a scalable LLM-based
MAS that outperforms standalone LLMs or LRMs
with TTS while maintaining efficiency?

In this paper, we investigate this challenge in
scientific code generation (SciCode (Tian et al.,
2024)). Unlike mathematical problems, apply-
ing TTS (e.g., majority voting) to code generation
is inherently difficult. Instead, critique and self-
reflection which are strengths of LRMs, play a
pivotal role. To address this, we propose a critic-
in-the-loop framework to enhance the evaluative
capabilities of LLM-based MAS.

Our experiments on the SciCode benchmark
demonstrate that a generator-critic framework (us-
ing DeepSeek-V3 (Liu et al., 2024)) outperforms
standalone DeepSeek-R1 while consuming fewer
tokens. Notably, performance improves further
with additional critic iterations, suggesting our
framework itself serves as an effective TTS strat-
egy. We also explore a three-agent MAS but find no
significant gains over the simpler generator-critic
approach. Finally, we analyze failure cases to pro-

50

mailto:wangyuru25@mails.tsinghua.edu.cn

Figure 1: Overview of Generator-Critic Framework.

vide insights for future research.

• We propose a lightweight generator-critic
framework that achieves superior performance
in scientific code generation compared to
LRMs, while reducing token costs by 75%.

• We demonstrate that iterative critic refinement
inherently functions as a compute-efficient
TTS strategy, unlike traditional voting-based
approaches ill-suited for code generation.

• Through ablation studies and failure analy-
sis, we identify key limitations of multi-agent
systems (e.g., role confusion in three-agent
setups) and provide guidelines for scalable
MAS design in the future works.

2 Methodology

2.1 Iterative Generator-Critic Framework

As illustrated in Figure 1, the framework comprises
two specialized agents: Generator and a Critic.

Generator. The Generator initially produces
code based on the task description. If the code fails
verification, it utilizes feedback containing both the
Critic’s natural-language critique and the erroneous
code to generate an improved version.

Critic. The Critic plays a crucial role in the
framework by identifying errors in faulty code
and providing natural-language feedback. Given a
faulty code and a simple failure description (e.g., an
error or timeout), it generates nuanced and specific
critiques. Unlike scalar rewards, these critiques are

Figure 2: The employment of Examiner.

more informative, thereby guiding the Generator’s
revisions more effectively (Shinn et al., 2023).

Iterative Refinement. The framework em-
ploys a cyclic criticize → correct → criticize
loop (Madaan et al., 2023) to iteratively refine code
until a stopping condition (e.g., successful vali-
dation or maximum iterations) is met. Formally,
given a modelM and an input problem description
x, the GeneratorMg first produces an initial solu-
tion o0,which is then verified by a code interpreter.
If verification fails, the Critic and Generator engage
in iterative refinement: (1)the CriticMc analyzes
the previous output ok−1 to generate critique ck.
(2)The GeneratorMg synthesizes ok−1 and ck to
produce an optimized solution ok that may address
previous errors. (3)The new code ok undergoes
revalidation - if successful, the loop terminates;
otherwise, the process continues.

51

Model
Subproblem Main Problem

Pass@1 ∆ Pass@1 ∆

Baselines (Single-Agent) (Tian et al., 2024)
GPT-4o 25.0 - 1.5 -
DeepSeek-V3 23.7 - 3.1 -
Claude3.5-Sonnet 26.0 - 4.6 -
DeepSeek-R1 28.5 - 4.6 -
OpenAI-o1-preview 28.5 - 7.7 -
OpenAI-o3-mini 33.3 - 9.2 -
GPT-4o (Our) 22.2 - 1.5 -
DeepSeek-V3 (Our) 25.3 - 3.1 -
DeepSeek-R1 (Our) 31.6 - 4.6 -

Generator-Critic (Two-Agent) (§ 2.1)
1 iteration
GPT-4o 25.0 ↑ 2.8 1.5 ↑ 0.0
DeepSeek-V3 28.5 ↑ 3.2 3.1 ↑ 0.0
4 iterations
GPT-4o 27.4 ↑ 5.2 4.6 ↑ 3.1
DeepSeek-V3 32.6 ↑ 7.3 6.2 ↑ 3.1

Table 1: Main Results on Test Set.

2.2 Generator-Critic-Examiner Framework

Building upon the iterative multi-agent framework
described above, we introduce an Examiner Agent
to enhance the system’s error detection and correc-
tion capabilities, as shown in Figure 2.

Examiner. Leveraging the chain-of-thought
(Wei et al., 2022) reasoning capabilities of large
language models, the examiner’s primary function
is to generate task-specific test cases based on the
problem description. Each generated test case con-
tains three essential components: (1) input parame-
ters compliant with the problem requirements, (2)
expected outputs representing correct implemen-
tation behavior, and (3) assertion statements for
automated verification. To improve the output pre-
diction accuracy, we implement a self-consistency
mechanism (Wang et al., 2022; Prasad et al., 2025),
where multiple predictions are generated for each
test input and the final output is determined via
majority voting (detailed in Appendix A).

Test Case Verification Process. The generated
test cases are used to internally verify the code pro-
duced by the Generator during the iterative refine-
ment process. The verification results, comprising
both successful and failed test cases with corre-
sponding error reports, serve as crucial feedback
for the Critic’s reflective analysis. If all test cases
pass, the iteration terminates and the code is sub-
sequently verified using the gold tests provided by
the dataset, with this result determining the final
accuracy assessment.

Figure 3: Performance vs. Token Cost between
DeepSeek-R1 and iterative Generator-Critic (GC) using
DeepSeek-V3. The numbers in parentheses indicate the
iteration counts.

3 Experiments

3.1 Experimental Setup

We evaluate our framework primarily on Sci-
Code (Tian et al., 2024), a scientist-curated coding
benchmark comprising 338 subproblems derived
from 80 challenging main problems across 16 di-
verse natural science disciplines. Our implementa-
tion builds upon the official codebase 1, with eval-
uations conducted using GPT-4o and DeepSeek-
V1/R1 on both test and validation sets. For baseline
comparisons, we incorporate official leaderboard
results 2 for GPT-4o, Claude, and OpenAI-o1,
while reproducing GPT-4o and DeepSeek-R1/V1
results to ensure consistent evaluation metrics.

3.2 Main Results

Table 1 and table 2 present the performance com-
parison of different methods, which reveal:

Effectiveness of the Critic Agent. When
employing DeepSeek-v3 as the base model, the
Generator-Critic framework achieves a perfor-
mance improvement (∆) of 3.2% after one iter-
ation on the test set, which further increases to
7.3% after four iterations. Notably, the Generator-
Critic framework consistently outperforms single-
agent approach across all evaluated base models,
demonstrating the generalizability of the frame-
work. Moreover, the DeepSeek-V3-based frame-
work surpasses the performance of DeepSeek-R1
after four iterations, proving that our multi-agent

1https://github.com/scicode-bench/SciCode
2https://scicode-bench.github.io/leaderboard/

52

https://github.com/scicode-bench/SciCode
https://scicode-bench.github.io/leaderboard/

approach using general-purpose LLMs is highly
competitive.

Enhanced Main Problem Resolution. The
framework particularly excels in solving main prob-
lems in SciCode, which require correct solutions
for all subproblems. The iterative critique process
not only rectifies errors in the current code but also
facilitates the resolution of subsequent subprob-
lems - and consequently the main problem - since
each subproblem’s correctness impacts those that
follow. This capability significantly aids in solving
the benchmark’s most challenging aspects.

Token Cost Comparison. Figure 3 compares
the token consumption between two approaches: 1)
DeepSeek-R1 for code and reasoning outputs, and
2) the iterative Generator-Critic using DeepSeek-
V3 for both Generator’s code outputs and Critic’s
critique outputs. The results show that the to-
ken consumption of DeepSeek-R1 substantially ex-
ceeds that of the Generator-Critic approach, with
a substantial difference of 279,605 tokens on the
validation set even after four iterations. Despite
this, both approaches achieve comparable perfor-
mance, with our framework even demonstrating
superior results (Figure 6). These findings col-
lectively indicate the advantages of the Generator-
Critic framework in terms of both efficiency and
task performance.

Number of Iterations. We examine the efficacy
of iterative refinement in both the Generator-Critic
and Generator-Critic-Examiner. As shown in Fig-
ure 4(a), which presents the pass@1 performance
progression on the test set using GPT-4o, iterative
refinement consistently improves the framework
performance. However, marginal gains diminish
as the number of iterations increases, with 5–6
iterations yielding the majority of achievable im-
provements.

3.3 Failure Analysis
Although the Generator-Critic-Examiner outper-
formed the baselines, it performed worse than the
Generator-Critic. This indicates that the Examiner
failed to enhance the critic’s reflective capabilities.
Upon analyzing the test cases generated by the Ex-
aminer, we observed substantial inaccuracies in its
output predictions. Even with majority voting im-
plemented, the Examiner’s predictions remained
predominantly incorrect. These errors adversely
affected the framework by introducing misleading
guidance during refinement, ultimately impairing
the efficacy of the criticism mechanism.

Model
Subproblem Main Problem

Pass@1 ∆ Pass@1 ∆

Baselines (Single-Agent)
GPT-4o 44.0 - 33.3 -
DeepSeek-V3 48.0 - 46.7 -
DeepSeek-R1 50.0 - 46.7 -

Generator-Critic (Two-Agent) (§ 2.1)
1 iteration
GPT-4o 48.0 ↑ 4.0 33.3 ↑ 0.0
DeepSeek-V3 60.0 ↑ 12.0 40.0 ↑ 0.0
DeepSeek-R1 50.0 ↑ 0.0 46.7 ↑ 0.0
4 iterations
GPT-4o 50.0 ↑ 6.0 40.0 ↑ 6.7
DeepSeek-V3 62.0 ↑ 14.0 46.7 ↑ 6.7
DeepSeek-R1 56.0 ↑ 6.0 53.3 ↑ 6.7

Generator-Critic-Examiner (Three-Agent) (§ 2.2)
1 iteration
GPT-4o 48.0 ↑ 4.0 33.3 ↑ 0.0
DeepSeek-V3 50.0 ↑ 2.0 40.0 ↑ 0.0
4 iterations
GPT-4o 48.0 ↑ 4.0 33.3 ↑ 0.0
DeepSeek-V3 54.0 ↑ 6.0 40.0 ↑ 6.7

Table 2: Results on Validation Set.

4 Conclusion

We propose a lightweight generator-critic frame-
work that enhances LLM-based multi-agent sys-
tems for scientific code generation. Our approach
outperforms standalone Large Reasoning Models
while reducing computational costs, demonstrat-
ing that iterative critique inherently serves as an
efficient test-time scaling strategy. Experiments re-
veal diminishing returns with complex multi-agent
setups, suggesting simplicity is key for scalability.
These findings offer practical guidelines for de-
ploying efficient LLM-based systems in resource-
constrained scenarios.

Limitations

Our framework is evaluated solely on scientific
code generation (SciCode) tasks. Its effectiveness
on other domains (e.g., natural language reasoning
or mathematical proof generation) remains unveri-
fied, as different problem types may require distinct
agent interaction patterns.

The performance gains are demonstrated using
specific LLMs (DeepSeek-V3, GPT-4o). Results
may vary with smaller or less capable base models,
suggesting our approach may be constrained by the
underlying model’s core capabilities.

While we show computational efficiency gains,

53

(a) Iterations on Test Set. (b) Iterations on Validation
Set.

Figure 4: Iterations in Generator-Critic and Generator-
Critic-Examiner.

the critic-in-the-loop approach introduces sequen-
tial processing latency. This creates a fundamental
tension between token efficiency and real-time re-
sponsiveness that may limit deployment in latency-
sensitive applications.

References
Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A

Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kan-
nan Ramchandran, and 1 others. 2025. Why do
multi-agent llm systems fail? arXiv preprint
arXiv:2503.13657.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2024. Large language model based
multi-agents: A survey of progress and challenges.
arXiv preprint arXiv:2402.01680.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen
Bu, Yuhao Qing, and Heming Cui. 2023. Agent-
coder: Multi-agent-based code generation with it-
erative testing and optimisation. arXiv preprint
arXiv:2312.13010.

Md Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.
arXiv preprint arXiv:2405.11403.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1

others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu
Li, Biqing Qi, Wanli Ouyang, and Bowen Zhou.
2025. Can 1b llm surpass 405b llm? rethinking
compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594.

Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen,
Long Le, Swaroop Mishra, Hossein Mobahi, Jindong
Gu, Zifeng Wang, Hootan Nakhost, and 1 others.
2025. Plangen: A multi-agent framework for gener-
ating planning and reasoning trajectories for complex
problem solving. arXiv preprint arXiv:2502.16111.

Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao
Chen, Zaid Khan, and Mohit Bansal. 2025. Learning
to generate unit tests for automated debugging. arXiv
preprint arXiv:2502.01619.

Biqing Qi, Kaiyan Zhang, Haoxiang Li, Kai Tian, Si-
hang Zeng, Zhang-Ren Chen, and Bowen Zhou. 2023.
Large language models are zero shot hypothesis pro-
posers. arXiv preprint arXiv:2311.05965.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023. Chatdev: Communica-
tive agents for software development. arXiv preprint
arXiv:2307.07924.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634–8652.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen,
Cunwei Fan, Xuefei Guo, Roland Haas, Pan Ji, Kit-
tithat Krongchon, Yao Li, and 1 others. 2024. Sci-
code: A research coding benchmark curated by sci-
entists. Advances in Neural Information Processing
Systems, 37:30624–30650.

54

https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Hangfan Zhang, Zhiyao Cui, Xinrun Wang, Qiaosheng
Zhang, Zhen Wang, Dinghao Wu, and Shuyue Hu.
2025a. If multi-agent debate is the answer, what is
the question? arXiv preprint arXiv:2502.08788.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang,
Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, and 1 oth-
ers. 2025b. A survey on test-time scaling in large
language models: What, how, where, and how well?
arXiv preprint arXiv:2503.24235.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou,
Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian, Biqing
Qi, Xiu Li, and 1 others. 2025. Genprm: Scaling
test-time compute of process reward models via gen-
erative reasoning. arXiv preprint arXiv:2504.00891.

A Details of Methodology

Here, we elaborate on the majority voting mecha-
nism implemented for test cases generation within
the Generator-Critic-Examiner framework. First,
the Examiner generates input parameters for the
function based on the problem description. Next,
the agent is invoked multiple times (in our imple-
mentation, five repetitions are used) to generate
test case outputs through diverse Chain-of-Thought
(CoT) reasoning processes. Finally, we tally the
frequency of identical output values and select the
most common one as the final test case output.This
process is shown in Figure 5.

B System Prompts

The prompts for both the Generator-Critic and the
Generator-Critic-Examiner are presented in Tables
3, 4, 5 and 6.

C Case Study

Here,we provide representative success and failure
cases analysis for both the Generator-Critic and the
Generator-Critic-examiner.

Figure 5: Majority Voting for Test Cases Generation.

Figure 6: Token cost comparison between DeepSeek-R1
and iterative Generator-Critic (GC) using DeepSeek-V3.
The numbers in parentheses indicate the iteration counts.

C.1 Success Cases

Table 7 presents a successful application of the
Generator-Critic framework. In this case,the sub-
problem pi was corrected through critique-based
optimization, and this correction subsequently re-
vealed the correctness of the following two sub-
problem pi+1 and pi+2. This indicates that the
initial generated codes for the subsequent subprob-
lems pi+1 and pi+2 was, in fact, correct; however,
due to the error in the preceding subproblem pi,
their evaluation resulted in a false failure. By cor-
recting pi within the Generator-Critic, we were
able to verify the true correctness of the pi+1 and
pi+2. This case underscores a key advantage of
the Generator-Critic in handling complex, stepwise
scientific code generation: accurate evaluation and
correction of later steps which require resolving
errors in earlier ones.

55

Table 8 presents the test cases generated by the
Examiner for a faulty code which has been success-
fully corrected. These test cases are particularly
valid because the final outputs exhibit a high fre-
quency, indicating their reliability.

C.2 Failure Cases

Table 9 presents an example in which the errors
persist even after reaching the maximum number of
iterations in the Generator-Critic framework. Over
four iterations, the Critic consistently identified
similar error causes, with no significant variation
observed.

Table 10 presents test cases demonstrating the
Examiner’s failure. In these cases, the majority vot-
ing mechanism fails to identify a consensus among
the predicted outputs, rendering it ineffective.

EXAMINER IN GENERATOR-CRITIC-EXAMINER FRAMEWORK

You are an AI coding assistant that can write unique, diverse, and intuitive unit tests for a Python function.
Your job is to generate unit tests that
1.Is valid input based on the function description, i.e., an acceptable input consistent with function description that a correct
program should be able to execute.
2. The output enclosed in . and is faithful to the function description, i.e., the output of the unit test is consistent with what a
correct program would return.
3. Breaks the code if there is a wrong implementation code based on the function description, i.e., does not execute to the
correct output and brings out its mistakes and vulnerabilities.
Provide a reasoning for your answer and identify a general hypothesis or rationale identifying the potential cause of error.
Then provide input and output of the unit test consistent with the pattern (hypothesis) you have identified. Note: - that you
MUST directly write ALL input arguments of the function in the correct order. Skip writing any names of arguments. -Make
sure that hidden associations are satisfied between input arguments. -Make sure that input arguments will not cause a correct
program to perform illegal evaluation, such as division by zero encountered in divide or invalid value encountered in scalar
add. -You must give the specific value of the outputs. Do not include ellipses or variables without defined specific values in
the output. - you MUST enclose the unit test inputs and outputs in. -The inputs and outputs can only be built using the numpy
library. -Do not use undefined variables and functions. -Unit tests can only use libraries in dependencies and cannot use other
libraries. -Unit tests are independent and cannot use data from each other. -Make sure the logic of the unit test is correct.
-You must generate more than four tests.
Function Definition:
{func_sig}
Dependencies:
{dependencies}
Respond strictly in the format below:
Hypothesis
<step-by-step reasoning >
Error Pattern: <an identified pattern of inputs that yields erroneous or incorrect outputs
Unit Test X:
<where X is the unit test number.>
Input Arguments
<step-by-step reasoning for constructing a unit test that fits the error pattern identified above and is valid as per the function
description >
Arguments:
{function_header}(< all arguments >)
Output
<step-by-step reasoning for what a correct function_header would execute to based on the function description and your
input above. Make sure your data type of the final answer matches the expected output type of the function. Give the specific
output directly. Do not use assignment statements and do not provide the code for the calculation process. >
Output:
<your final answer.>
Comparison
<Must use the np.allclose function to compare whether the result of the function matches the output above through the ‘assert’
statement. The parameter atol of the np.allclose function is set according to the number of digits of the expected output.
Write ALL input arguments of the function in the correct order, do not omit input arguments or output. If the function has
multiple outputs, compare each output one by one. >
Comparison:
<your code for assert>

Table 3: Prompt for Examiner in Generator-Critic-Examiner.

56

CRITIC IN GENERATOR-CRITIC-EXAMINER FRAMEWORK

You are a Python programming assistant.
You will be given a function implementation and a series of unit tests.The implementation was written under specific
requirements and guidance, which are also provided for you. This function implementation is a part of the solution to the
complete problem. Implementing it may require calling the code of the preceding steps, which is also provided to you in the
requirements and guidance section. Your goal is to write a few sentences to explain why your implementation is wrong as
indicated by the tests. You will need this as a hint when you try again later. Only provide the few sentence description in your
answer, not the implementation. Only focus on the current implementation, not the preceding steps.
Requirements and guidance for writing the current function implementation:
{prompt}
current function implementation:
{code}
preceding steps:
{previous_code}
unit test results:
{feedback}
reflection:

Table 4: Prompt for Critic in Generator-Critic-Examiner.

CRITIC IN GENERATOR-CRITIC FRAMEWORK

You are a Python programming assistant.
You will be given a function implementation and the problem with code(the function implementation with test cases)
execution .The implementation was written under specific requirements and guidance, which are also provided for you. This
function implementation is a part of the solution to the complete problem. Implementing it may require calling the code of
the preceding steps, which is also provided to you. Your goal is to write a few sentences to explain why your implementation
is wrong as indicated by the tests. You will need this as a hint when you try again later. Only provide the few sentence
description in your answer, not the implementation. Only focus on the current implementation, not the preceding steps.
Requirements and guidance for writing the current function implementation:
{prompt}
current function implementation:
{code}
preceding steps:
{previous_code}
problem with code execution:
{type}
reflection:

Table 5: Prompt for Critic in Generator-Critic.

GENERATOR IN GENERATOR-CRITIC FRAMEWORK

You are a Python writing assistant.
You will be given your past function implementation, the problem with code(the function implementation with test cases)
execution, and a hint to change the implementation appropriately. The past function implementation was written under the
requirements and guidance, your improved implementation should be also under the requirements and guidance. DO NOT
write the same implementation as the past function implementation. Write your full implementation.
Requirements and guidance for writing the function implementation:
{prompt}
past function implementation:
{cur_code}
#problem with code execution:
{type}
hint:
{reflection}
improved implementation:

Table 6: Prompt for Generator to correct in Generator-Critic.

57

CASE STUDY: GENERATOR-CRITIC FRAMEWORK

Problem:
Write down the matrix, B, that transforms (h, k, l) coordinates from the reciprocal lattice system to (qx, qy, qz) coordinates
in the right-handed Cartesian system. Let’s assume they share an identical origin, with x̂∗//â∗ and ẑ∗//(â∗ × b̂∗). The
direct lattice parameters (a, b, c, α, β, γ) are given in units of Å and degree. Additionally, we will follow the convention
ai ·bj = δij , with ai and bi representing the primitive vectors of crystal lattice and reciprocal lattice respectively Background
The reciprocal lattice vectors bi are given by:

bi =
aj × ak

ai · (aj × ak)

Critique:
The implementation is incorrect because it doesn’t properly account for the geometric transformation from detector coordinates
to lab coordinates. The calculation of kslab is wrong in how it handles the direction components - it should use trigonometric
relationships based on the angles formed by the pixel positions relative to the beam center, not just simple divisions.
Additionally, the normalization of the scattered beam vector is incorrect as it doesn’t properly maintain the magnitude of
1/wavelength for ks. The current approach mixes coordinate systems incorrectly and doesn’t properly represent the scattering
geometry.

Improved Implementation:
def q_cal(p, b_c, det_d, p_s, wl):

Convert all distances to consistent units (angstroms)
det_d_ang = det_d * 1e7 # mm to angstrom
p_s_ang = p_s * 1e7 # mm to angstrom
Unpack pixel coordinates and beam center
x, y = p
xc, yc = b_c
Calculate displacement from beam center in detector coordinates (in angstroms)
dx = (x - xc) * p_s_ang # along -y direction in lab frame
dy = (y - yc) * p_s_ang # along -z direction in lab frame
Calculate the scattering angle components
r = np.sqrt(det_d_ang**2 + dx**2 + dy**2) # total distance from sample to pixel
sin_theta_x = dx r # angle component in x-y plane
sin_theta_y = dy r # angle component in x-z plane
cos_theta = det_d_ang r # main scattering angle component
Incident wavevector (along +x in lab frame)
k_i = np.array([1/wl, 0, 0])
Scattered wavevector (must have magnitude 1wl)
k_s = (1wl) * np.array([
cos_theta,
-sin_theta_x, # negative because dx is along -y
-sin_theta_y # negative because dy is along -z
])
Momentum transfer Q = k_s - k_i
Q = k_s - k_i
Return as column vector
return Q.reshape((3, 1))

Evaluation Result:
Correct this subproblem successfully, with the next two subsequent subproblems also becoming wright!

Table 7: Success Example of Generator-Critic.

58

CASE STUDY: GENERATOR-CRITIC-EXAMINER FRAMEWORK

Unit Test 1:
Input Arguments
orthogonalize(np.array([[1, 0, 1], [1, 1, 0], [0, 1, 1]], dtype=float))

Predicted Outputs by different CoT
Output 1: np.array([[0.70710678, -0.40824829, 0.57735027], [0.70710678, 0.40824829, -0.57735027], [0., 0.81649658,
0.57735027]])
Output 2: np.array([[0.70710678, -0.40824829, 0.57735027], [0.70710678, 0.40824829, -0.57735027],[0. , 0.81649658,
0.57735027]])
Output 3: np.array([[0.70710678, -0.40824829, 0.57735027],[0.70710678, 0.40824829, -0.57735027],[0. , 0.81649658,
0.57735027]])
Output 4: np.array([[0.70710678, -0.40824829, 0.57735027],[0.70710678, 0.40824829, 0.57735027],[0. , 0.81649658,
0.57735027]])
Output 5: np.array([[0.70710678, -0.40824829, 0.57735027],[0.70710678, 0.40824829, -0.57735027],[0. , 0.81649658,
0.57735027]])

Majority Output and the Frequency
Final Output: np.array([[0.70710678, -0.40824829, 0.57735027], [0.70710678, 0.40824829, -0.57735027], [0., 0.81649658,
0.57735027]])
Frequency: 80%

Unit Test 2:
Input Arguments
orthogonalize(np.array([[1, 1], [0, 1]], dtype=float))

Predicted Outputs by different CoT
Output 1: np.array([[1., 0.], [0., 1.]])
Output 2: np.array([[1., 0.], [-0., 1.]], dtype=float)
Output 3: np.array([[1., 0.], [0., 1.]])
Output 4: np.array([[1., 0.], [0., 1.]])
Output 5: np.array([[1., 0.], [0., 1.]])

Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 100%

Unit Test 3:
Input Arguments
orthogonalize(np.array([[2, 0], [0, 3]], dtype=float))

Predicted Outputs by different CoT
Output 1: np.array([[1., 0.], [0., 1.]])
Output 2: np.array([[1., 0.], [-0., 1.]])
Output 3: np.array([[1., 0.], [0., 1.]])
Output 4: np.array([[1., 0.], [0., 1.]])
Output 5: np.array([[1., 0.], [0., 1.]], dtype=float)

Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 100%

Table 8: Success Example of Examiner.

59

CASE STUDY: GENERATOR-CRITIC FRAMEWORK

Problem:
Now write a function to analyze any damped, driven pendulum system to understand its dynamic behavior under various
conditions. Your function should:
Sweep different timesteps to find the optimized timestep that balances accuracy and time efficiency.
2. Output the trajectory
The combined metric for finding the optimized time should penalize higher computational times while rewarding lower errors.
To better reflect this, we can use a combined metric such as:

Metric = GTE ×
√

Time

Global Truncation Error (GTE) is estimated using the step-doubling method. This way, longer computation times will have a
more significant penalty, while still prioritizing low errors.

Critique: 1 iteration
The implementation is incorrect because it does not properly handle the step-doubling method for estimating the Global
Truncation Error (GTE). Specifically, the error estimation is only comparing the final state of the trajectory with the half-
timestep trajectory, which does not accurately represent the cumulative error over the entire time span. Additionally, the
combined metric calculation does not account for potential numerical instabilities or edge cases, such as when the timestep is
too large or too small. The current approach may lead to suboptimal timestep selection due to these inaccuracies in error
estimation and metric computation.

Critique: 2 iterations
The implementation fails because the error calculation in the step-doubling method is incorrect. The current approach
compares trajectories of different lengths by taking every other point from the finer trajectory, but this doesn’t properly
account for the time alignment between the two solutions. Additionally, the error normalization (dividing by sqrt(min_length))
may not appropriately scale the error for comparison across different timesteps. The metric calculation also doesn’t properly
handle cases where the trajectories have different time points due to different step sizes.

Critique: 3 iterations
The current implementation fails because it doesn’t properly handle the time adjustment when calculating trajectories with
different timesteps. The main issues are: 1) The error calculation compares trajectories of potentially different lengths due to
integer rounding of steps, 2) The actual_dt adjustment isn’t properly synchronized between the full and half-step trajectories,
and 3) The metric calculation doesn’t account for cases where trajectories become significantly misaligned in time due to step
size adjustments. These issues lead to incorrect error estimates and suboptimal timestep selection.

Critique: 4 iterations
The implementation is incorrect because it does not properly handle the time points when comparing trajectories with different
step sizes. The error calculation assumes the trajectories can be directly compared by interpolation, but the interpolation may
not accurately capture the error due to the non-linear nature of the pendulum’s motion. Additionally, the combined metric
(GTE × √ Time) may not be correctly weighted, leading to suboptimal timestep selection. The function also does not account
for edge cases where the timestep does not evenly divide the total time interval, potentially causing inaccuracies in the final
trajectory.

Final Implementation:
def pendulum_analysis(g, L, beta, A, alpha, initial_state, t0, tf, min_dt, max_dt, num_timesteps):

timesteps = np.logspace(np.log10(min_dt), np.log10(max_dt), num_timesteps)
best_metric = float(’inf’)
optimized_trajectory = None
for dt in timesteps:

n_steps = int(np.ceil((tf - t0) / dt))
actual_dt = (tf - t0) / n_steps # Adjusted dt to exactly reach tf
start_time = time.time()

[...]
if metric < best_metric:

best_metric = metric
optimized_trajectory = trajectory

return optimized_trajectory

Evaluation Result:
Still wrong.

Table 9: Failure Example of Generator-Critic.

60

CASE STUDY: GENERATOR-CRITIC-EXAMINER FRAMEWORK

Unit Test 1:
Input Arguments
sum_real_cross(np.array([1.0, -1.0, 2.0]), np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]), np.array([[0.0, 0.0, 0.5],
[0.0, 0.5, 0.0]]), np.array([[1, 1, 1], [-1, -1, -1]]), 0.5)

Predicted Outputs by different CoT
Output 1: -0.577102
Output 2: 3.142
Output 3: 0.1
Output 4: 2.0
Output 5: 0.0

Majority Output and the Frequency
Final Output: -0.577102
Frequency: 20%

Unit Test 2:
Input Arguments

sum_real_cross(np.array([1.0, 1.0]), np.array([[1.0, 0.0, 0.0], [2.0, 0.0, 0.0]]), np.array([[0.5, 0.5, 0.5]]), np.array([[0, 0, 0]]),
0.2)

Predicted Outputs by different CoT
Output 1: 0.493671
Output 2: 0.0
Output 3: 0.5
Output 4: 0.9
Output 5: 1.0

Majority Output and the Frequency
Final Output: 0.493671
Frequency: 20%

Unit Test 3:
Input Arguments
sum_real_cross(np.array([1.0, -1.0]), np.array([[1.0, 1.0, 1.0], [0.0, 0.0, 0.0]]), np.array([[1.0, 1.0, 1.0], [0.0, 0.0, 0.0]]),
np.array([[0, 0, 0]]), 0.1)

Predicted Outputs by different CoT
Output 1: -0.999999
Output 2: 4.107857649106695
Output 3: -0.6065306597
Output 4: -0.1
Output 5: -0.427547

Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 20%

Table 10: Failure Example of Examiner.

61

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 62–76
November 9, 2025 ©2025 Association for Computational Linguistics

FIRMA: Bidirectional Formal-Informal Mathematical Language
Alignment with Proof-Theoretic Grounding

Maryam Fatima
Independent

s.m.fatima13@gmail.com

Abstract

While large language models excel at gener-
ating plausible mathematical text, they often
produce subtly incorrect formal translations
that violate proof-theoretic constraints. We
present FIRMA (Formal-Informal Reasoning
in Mathematical Alignment), a bidirectional
translation system between formal and informal
mathematical language that leverages proof-
theoretic interpretability hierarchies and spe-
cialized architectural components for proof
preservation. Unlike existing approaches that
treat this as pure sequence-to-sequence trans-
lation, FIRMA introduces a hierarchical archi-
tecture with complexity-aware routing, proof-
preserving attention mechanisms, and multi-
objective training that balances formal correct-
ness with natural readability. Through progres-
sive complexity training on curated datasets
from Lean 4 and formal mathematics reposi-
tories, we evaluate FIRMA on 200 translation
samples across complexity levels and compare
against two baseline systems. Our analysis
shows statistically significant improvements of
277.8% over BFS-Prover-V1-7B and 6307.5%
over REAL-Prover on overall translation qual-
ity metrics. Ablation studies on 50 samples
demonstrate that each architectural component
contributes substantially to performance, with
removal of any component resulting in 83-85%
performance degradation. We release our code
at https://github.com/smfatima3/FIRMA

1 Introduction

Mathematical communication exists on a spectrum
from the highly formal languages of proof assis-
tants like Lean and Coq to the intuitive explanations
found in textbooks. This duality creates a funda-
mental challenge: formal specifications ensure log-
ical rigor but are often impenetrable to students,
while informal descriptions aid understanding but
may harbor subtle errors or ambiguities. The ability
to translate bidirectionally between these represen-

tations would benefit both mathematical education
and formal verification efforts.

Recent advances in large language models
(LLMs) have shown capabilities in mathematical
reasoning. The development of systems like Al-
phaGeometry (Trinh et al., 2024) and FunSearch
(Romera-Paredes et al., 2024) demonstrates that
neural approaches can achieve results on challeng-
ing mathematical problems, including discover-
ing new theorems and solving Olympiad-level ge-
ometry problems. However, standard mathemati-
cal reasoning benchmarks like the MATH dataset
(Hendrycks et al., 2021) reveal limitations when
models attempt formal-informal translation tasks.

When applied to formal-informal translation,
these models exhibit critical limitations. They gen-
erate superficially plausible translations that fail
proof checking, introduce logical errors through im-
precise natural language, and show unpredictable
degradation as mathematical complexity increases.
Early attempts at neural theorem proving like Nat-
uralProver (Welleck et al., 2021) and more re-
cent work on whole-proof generation (First et al.,
2023) have made progress, but these failures stem
from treating mathematical translation as a purely
linguistic task, ignoring the underlying proof-
theoretic structure that governs mathematical valid-
ity.

We introduce FIRMA (Formal-Informal Reason-
ing in Mathematical Alignment), a framework that
grounds mathematical translation in proof-theoretic
principles. Our key insight is that successful trans-
lation requires not just linguistic fluency but also
preservation of logical structure across complexity
levels. FIRMA addresses this through three core
innovations:

First, we develop a hierarchical encoder-decoder
architecture that explicitly models mathematical
complexity through specialized routing mecha-
nisms. Unlike flat sequence models, FIRMA pro-
cesses mathematical statements at multiple levels

62

of abstraction—symbols, syntax trees, and seman-
tic structures—enabling it to maintain logical co-
herence while adapting linguistic style.

Second, we introduce proof-preserving attention
mechanisms that respect logical dependencies and
prevent circular reasoning. These structured atten-
tion patterns ensure that translations maintain the
directional flow of mathematical arguments, a crit-
ical requirement often violated by standard trans-
formers. This approach builds on insights from
proof artifact co-training (Han et al., 2022) and Hy-
perTree proof search (Lample et al., 2022), which
demonstrate the importance of structured reasoning
in formal mathematics.

Third, we implement a multi-objective training
framework combining translation accuracy, round-
trip consistency, complexity prediction, and proof
validity. This holistic approach ensures that models
learn not just to translate but to preserve mathemat-
ical meaning across representations.

Our contributions are as follows. We present
a proof-theoretically grounded approach to bidi-
rectional mathematical translation, establishing a
framework for preserving logical validity. We per-
form a comprehensive evaluation of 200 samples
in formal-to-informal and informal-to-formal di-
rections with complexity stratification, comparing
FIRMA with two baseline mathematical reasoning
systems. We provide detailed analysis of transla-
tion performance patterns, generation times, and
complexity-dependent behavior, including rigorous
statistical testing demonstrating the significance of
our improvements. We conduct ablation studies on
50 samples demonstrating that each architectural
component contributes substantially to translation
quality. We release FIRMA as an open-source tool
for mathematical education and research, with ap-
plications ranging from proof assistant tutoring to
automated documentation generation.

2 FIRMA: Formal-Informal Reasoning in
Mathematical Alignment

2.1 Problem Formulation

Let F denote the space of formal mathematical
statements and I the space of informal descriptions.
We seek bidirectional functions f : F → I and
g : I → F that preserve mathematical validity
while optimizing for human comprehension.

Define validity preservation as:

Valid(s)⇒ Valid(g(f(s))) ∀s ∈ F

Figure 1: Architecture of FIRMA (Formal-Informal
Reasoning in Mathematical Alignment). The model
processes formal or informal mathematical statements
through a hierarchical encoder (symbol, syntax, and
semantic layers), followed by a complexity router and
proof-preserving attention. Outputs are optimized via
multi-objective training, while progressive complexity
training ensures robust generalization across varying
mathematical difficulty.

And comprehension optimization as:

Readability(f(s)) > Readability(s) ∀s ∈ F

This formulation captures the dual requirements
of logical correctness and pedagogical effective-
ness that distinguish our approach from pure trans-
lation tasks.

2.2 FIRMA Architecture

FIRMA employs a hierarchical encoder-decoder
architecture with three key components:

Hierarchical Encoder: We process input at mul-
tiple abstraction levels, inspired by the multi-level
structure of mathematical reasoning. The Symbol
Layer embeds mathematical symbols using spe-
cialized tokenization that preserves operator prece-
dence and associativity, handling the syntactic con-
ventions that distinguish mathematical text from
natural language. The Syntax Layer constructs ab-
stract syntax trees using TreeLSTM networks to
capture structural dependencies between mathemat-
ical expressions, addressing the compositional na-
ture of mathematical statements identified in prior
work on mathematical language processing. The
Semantic Layer applies transformer encoders to
model long-range semantic relationships between

63

Figure 2: FIRMA Translation Analysis. (Left) Com-
parison of translation directions (Formal→Informal vs.
Informal→Formal), showing normalized counts and av-
erage processing time. (Right) Relationship between
complexity level and average translation time, with num-
ber of samples indicated; a positive trend is observed
between task complexity and time required.

mathematical concepts, enabling the system to un-
derstand mathematical context and dependencies.

Complexity Router: A learned gating mech-
anism routes representations through specialized
pathways based on detected complexity, drawing
inspiration from mixture-of-experts architectures:

z =

4∑

i=1

αi(x) · Experti(x)

where αi are soft routing weights and Experti are
complexity-specific transformations. This design
allows the model to develop specialized process-
ing pathways for different levels of mathematical
sophistication.

Proof-Preserving Attention: We modify stan-
dard attention to respect logical flow and prevent
circular dependencies in mathematical reasoning:

Attention(Q,K, V) = softmax
(
QKT

√
dk

+Mlogic

)
V

where Mlogic masks attention to prevent circular de-
pendencies based on proof structure. This ensures
that the model respects the directional nature of
mathematical arguments and logical inference.

2.3 Multi-Objective Training
We optimize a composite loss function balancing
multiple objectives necessary for effective mathe-
matical translation:

L = λ1Ltrans + λ2Lround + λ3Lcomp + λ4Lvalid

WhereLtrans represents cross-entropy translation
loss for basic sequence generation, Lround captures
round-trip consistency through ||x − g(f(x))||2
to ensure bidirectional coherence, Lcomp measures

complexity prediction accuracy to develop com-
plexity awareness, and Lvalid provides a differen-
tiable approximation of proof checker success to
maintain formal validity.

The multi-objective formulation addresses dif-
ferent aspects of translation quality that single-
objective approaches often miss, particularly the
need to balance formal correctness with natural
readability.

2.4 Progressive Complexity Training
Inspired by curriculum learning (Bengio et al.,
2009) and its applications to mathematical reason-
ing, we implement progressive training across com-
plexity levels:

Algorithm 1 Progressive Complexity Training

1: for level ℓ = 1 to 4 do
2: Dℓ ← FilterByComplexity(D, ≤ ℓ)
3: Train model on Dℓ until convergence
4: Evaluate on held-out complexity ℓ test set
5: if performance drops on level < ℓ then
6: Apply replay buffer from previous levels
7: end if
8: end for

This strategy prevents catastrophic forgetting
while enabling specialization for complex reason-
ing. The replay buffer mechanism ensures that
the model maintains performance on simpler tasks
while learning more sophisticated mathematical
concepts.

3 Results and Analysis

3.1 Overall Performance

Metric Value Std Dev Unit

Total Samples 100 - samples
Avg Generation Time 7.876 2.3 seconds
Formal→Informal 50 - samples
Informal→Formal 50 - samples
Total Processing Time 787.9 - seconds
Throughput 0.127 - samples/sec

Table 1: Overall evaluation performance metrics
(Qwen2.5-Math-7B-Instruct)

Table 1 presents our comprehensive evaluation
results on 100 mathematical translation samples us-
ing the primary configuration. The model achieves
an average generation time of 7.876 seconds per
sample, with balanced performance across both
translation directions. The generation times reflect

64

the computational complexity of maintaining math-
ematical validity while producing natural language
output.

Metric Qwen2.5 Qwen3 Unit
-Math-7B -0.6B

Total Samples 100 100 samples
F→I BLEU 0.167 0.167 score
I→F BLEU 0.320 0.320 score
F→I ROUGE-L 0.344 - score
I→F ROUGE-L 0.484 - score

Table 2: Comparative performance metrics across model
scales on Lean-Workbook dataset

To assess the scalability of our approach, we ad-
ditionally trained FIRMA using Qwen3-0.6B as the
base model on the Lean-Workbook dataset (Ying
et al., 2024b). As shown in Table 2, the compact
model achieves identical BLEU scores on this eval-
uation set, demonstrating that FIRMA’s architec-
tural innovations and training methodology gener-
alize effectively across different model scales. This
result suggests that the proof-preserving mecha-
nisms and complexity-aware routing contribute to
performance independently of model size, enabling
deployment in resource-constrained environments
without sacrificing translation quality.

3.2 Baseline Comparison Analysis
We conducted a comprehensive comparative eval-
uation of FIRMA against two baseline systems
across 200 samples from the internlm/Lean-
Workbook dataset. Table 3 presents the detailed
performance metrics across multiple dimensions of
translation quality.

The results reveal substantial performance differ-
ences across the three systems. FIRMA achieves an
overall score of 0.304, representing a 277.8% im-
provement over BFS-Prover-V1-7B and a 6307.5%
improvement over REAL-Prover. These improve-
ments are consistent across both translation direc-
tions and multiple evaluation metrics.

Examining the directional performance, FIRMA
demonstrates particularly strong advantages in the
informal-to-formal direction, achieving an I→F
BLEU score of 0.282 compared to 0.031 for
BFS-Prover-V1-7B and 0.002 for REAL-Prover.
This pattern holds for ROUGE-L metrics as well,
where FIRMA achieves 0.446 compared to 0.157
and 0.009 for the baseline systems respectively.
The substantial gap in informal-to-formal trans-
lation performance suggests that FIRMA’s proof-
preserving attention mechanisms and hierarchical

architecture provide particular advantages when
converting natural language descriptions into rigor-
ous formal specifications.

The formal-to-informal direction shows sim-
ilarly substantial improvements, with FIRMA
achieving F→I BLEU scores over 13 times higher
than BFS-Prover-V1-7B and over 140 times higher
than REAL-Prover. The ROUGE-L scores follow
comparable patterns, indicating that FIRMA pro-
duces outputs with substantially better lexical over-
lap and structural similarity to reference transla-
tions across both directions.

Generation efficiency presents a different pic-
ture. BFS-Prover-V1-7B achieves the fastest av-
erage generation time at 1.46 seconds per sample,
approximately 4 times faster than FIRMA’s 6.06
seconds. REAL-Prover requires 2.22 seconds on
average. The additional computational cost for
FIRMA reflects the overhead of the hierarchical
processing, complexity-aware routing, and proof-
preserving attention mechanisms. However, this
represents a trade-off between translation quality
and generation speed.

3.3 Complexity-Stratified Baseline Analysis
To understand how translation performance varies
with mathematical difficulty, we analyzed all three
systems across the four complexity levels defined
in our evaluation framework. Table 4 presents the
stratified results.

The complexity-stratified analysis reveals sev-
eral patterns. FIRMA maintains superior perfor-
mance across all complexity levels, with particu-
larly strong results at Levels 1 through 3. At Level
1, FIRMA achieves an average score of 0.354, ap-
proximately 4.3 times higher than BFS-Prover-V1-
7B and 44 times higher than REAL-Prover. This
advantage persists through intermediate complexity
levels.

All three systems show performance degrada-
tion at Level 4, the highest complexity category.
FIRMA’s average score drops to 0.209, while BFS-
Prover-V1-7B achieves 0.079, and REAL-Prover
effectively fails with near-zero scores across all
metrics. This pattern suggests that expert-level
mathematical statements with higher-order logic
and advanced concepts present fundamental chal-
lenges for current neural translation approaches,
though FIRMA’s proof-theoretic grounding pro-
vides partial mitigation.

The baseline systems exhibit distinct failure
modes across complexity levels. REAL-Prover

65

Model F→I F→I I→F I→F Overall Time
BLEU ROUGE BLEU ROUGE Score (s)

FIRMA 0.165 0.325 0.282 0.446 0.304 6.06
BFS-Prover 0.011 0.123 0.031 0.157 0.081 1.46
REAL-Prover 0.001 0.006 0.002 0.009 0.005 2.22

Relative Improvements vs BFS-Prover-V1-7B:
FIRMA +1368% +164% +817% +184% +278% 0.24×

Relative Improvements vs REAL-Prover:
FIRMA +14015% +5149% +12921% +4607% +6308% 0.37×

Table 3: Comprehensive comparison of FIRMA against baseline systems on 200 samples from internlm/Lean-
Workbook. F→I denotes Formal-to-Informal translation; I→F denotes Informal-to-Formal translation. Overall
Score is computed as the average across all four metrics. Bold indicates best performance in each column.

Level Model Count Avg F→I I→F Std
Score BLEU BLEU Dev

Level 1
FIRMA 50 0.354 0.213 0.335 0.124

BFS-Prover 50 0.083 0.020 0.028 0.067
REAL-Prover 50 0.008 0.001 0.007 0.023

Level 2
FIRMA 50 0.317 0.164 0.307 0.108

BFS-Prover 50 0.096 0.014 0.044 0.071
REAL-Prover 50 0.002 0.000 0.001 0.002

Level 3
FIRMA 50 0.338 0.174 0.332 0.115

BFS-Prover 50 0.065 0.005 0.013 0.054
REAL-Prover 50 0.009 0.004 0.001 0.028

Level 4
FIRMA 50 0.209 0.109 0.152 0.094

BFS-Prover 50 0.079 0.006 0.037 0.062
REAL-Prover 50 0.000 0.000 0.000 0.000

Table 4: Performance comparison across mathematical complexity levels for all three systems. Avg Score represents
the mean across F→I and I→F metrics. Bold indicates best performance within each complexity level.

shows catastrophic performance degradation, with
average scores below 0.01 at all levels except a
marginal improvement at Level 3. This suggests
that the reinforcement learning paradigm, while
effective for proof search, may not transfer well
to translation tasks requiring linguistic generation.
BFS-Prover-V1-7B demonstrates more consistent
performance across levels, though still substan-
tially below FIRMA, indicating that search-based
approaches provide some robustness but lack the
specialized mechanisms for high-quality transla-
tion.

3.4 Statistical Significance Analysis
To establish the robustness and statistical valid-
ity of the observed performance differences, we
conducted comprehensive statistical testing using
both parametric and non-parametric methods. The
analysis evaluates whether FIRMA’s improvements
over the baseline systems represent genuine ad-
vances rather than artifacts of random variation or
evaluation set characteristics.

For the comparison between FIRMA and BFS-

Prover-V1-7B, we performed paired t-tests on the
sample-level scores across the 200 evaluation in-
stances. The paired design controls for variation in
problem difficulty by comparing each system’s per-
formance on identical samples. The test yielded a
t-statistic of 27.19 with an associated p-value below
10−68, providing evidence against the null hypoth-
esis of equal performance. Cohen’s d effect size
calculation produces a value of 2.638, indicating
a large effect size that suggests the performance
difference has substantial practical significance be-
yond mere statistical detectability.

The Wilcoxon signed-rank test, a non-parametric
alternative that makes fewer distributional assump-
tions, corroborates these findings. With a test
statistic of 161.0 and p-value of approximately
1.59 × 10−33, the Wilcoxon test confirms that
FIRMA’s superior performance is not dependent on
normality assumptions. The consistency between
parametric and non-parametric tests strengthens
confidence in the reliability of the observed differ-
ences.

66

Comparison between FIRMA and REAL-Prover
reveals even more substantial statistical separation.
The paired t-test produces a t-statistic of 42.01
with p-value below 10−100, representing one of the
strongest statistical signals in the evaluation. The
effect size of Cohen’s d = 4.154 falls into the range
typically classified as very large, indicating that
the performance gap between FIRMA and REAL-
Prover substantially exceeds typical differences ob-
served in NLP system comparisons. The Wilcoxon
test statistic of 0.0 with p-value 1.44× 10−34 indi-
cates that FIRMA outperformed REAL-Prover on
essentially every sample in the evaluation set.

These statistical tests establish several important
conclusions. First, the performance advantages
observed for FIRMA are not artifacts of random
chance or favorable evaluation set construction.
The extremely low p-values indicate that observ-
ing such performance differences under the null
hypothesis of equal system quality would be van-
ishingly unlikely. Second, the large effect sizes
demonstrate that these are not merely statistically
significant but practically meaningful differences.
Third, the consistency between parametric and non-
parametric tests suggests the results are robust to
distributional assumptions and potential outliers in
the evaluation set.

3.5 Performance by Translation Direction

Direction Samples Avg Time (s)

Formal→Informal 50 5.333
Informal→Formal 50 10.419

Table 5: Performance comparison by translation direc-
tion

Table 5 reveals asymmetry in translation com-
plexity. Informal-to-formal translation requires
nearly twice the generation time (10.42s vs 5.33s),
reflecting the additional complexity of converting
natural language descriptions into precise formal
specifications. This asymmetry aligns with theoret-
ical expectations from autoformalization research,
where the constraint satisfaction required for for-
mal language generation presents greater computa-
tional challenges than natural language generation
from structured input.

The timing difference also reflects the inher-
ent ambiguity resolution required when converting
from informal to formal representations. Natural
language mathematical descriptions often contain

Figure 3: Performance analysis across mathematical
complexity levels. (a) Shows sample count and average
generation time by translation direction. (b) Displays
the distribution of complexity levels in our evaluation
set. (c) Reveals the relationship between complexity
level and generation time.

implicit assumptions or abbreviated reasoning steps
that must be made explicit in formal translations.

3.6 Complexity-Stratified Analysis

Figure 3 reveals systematic patterns in translation
performance across complexity levels. Most sam-
ples (78%) are at Level 1 (basic complexity), with
decreasing representation at higher levels. This
distribution reflects the natural occurrence of math-
ematical statements in educational and research
contexts, where foundational concepts are more
frequently discussed than advanced topics.

Generation time shows a counter-intuitive pat-
tern where higher complexity levels (3 and 4) re-
quire less time than basic level statements. This
unexpected result suggests several possible expla-
nations: the model may have developed more effi-
cient processing pathways for complex mathemati-
cal structures through its mathematical pretraining,
higher complexity statements may have more stan-
dardized formal representations that require less
search during generation, or the smaller sample
sizes at higher complexity levels may not represent
the full distribution of difficult cases.

Complexity Level Samples Avg Time (s)

Level 1 (Basic) 78 8.441
Level 3 (Advanced) 15 6.065
Level 4 (Expert) 7 5.458

Table 6: Generation time analysis by complexity level

67

3.7 Qualitative Analysis

Our evaluation reveals several patterns in transla-
tion quality that illuminate both the capabilities and
limitations of neural mathematical translation.

Success Cases: The model demonstrates per-
formance on standard undergraduate mathematical
problems, successfully converting between formal
Lean 4 syntax and natural language descriptions.
Number theory problems involving Diophantine
equations show preservation of mathematical mean-
ing, with translations that maintain both formal
precision and intuitive readability. Volume calcula-
tions and basic geometric theorems also translate
reasonably, suggesting that the model has learned
representations for common mathematical patterns.

The qualitative assessment reveals particular
strengths in handling algebraic manipulations and
elementary number theory. Translations preserve
the logical flow of arguments while adapting the
presentation style appropriately for the target rep-
resentation. Formal statements are converted into
natural language that maintains mathematical pre-
cision while improving readability through appro-
priate use of standard mathematical English con-
ventions.

Common Issues: Analysis of sample transla-
tions reveals recurring challenges that highlight
areas for future improvement. Terminology con-
sistency emerges as a notable issue, where the
model sometimes switches between equivalent
terms within the same problem, suggesting incom-
plete semantic understanding of certain concepts.
Variable type handling occasionally introduces er-
rors, particularly when the choice of number sys-
tem affects the validity of mathematical statements.
Proof structure preservation presents challenges
for complex theorems with multi-step logical ar-
guments, where translations sometimes lose coher-
ence, indicating difficulties in maintaining long-
range logical dependencies.

Comparing FIRMA’s qualitative behavior with
the baseline systems provides additional insights.
BFS-Prover-V1-7B often produces syntactically
correct but semantically shallow translations that
capture surface-level patterns without preserving
deeper mathematical relationships. REAL-Prover
frequently generates fragmentary outputs that fail
to form coherent mathematical statements, reflect-
ing its optimization for proof search rather than
translation quality.

Direction-Specific Patterns: Formal-to-

informal translation tends to produce more concise
outputs that capture essential mathematical content,
while informal-to-formal translation sometimes
generates verbose formal specifications. This
asymmetry reflects different optimization pressures
in each direction, where informal descriptions
prioritize clarity and intuition while formal
specifications require complete logical precision.

3.8 Ablation Study
To understand the contribution of individual ar-
chitectural components, we conducted an abla-
tion study on 50 samples from the evaluation set.
We systematically removed key components from
FIRMA and measured the resulting performance
degradation. Table 7 presents the comprehensive
results.

The ablation study reveals critical findings re-
garding FIRMA’s architectural design. The full
configuration achieves an overall score of 0.343,
while the base model without specialized com-
ponents (Base-Only) scores 0.056, representing
83.8% performance degradation. Removing in-
dividual components—proof encoder (FIRMA-
NoProofEncoder), complexity router (FIRMA-
NoComplexityRouter), or specialized embed-
dings (FIRMA-NoEmbeddings)—yields compara-
ble degradation (83.8%, 84.4%, and 85.5% respec-
tively), demonstrating that each component pro-
vides essential functionality. The proof encoder
maintains logical structure and proof-theoretic con-
straints; the complexity router enables adaptive
processing based on mathematical difficulty; and
specialized embeddings encode domain-specific
semantic properties of mathematical notation.

The minimal components configuration
(FIRMA-MinimalComponents) achieves 0.055
with 83.9% degradation, indicating that auxiliary
architectural features contribute meaningfully to
translation quality. Notably, the full FIRMA con-
figuration requires only 4.25 seconds per sample,
while ablated variants require approximately 30
seconds. This counter-intuitive result demonstrates
that specialized components enhance both transla-
tion quality and computational efficiency through
hierarchical architecture and complexity-aware
routing that focuses computational resources
effectively.

The ablation study provides strong evidence that
each architectural component in FIRMA serves
a necessary function for mathematical translation.
The removal of any major component reduces the

68

Configuration F→I F→I I→F I→F Overall Time Drop
BLEU ROUGE BLEU ROUGE (s) (%)

FIRMA-Full 0.180 0.375 0.319 0.496 0.343 4.25 -
Base-Only 0.023 0.084 0.016 0.099 0.056 30.22 83.8
-ProofEncoder 0.025 0.089 0.018 0.091 0.056 30.12 83.8
-ComplexityRouter 0.019 0.084 0.015 0.096 0.053 30.12 84.4
-Embeddings 0.023 0.080 0.016 0.080 0.050 30.02 85.5
-MinimalComp 0.020 0.080 0.019 0.102 0.055 30.10 83.9

Table 7: Ablation study results on 50 samples. Each row shows performance when specific components are removed
from FIRMA. Drop (%) indicates percentage performance degradation relative to FIRMA-Full. F→I denotes
Formal-to-Informal; I→F denotes Informal-to-Formal. Overall is computed as the average across all four metrics.

system to near-baseline performance, demonstrat-
ing that the components work synergistically rather
than providing redundant functionality. This vali-
dates our architectural design choices and suggests
that further simplification would likely compromise
translation quality.

4 Discussion

4.1 Theoretical Implications

This study presents empirical evidence for
complexity-dependent patterns in neural mathemat-
ical reasoning that align with computational com-
plexity theory predictions. The counter-intuitive
finding that higher-complexity problems exhibit
faster generation times suggests the model has de-
veloped specialized processing pathways for ad-
vanced mathematical concepts, likely acquired
through pretraining on diverse mathematical cor-
pora. This challenges conventional assumptions
about scaling behavior in neural mathematical rea-
soning, indicating that mathematical complexity
hierarchies do not necessarily correspond to com-
putational difficulty for neural architectures.

The substantial performance disparities observed
in baseline comparisons yield important theoreti-
cal insights regarding the limitations of alternative
approaches to mathematical reasoning. The near-
complete failure of reinforcement learning methods
(REAL-Prover) on translation tasks indicates that
policy optimization strategies designed for proof
search spaces exhibit poor transferability to gener-
ation tasks requiring linguistic proficiency.

4.2 Practical Applications

FIRMA enables several practical applications with
implications for mathematical pedagogy and re-
search. The system facilitates interactive proof
assistant tutoring through real-time bidirectional
translation, enabling students to develop formal rea-

soning skills while maintaining intuitive mathemat-
ical understanding. Additionally, FIRMA supports
automated documentation generation at multiple
levels of formality, thereby reducing documenta-
tion burden in formal mathematical libraries. The
round-trip translation capability assists researchers
in identifying ambiguities during formalization pro-
cesses, while facilitating communication between
mathematicians working at varying degrees of for-
mality and enabling accessible presentations of for-
mal results without compromising rigor.

5 Conclusion

We presented FIRMA, an approach to bidi-
rectional formal-informal mathematical transla-
tion that leverages proof-theoretic principles and
complexity-aware processing. Through evaluation
on 200 translation samples stratified by mathemat-
ical complexity, we demonstrate the system’s ca-
pability to handle mathematical translation across
different levels of sophistication. Comparative eval-
uation against two baseline systems establishes
the effectiveness of our approach, with FIRMA
achieving statistically significant improvements of
277.8% over BFS-Prover-V1-7B and 6307.5% over
REAL-Prover on overall translation quality met-
rics.

Our analysis shows asymmetry between transla-
tion directions, with informal-to-formal translation
requiring more computational resources due to the
constraint satisfaction demands of formal language
generation. The complexity-stratified analysis pro-
vides insights into how mathematical difficulty af-
fects neural translation performance, with patterns
suggesting that neural models may develop special-
ized processing pathways for advanced mathemati-
cal concepts.

Future work will explore scaling to larger
evaluation sets with more balanced complexity
distributions, investigating the counter-intuitive

69

complexity-time relationship through detailed com-
putational analysis, and extending FIRMA to in-
teractive theorem proving applications. Additional
research directions include adapting the approach
to other formal systems beyond Lean 4, investigat-
ing the transferability of complexity-aware routing
to other mathematical reasoning tasks, and devel-
oping more sophisticated evaluation metrics that
capture both formal correctness and pedagogical
effectiveness.

By releasing our code and models, we hope to
accelerate research at the intersection of formal
methods and natural language processing. The bidi-
rectional translation capability opens possibilities
for mathematical education, automated documenta-
tion, and human-AI collaboration in mathematical
research.

Limitations

This work focuses on mathematical content primar-
ily at the undergraduate level, with limited repre-
sentation of advanced research topics. The primary
limitation concerns the evaluation scale: due to
computational constraints, we conducted detailed
analysis on 100 samples for comprehensive eval-
uation and 50 samples for ablation studies. Math-
ematical translation is computationally intensive,
requiring substantial resources for both training
and evaluation. Based on the performance pat-
terns observed on these subsets, we anticipate that
FIRMA would demonstrate improved performance
with larger-scale evaluation and additional com-
putational resources. However, establishing this
empirically would require access to more extensive
computational infrastructure than was available for
this study.

The computational requirements of the hierarchi-
cal architecture may limit deployment in resource-
constrained settings. The reliance on Lean 4 as
the target formal system means FIRMA inherits
the limitations and expressiveness constraints of
this particular proof assistant. Mathematical con-
cepts not easily expressible in Lean 4’s type theory
may not translate effectively. The model’s perfor-
mance depends on the quality and coverage of the
underlying formal mathematical libraries.

The evaluation methodology focuses on transla-
tion quality rather than end-user effectiveness in
educational or research contexts. Real-world de-
ployment would require extensive user studies to
validate the pedagogical effectiveness of generated

translations.

References
Yang An, Baosong Yang, Binyuan Hui, Bo Zheng,

Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, and 1 others. 2024.
Qwen2.5-math technical report: Toward mathemat-
ical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. 2023a. Proofnet: Autoformalizing
and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023b.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 41–48.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the ability and limitations of transform-
ers to recognize formal languages. arXiv preprint
arXiv:2009.11264.

Wei Chen, Ming Zhang, Yifan Liu, Jun Wang, and
Yiming Yang. 2024. Real-prover: Reinforcement
learning for automated theorem proving. arXiv
preprint arXiv:2407.09821. Model available at
https://huggingface.co/FrenzyMath/REAL-Prover.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim
Genewein, Li Kevin Wenliang, Elliot Catt, Chris
Cundy, Marcus Hutter, Shane Legg, Joel Veness, and
1 others. 2023. Neural networks and the chomsky
hierarchy. arXiv preprint arXiv:2207.02098.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy
Brun. 2023. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of
the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 1229–1241.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Grif-
fiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and
Julius Berner. 2024. Mathematical capabilities of
chatgpt. Advances in Neural Information Processing
Systems.

70

Mohan Ganesalingam. 2013. The Language of Mathe-
matics: A Linguistic and Philosophical Investigation.
Springer.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W
Ayers, and Stanislas Polu. 2022. Proof artifact co-
training for theorem proving with language models.
In International Conference on Learning Representa-
tions.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi,
Niklas Een, François Chollet, and Josef Urban. 2016.
Deepmath - deep sequence models for premise selec-
tion. In Advances in Neural Information Processing
Systems, volume 29.

Albert Q Jiang, Wenda Li, Jesse Michael Han, and
Yuhuai Wu. 2022. Thor: Wielding hammers to
integrate language models and automated theorem
provers. Advances in Neural Information Processing
Systems, 35:8360–8373.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou,
Wenda Li, Jiacheng Liu, Mateja Jamnik, Timo-
thée Lacroix, Yuhuai Wu, and Guillaume Lample.
2023. Draft, sketch, and prove: Guiding formal the-
orem provers with informal proofs. arXiv preprint
arXiv:2210.12283.

Guillaume Lample, Timothée Lacroix, Marie-Anne
Lachaux, Aurélien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet.
2022. Hypertree proof search for neural theorem
proving. arXiv preprint arXiv:2205.11491.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023. A survey of deep learn-
ing for mathematical reasoning. arXiv preprint
arXiv:2212.10535.

Maciej Mikuła, Szymon Antoniak, Szymon
Tworkowski, Albert Q Jiang, Jin Peng Zhou,
Christian Szegedy, Łukasz Kuciński, Piotr Miłoś,
and Yuhuai Wu. 2023. Magnushammer: A
transformer-based approach to premise selection.
arXiv preprint arXiv:2303.04488.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2022. Formal mathematics statement curriculum
learning. arXiv preprint arXiv:2202.01344.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393.

Hartley Rogers Jr. 1987. Theory of Recursive Functions
and Effective Computability. MIT Press.

Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, and 1 others. 2024. Mathematical discoveries
from program search with large language models.
Nature, 625(7995):468–475.

Christian Szegedy. 2020. A promising path towards aut-
oformalization and general artificial intelligence. In-
telligent Computer Mathematics: 13th International
Conference, CICM 2020, pages 3–20.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476–482.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng.
2017. Premise selection for theorem proving by deep
graph embedding. Advances in Neural Information
Processing Systems, 30.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh
Hajishirzi, Yejin Choi, and Kyunghyun Cho. 2021.
Naturalprover: Grounded mathematical proof gen-
eration with language models. Advances in Neural
Information Processing Systems, 34:4913–4927.

Yuhuai Wu, Albert Q Jiang, Wenda Li, Markus N
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. In Advances in Neural Information
Processing Systems.

Jingwen Xin, Zhengying Liu, Yifan Luo, and 1 others.
2025. Deepseek-prover-v2: Scaling natural-language
graph-based test time compute for automated theo-
rem proving. arXiv preprint arXiv:2503.11657.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. 2024. Leandojo:
Theorem proving with retrieval-augmented language
models. In Advances in Neural Information Process-
ing Systems.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian
Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma, Ji-
awei Hong, Kuikun Liu, Ziyi Wang, and 1 others.
2024a. Internlm-math: Open math large language
models toward verifiable reasoning. arXiv preprint
arXiv:2402.06332.

71

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian
Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma, Ji-
awei Hong, Kuikun Liu, Ziyi Wang, and 1 oth-
ers. 2024b. Internlm2.5-stepprover: Advancing
automated theorem proving via expert iteration
on large-scale lean problems. arXiv preprint
arXiv:2410.15700. Lean-Workbook dataset avail-
able at https://huggingface.co/datasets/internlm/Lean-
Workbook.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2024. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Qihao Zhu, Huajian Xin, Daya Guo, Zhizhou Ren,
Wenda Li, and Xiaodan Liang. 2024. Bfs-prover:
Breadth-first search for automated theorem prov-
ing. arXiv preprint arXiv:2406.12337. Model avail-
able at https://huggingface.co/ByteDance-Seed/BFS-
Prover-V1-7B.

A Related Work

A.1 Neural Theorem Proving
The intersection of deep learning and formal math-
ematics has seen progress recently. Early foun-
dational work by Irving et al. (2016) introduced
premise selection using sequence models, estab-
lishing neural approaches as viable for formal rea-
soning tasks. Building on this foundation, Polu and
Sutskever (2020) demonstrated that GPT-style au-
toregressive models could generate formal proofs,
opening new possibilities for automated theorem
proving.

Recent systems have achieved results on chal-
lenging mathematical problems. AlphaGeometry
(Trinh et al., 2024) solved International Mathe-
matical Olympiad geometry problems without hu-
man demonstrations by combining neural language
models with symbolic deduction engines. Fun-
Search (Romera-Paredes et al., 2024) discovered
new mathematical knowledge through program
search, demonstrating that neural approaches can
contribute to mathematical research. The latest
DeepSeek-Prover system (Xin et al., 2025) scales
natural-language reasoning with graph-based test-
time computation, achieving state-of-the-art results
on formal theorem proving benchmarks.

Infrastructure developments have been equally
important. LeanDojo (Yang et al., 2024) provides
comprehensive tooling for theorem proving with
retrieval-augmented language models, enabling
more systematic research in this area. Specialized
mathematical language models like Llemma (Azer-
bayev et al., 2023b) offer domain-specific pretrain-

ing that improves performance on mathematical
reasoning tasks. Recent work on mathematical in-
struction tuning includes MAmmoTH (Yue et al.,
2024), ToRA (Gou et al., 2024), and InternLM-
Math (Ying et al., 2024a), which demonstrate the
effectiveness of carefully designed training curric-
ula for mathematical reasoning.

However, these approaches focus primarily on
proof generation or mathematical problem-solving
rather than bidirectional translation between formal
and informal representations. They also do not
address the pedagogical aspects of mathematical
communication that are central to our work.

A.2 Autoformalization and Mathematical
Language Processing

Autoformalization—the task of translating natu-
ral language mathematics into formal specifica-
tions—has emerged as a critical research direction
bridging informal and formal mathematical reason-
ing. The challenge of processing mathematical
language has been studied from multiple perspec-
tives, revealing unique computational and linguistic
challenges. Ganesalingam (2013) provides com-
prehensive linguistic analysis of mathematical dis-
course, identifying critical issues like variable bind-
ing, contextual symbol interpretation, and the inter-
play between formal notation and natural language
that make mathematical text processing particularly
challenging.

Recent comprehensive surveys highlight the cur-
rent state and limitations of neural mathematical
reasoning. Lu et al. (2023) provides an extensive
overview of deep learning approaches to mathemat-
ical reasoning, categorizing methods by problem
type and solution approach. Frieder et al. (2024)
specifically examines the mathematical capabilities
of large language models like ChatGPT, revealing
both performance on certain tasks and systematic
limitations in formal reasoning. These surveys con-
sistently identify the gap between formal and in-
formal representations as a key challenge in neural
mathematical reasoning.

Early Autoformalization Work: Pioneering
efforts in autoformalization established the feasi-
bility of neural approaches to formal translation.
Wang et al. (2017) explored premise selection for
automated theorem proving using neural methods.
Szegedy (2020) introduced the concept of com-
bining human intuition with machine verification
through semi-automated formalization approaches.
These early works laid the groundwork for more

72

sophisticated autoformalization systems.
Dataset and Benchmark Development: The

ProofNet dataset (Azerbayev et al., 2023a) pro-
vides a foundational resource for autoformaliza-
tion research, containing aligned formal-informal
mathematical statement pairs extracted from
undergraduate-level mathematics. This dataset has
become a standard benchmark for evaluating aut-
oformalization systems. Jiang et al. (2022) intro-
duced miniF2F, a benchmark containing formal
statements of olympiad-level mathematics prob-
lems with corresponding natural language descrip-
tions, enabling standardized evaluation across dif-
ferent proof assistants.

Large-Scale Autoformalization Systems: Wu
et al. (2022) demonstrated that large language mod-
els can translate mathematical statements from
natural language to formal proof assistant syntax,
achieving results on theorem statement translation.
Their work showed that pretrained language mod-
els possess substantial mathematical reasoning ca-
pabilities that can be leveraged for formalization
tasks. Building on this, Jiang et al. (2023) intro-
duced the "Draft, Sketch, and Prove" paradigm
that uses informal proofs to guide formal theorem
proving, demonstrating how intermediate informal
sketches can bridge the gap between natural lan-
guage and fully formal proofs.

Neural-Symbolic Approaches: Recent work
has explored hybrid approaches combining neu-
ral methods with symbolic reasoning. Polu et al.
(2022) developed methods for using language mod-
els to generate formal mathematics in interactive
theorem provers, showing how neural generation
can be constrained by formal type systems. Mikuła
et al. (2023) introduced proof search strategies that
combine neural premise selection with symbolic
automated reasoning, achieving results on formal-
ization benchmarks.

Several recent systems have emerged specifically
focused on formal-informal translation. The BFS-
Prover-V1-7B model (Zhu et al., 2024) employs
best-first search strategies for mathematical proof
generation, incorporating both forward and back-
ward reasoning mechanisms. The REAL-Prover
system (Chen et al., 2024) takes a different ap-
proach by focusing on reinforcement learning for
automated theorem proving, learning to navigate
the proof search space through exploration and re-
ward signals. While these systems demonstrate
mathematical reasoning capabilities, they do not
explicitly model the bidirectional nature of formal-

informal translation or incorporate proof-theoretic
grounding into their architectures.

However, most autoformalization approaches fo-
cus on unidirectional translation from informal
to formal mathematics and do not address the
inverse problem of generating pedagogical ex-
planations from formal proofs. They also typi-
cally lack theoretical guarantees about preserva-
tion of logical structure across translation direc-
tions, which FIRMA addresses through its proof-
theoretic grounding and bidirectional architecture.

A.3 Complexity Hierarchies in Logic
Our approach draws inspiration from proof-
theoretic complexity hierarchies, which provide
formal characterizations of mathematical difficulty.
The arithmetical hierarchy classifies logical state-
ments by quantifier alternation depth, with Σn and
Πn classes capturing increasing levels of logical
complexity (Rogers Jr, 1987). This hierarchy has
deep connections to computability theory and pro-
vides a principled way to understand why certain
mathematical statements are inherently more diffi-
cult to process than others.

Recent work explores how neural networks learn
formal languages of varying complexity within
the Chomsky hierarchy. Delétang et al. (2023) in-
vestigates the ability of transformers to recognize
context-free and context-sensitive languages, while
Bhattamishra et al. (2020) examines the limitations
of transformer architectures when processing for-
mal languages with specific structural properties.
These studies reveal that neural architectures have
inherent limitations in processing certain types of
formal structures, which has important implications
for mathematical reasoning tasks.

We leverage these theoretical insights to de-
sign architectures that explicitly model complex-
ity transitions, providing both better empirical per-
formance and theoretical interpretability. Our hi-
erarchical routing mechanism draws inspiration
from these complexity-theoretic foundations while
remaining practical for real-world mathematical
translation tasks.

A.4 Curriculum Learning in Mathematical
Domains

The progressive complexity training approach in
FIRMA builds on established principles from cur-
riculum learning. Bengio et al. (2009) introduced
the fundamental insight that learning complex tasks
benefits from structured progression through easier

73

examples before tackling difficult ones. This prin-
ciple has proven particularly relevant in mathemat-
ical domains, where concept dependencies create
natural learning hierarchies.

Recent applications of curriculum learning to
mathematical reasoning demonstrate its effective-
ness. Process supervision approaches (Lightman
et al., 2023) show that providing intermediate step
guidance during training improves mathematical
problem-solving performance. Training verifiers
for mathematical reasoning (Cobbe et al., 2021)
reveals that graduated difficulty progression helps
models develop more robust reasoning capabilities.

Our progressive complexity training extends
these ideas by incorporating proof-theoretic com-
plexity measures to create more principled curricu-
lum structures for mathematical translation tasks.

B Dataset and Experimental Setup

B.1 Dataset Construction

We construct our evaluation dataset from high-
quality formal-informal mathematics pairs, build-
ing on established resources in the mathematical
AI community.

Training Data: We use two complementary
datasets for training. The AI4M/less-proofnet-
lean4-ranked dataset provides curated formal-
informal mathematical statement pairs with quality
rankings, building on the ProofNet methodology
(Azerbayev et al., 2023a) with improved quality
control and ranking systems. The internlm/Lean-
Workbook dataset (Ying et al., 2024b) offers a
large-scale collection containing formal-informal
mathematical problem pairs derived from natural
language mathematics problems, providing exten-
sive coverage across diverse mathematical domains
and difficulty levels with problems formalized from
sources including competition mathematics, text-
book exercises, and real-world applications. This
dataset expands our training corpus and enables
better generalization across mathematical topics.

Evaluation Data: Our test set comes from
UDACA/proofnet-v2-lean4, providing diverse
mathematical theorems across complexity levels.
This dataset offers broader coverage of mathemati-
cal domains compared to earlier autoformalization
datasets.

The choice of Lean 4 as the formal language is
motivated by its growing adoption in the mathemat-
ical community and its relatively readable syntax
compared to other proof assistants. The formal

library ecosystem in Lean provides rich context
for understanding mathematical statements across
different domains.

B.2 Complexity Stratification

We annotate each example with complexity metrics
based on mathematical structure, drawing inspira-
tion from proof-theoretic complexity hierarchies:

Level Description Ct

1 (Basic) Direct arithmetic, single-step proofs 78
2 (Inter.) Multi-step reasoning, basic induction 0
3 (Adv.) Nested quantifiers, complex logic 15
4 (Ex-
pert)

Higher-order logic, advanced concepts 7

Table 8: Evaluation dataset stratification by complexity
level (N=100)

The complexity classification considers factors
including quantifier depth, proof structure complex-
ity, domain-specific notation density, and depen-
dency on advanced mathematical concepts. This
stratification allows us to analyze how translation
performance varies with mathematical sophistica-
tion.

B.3 Implementation Details

We conduct experiments with two model configu-
rations to evaluate FIRMA’s effectiveness across
different scales.

Primary Configuration: FIRMA builds upon
Qwen2.5-Math-7B-Instruct (An et al., 2024), a
mathematics-specialized foundation model that
provides baseline capabilities for mathematical
reasoning. We employ QLoRA for efficient fine-
tuning with 4-bit quantization, enabling training on
standard GPU hardware while maintaining model
quality.

Compact Configuration: To assess scalability,
we also evaluate FIRMA using Qwen3-0.6B (An
et al., 2024) as the base model, demonstrating the
framework’s applicability to smaller, more efficient
architectures suitable for resource-constrained de-
ployment scenarios.

Training uses AdamW optimization with cosine
scheduling, warming up over 10% of steps to a
peak learning rate of 2 × 10−4. We train for 5
epochs with early stopping based on validation per-
formance to prevent overfitting. The training regi-
men follows established best practices for mathe-
matical language model fine-tuning.

74

Key hyperparameters include batch size 2 with
gradient accumulation to effective size 32, maxi-
mum sequence length 512 tokens, and dropout rate
0.1 throughout. Loss weights are set to λ1 = 0.4,
λ2 = 0.3, λ3 = 0.15, λ4 = 0.15 based on val-
idation set optimization. These weights balance
translation quality with round-trip consistency and
formal validity.

B.4 Baseline Systems

To contextualize FIRMA’s performance, we com-
pare against two recent mathematical reasoning
systems that represent different approaches to for-
mal mathematical processing.

BFS-Prover-V1-7B (Zhu et al., 2024) employs
a best-first search strategy for mathematical proof
generation, incorporating both forward and back-
ward reasoning mechanisms. This system rep-
resents the state-of-the-art in search-based ap-
proaches to formal mathematics, using a 7-billion
parameter language model as its foundation. The
model is specifically designed for theorem prov-
ing tasks and leverages strategic search through the
proof space.

REAL-Prover (Chen et al., 2024) takes a fun-
damentally different approach based on reinforce-
ment learning for automated theorem proving. The
system learns to navigate the proof search space
through exploration and reward signals, optimiz-
ing for successful proof completion. This repre-
sents the reinforcement learning paradigm in for-
mal mathematics, where the model develops strate-
gies through trial and feedback.

Both baseline systems were evaluated under
identical conditions using the same 200-sample
evaluation set from the internlm/Lean-Workbook
dataset. We use the publicly available implemen-
tations with default configurations to ensure repro-
ducible comparisons. The evaluation protocol mea-
sures both translation quality through BLEU and
ROUGE-L metrics, as well as generation efficiency
through timing measurements.

C Dataset Details

C.1 Data Sources

Our evaluation dataset is constructed from two pri-
mary sources within the ProofNet ecosystem.

Training Data: AI4M/less-proofnet-lean4-
ranked provides high-quality formal-informal math-
ematical pairs with quality rankings for training
purposes. This dataset represents a curated subset

of the broader ProofNet collection, with improved
quality control and explicit ranking systems based
on translation accuracy and mathematical content
quality.

Evaluation Data: UDACA/proofnet-v2-lean4
serves as our test set, offering diverse mathematical
theorems and problems across different complexity
levels. This dataset includes broader coverage of
mathematical domains compared to the training
set, providing a more comprehensive evaluation
environment.

The choice of ProofNet-derived datasets ensures
compatibility with established autoformalization
research while providing sufficient diversity for
meaningful evaluation.

C.2 Sample Characteristics

Category # % Time SD
(s) (s)

Algebra 45 45 8.2 2.1
Number Theory 25 25 7.1 1.8
Geometry 15 15 6.8 2.3
Analysis 10 10 9.5 3.2
Logic 5 5 5.2 1.5

Table 9: Distribution of mathematical topics in evalua-
tion dataset

D Implementation Details

D.1 Model Configuration

Component Configuration

Base Model Qwen3-8B
Fine-tuning Method QLoRA (4-bit)
Hidden Dimension 4096
Attention Heads 32
Complexity Experts 4
Max Sequence Length 512
Dropout Rate 0.1

Table 10: Model architecture specifications

75

D.2 Training Configuration

Parameter Value

Learning Rate 2e-4
Warmup Steps 10%
Batch Size 2 (×16 accumulation)
Optimizer AdamW
Weight Decay 0.01
Gradient Clipping 1.0
Training Epochs 5
Hardware 4×T4 GPU

Table 11: Training hyperparameters

E Additional Results

E.1 Sample Translations
Selected examples from our evaluation demon-
strate both successful translations and common
challenges.

Example 1 - Number Theory (Suc-
cess): The input formal statement theorem
numbertheory_4x3m7y3neq2003 (x y :) :
4 * xˆ3 - 7 * yˆ3 2003 was translated to
the informal description "Prove that there are no
integers x and y such that 4x3− 7y3 = 2003" with
a generation time of 3.77 seconds. This example
demonstrates preservation of mathematical content
while converting to natural language presentation.

Example 2 - Geometry (Challenge): A volume
calculation theorem with cone parameters resulted
in generated text referring to "rectangular prism"
instead of "cone," illustrating terminology incon-
sistency in geometric object handling. This type
of error, while maintaining overall problem struc-
ture, indicates areas where semantic understanding
could be improved.

E.2 Error Analysis
Common failure modes identified through analy-
sis include terminology inconsistency (35% of er-
rors), variable type confusion (28%), incomplete
translations (20%), logical flow issues (12%), and
syntax errors (5%). This distribution suggests that
semantic understanding of mathematical concepts
remains the primary challenge, rather than purely
syntactic or formatting issues.

76

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 77–94
November 9, 2025 ©2025 Association for Computational Linguistics

CHECK-MAT: Probing the Mathematical Reasoning and
Rubric-Alignment of Vision-Language Models on Handwritten Solutions

Ruslan Khrulev
Lomonosov Moscow State University

Moscow, Russia
ra.khrulev@gmail.com

Abstract

The application of contemporary NLP mod-
els for inference over mathematical text re-
mains a critical and under-explored area. While
Vision-Language Models (VLMs) have shown
promise, a significant gap exists in their abil-
ity to perform nuanced, rubric-based assess-
ment of handwritten mathematical arguments,
a task requiring the joint interpretation of vi-
sual, textual, and symbolic modalities. This
paper directly addresses the need for robust
evaluation tasks in this domain. This paper in-
troduces CHECK-MAT, a new benchmark and
methodology for the automated, rubric-based
assessment of handwritten mathematical solu-
tions using Vision-Language Models (VLMs).
Composed of 122 real-world solutions from a
high-stakes national exam, CHECK-MAT eval-
uates the capacity of VLMs to emulate expert
graders by identifying logical flaws and ap-
plying detailed grading rubrics. Our system-
atic evaluation of seven state-of-the-art VLMs
serves as a direct instance of probing the math-
ematical understanding of state-of-the-art mod-
els. We reveal key limitations in their abil-
ity to parse complex notation and align with
human grading rubrics, which we frame as a
challenge in understanding the linguistic analy-
sis of mathematical discourse. Our work con-
tributes a robust benchmark to the NLP com-
munity and offers critical insights for develop-
ing models with more sophisticated mathemat-
ical reasoning capabilities. You can find code
in https://github.com/Karifannaa/Auto-check-
EGE-math.

1 Introduction

The articulation of mathematical arguments is a fun-
damental part of scientific reasoning and commu-
nication. As Large Language Models (LLMs) and
Vision-Language Models (VLMs) become more ca-
pable, their application to understanding and evalu-
ating these arguments is a key area of research in
NLP. However, a significant gap exists in their abil-

ity to perform inference over complex, multimodal
mathematical text, such as handwritten student so-
lutions. While benchmarks like Fermat (Yuan et al.,
2024) focus on error detection and localization, and
MathCCS (Wu et al., 2024) on systematic error
analysis for feedback, CHECK-MAT addresses a
different, complementary challenge: rubric align-
ment. Our benchmark tests a VLM’s ability to not
just identify flaws, but to map the overall quality of
a complex, multi-step solution onto a granular, offi-
cial scoring rubric, emulating the holistic judgment
of a human grader.

Instead of merely testing a model’s problem-
solving capabilities, our benchmark probes its ca-
pacity for nuanced understanding of human thought
processes, error identification, and adherence to
structured assessment rubrics. This is crucial for
developing AI systems that can genuinely assist in
educational assessment, providing scalable support
for tasks that are currently bottlenecked by man-
ual expert grading. Our work makes the following
contributions:

• We introduce CHECK-MAT, a new public
benchmark that addresses the need for eval-
uation tasks requiring the joint interpretation
of different modalities (handwritten notation,
natural language problems, and equational
rubrics) in mathematical text.

• We provide a comprehensive evaluation of
seven state-of-the-art VLMs, offering a rigor-
ous analysis that directly probes the mathe-
matical understanding of state-of-the-art mod-
els and identifies specific weaknesses, particu-
larly in geometric reasoning.

• We frame the task of rubric-based grading as
a form of linguistic analysis of mathematical
discourse, providing a challenging testbed for
developing models that can follow complex,
human-defined argumentation relations.

77

2 Related Work

Our work is situated at the intersection of auto-
mated mathematical assessment, multimodal rea-
soning, and diagnostic evaluation. The field has
evolved significantly from its early reliance on de-
terministic systems to the current exploration of
sophisticated AI models.

2.1 Automated Assessment as an NLP Task

The evolution of automated assessment in mathe-
matics education has been marked by a shift from
answer verification to process analysis. Early sys-
tems, built on Computer Algebra Systems (CAS)
like STACK (Sangwin, 2014), excelled at verify-
ing the symbolic equivalence of a final answer.
However, they were fundamentally “correctness-
focused” and could not evaluate the student’s rea-
soning process.

This limitation spurred the development of
process-focused assessment. This modern
paradigm is embodied in intelligent tutoring sys-
tems and benchmarks such as MathCCS (Wu et al.,
2024), which uses real-world student data for sys-
tematic error analysis as a foundation for gener-
ating pedagogically useful feedback. Our work
directly extends this trajectory by leveraging large
vision-language models (VLMs) to perform diag-
nostic assessment on authentic, handwritten stu-
dent work, posing a new, challenging task for the
mathematical NLP community.

2.2 The Multimodal Challenge of
Handwritten Solutions

Assessing handwritten mathematics is an inherently
multimodal task. A specialized field, Handwritten
Mathematical Expression Recognition (HMER),
has focused on the modular task of transcribing
visual notation into a structured format like LaTeX
(Deng et al., 2017). This is a non-trivial problem
due to the two-dimensional structure of mathemati-
cal expressions and visual ambiguity between sym-
bols.

In parallel, the rise of end-to-end Vision-
Language Models (VLMs) like GPT-4o (OpenAI,
2024) has introduced a more integrated paradigm.
However, studies applying general-purpose VLMs
to grade handwritten assignments have consistently
highlighted the problem of error propagation: in-
accurate Optical Character Recognition (OCR) of
handwriting leads to faulty input for the reason-
ing module, resulting in incorrect grades (Kasneci

et al., 2023). This suggests that a VLM’s generalist
vision encoder may be less robust for the specific
domain of mathematical notation than a special-
ized HMER model, making this a critical area for
benchmarking.

2.3 The Paradigm Shift to Diagnostic
Assessment

The most advanced research in this domain has
shifted from simply assigning a score to perform-
ing diagnostic assessment—identifying the specific
nature of a student’s error. This requires a model
to parse a multi-step solution, compare it to valid
reasoning pathways, and classify deviations into a
meaningful taxonomy of error types.

This paradigm shift is embodied by the recent de-
velopment of specialized benchmarks. The Fermat
benchmark (Yuan et al., 2024) was explicitly de-
signed to evaluate a VLM’s ability to perform error
detection, localization, and correction on handwrit-
ten solutions containing synthetically generated,
human-verified errors. Similarly, the MathCCS
benchmark (Wu et al., 2024) uses real-world stu-
dent data to focus on systematic error analysis as
a foundation for generating pedagogically useful
feedback. The creation of these rigorous bench-
marks signifies a maturation of the field, moving
the central question from "Can the model get the
score right?" to "Can the model identify and ex-
plain the error?" Our work aligns with this trajec-
tory by requiring models to assess solutions against
a multi-point rubric that implicitly requires error
diagnosis.

2.4 Benchmarks for Mathematical Reasoning
in NLP

The performance of any NLP system for mathemat-
ical tasks is capped by the reasoning power of its
underlying models. While text-based benchmarks
like MATH (Hendrycks et al., 2021) and GSM8K
(Cobbe et al., 2021) drove initial progress, they
suffer from issues like data contamination and an
inability to penalize flawed reasoning that leads to
a correct answer.

The need to evaluate reasoning in visual contexts
has led to more robust multimodal benchmarks.
MathVista (Lu et al., 2023) and R2-MultiOmnia
(Ranaldi et al., 2025), for example, provides a com-
prehensive suite of problems requiring the inter-
pretation of charts, diagrams, and figures. The sig-
nificant performance gap between state-of-the-art
models and humans on such benchmarks demon-

78

strates that visually-grounded mathematical reason-
ing remains a formidable challenge. This provides
essential context for our work, as it establishes a
realistic upper bound on the expected performance
of VLMs on the even more complex task of grad-
ing, which requires not only solving a problem but
diagnosing errors in another agent’s solution.

3 Benchmark Design and Dataset

Our benchmark is designed to evaluate Vision-
Language Models (VLMs) on their ability to assess
handwritten mathematical solutions, a task that re-
quires a deep understanding of both visual infor-
mation and mathematical reasoning. The core of
our benchmark is a unique dataset derived from the
Russian Unified State Exam (EGE), specifically fo-
cusing on the second part of the mathematics exam,
where students provide detailed, handwritten solu-
tions.

3.1 Dataset Sourcing and Characteristics

The dataset comprises 122 problem solutions,
meticulously sourced from the official EGE ex-
pert guide. This guide provides a rich collection of
real student solutions, along with expert-assigned
grades and detailed justifications for those grades.
It is important to note that all handwritten solutions
and the original problem statements are in Russian,
reflecting the source of the data. Each entry in our
dataset includes:

• Scanned Handwritten Solution: An image
of the students complete handwritten solution,
often spanning multiple pages, capturing the
nuances of human handwriting, diagrams, and
mathematical notation.

• Problem Statement: The original text of the
mathematical problem, providing context for
the solution.

• Expert Grade: The official score assigned by
human experts according to the EGE grading
criteria.

• Reference-Based Expert Evaluation: In-
cludes the final score assigned by a human
expert. The assessment is based on a provided
gold-standard solution and a granular grading
rubric, which are available for each task to
ensure a transparent and replicable evaluation
process.

Table 1: Benchmark breakdown by task type.

Task ID Domain Count Score Range

13 Trigonometric
equations

21 0–2

14 Stereometry 18 0–3
15 Logarithmic

inequalities
19 0–2

16 Financial
mathematics
problems

17 0–2

17 Planimetry 15 0–3
18 Parameterised

equations
16 0–4

19 Number theory/
combinatorics

16 0–4

The dataset was sourced from the official EGE
expert guide, a publicly available resource for train-
ing human graders. All solutions are anonymized
and published for educational purposes, thus no
ethical clearance was required for their use in this
research. The guide does not provide demographic
details such as the number of unique students or
their grade levels. These are authentic solutions
written by students under real high-stakes exam
conditions, providing a realistic and challenging
distribution of writing styles and error types.

The solutions cover a range of mathematical
topics typically found in EGE, including algebra,
geometry, trigonometry, and calculus, ensuring a
diverse set of challenges for the evaluated mod-
els. The handwritten nature of the solutions intro-
duces significant variability in terms of handwriting
styles, penmanship, and layout, requiring robust
VLM capabilities for accurate interpretation.

3.2 Mathematical Domains and Task Types

Each task corresponds to a standard EGE problem
type requiring a written solution with reasoning.
Table 1 provides an overview of the tasks, including
their domain, a brief description, the number of
solution samples in our dataset, and the score range
(points) for each task.

3.3 Grading Criteria and Assessment Focus

The central point of the EGE assessment process
is the clearly defined grading criteria for each task.
These criteria specify how points are awarded or
deducted based on the correctness of the solution
steps, the validity of the reasoning, and the accu-
racy of the final answer. Our benchmark leverages
these criteria as the ground truth for evaluation.
The primary focus is not on whether the model can

79

solve the problem itself, but rather on its ability to:

• Understand the Solution Flow: Compre-
hend the logical progression of the students
solution, including intermediate steps and
derivations.

• Identify Errors: Accurately pinpoint math-
ematical errors, logical flaws, or omissions
within the handwritten solution.

• Apply Grading Rubrics: Assess the identi-
fied errors and correct parts of the solution
against the specific EGE grading criteria to
assign an appropriate score.

This emphasis on assessment rather than
problem-solving distinguishes our benchmark from
many existing math-focused datasets and provides
a more realistic evaluation of AI potential in educa-
tional grading scenarios.

4 Experimental Setup

To evaluate the performance of Vision-Language
Models on our EGE-Math Solutions Assessment
Benchmark, we conducted experiments with seven
different state-of-the-art models. The evaluation
was structured around three distinct procedures, or
"modes", designed to assess the models’ capabili-
ties under different levels of contextual information.
This required a meticulous data curation process
where a specific version of the dataset was prepared
for each mode.

4.1 Evaluated Models
We selected a diverse set of VLMs to cover a range
of architectures and capabilities:

• Arcee AI Spotlight: A model from Arcee AI,
accessed via OpenRouter. (Arcee.ai, 2025)

• Google Gemini 2.0 Flash: Google’s VLM,
known for its multimodal capabilities (Team
et al., 2023).

• Google Gemini 2.0 Flash Lite: A lighter
version of Google Gemini 2.0 Flash.

• Google Gemini 2.5 Flash Preview: A pre-
view version of Google’s next-generation
VLM.

• Google Gemini 2.5 Flash Preview:thinking:
A variant of Google’s Gemini 2.5 Flash Pre-
view with enhanced reasoning abilities.

• OpenAI o4-mini: A model from OpenAI, a
smaller, more efficient version of their flag-
ship models. (OpenAI, 2025)

• Qwen 2.5 VL 32B: A large Vision-Language
Model from Alibaba Cloud, accessed via
OpenRouter (Bai et al., 2025).

We selected a diverse set of VLMs to cover a
range of architectures and providers. The inclusion
of multiple models from the Google Gemini fam-
ily allows for a direct comparison of performance
trade-offs within a single model lineage, evaluating
the impact of model size and specialized tuning
(e.g., the ’thinking’ variant) on this nuanced task.

Each model was prompted to analyze the hand-
written solution image and provide an assessment
based on the EGE grading criteria. The output
format was standardized to facilitate automated
comparison with expert grades.

4.2 Evaluation Procedure and Data Curation

To thoroughly test the model’s understanding and
reasoning, we designed and prepared data for three
evaluation modes. This approach allows for a gran-
ular analysis of how additional context influences
the models’ assessment performance.

• Mode 1: Without Answer. In this mode,
the model receives only the handwritten so-
lution image and the problem statement. To
facilitate this, we prepared a baseline dataset
where each entry consisted of a pre-processed
image and the problem text. The image pre-
processing involved standardizing dimensions
and resolution to ensure consistent input qual-
ity across all experiments. This mode assesses
the model’s ability to assign a grade based
solely on the provided content and its internal
understanding of the EGE grading rubric.

• Mode 2: With Answer. For this mode, the
model receives the handwritten solution, the
problem statement, and the correct final nu-
merical answer. To enable this, the baseline
dataset was augmented by appending the cor-
rect final answer for each of the 122 problems,
sourced from official EGE materials. This
mode assesses whether the model can lever-
age the correct outcome to better identify er-
rors or confirm the correctness of the student’s
solution steps.

• Mode 3: With True Solution. This is the
most informative mode, where the model is
given the handwritten solution, the problem
statement, and a complete, correct reference

80

solution. The dataset for this mode was fur-
ther enriched with a transcribed, step-by-step
"gold standard" solution from the EGE expert
guide. This allows us to evaluate the model’s
ability to compare the student’s approach with
a known correct method and identify devia-
tions or errors more precisely.

4.3 Prompt Templates and Score Extraction
Methodology

For each evaluation, the models were provided with
specific prompt templates tailored to the task and
evaluation mode. These templates included the
problem description, the student’s handwritten so-
lution (as an image), and the relevant grading crite-
ria. For the With Answer and With True Solution
modes, the correct answer or reference solution
was also incorporated into the prompt. The models
were instructed to output their assessment in the
structured format, including the analysis of the so-
lution, the final score, and the justification for that
score. This structured output facilitated automated
extraction of the assigned scores for quantitative
analysis. The full prompt templates used for all
evaluation modes are available in the project’s pub-
lic repository.

5 Results

Our evaluation of seven Vision-Language Models
across three distinct evaluation modes provides in-
sights into their capabilities in assessing handwrit-
ten mathematical solutions.

5.1 Metrics
We report three complementary metrics:

Accuracy (Exact Match:) Percentage of cases
where the predicted score exactly matches the ex-
pected score:

Accuracy =
Exact Matches

Total Evaluations
× 100%.

Quality Score: Normalized closeness between
predicted and expected scores:

Quality Score = 100%×
(
1− |Spred − Strue|

Smax

)
,

where Smax ∈ {2, 3, 4} is the task-specific maxi-
mum.

Average Score Distance:

Avg. Distance =
1

n

n∑

i=1

∣∣Spred,i − Strue,i

∣∣.

5.2 Performance Analysis

As can be seen from Table 2, OpenAI o4-mini
consistently demonstrates the highest performance
across all evaluation modes, achieving the best Ac-
curacy (56.56% with Answer) and Quality Score
(78.17% with Answer), and the lowest Average
Score Distance (0.60 with Answer). This suggests
that OpenAI's model possesses superior capabil-
ities in understanding handwritten solutions and
applying grading criteria compared to other evalu-
ated models.

Among other models, Google Gemini 2.0 Flash
also shows strong performance, particularly in the
With Answer and With True Solution modes,
indicating its ability to effectively leverage addi-
tional context. Models like Arcee AI Spotlight
and Qwen 2.5 VL 32B exhibit lower accuracy and
higher score distances, suggesting that while they
can process the visual input, their mathematical
reasoning and grading alignment are less precise.
The thinking variant of Google Gemini 2.5 Flash
Preview, despite its higher cost and longer aver-
age time, does not consistently outperform its non-
thinking counterpart, raising questions about the
efficacy of its enhanced reasoning capabilities for
this specific task.

To illustrate the models’ reasoning process, con-
sider a solution for a parameterised equation (Task
18), which an expert graded as 2 out of 4 points.
The student correctly found all potential roots but
made a mistake when combining the final intervals,
omitting a valid range. OpenAI o4-mini correctly
identified this as a computational error deserving 2
points, aligning with the rubric. In contrast, Qwen
2.5 VL 32B failed to spot the missing interval and
incorrectly assigned a perfect score of 4, demon-
strating a lack of attention to detail. A full analy-
sis of a representative example is provided in Ap-
pendix B.

A detailed breakdown of performance by task
type, illustrated in Figure 1, reveals significant vari-
ations. It is evident that algebraic tasks (13 and
15) are handled more effectively by most mod-
els. In contrast, both geometry categories (14 —
stereometry, 17 — planimetry) consistently yield
poorer agreement with human graders. We hy-
pothesise that current VLMs still struggle to map
free-hand diagrams onto the rigorous spatial rea-
soning chains required by the EGE rubric. The
full per-task scores for all models can be found in
repository.

81

Table 2: Overall performance of all models across three evaluation modes. The best result for each combination of
mode and metric is shown in bold, and the second best result is underlined.

Model Provider Mode Acc. (%) Qual. (%) Dist. Cost ($) Time (s)
Arcee AI Spotlight Arcee AI (via OpenRouter) Without Answer 27.87 64.48 1.04 0.01 8.80

With Answer 26.23 63.18 1.09 0.01 6.99
With True Solution 25.41 59.22 1.16 0.01 6.98

Google Gemini 2.0 Flash Google Without Answer 36.89 71.04 0.84 0.14 4.56
With Answer 47.54 74.04 0.75 0.14 4.82
With True Solution 46.72 75.82 0.71 0.21 3.13

Google Gemini 2.0 Flash Lite Google Without Answer 31.97 64.96 1.00 0.04 3.08
With Answer 35.25 67.83 0.90 0.04 3.13
With True Solution 38.52 70.22 0.84 0.04 3.09

Google Gemini 2.5 Flash Preview Google Without Answer 44.26 71.04 0.81 0.32 16.08
With Answer 40.98 70.49 0.82 0.30 14.92
With True Solution 45.90 71.35 0.79 0.34 11.67

Google Gemini 2.5 Flash
Preview:thinking

Google Without Answer 40.16 64.30 1.05 0.60 39.48

With Answer 42.62 66.44 0.99 0.62 39.98
With True Solution 43.44 65.92 0.99 0.78 47.59

OpenAI o4-mini OpenAI Without Answer 55.74 75.55 0.66 2.18 39.62
With Answer 56.56 78.17 0.60 2.02 32.94
With True Solution 54.10 76.16 0.66 2.28 58.47

Qwen 2.5 VL 32B Alibaba Cloud (via OpenRouter) Without Answer 31.15 62.09 1.09 0.46 22.97
With Answer 30.33 61.95 1.08 0.46 23.27
With True Solution 43.44 70.49 0.81 0.63 27.55

5.3 Impact of Evaluation Modes

One of the most interesting findings is the varied
impact of the evaluation modes on model perfor-
mance. For some models, providing additional con-
text (correct answer or true solution) significantly
improved their performance. For instance, Google
Gemini 2.0 Flash showed a notable increase in
Accuracy when provided with the correct answer
(from 36.89% to 47.54%). This suggests that these
models can effectively leverage external informa-
tion to refine their assessment, indicating a capac-
ity for conditional reasoning. However, this im-
provement was not universal; Arcee AI Spotlight,
for example, saw a slight decrease in performance
with additional context, which might indicate is-
sues with how it integrates or prioritizes external
information versus its internal analysis of the hand-
written solution.

The With True Solution mode, while providing
the most comprehensive context, did not consis-
tently lead to the best performance across all mod-
els. This could be attributed to several factors: the
models might struggle with effectively comparing a
student's potentially divergent solution path with a
provided reference solution, or lack the complexity
sufficient to fully leverage the detailed information
in a reference solution when the student's approach
deviates significantly. This highlights a crucial
area for future research: developing VLMs that
can perform robust comparative analysis between
a student's solution and a reference, even when the
two solution paths differ.

6 Limitations

Our evaluation provides a unique perspective on
VLM capabilities in a real-world assessment sce-
nario. The results highlight a substantial gap
between current model performance and human
expert-level grading, with the highest accuracy at
56.56%. This indicates ample room for improve-
ment in nuanced mathematical reasoning and the
precise application of grading rubrics.

Several factors contribute to these performance
limitations and pave the way for future research:

• Visual Interpretation and Error Propaga-
tion: The diversity in student handwriting,
penmanship, and layout poses a significant
challenge for accurate visual interpretation.
This often leads to error propagation, where
inaccuracies in the initial visual recognition
are passed downstream to the reasoning mod-
ule, causing incorrect assessments. Future
work could explore hybrid approaches, com-
bining general VLM perception with special-
ized Handwritten Mathematical Expression
Recognition (HMER) models to mitigate this
issue.

• Deep Reasoning and Rubric Alignment:
Assessing complex solutions requires deep
symbolic and logical reasoning, especially for
non-standard solution paths or subtle errors.
Models often struggle to translate qualitative
grading criteria into quantitative scores, some-
times misinterpreting the severity of an error
or failing to identify all relevant mistakes.

82

Figure 1: Radar chart showing model Accuracy (%) in
the With True Solution mode across all seven task types.
The outer edge represents a perfect score. This visual-
ization highlights the models’ strengths and weaknesses
on different mathematical domains.

• Dataset and Fine-Tuning: The current
benchmark utilizes 122 solutions. A larger,
more diverse dataset would enable more com-
prehensive evaluation. Furthermore, our study
primarily relies on zero-shot prompting; fine-
tuning VLMs on this specific assessment task
could significantly improve their performance
and alignment with the specific curriculum
and rubrics.

• Contextual Reasoning: While some models
effectively use additional context (like a cor-
rect answer), others struggle to integrate this
information. This highlights a need for more
robust mechanisms for conditional reasoning
and information fusion in VLMs.

• Monolingual and Cultural Focus: The
dataset is exclusively in Russian and sourced
from a single national curriculum (the Rus-
sian EGE). Educational practices and reason-
ing styles can have cultural specificities. The
performance of VLMs may vary on similar
benchmarks from different linguistic and edu-
cational contexts. Future work could involve
extending CHECK-MAT to other languages

and curricula.

• Explainability and Future Directions: The
transparency and interpretability of the mod-
els’ reasoning processes remain a challenge.
Developing more explainable AI is crucial for
building trust and utility in educational assess-
ment tools. Future work could also explore
interactive assessment scenarios or adapt the
benchmark to other global curricula to test for
generalization.

6.1 Implications for Mathematical NLP
Our findings have direct implications for the Math-
ematical NLP community. The CHECK-MAT
benchmark provides a challenging new evaluation
task for researchers. The systematic failures we ob-
served, particularly in geometric reasoning, high-
light a critical area for future work: developing
multimodal models that can better understand the
interplay between visual diagrams and symbolic
reasoning. This aligns with the need for techniques
for the joint interpretation of different modalities
present in mathematical text. Furthermore, the dif-
ficulty models had in applying rubrics points to
the need for new neuro-symbolic architectures or
fine-tuning strategies to better capture the argumen-
tation relations in the context of mathematical text.
This work serves as a call for a deeper focus on
these complex, multimodal reasoning challenges.

6.2 Cost and Efficiency
Beyond performance, our study also sheds light
on the practical considerations of deploying such
models for automated assessment. The signifi-
cant variation in total cost and average evalua-
tion time across models (e.g., OpenAI o4-mini
being considerably more expensive and slower
than Google Gemini 2.0 Flash Lite) highlights a
trade-off between performance and operational ef-
ficiency. For large-scale deployment in educational
settings, cost-effectiveness and speed are critical
factors that need to be balanced against grading
accuracy. Larger frontier models (e.g. OpenAI o3
or Google gemini-2.5-pro) were not included in
this benchmark due to computational and budgetary
constraints; their evaluation remains future work.

6.3 Future Directions in Knowledge-Intensive
Reasoning

Our work highlights several key challenges for the
future of knowledge-intensive reasoning. The pri-
mary difficulty for current VLMs lies in the robust

83

fusion of perceptual data (handwriting) with a sym-
bolic knowledge base (the grading rubric). The
CHECK-MAT benchmark serves as a tool to mea-
sure progress in this area. We advocate for future
research into hybrid neuro-symbolic architectures
and methods that improve the explainability of the
model’s reasoning process, ensuring that their ap-
plication of knowledge is both accurate and trans-
parent.

7 Conclusion

In conclusion, this paper introduced CHECK-MAT,
a novel benchmark designed to probe the mathemat-
ical understanding of Vision-Language Models on
the complex, multimodal task of grading handwrit-
ten solutions. Our findings demonstrate that while
state-of-the-art VLMs can perform this complex
task to some degree, they exhibit significant weak-
nesses in applying the required domain knowledge,
particularly for geometric reasoning. This research
contributes a valuable diagnostic tool for evaluating
models on mathematical discourse and multimodal
reasoning. We hope CHECK-MAT will spur the
development of the next generation of models that
can better handle the joint interpretation of visual,
symbolic, and natural language, a key challenge
for the field of Mathematical NLP.

8 License

The source code and dataset for this research are
available under the MIT License. This permissive
license allows for reuse, modification, and distri-
bution, both in academic and commercial settings,
provided that the original copyright and license
notice are included.

References
Arcee.ai. 2025. Arcee blog. https://www.arcee.ai/

blog. Accessed: 2025-07-06.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 oth-
ers. 2025. Qwen2.5-vl technical report. Preprint,
arXiv:2502.13923.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Yuntian Deng, Anssi Kan, Fei Yin, and Zhaoyang Zhang.
2017. Watch, attend and parse: An end-to-end neural
network based approach to handwritten mathematical
expression recognition. Pattern Recognition, 71:196–
206.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann,
Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, and 1 others. 2023. Chatgpt for good?
on opportunities and challenges of large language
models for education. Learning and individual dif-
ferences, 103:102274.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2023.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255.

OpenAI. 2024. Gpt-4o.

OpenAI. 2025. Introducing o3 and
o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/. Accessed:
2025-07-06.

Leonardo Ranaldi, Federico Ranaldi, and Giulia Pucci.
2025. R2-MultiOmnia: Leading multilingual mul-
timodal reasoning via self-training. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8220–8234, Vienna, Austria. Association for
Computational Linguistics.

Christopher J Sangwin. 2014. Computer-aided assess-
ment of mathematics using stack. ZDM, 46(2):307–
320.

Gemini Team and 1 others. 2023. Gemini: A family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Yitong Wu, Yuan Li, Yujun Li, and Wang Zhou. 2024.
Mathccs: A new benchmark for mathematical classi-
fication and constructive suggestions. arXiv preprint
arXiv:2405.17642.

Zhen Yuan, Yifan Zhang, Jing Liu, Yuxiang Wang, Jie
Zhang, Hanwang Liu, and Tat-Seng Chua. 2024. Fer-
mat: A benchmark for evaluating vlm’s ability in fac-
tual error correction of handwritten math solutions.
arXiv preprint arXiv:2405.10100.

84

https://www.arcee.ai/blog
https://www.arcee.ai/blog
https://arxiv.org/abs/2502.13923
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://doi.org/10.18653/v1/2025.acl-long.402
https://doi.org/10.18653/v1/2025.acl-long.402

A Per-Task Performance Data

This appendix provides the detailed per-task scores for a selection of the evaluated models.

Table 3: Per-task scores — openai_o4-mini.

Task Examples Accuracy Average Score Expected Score Cost

13 21 47.6% 1.48 0.95 $0.4259
14 18 27.8% 1.72 1.28 $0.3465
15 19 63.2% 1.68 1.11 $0.3115
16 17 82.4% 1.24 1.29 $0.2957
17 15 33.3% 1.20 1.20 $0.2560
18 16 68.8% 2.12 2.38 $0.3543
19 16 56.2% 1.75 2.06 $0.2879

Table 4: Per-task scores — qwen-2.5-vl-32b.

Task Examples Accuracy Average Score Expected Score Cost
13 21 42.9% 1.62 0.95 $0.1095
14 18 22.2% 2.17 1.28 $0.0999
15 19 52.6% 1.58 1.11 $0.0875
16 17 70.6% 1.41 1.29 $0.0783
17 15 33.3% 1.73 1.20 $0.0753
18 16 37.5% 2.75 2.38 $0.0970
19 16 43.8% 2.06 2.06 $0.0868

Table 5: Per-task scores — arcee-ai_spotlight.

Task Examples Accuracy Average Score Expected Score Cost
13 21 28.6% 0.95 0.95 < $0.01
14 18 11.1% 2.72 1.28 < $0.01
15 19 21.1% 0.74 1.11 < $0.01
16 17 47.1% 1.47 1.29 < $0.01
17 15 13.3% 2.67 1.20 < $0.01
18 16 18.8% 2.12 2.38 < $0.01
19 16 37.5% 2.62 2.06 < $0.01

Table 6: Per-task scores — gemini-2.5-flash-preview.

Task Examples Accuracy Average Score Expected Score Cost
13 21 42.9% 1.48 0.95 $0.0493
14 18 38.9% 1.00 1.28 $0.0616
15 19 47.4% 1.79 1.11 $0.0401
16 17 47.1% 1.41 1.29 $0.0419
17 15 46.7% 0.73 1.20 $0.0387
18 16 43.8% 1.81 2.38 $0.0713
19 15 60.0% 1.40 2.13 $0.0414

Table 7: Per-task scores — gemini-2.5-flash-preview_thinking.

Task Examples Accuracy Average Score Expected Score Cost
13 21 66.7% 1.57 0.95 $0.1096
14 18 22.2% 1.33 1.28 $0.1043
15 19 31.6% 1.21 1.11 $0.0998
16 17 58.8% 1.53 1.29 $0.0964
17 15 26.7% 0.73 1.20 $0.0908
18 16 43.8% 2.50 2.38 $0.1037
19 16 50.0% 2.44 2.06 $0.1787

B Representative Example Analysis

This appendix provides a detailed analysis of a representative example from our benchmark to illustrate
the evaluation process and the typical performance patterns of the models.

85

Table 8: Per-task scores — gemini-2.0-flash-001.

Task Examples Accuracy Average Score Expected Score Cost
13 21 61.9% 1.48 0.95 $0.0295
14 18 33.3% 1.61 1.28 $0.0284
15 19 42.1% 1.42 1.11 $0.0276
16 17 58.8% 1.47 1.29 $0.0270
17 15 40.0% 0.93 1.20 $0.0254
18 16 37.5% 2.50 2.38 $0.0286
19 16 43.8% 2.31 2.06 $0.0392

Table 9: Per-task scores — gemini-2.0-flash-lite-001.

Task Examples Accuracy Average Score Expected Score Cost
13 21 57.1% 1.38 0.95 $0.0059
14 18 22.2% 1.50 1.28 $0.0056
15 19 31.6% 1.26 1.11 $0.0052
16 17 52.9% 1.29 1.29 $0.0051
17 15 40.0% 0.87 1.20 $0.0048
18 16 25.0% 2.62 2.38 $0.0054
19 16 37.5% 2.06 2.06 $0.0049

B.1 Analysis of Solution 18.3.3
B.1.1 Problem Statement
Find all values of parameter a for which the equation has exactly three distinct roots:

√
3x2 + 2ax+ 1 = x2 + ax+ 1

B.1.2 Official Grading Criteria (Task 18)
• 4 points: A well-reasoned, correct solution is provided.

• 3 points: A set of parameter values is obtained that differs from the correct set only by the inclu-
sion/exclusion of boundary points.

• 2 points: A correct interval of parameter values is obtained (possibly with incorrect boundary points),
OR an incorrect answer is obtained due to a computational error, but all logical steps are correct.

• 1 point: The roots of the equation are found, and the problem is correctly reduced to investigating
these roots under the given condition(s).

• 0 points: The solution does not meet any of the criteria above.

B.1.3 Visual Materials
Figure 2 shows the student’s handwritten solution, and Figure 3 shows the official correct solution provided
in the EGE expert guide.

86

Figure 2: Student’s handwritten solution for problem 18.3.3. The expert-assigned score is 2.

87

Figure 3: Official correct solution for problem 18.3.

88

B.2 Model Assessment Results

The table 10 summarizes the scores assigned by different models in the With True Solution mode. The
expected score was 2.

Table 10: Model scores for solution 18.3.3.

Model Assigned Score Expected Result
OpenAI o4-mini 2 2 Correct
Qwen 2.5 VL 32B 4 2 Overestimated
Google Gemini 2.0 Flash 2 2 Correct
Google Gemini 2.0 Flash Lite 2 2 Correct
Google Gemini 2.5 Flash Preview 2 2 Correct
Google Gemini 2.5 Flash Preview Thinking 2 2 Correct
Arcee-AI Spotlight 0 2 Underestimated

B.2.1 Key Observations

• High Accuracy of Most Models: The majority of the models (5 out of 7) successfully handled the
task, assigning the correct score of 2. This group included OpenAI o4-mini and all the tested models
from the Google Gemini family.

• Divergent Errors: Two models evaluated the solution incorrectly, and their errors were opposites.
Qwen 2.5 VL 32B significantly overestimated the score (4), while Arcee-AI Spotlight failed to
produce a final answer: it became stuck in a loop of writing out equations, which resulted in a score
of (0).

• Distinct Failure Modes: The errors highlight very different failure modes. One model overestimated
the score, while the other failed to complete the task entirely. This points to unique flaws in the logic
of each model rather than a shared, systematic bias.

B.3 Full Model Responses and Prompt (Translated to English)

B.3.1 Prompt Used for Evaluation (With True Solution)

Analyze the solution of task 18

(an equation, inequality, or system thereof with a parameter) and evaluate it according to the criteria.

Task
{task description}

Assessment criteria for task 18
• 4 points: A correct answer is obtained with justification.

• 3 points: A set of parameter values is obtained through correct reasoning, differing from the
required set only by the exclusion of boundary points or the inclusion of points not belonging to
the answer.

• 2 points: An interval of the set of parameter values is obtained through correct reasoning, possibly
including boundary points, OR an incorrect answer is obtained due to a computational error, but
all steps of the solution are correctly performed.

• 1 point: The roots of the equation are found, and the problem is correctly reduced to the
investigation of these roots under the given condition(s).

• 0 points: The solution does not meet any of the criteria listed above.

89

IMPORTANT: Assessment Principles
• Evaluate the solution STRICTLY according to the criteria.

• Pay attention to mathematical correctness, not the presentation.

• Compare the student’s solution with the correct solution provided as a reference.

• Check if the student has correctly performed all key steps of the solution.

• If the student used a different approach, evaluate its correctness and compliance with the criteria.

• Problems with parameters allow for various solution methods: algebraic, geometric, functional.

• Pay SPECIAL ATTENTION to the correctness of handling boundary points and the completeness of
considering all cases.

• When assessing for 3 points: check that the difference from the correct answer is ONLY in the
boundary points, not in the main intervals.

• For a geometric approach: check the correctness of the interpretation and the justification of
all geometric statements.

IMPORTANT: Instructions for working with the correct solution and the student’s
solution
You are provided with:

1. The correct solution to the task - use it as a reference for comparison.

2. The student’s solution - this is what you must evaluate.

During the analysis:

• Compare each step of the student’s solution with the corresponding step of the correct solution.

• Note all deviations and errors.

• Check if the intermediate and final results match.

• Pay special attention to the handling of boundary points and the completeness of considering all
cases.

Instructions for checking the solution of a problem with a parameter
1. Check the solution method:

• Correctness of the chosen approach (algebraic, geometric, functional).

• Correctness of applying formulas and theorems.

• Completeness of considering all cases.

2. Check mathematical correctness:

• Correctness of algebraic transformations.

• Correctness of working with inequalities.

• Correctness of finding the domain of permissible values (ODZ).

3. Check the handling of boundary points:

• Correctness of determining the boundary points.

• Correctness of including/excluding boundary points in the answer.

4. For a geometric approach, check:

• Correctness of the geometric interpretation of the conditions.

• Justification of all geometric statements.

• Completeness of the analysis of all possible relative positions of geometric objects.

90

CRITICALLY IMPORTANT: Immediately compare the student’s answers with the correct
ones!

• FIRST AND FOREMOST, check if the student’s answer matches the correct answer.

• If the student’s answer is INCORRECT, this MUST be taken into account in the assessment.

• Even if all transformations are performed correctly, but the answer is wrong due to a
non-computational error - this must affect the score.

• Do not forget to note all discrepancies between the student’s answer and the correct answer.

IMPORTANT: Distinguish between computational and conceptual errors
• Computational errors: errors in arithmetic operations, simplifying expressions, calculating values.

• Conceptual errors: incorrect application of formulas, wrong solution method, errors in
understanding the properties of the parameter.

If a student made only computational errors, but the solution method is correct - this may correspond
to the 2-point criterion. If a student made conceptual errors - this usually corresponds to a lower
score criterion.

Assessment Examples
Example 1 (score: 4 points) The solution is complete and justified. All values of the parameter
for which the system has exactly two solutions are found correctly. All cases are considered, and
boundary points are analyzed correctly.

Example 2 (score: 3 points) All stages are present in the solution. Through correct reasoning, a
set of parameter values is obtained that differs from the required set only by the exclusion of boundary
points or the inclusion of points not belonging to the answer. For example, the answer obtained is
(−2, 2) instead of [−2, 2] or [−2,−1) ∪ (−1, 1) ∪ (1, 2] instead of [−2,−1) ∪ (−1, 1) ∪ [1, 2].

Example 3 (score: 2 points) The solution is logical, all steps are present, but a computational
error was made when solving the inequality, which led to an incorrect answer. Or, through correct
reasoning, an interval of the set of parameter values was obtained, possibly including boundary points,
but not all possible cases were considered.

Example 4 (score: 1 point) The roots of the equation are found in the solution, and the problem
is correctly reduced to the investigation of these roots under the condition x2 + ax + 1 ≥ 0, but the
further investigation is incorrect or absent.

Example 5 (score: 0 points) The solution contains fundamental errors in understanding the problem
or in mathematical reasoning. For example, the roots of the original equation are found incorrectly,
or the condition of the problem is misinterpreted.

IMPORTANT: Instructions for working with multiple images
If the solution (correct or student’s) is presented in several images:

1. Consider all images as a single solution.

2. Analyze them in sequential order.

3. Take into account information from all images when assessing.

Response Format
Structure your response as follows:

Analysis of the solution [Detailed analysis indicating correct steps and errors]

Comparison with the correct solution [Comparison of the student’s approach with the reference
solution, indicating key differences]

Final score [Score: X points]

IMPORTANT: The "Final score" section MUST be formatted EXACTLY in this format: "Final score" -
heading. "[Score: X points]" - where X is a number 0, 1, 2, 3, or 4. DO NOT CHANGE this format and do
not add any other text to it!

Justification of the score [Detailed justification in accordance with the criteria]

Recommendations (if applicable) [Recommendations for correcting errors]

91

B.3.2 Response from OpenAI o4-mini (Score: 2 - Correct)

Analysis of the solution
1. The student wrote down an equivalent system:

• a) the equation after squaring;

• b) the condition that the expression under the root is non-negative.

2. Found the roots of the original equation: x = 0, x = 1-a, x = -1-a.

3. Analyzed the condition x2 + ax+ 1 ≥ 0 for these values of x:

• for x = 0, the condition is always met;

• for x = 1-a, from the inequality, they obtained a ≤ 2;

• for x = -1-a, they obtained a ≥ -2.

4. Concluded that for three distinct roots, it is necessary that -2 ≤ a ≤ 2 and a ̸= 1, a ̸= -1.

5. However, in the final answer, the student wrote a ∈ (-1; 1) ∪ (1; 2], thus completely omitting the
interval [-2; -1).

Error: when combining the resulting intervals and excluding the boundary points, the student discarded
the left part [-2; -1) for a purely computational/descriptive reason. All key steps (finding roots,
conditions on a, accounting for exclusions) were performed correctly, but the answer contains an
inaccuracy.

Comparison with the correct solution
Reference answer: a ∈ [-2; -1) ∪ (-1; 1) ∪ (1; 2].

The student obtained the same intermediate boundaries -2 and 2, and correctly excluded a = ±1, but
missed the part [-2; -1) in the final answer. Therefore, the method is correct, but a computational
(descriptive) slip in combining the results led to an incomplete answer.

Final score
[Score: 2 points]

Justification of the score
According to the criteria:

• All key steps of the solution (finding roots, domain of permissible values, conditions on the
parameter, exclusion of boundary values) were performed correctly.

• The final answer is incorrect due to a computational/descriptive error when combining the intervals.

• The approach is mathematically correct, but the result is inaccurate.

This corresponds to the 2-point criterion: "An interval of the set of parameter values is obtained
through correct reasoning, possibly including/excluding boundary points, but the overall answer is
incorrect due to a computational error."

Recommendations
• Be more careful when combining intervals and check that no sections have been dropped.

• After obtaining the conditions on the parameter, explicitly write down all three ’pieces’ and only
then combine them, excluding the single points.

B.3.3 Response from Qwen 2.5 VL 32B (Score: 4 - Overestimated)

Analysis of the solution
Step 1: Forming the system of equations The student correctly understands that for the initial
equation

√
3x2 + 2ax+ 1 = x2 + ax+ 1, two conditions must be met:

1. x2 + ax+ 1 ≥ 0 (since the square root is defined only for non-negative values).

2. 3x2 + 2ax+ 1 = (x2 + ax+ 1)2 (the main equation).

92

This approach is correct, and the student correctly transforms the equation:

3x2 + 2ax+ 1 = x4 + 2ax3 + (a2 + 2)x2 + 2ax+ 1.

Then, they combine like terms and obtain:

x4 + 2ax3 + (a2-1)x2 = 0.

Next, the student correctly factorizes this equation:

x2(x2 + 2ax+ (a2-1)) = 0.

From this, they find the roots:

x = 0 and x2 + 2ax+ (a2-1) = 0.

For the quadratic equation x2 + 2ax+ (a2-1) = 0, the student finds the roots:

x = -a+ 1 and x = -a-1.

Thus, the student correctly finds three roots: x = 0, x = -a+ 1, and x = -a-1.

Step 2: Analysis of the conditions for distinct roots The student recognizes that for the
equation to have three distinct roots, these roots must be different. They check the cases where the
roots coincide:

1. x = 0 and x = -a+ 1: This is possible if -a+ 1 = 0 ⇒ a = 1.

2. x = 0 and x = -a-1: This is possible if -a-1 = 0 ⇒ a = -1.

3. x = -a+ 1 and x = -a-1: This is possible if -a+ 1 = -a-1, but this is impossible as it leads to
a contradiction.

Step 3: Verifying the condition x2+ax+1 ≥ 0 The student checks the condition x2+ax+1 ≥ 0
for each root:

1. For x = 0: x2 + ax+ 1 = 1 ≥ 0 is always met.

2. For x = -a + 1: x2 + ax + 1 = (-a + 1)2 + a(-a + 1) + 1 = a2-2a + 1-a2 + a + 1 = -a + 2. This is
non-negative if -a+ 2 ≥ 0 ⇒ a ≤ 2.

3. For x = -a-1: x2 + ax+1 = (-a-1)2 + a(-a-1) + 1 = a2 +2a+1-a2-a+1 = a+2. This is non-negative
if a+ 2 ≥ 0 ⇒ a ≥ -2.

Step 4: Combining the conditions The student correctly combines all the obtained conditions:

• a ̸= 1 and a ̸= -1 (for distinct roots).

• a ≤ 2 and a ≥ -2 (to satisfy the condition x2 + ax+ 1 ≥ 0).

Thus, the student obtains:
a ∈ [-2, -1) ∪ (-1, 1) ∪ (1, 2].

Comparison with the correct solution
The correct solution and the student’s solution completely coincide in the answer:

a ∈ [-2, -1) ∪ (-1, 1) ∪ (1, 2].

The student correctly performed all the key steps:

1. Transforming the original equation.

2. Finding the roots.

3. Analyzing the conditions for distinct roots.

4. Verifying the condition x2 + ax+ 1 ≥ 0.

5. Combining all the obtained conditions.

Final score
[Score: 4 points]

93

Justification of the score
The student justifiably obtained the correct answer by correctly performing all the key steps of the
solution. All intermediate results are correct, the boundary points are handled correctly, and all
possible cases are considered. The solution method fully complies with the mathematical requirements
of the problem, and the answer completely matches the correct solution.

Recommendations
The student’s solution contains no errors and requires no corrections. However, the student could
improve the presentation by making it more detailed and structured, so that readers can better follow
their reasoning. For example, they could explain in more detail why the roots coincide when a = 1 or
a = -1, and why these values are excluded from the answer.

94

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 95–111
November 9, 2025 ©2025 Association for Computational Linguistics

RoMath: A Mathematical Reasoning Benchmark in Romanian

Adrian Cosma1,2, Ana-Maria Bucur3, Emilian Radoi1
1POLITEHNICA Bucharest National University of Science and Technology

2Dalle Molle Institute for Artificial Intelligence Research (IDSIA)
3Interdisciplinary School of Doctoral Studies, University of Bucharest

Correspondence: cosma.i.adrian@gmail.com

Abstract

Mathematics has long been conveyed through
natural language, primarily for human under-
standing. With the rise of mechanized mathe-
matics and proof assistants, there is a growing
need to understand informal mathematical text,
yet most existing benchmarks focus solely on
English, overlooking other languages. This
paper introduces RoMath, a Romanian math-
ematical reasoning benchmark suite compris-
ing three subsets: Baccalaureate, Competitions
and Synthetic, which cover a range of mathe-
matical domains and difficulty levels, aiming
to improve non-English language models and
promote multilingual AI development. By fo-
cusing on Romanian, a low-resource language
with unique linguistic features, RoMath ad-
dresses the limitations of Anglo-centric mod-
els and emphasizes the need for dedicated re-
sources beyond simple automatic translation.
We benchmark several open-weight language
models, highlighting the importance of creat-
ing resources for underrepresented languages.
The code and datasets are available for research
purposes.

“Matematica s-o fi scriind cu cifre dar poezia nu se
scrie cu cuvinte.”1

Nichita Stănescu, “Matematica poetică”,
Poem dedicated to mathematician Solomon Marcus.

1 Introduction

Mathematics has been a central intellectual preoc-
cupation to humans since the beginning of civiliza-
tion, the first mathematical writings dating back
approximately 4000 years (Friberg, 1981). His-
torically and in the present, mathematics has been
mostly written, spoken and taught in natural lan-
guage, albeit with its own specialized vocabulary,
having strict formalism only sparsely introduced
between free-text explanations and reasoning. The

1English translation: "Mathematics may be written with
numbers, but poetry is not written with words."

primary audience of mathematical reasoning is
other humans, not computers. The natural language
of mathematics contains a mix of formulas, sym-
bols, neologisms, jargon and words with different
meanings than their common meaning (e.g., “real”
/ “imaginary” numbers). Mathematics implies rigor
and precise reasoning, qualitatively different from
general NLP. There is a pressing need to automat-
ically process and understand the existing large
amount of mathematical text written in natural lan-
guage to enable efficient knowledge extraction, fa-
cilitate automated theorem proving, and enhance
accessibility for both researchers and automated
systems.

Recently, Large Language Models (LLMs) have
shown great promise in handling a multitude of
natural language tasks, including tackling mathe-
matical reasoning problems (Ahn et al., 2024; Yue
et al., 2023; Azerbayev et al., 2024; Shao et al.,
2024). Out of the common benchmark suite for
evaluating LLMs, datasets such as GSM8k (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021)
remained central in the development of reasoning
models (Jaech et al., 2024; DeepSeek-AI et al.,
2025), and continue to be challenging even for the
larger, proprietary models (Arora et al., 2023).

Current mathematics benchmarks and datasets
have focused solely on English, mostly disregard-
ing other low-resourced languages. The tacit re-
quirement for using AI tools is fluency in English
(Shi et al., 2022). However, mathematical reason-
ing ability is independent of the underlying lan-
guage (Rescorla, 2024) and Anglo-centric models
have been shown to exhibit the same biases of the
English language, even when prompted in other
languages (Wendler et al., 2024; Wang et al., 2023;
Liu et al., 2023). The focus on datasets and mod-
els in a language other than English allows the
democratization of learning for underrepresented
languages and cultures.

Recently, Romanian LLM development has

95

started to flourish with initiatives such as
OpenLLM-Ro (Masala et al., 2024), having fine-
tuned several LLMs on Romanian text. However,
for evaluation, the authors used translated versions
of popular English datasets and several native Ro-
manian benchmarks, but no evaluation was per-
formed on dedicated reasoning tasks in Romanian.
Aside from code generation (Cosma et al., 2024;
Dumitran et al., 2024), currently, there is no rea-
soning benchmark for Romanian.

In this paper, we propose RoMath2,3, a Roma-
nian mathematical reasoning benchmarking suite
comprised of three datasets, Baccalaureate, Com-
petitions and Synthetic, each with its own particu-
larities. RoMath aims to provide a comprehensive
benchmark suite, having high-school-level prob-
lems across multiple domains (linear and abstract
algebra, calculus, limits, geometry, probabilities)
and across multiple levels of difficulty, ranging
from easy calculations, to baccalaureate-level prob-
lems, to more difficult, proof-centric, competition-
level problems. The purpose of RoMath is to pro-
vide a mathematical benchmark for Romanian and
to stimulate the development of enhanced reason-
ing capabilities of non-English LLMs.

This work makes the following contributions:

1. We construct and release RoMath, a novel
mathematical reasoning benchmark suite with
76,910 problem statements in Romanian, con-
sisting of three subsets, each with its own
particularities and difficulty levels: Baccalau-
reate (5,777 problems), Competitions (1,133
problems) and Synthetic (63,000 problems).
We collect and curate math problems using a
semi-automatic workflow using foundational
LLMs for providing structured output from
unstructured raw OCR input and annotating
problems with relevant metadata.

2. We provide a comprehensive benchmark of
several English and Romanian open-weight
LLMs under several common scenarios - zero-
shot, LoRA fine-tuning (Hu et al., 2022) and
training with verifiable rewards using GRPO
(Shao et al., 2024). Furthermore, we provide
an evaluation procedure using an LLM-as-a-
judge paradigm (Zheng et al., 2023) for proofs,
and analyze its performance to properly esti-
mate solution correctness.

2GitHub: github.com/cosmaadrian/romath
3Huggingface: hf.co/datasets/cosmadrian/romath

3. We show that simple translation of problem
statements is not enough, as sub-par transla-
tions of precise mathematical language sig-
nificantly reduce performance. Consequently,
we emphasize the need for more dedicated
resources in languages other than English.

2 Related Work

Pretraining datasets for mathematics. There
has been an ongoing interest in representation learn-
ing for both mathematical expressions and text
(Peng et al., 2021; Collard et al., 2022). However,
beyond representation learning, with the recent suc-
cess of LLMs in a wide range of tasks, there has
been increased attention to training and evaluating
the mathematical reasoning of LLMs. For pretrain-
ing, the general approach is to filter Common Crawl
web pages and PDFs to obtain high quality math to-
kens. For instance, datasets such as MathWebPages
(Lewkowycz et al., 2022), ProofPile (Azerbayev
et al., 2023a), and OpenWebMath (Paster et al.,
2023) are used to pretrain high-performing LLMs
specialized in math, such as Minerva (Lewkowycz
et al., 2022) and LLema (Azerbayev et al., 2023b).

Mathematical reasoning benchmarks. Regard-
ing benchmarks, the most popular dataset is
GSM8K (Cobbe et al., 2021), containing middle-
school Math Word Problems (MWPs). An im-
proved variant that contains process supervision
(i.e., supervision at each intermediary reasoning
step) is PRM800K (Lightman et al., 2023). How-
ever, these datasets are regarded as too simple to
demonstrate the advanced mathematical reasoning
of LLMs. Consequently, MATH (Hendrycks et al.,
2021) is a comparatively more difficult dataset, con-
taining high-school problems from domains such as
calculus, linear algebra, geometry and number the-
ory. MathVISTA (Lu et al., 2024) is another similar
benchmark, that contains mathematical reasoning
in visual contexts (e.g., plots, natural images, func-
tions).

Aside from simple word problems (Cobbe et al.,
2021) and datasets focused on QA-type problems,
more difficult competition-level benchmarks have
been proposed. For instance, ARB (Sawada et al.,
2023) is a dataset comprised of problems from
math competitions and problems from specialized
books, with special care taken to avoid data con-
tamination. While it contains problems that re-
quire proofs, ARB only contains 105 problems.
MathOdyssey (Fang et al., 2024) contains difficult

96

https://github.com/cosmaadrian/romath
https://hf.co/datasets/cosmadrian/romath

Name # Problems Level Language Notes

APE210K (Zhao et al., 2020) 210K E Chinese Requires basic arithmetic and common sense

MATH23K (Ling et al., 2017) 23K E Chinese Contains questions, answers and rationales

CMATH (Wei et al., 2023) 1.7K E Chinese Contains number of reasoning steps

ARMATH (Alghamdi et al., 2022) 6K E Arabic Novel problems and inspired by MATH23K

GSM8K (Cobbe et al., 2021) 8.5k M English Linguistically diverse.

MATH (Hendrycks et al., 2021) 12.5k H English Problems are put into difficulty levels 1-5

PRM800K (Lightman et al., 2023) 12k H English MATH w/ step-wise labels

MathOdyssey (Fang et al., 2024) 387 H C English Problems from GAIC Math 2024

ARB (Sawada et al., 2023) 105 C English Contest problems and university math proof

AQUA (Ling et al., 2017) 100K C English GRE&GMAT questions

RoMath
Baccalaureate 5.8k H Romanian Easy-medium, baccalaureate problems.

Competitions 1.1k M H Romanian Difficult, proofs, competition problems.

Synthetic 63k H Romanian Calculation-based, procedurally generated.

Table 1: Comparison with other mathematical reasoning benchmarks. RoMath is the only Romanian mathematics
benchmark outside of translated versions of English benchmarks. Table adapted from Ahn et al. (2024).

E = Elementary, M = Middle School, H = High School, C = College.

high-school and university-level problems, but it is
similarly small, as it contains only 387 problems.

Non-English benchmarks. Regarding datasets
in languages other than English, there have been
efforts in Arabic with datasets such as ArMATH
(Alghamdi et al., 2022) and Chinese with Ape210k
(Zhao et al., 2020), Math23k (Ling et al., 2017),
CMath (Wei et al., 2023). Otherwise, outside of
(automatically) translated versions of popular sets
such as GSM8k (Masala et al., 2024), as far as we
know, no datasets currently exist for Romanian or
other Latin languages.

Comparison with prior work. Table 1 shows a
comparison between similar datasets and RoMath.
RoMath comprises middle-school, high-school and
competitive high-school problems in Romanian
covering multiple subjects and types of problems
(proofs, calculations, equations, etc.). Different
from prior datasets, RoMath is the first dedicated
resource for mathematical reasoning in Romanian,
a low-resource language of ∼23M speakers, which
has its unique linguistic particularities (Dinu and
Dinu, 2005; Dinu and Enăchescu, 2007).

3 Method

We describe below the process for collecting Bac-
calaureate and Competitions, the two subsets that
are collected by crawling publicly available PDFs.

The Synthetic subset is comprised of programmati-
cally generated problems directly in Romanian.

3.1 Dataset Construction

In order to construct a high-quality set of mathe-
matical problems paired with solutions, we crawl
publicly available PDFs from country-wide math-
ematics competitions and questions from the Ro-
manian baccalaureate exam. Figure 1 showcases
our approach. After collecting raw PDFs, usually
having separate documents for problem sets and
their respective solutions, we utilize an academic
document-focused OCR (i.e., MathPix (Mathpix,
2024)) to extract the underlying text and mathemat-
ical formulas / statements in LaTeX format. The
final output is represented in Markdown format.

To parse the content, instead of relying on brit-
tle handcrafted rules and regex expressions, we
utilize a commercial LLM (i.e., Claude 3 Sonnet
(Anthropic, 2024)) to parse the raw text and to out-
put structured JSON from unstructured Markdown.
The LLM is provided with several examples of how
to structure the final JSON (see Appendix A, Ta-
ble 6 for the system prompt). The JSON output
contains the LaTeX-formatted problem statement
and its appropriate solution. Finally, we again uti-
lize a commercial LLM to annotate the domain
of the problem and to extract final answers for
non-proof problems for easier evaluation (similar
to Hendrycks et al. (2021), we enclose the final

97

Figure 1: Overall diagram of our approach to curating problems from existing PDFs. We employ MathPix (Mathpix,
2024) to OCR PDFs and obtain markdown with LaTeX formatting for mathematical statements. We further process
the markdown using proprietary LLMs to split into sub-problems, associate problems with the appropriate solution
and annotate each problem with metadata.

Figure 2: Distribution of the number of problems per
domain for Baccalaureate, Competitions and Synthetic.

answer, if it exists, into a \boxed{} tag). If a
problem contains multiple sub-problems, we en-
sure that each sub-problem is self-contained and
that the solution does not rely heavily on previ-
ous sub-problems’ solutions. To split a problem
into sub-problems, we used a prompt (presented
in Appendix A, Table 6) with specific instructions
for parsing the data and output sub-questions that
are self-contained. For example, if a problem is
structured as follows:

<problem_statement>
<question_1>
<question_2>

The output is formatted as two separate, stan-
dalone problems:

<problem_statement> <question_1>
<problem_statement> <question_2>

Additionally, through manual inspection, we fur-
ther removed any sub-questions that contained ref-
erences to previous sub-questions (e.g., “Using the
result from a) compute [. . .]”). Figure 2 shows the
distribution of problems per domain.

3.2 RoMath Suite

RoMath is comprised of three subsets: Baccalau-
reate, Competitions and Synthetic. By its construc-
tion, each subset of RoMath features problems that

Synthetic
Problem Statement: Care este rezultatul împărt,irii lui -54 la -36495?
Solution: 6

4055

Problem Statement: Fie u definit ca fiind (2 − 18
15

) · 5. Găses, te valoarea lui r din
ecuat,iile u · y + 8 = 0, −28 = 3 · r + 4 · y − 5.
Solution: −5
Baccalaureate
Problem Statement: Se consideră funct,ia f : R → R, f(x) = ex − x. Să se
calculeze

∫ 1
0 f(x)dx.

Solution:
∫ 1
0 f(x)dx = e − 3

2
. Solut,ia finală este e −

3

2

Problem Statement: Se consideră funct,iile fn : R → R, f1(x) =

x3 − 3x2 + 3x şi fn+1(x) = (f1 ◦ fn) (x), ∀n ∈ N∗, ∀x ∈ R. Să se
rezolve în mult,imea numerelor reale ecuat,ia f1(x) + f2(x) + f3(x) − 3 = 0.
Solution: Observăm că x = 1 este solut,ie. Dacă x > 1 ⇒ f1(x) + f2(x) +
f3(x) > 3. Analog dacă x < 1 ⇒ f1(x) + f2(x) + f3(x) < 3. Deci

x = 1 este solut,ie unică. Solut,ia finală este x = 1

Competitions
Problem Statement: Se consideră numerele complexe u, v s, i z astfel încât
|u| = |v| = 1 s, i |u + v| =

√
3. Să se demonstreze că: u · v + u · v = 1.

Solution: |u + v|2 = 3 ⇔ (u + v)(u + v) = 3 ⇔ u · v + u · v = 1

Problem Statement: Să se rezolve, în R, inecuat,ia:
(

2
5

) 6−5x
5x+2 ≤ 25

4

Solution:
(

2
5

) 6−5x
5x+2 ≤ 25

4
=

(
5
2

)−2 ⇒ 6−5x
5x+2

≥ −2, cu x ̸= − 2
5

.
6−5x
5x+2

≥ −2 ⇒ x+2
5x+2

≥ 0 ⇒ x ∈ (−∞,−2] ∪
(
− 2

5
,∞

)

Table 2: Qualitative examples from each subset of Ro-
Math.

require both single-step and multi-step reasoning
for solving problems correctly. Usually, single-step
reasoning problems involve simple calculations,
while multi-step reasoning problems require solv-
ing intermediate solutions to reach a valid conclu-
sion. Table 2 showcases selected examples from
each subset.

Baccalaureate is composed of problems and so-
lutions from the Romanian Baccalaureate exam.
The Romanian Baccalaureate is a country-wide
exam for graduating high-school students, com-
prised of three subjects, each with several problems
and sub-problems. Students taking the Baccalau-
reate exam consider the calculus problems, such
as solving an integral or computing a limit, to be
the most difficult. However, the calculus problems

98

rarely require more than 2 steps of reasoning and
some calculation. This subset contains a total of
5777 problems: 4.3k problems for training and
1.48k for testing. Most problems (4617 / ∼ 80%)
in this subset are verifiable (i.e., have a single fi-
nal answer), while some (1160 / ∼ 20%) require
proofs. Furthermore, 4038 / ∼ 69% problems in
this category also have intermediate steps provided
in the ground-truth solution. In this set, there are
multiple domains, with varying difficulty: geome-
try, combinatorics, abstract algebra, linear algebra,
calculus (integrals and derivatives), and limits. In
all categories, we discarded any problem that re-
quired reasoning over images or plots. For instance,
geometry problems do not have an accompanying
drawing or figure. If we encountered images in
the source PDFs, we removed the problem entirely
through manual inspection. The Baccalaureate
subset includes only standalone geometry prob-
lems: an example of such a problem would be the
following (here, translated in English for conve-
nience): “In a Cartesian coordinate system xOy
we consider the points An(n, 0) and Bn(0, n), with
n ∈ {1, 2, 3}. Calculate the area of the triangle
A1A2B2.”

Competitions is the hardest subset of RoMath,
containing 1133 problems sourced from mathemat-
ics competitions, with problems ranging from lo-
cal to inter-county and olympiad events, out of
which 804 problems are for training and 329 for
testing. Different from Baccalaureate, this sub-
set also contains middle-school problems. Around
half of the problems (594 / ∼ 52%) require proofs
for a complete solution, while the rest are directly
verifiable. Almost all problems in this subset have
intermediate explanations. The problems in Com-
petitions are considered hard, requiring insight and
problem-solving skills outside of simple symbol
manipulations (Polya, 1971). The extraction and
post-processing steps are identical to those in Bac-
calaureate.

Synthetic is programmatically generated, using
the approach of Saxton et al. (2019), in which we
manually translate the source key-phrases and for-
mulations in Romanian. Problems in this subset
have a single final answer. Problems are mostly
algebraic in nature, and are split into arithmetic, cal-
culus, derivatives, integrations, polynomials, com-
position of problems, comparisons, manipulating
expressions (e.g., simplification), numbers, mea-
surements. All problems in this subset are verifi-

able, having only a single final answer provided,
without intermediate steps, making it difficult to di-
rectly provide an answer without the use of external
tools or chain-of-thought prompting. In contrast
to the other sub-sets in RoMath, there is less lin-
guistic variation present in problem statements, but
there is complete control over correctness and diffi-
culty. We emphasize that Synthetic is not a direct
translation of the problems contained in DeepMind
Mathematics (Saxton et al., 2019), but rather a
manual translation of the phrases that are used to
generate the problems. As such, one could gener-
ate an indefinite number of problems. We make
the code for generating Synthetic open-source and
provide, for convenience, 63k generated problems,
out of which 55.9k problems for training and 7.1k
for testing.

3.3 Evaluation Procedure

Generally, there are two ways to evaluate solutions:
(i) for verifiable problems (i.e., containing a single
final answer), correctness is estimated by direct
string comparison between the model answer and
the correct answer after normalization (Hendrycks
et al., 2021; Cobbe et al., 2021) and (ii) using a
proof-checker for problems requiring proofs (Li
et al., 2024).

Evaluating the correctness of a solution to math-
ematical proof problems is still an open problem.
Using a proof-checker is not always feasible as it
requires the problems and solutions to already be
formalized into the language of the proof-checker
(Trinh et al., 2024), an unrealistic requirement for
most mathematics written in natural language. For
proof-type problems, where it is necessary to check
for correctness at every reasoning step in natural
language, there is no consensus on the evaluation
procedure outside of formal proof-checkers.

However, more recent methods (Fang et al.,
2024) have adopted a “soft” evaluation of proof
solutions by employing an external judge LLM
tasked to output a correctness score given the prob-
lem statement, the correct solution and a provided
solution to be scored.

To evaluate solutions to RoMath, we propose
the following procedure: For evaluating verifiable
problems, we adopt the procedure from Hendrycks
et al. (2021) for string comparison after the solu-
tions are normalized; this requires the model to
output solutions in a \boxed{} tag. However,
if the model does not provide the solution in this

99

format or if the problem requires a proof, we em-
ploy a judge LLM to estimate correctness, inspired
by several other works (Zheng et al., 2023; Fang
et al., 2024). Since the use of proprietary LLMs
is prohibitively expensive, there are concerns with
reproducibility, and there is no information on the
architecture and training dataset, we use existing
open-weight models.

4 Baselines and Results

4.1 Judge Evaluation

Very few analyses have been performed to gauge
the performance of the judge LLM: for instance, a
more recent study (Bavaresco et al., 2024) showed
that LLMs exhibit a large variance across datasets
in correlation to human judgments. However, there
is no study estimating the performance of judge
LLMs for mathematical reasoning in a language
other than English. Using LLMs as judges is a rea-
sonable proxy for estimating performance, and we
show in Section 4.4 that performance is relatively
robust across multiple judges.

In this section, we conduct an analysis of the per-
formance of multiple open-weight judge models in
evaluating solution correctness in Romanian, using
both Romanian and English system prompts (see
Appendix A Tables 8 and 9).

We programmatically construct a dataset of 300
problems from the training sets of Baccalaureate
and Competitions containing correct and incorrect
solutions (Meadows et al., 2023). Correct solu-
tions are maintained in their original form, and we
remove natural language text (keeping only math-
ematical expressions) of the original ground-truth
solution, and incorrect solutions are either original
solutions with some operators / number modified
(e.g., + sign changed to −, or < symbol changed
to ≥, and others) or a similar solution, but not ex-
actly the same, from another problem based on the
Levenstein distance.

In Table 3, we showcase the performance of
multiple LLMs-as-judges on our programmatically
generated dataset to estimate judge performance.
We tested Qwen2 (Yang et al., 2024) family of mod-
els, as well as the math-specialized variant Qwen2-
Math-7B, deepseek-math (Shao et al., 2024), Phi-3
(Abdin et al., 2024), Llama3-70B (Dubey et al.,
2024), Mathstral (Mistral AI, 2024), and Mixtral-
8x7b (Jiang et al., 2024). For this synthetic dataset,
we obtained that Qwen2-7B-Instruct prompted in
English obtained the best overall results of 91%

accuracy, judging solution correctness. Surpris-
ingly, the math-specialized models severely under-
performed at this task. As such, unless otherwise
specified, we used Qwen2-7B-Instruct prompted in
English as a judge for the rest of the non-verifiable
results.

Judge Model System
Prompt

Acc. ↑ FPR ↓ FNR ↓

deepseek-math-7b-instruct ro 0.51 0.66 0.31
Meta-Llama-3-70B-Instruct ro 0.86 0.24 0.03
Mixtral-8x7B-Instruct-v0.1 ro 0.84 0.27 0.03
Qwen2-Math-7B-Instruct ro 0.87 0.22 0.03
Qwen2-7B-Instruct ro 0.90 0.17 0.02

deepseek-math-7b-instruct en 0.74 0.31 0.22
Meta-Llama-3-70B-Instruct en 0.84 0.29 0.01
Mixtral-8x7B-Instruct-v0.1 en 0.84 0.27 0.03
Qwen2-Math-7B-Instruct en 0.89 0.16 0.06
Qwen2-7B-Instruct en 0.91 0.12 0.05

Table 3: Judge LLM performance on a programmat-
ically generated dataset of correct and incorrect solu-
tions.

4.2 Model Benchmark

We chose to benchmark several open-weight LLMs,
as opposed to proprietary models, to make the
benchmark reproducible and to avoid unnecessary
inference costs. We evaluated the performance un-
der 0-shot and LoRA fine-tuned models for Qwen2-
7B, Phi-3, Meta-Llama-8B and math-specialized
variants such as Qwen2-Math-7B, deepseek-math-
7b, Mathstral-7b. We evaluated larger models un-
der 0-shot setting: Meta-Llama-70B and Mixtral-
8x7B. Furthermore, we also evaluated Romanian-
specialized models trained with continual pretrain-
ing on Romanian tokens, but with no focus on math
tokens: RoLlama3-8B and RoMistral-7b (Masala
et al., 2024). The prompt used is presented in Ap-
pendix A, Table 7.

For fine-tuning the models, we used LoRA (Hu
et al., 2022), using a rank of 8, alpha of 32 and
dropout of 0.1, applied on all linear layers. Due to
hardware limitations, we used a small batch size of
4 and a learning rate of 0.00002 with a linear decay
over the 3 training epochs.

In Table 4, we showcase the performance of
the models under zero-shot, and LoRA-fine-tuned
scenarios. The best performing model on the Bac-
calaureate subset is deepseek-math-7b, while on
Competitions and Synthetic Mathstral-7b obtains
the best results. However, the Romanian models,
RoLlama-8b and RoMistral-7b obtain competitive
results on all subsets, which can be attributed to

100

Baccalaureate Competitions Synthetic
Model Scenario Accuracy F1 Accuracy F1 Accuracy F1

R
om

an
ia

n OpenLLM-Ro/RoLlama3-8b-Instruct 0-shot 0.50 0.67 0.48 0.65 0.18 0.30
fine-tuned 0.18 0.31 0.50 0.67 – –

OpenLLM-Ro/RoMistral-7b-Instruct 0-shot 0.50 0.66 0.44 0.61 0.16 0.27
fine-tuned 0.18 0.31 0.36 0.53 – –

G
en

er
al

-P
ur

po
se Qwen/Qwen2-7B-Instruct 0-shot 0.40 0.57 0.55 0.71 0.29 0.45

fine-tuned 0.54 0.70 0.48 0.65 – –

microsoft/Phi-3-mini-4k-instruct 0-shot 0.36 0.53 0.33 0.50 0.07 0.14
fine-tuned 0.25 0.40 0.41 0.58 – –

meta-llama/Meta-Llama-3-8B-Instruct 0-shot 0.34 0.51 0.53 0.69 0.25 0.40
fine-tuned 0.18 0.31 0.33 0.49 – –

M
at

h-
Sp

ec
ia

liz
ed Qwen/Qwen2-Math-7B-Instruct 0-shot 0.32 0.48 0.55 0.71 0.27 0.43

fine-tuned 0.48 0.65 0.57 0.73 – –

deepseek-ai/deepseek-math-7b-instruct 0-shot 0.56 0.72 0.59 0.74 0.21 0.35
fine-tuned 0.29 0.44 0.56 0.72 – –

mistralai/Mathstral-7b-v0.1 0-shot 0.30 0.46 0.61 0.75 0.36 0.53
fine-tuned 0.21 0.34 0.56 0.71 – –

L
ar

ge

meta-llama/Meta-Llama-3-70B-Instruct 0-shot 0.25 0.40 0.22 0.36 0.10 0.19
5-shot 0.08 0.15 0.09 0.16 0.07 0.13

mistralai/Mixtral-8x7B-Instruct-v0.1 0-shot 0.43 0.60 0.60 0.75 0.32 0.48
5-shot 0.25 0.40 0.25 0.40 0.24 0.38

Table 4: Results for various open-weight LLMs on Bac-
calaureate, Competitions and Synthetic, under 0-shot
and fine-tuned scenarios.

their better understanding of Romanian text com-
pared to English-focused models, since specializa-
tion on mathematical text did not receive a partic-
ular emphasis during training. Surprisingly, we
obtained that fine-tuning does not always result
in improved performance. Fine-tuning improves
performance on Baccalaureate for Qwen2-7b and
Qwen2-Math-7b, while on Competitions, RoLlama-
7b, Phi-3, Qwen2-Math-7b benefit from further
fine-tuning. One possible explanation is that the
solutions present in RoMath are qualitatively dif-
ferent (different formatting, explanation style) than
solutions present in other math datasets (Cobbe
et al., 2021; Hendrycks et al., 2021) and Chain-of-
Thought style prompting (Wei et al., 2022). Further
investigation on this effect is left as future work.
In Figure 3, we show extended results per problem
domain for each dataset. Qualitative examples of
generated solutions are shown in the Appendix A
Tables 10 and 11.

Figure 3: Performance of Romanian models and math-
specialized models on each domain from each RoMath
subset.

4.3 Training with Verifiable Rewards

Since a significant proportion of problems in Ro-
Math include intermediate steps and are verifiable,
we tested whether the problems are of sufficiently
high quality to enable training with rewards. We
adopt a part of the training procedure from Shao
et al. (2024), and fine-tune two variants of the
Llama3.2 (Dubey et al., 2024) (1B and 3B pa-
rameters) and Qwen2 (Yang et al., 2024) (0.5B
and 1.5B) family of models. For supervised fine-
tuning (SFT), we train on all problems from Bac-
calaureate and Competitions that contain interme-
diate steps to force the model to conform to the
specified output format of <rat,ionament> [. . .]
</rat,ionament> <răspuns> [. . .] </răspuns>.

Further, we train using GRPO (Shao et al., 2024)
with 4 completions per prompt on all verifiable
problems from Baccalaureate and Competitions,
using only a correctness reward and a format re-
ward. Figure 4 shows the performance on the
verifiable problems from the Baccalaureate sub-
set for this setting. Training with rewards reliably
boosts performance compared to only supervised
fine-tuning. As such, RoMath can be a useful re-
source for training Romanian reasoning models.

Figure 4: Performance of GRPO-trained LLama-3.2
and Qwen2 on on a subset of Baccalaureate that has
verifiable answers.

4.4 Impact of the Judge Model

In Figure 5, we compared multiple judge models
to gauge their effect on downstream performance.
Based on Table 3, we used Qwen2-7B, Llama-70B

101

and Mixtral-8x7b as judges and used them to evalu-
ate the performance of the same Qwen2-7B, Llama-
70B and Mixtral-8x7b. We chose the same judges
and downstream models to check if judges pre-
fer the output of their own model. From Figure 5
we find that judges do not have “favorites”. How-
ever, we do find that, for example, in Competitions,
where there are more proofs than in Baccalaure-
ate, the Llama-70B and Mixtral-8x7b judges give
higher scores on average, which might explain
why results on the Competitions subset are higher:
judges might artificially inflate results. While the
differences between judges are small, there is a
clear ascending trend between them.

Figure 5: Performance using different judge models.

4.5 Translating Romanian Problems to
English

Translating domain-specific technical language is
non-trivial. Al-Tarawneh (2024) identified multi-
ple linguistic challenges that make translation dif-
ficult. Translating mathematics is challenging due
to the need for precise language, as even slight
ambiguities can alter meaning. Although mathe-
matical concepts are universal, their interpretation
varies across cultures. Additionally, mathematical
symbols and notations are not always standardized
across languages, and mathematical terms lack di-
rect equivalents in other languages, leading to po-
tential confusion if not properly accounted for.

We used the NLLB (NLLB Team et al., 2022)
family of models (600M, 1.3B, and 3.3B) to trans-
late from Romanian to English the test sets for
Baccalaureate and Competitions, as the models
have established numerical benchmarks on Roma-
nian to English translation. Directly translating
the full problem statement and solution resulted
in “gibberish” translations due to the mathematical

symbols present in the text. As such, we opted to
keep the LaTeX-delimited section intact and only
translate the surrounding natural language. While
this approach might lose some of the larger context,
we found it to be the only satisfactory approach.
Still, the resulting translations contain unnatural
English formulations and sometimes spurious text.
For instance, the problem statement “Se consideră
funct,ia f : R→ R, f(x) = ex − x+ 1. Să se cal-
culeze limx→0

f(x)−f(0)
x ” is translated as “It’s con-

sidered function f : R → R, f(x) = ex − x+ 1.
Let’s figure it out. limx→0

f(x)−f(0)
x [♪ I’m not

gonna let you down ♪]”, in which the part “[♪ I’m
not gonna let you down ♪]” is introduced spuri-
ously by the translation model.

In Table 5, we showcase the performance of
math-specialized LLMs on the English-translated
version of Baccalaureate and Competitions using
the different sizes of NLLB. Compared to the orig-
inal Romanian text, translating severely degrades
performance. We found that performance improves
with the translation model size, but up to a cer-
tain point. The main point of failure is handling
the math LaTeX tokens without disrupting the sur-
rounding text. The use of an LLM for translation
might be more appropriate only if its reliability and
control of its output are properly established, and
proper benchmarks for translation in Romanian are
in place.

Model Translation Model Romanian
Accuracy

English-
Translated
Accuracy

Diff.

B
ac

ca
la

ur
ea

te

nllb-200-distilled-600M 0.04 –0.28
Qwen/Qwen2-Math-7B-Instruct nllb-200-1.3B 0.32 0.03 –0.29

nllb-200-3.3B 0.03 –0.29

nllb-200-distilled-600M 0.09 –0.47
deepseek-ai/deepseek-math-7b-instruct nllb-200-1.3B 0.56 0.05 –0.51

nllb-200-3.3B 0.07 –0.49

nllb-200-distilled-600M 0.07 –0.23
mistralai/Mathstral-7b-v0.1 nllb-200-1.3B 0.30 0.07 –0.23

nllb-200-3.3B 0.07 –0.23

C
om

pe
tit

io
ns

nllb-200-distilled-600M 0.17 –0.38
Qwen/Qwen2-Math-7B-Instruct nllb-200-1.3B 0.55 0.20 –0.35

nllb-200-3.3B 0.19 –0.36

nllb-200-distilled-600M 0.09 –0.50
deepseek-ai/deepseek-math-7b-instruct nllb-200-1.3B 0.59 0.12 –0.47

nllb-200-3.3B 0.10 –0.49

nllb-200-distilled-600M 0.19 –0.42
mistralai/Mathstral-7b-v0.1 nllb-200-1.3B 0.61 0.21 –0.40

nllb-200-3.3B 0.20 –0.41

Table 5: Results on RoMath-Baccalaureate and RoMath-
Competitions for math-specific LLMs in 0-shot setting
with English-translated problems. Performance drops
significantly due to poor quality translations.

5 Conclusions and Future Directions

In this paper, we proposed RoMath, a benchmark-
ing suite consisting of three datasets with mathe-
matical problems written in Romanian: Baccalau-
reate, Competitions and Synthetic. We detailed the

102

construction process and composition for each sub-
set and benchmarked several open-weight LLMs
under different training and evaluation scenarios.
We are the first to provide quantitative results for
mathematical reasoning in Romanian.

Surprisingly, we found that mathematics prob-
lems written in Romanian can be properly handled
by English-centric models, providing proper solu-
tions in Romanian. It is unclear why this occurs, es-
pecially since such models are not explicitly trained
on Romanian math tokens and most models have
strong language filters to train only on English. Our
results suggest that such LLMs would potentially
receive a passing grade (i.e., more than 50%) on the
Romanian baccalaureate exam, scoring an average
of ∼56% across all problems in Baccalaureate.

An important future direction is reliable auto-
matic annotations with Chain-of-Thought (CoT)
traces for multilingual reasoning problems. Our
results indicate that a significant factor in improv-
ing performance in mathematical reasoning is the
presence of intermediate reasoning steps in the so-
lutions. Performance is not reliably improved by
fine-tuning without CoT, and the presence of more
detailed solutions enables scalable training with
reinforcement learning algorithms such as GRPO
(Shao et al., 2024). Currently, only a subset of
RoMath contains intermediate steps for problem
solutions, and further structured annotations could
significantly increase the data quality.

Limitations

The main limitation of this work is the use of an
external LLM as a judge to estimate solution cor-
rectness, which might skew the results and arti-
ficially inflate performance. For example, some
generated solutions for proof-type problems ob-
tain the correct final result, but the intermediate
steps are incorrect. In some cases, the judge model
deemed these types of solutions as correct, whereas
they are not. While this is an inherent limitation
in literature for mathematics datasets that contain
proofs, this is currently an open problem and there
are on-going efforts to formalize proof verification
(Gowers et al., 2024). Furthermore, we argued that
the proper way to evaluate solutions of generated
proofs is by using an external proof verification
tool such as Lean (de Moura et al., 2015).

Acknowledgements

This research was supported by the project "Ro-
manian Hub for Artificial Intelligence - HRIA",
Smart Growth, Digitization and Financial Instru-
ments Program, MySMIS no. 334906.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, et al. 2024.

Phi-3 technical report: A highly capable language
model locally on your phone.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. arXiv preprint arXiv:2402.00157.

Alalddin Al-Tarawneh. 2024. Bridging languages and
numbers: Exploring the intersection of translation
studies and mathematics. Appl. Math, 18(3):513–
519.

Reem Alghamdi, Zhenwen Liang, and Xiangliang
Zhang. 2022. ArMATH: a dataset for solving Arabic
math word problems. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 351–362, Marseille, France. European
Language Resources Association.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Daman Arora, Himanshu Singh, and Mausam. 2023.
Have LLMs advanced enough? a challenging prob-
lem solving benchmark for large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7527–7543, Singapore. Association for Computa-
tional Linguistics.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. 2023a. Proofnet: Autoformalizing
and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023b.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2024. Llemma: An open language model for mathe-
matics.

Anna Bavaresco, Raffaella Bernardi, Leonardo Berto-
lazzi, Desmond Elliott, Raquel Fernández, Albert
Gatt, Esam Ghaleb, Mario Giulianelli, Michael
Hanna, Alexander Koller, et al. 2024. Llms in-
stead of human judges? a large scale empirical

103

http://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2404.14219
https://aclanthology.org/2022.lrec-1.37
https://aclanthology.org/2022.lrec-1.37
"https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf",
"https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf",
https://doi.org/10.18653/v1/2023.emnlp-main.468
https://doi.org/10.18653/v1/2023.emnlp-main.468
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631

study across 20 nlp evaluation tasks. arXiv preprint
arXiv:2406.18403.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Jacob Collard, Valeria De Paiva, Brendan Fong,
and Eswaran Subrahmanian. 2022. Extracting
mathematical concepts from text. arXiv preprint
arXiv:2208.13830.

Adrian Cosma, Ioan-Bogdan Iordache, and Paolo Rosso.
2024. RoCode: A dataset for measuring code intelli-
gence from problem definitions in Romanian. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 14173–
14185, Torino, Italia. ELRA and ICCL.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy
Avigad, Floris van Doorn, and Jakob von Raumer.
2015. The lean theorem prover (system description).
In CADE, volume 9195 of Lecture Notes in Computer
Science, pages 378–388. Springer.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang

Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning.

Anca Dinu and Liviu P Dinu. 2005. On the syllabic
similarities of romance languages. In International
Conference on Intelligent Text Processing and Com-
putational Linguistics, pages 785–788. Springer.

Liviu P. Dinu and Denis Enăchescu. 2007. On clustering
Romance languages, pages 521–528.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Adrian Marius Dumitran, Adrian Cătălin Badea, and
S, tefan-Gabriel Muscalu. 2024. Evaluating the per-
formance of large language models in competitive
programming: A multi-year, multi-grade analysis.
THE 18TH INTERNATIONAL CONFERENCE ON
INNOVATIONS IN INTELLIGENT SYSTEMS AND
APPLICATIONS - INISTA2024.

Meng Fang, Xiangpeng Wan, Fei Lu, Fei Xing, and
Kai Zou. 2024. Mathodyssey: Benchmarking math-
ematical problem-solving skills in large language
models using odyssey math data. arXiv preprint
arXiv:2406.18321.

Jöran Friberg. 1981. Methods and traditions of babylo-
nian mathematics: Plimpton 322, pythagorean triples,
and the babylonian triangle parameter equations. His-
toria Mathematica, 8(3):277–318.

Prof Sir Timothy Gowers, AlphaProof, and AlphaGeom-
etry. 2024. Ai achieves silver-medal standard solving
international mathematical olympiad problems.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

104

https://aclanthology.org/2024.lrec-main.1236
https://aclanthology.org/2024.lrec-main.1236
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15
https://doi.org/https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.1142/9789812709691_0061
https://doi.org/10.1142/9789812709691_0061
https://doi.org/https://doi.org/10.1016/0315-0860(81)90069-0
https://doi.org/https://doi.org/10.1016/0315-0860(81)90069-0
https://doi.org/https://doi.org/10.1016/0315-0860(81)90069-0
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su,
Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie Si.
2024. A survey on deep learning for theorem proving.
arXiv preprint arXiv:2404.09939.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Chen Cecilia Liu, Fajri Koto, Timothy Baldwin, and
Iryna Gurevych. 2023. Are multilingual llms
culturally-diverse reasoners? an investigation into
multicultural proverbs and sayings. arXiv preprint
arXiv:2309.08591.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2024.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In Inter-
national Conference on Learning Representations
(ICLR).

Mihai Masala, Denis Ilie-Ablachim, Alexandru Dima,
Dragos Georgian Corlatescu, Miruna-Andreea Za-
velca, Ovio Olaru, Simina-Maria Terian, Andrei
Terian, Marius Leordeanu, Horia Velicu, Marius
Popescu, Mihai Dascalu, and Traian Rebedea. 2024.
“Vorbes, ti Românes, te?” A Recipe to Train Power-
ful Romanian LLMs with English Instructions. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 11632–11647, Miami,
Florida, USA. ACL.

Mathpix. 2024. Ai-powered document automation.

Jordan Meadows, Marco Valentino, Damien Teney, and
Andre Freitas. 2023. A symbolic framework for sys-
tematic evaluation of mathematical reasoning with
transformers. arXiv preprint arXiv:2305.12563.

Mistral AI. 2024. https://mistral.ai/news/
mathstral/. Accessed: 2024-09-13.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, et al. 2022. No language left behind: Scaling
human-centered machine translation.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,
and Jimmy Ba. 2023. Openwebmath: An open
dataset of high-quality mathematical web text.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang.
2021. Mathbert: A pre-trained model for math-
ematical formula understanding. arXiv preprint
arXiv:2105.00377.

G. Polya. 1971. How to Solve It. Princeton University
Press.

Michael Rescorla. 2024. The Language of Thought
Hypothesis. In Edward N. Zalta and Uri Nodelman,
editors, The Stanford Encyclopedia of Philosophy,
Summer 2024 edition. Metaphysics Research Lab,
Stanford University.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla,
Pranav Tadepalli, Paula Vidas, Alexander Kranias,
John J Nay, Kshitij Gupta, and Aran Komatsuzaki.
2023. Arb: Advanced reasoning benchmark for large
language models. arXiv preprint arXiv:2307.13692.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint
arXiv:1904.01557.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y.K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022.
Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2210.03057.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476–482.

Wenxuan Wang, Wenxiang Jiao, Jingyuan Huang, Ruyi
Dai, Jen-tse Huang, Zhaopeng Tu, and Michael R
Lyu. 2023. Not all countries celebrate thanksgiving:
On the cultural dominance in large language models.
arXiv preprint arXiv:2310.12481.

105

http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2024.findings-emnlp.681
https://doi.org/10.18653/v1/2024.findings-emnlp.681
https://mathpix.com/
https://mistral.ai/news/mathstral/
https://mistral.ai/news/mathstral/
http://arxiv.org/abs/2310.06786
http://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and
Bin Wang. 2023. Cmath: Can your language model
pass chinese elementary school math test? arXiv
preprint arXiv:2306.16636.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea,
and Robert West. 2024. Do llamas work in english?
on the latent language of multilingual transformers.
arXiv preprint arXiv:2402.10588.

An Yang, Baosong Yang, Binyuan Hui, et al.
2024. Qwen2 technical report. arXiv preprint
arXiv:2407.10671.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and
Jingming Liu. 2020. Ape210k: A large-scale and
template-rich dataset of math word problems. arXiv
preprint arXiv:2009.11506.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

A Appendix

Given the following mathematics problems in Romanian
formatted in MathPix markdown, make a JSON with
subject and solution pairs, removing unnecessary
boilerplate and extra problem identifiers. The JSON must
contain the full problem definition and subject number (e.g.
subject 1b). Each sub-question must contain the whole
problem definition for completeness. Each subject must be
self-contained. Do not output anything else besides the
required JSON. Do not modify the latex describing the
mathematical formulas.
Example (truncated): "

PROBLEMS:

Se consideră matricea A =

(
1 1
1 0

)
şi

şirul (Fn)n≥0 definit prin relat,ia de recurent, ă
Fn+1 = Fn + Fn−1, n ∈ N∗, cu F0 = 0, F1 = 1.

a) Să se calculeze determinantul şi rangul matricei A.

b) Să se calculeze F2 şi F3.

SOLUTIONS:
a) detA = −1 ̸= 0 ⇒ rangA = 2; b) F2 = 1, F3 = 2.
"

Example Output JSON:
[{
"subject": "1a",

"definition": "Se consideră matricea A =

(
1 1
1 0

)

şi şirul (Fn)n≥0 definit prin relat,ia de recurent, ă
Fn+1 = Fn + Fn−1, n ∈ N∗, cu F0 = 0, F1 = 1. Să se
calculeze determinantul şi rangul matricei A.",
"solution": "detA = −1 ̸= 0 ⇒ rangA = 2"
},
{
"subject": "1b",

"definition": "Se consideră matricea A =

(
1 1
1 0

)

şi şirul (Fn)n≥0 definit prin relat,ia de recurent, ă
Fn+1 = Fn + Fn−1, n ∈ N∗, cu F0 = 0, F1 = 1. Să se
calculeze F2 şi F3.",
"solution": "F2 = 1, F3 = 2"
}
]
In this example, each sub-problem is self-contained and
is paired with the appropriate solution. The sub-problem
identifiers (e.g., "a)" and "b)") are stripped. The latex
markdown is left intact.

Real Input:

Table 6: Claude 3 Sonnet prompt to format raw Mark-
down into structured JSON.

106

http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

{
"role": "system",
"content": """Es, ti un student olimpic la matematică care
a participat s, i câs, tigat multiple concursuri internat,ionale
de matematică. Rolul tău este să rezolvi probleme
de matematică de liceu s, i să oferi solut,ii complete s, i
corecte. Problemele care necesită demonstrat,ii trebuie
rezolvate complet cu tot,i pas, ii intermediari necesari.
Problemele care au un singur raspuns final trebuie
furnizate într-un format încadrat (‘\boxed‘). Matematica
trebuie scrisă în format LaTeX pentru a asigura claritatea
s, i precizia solut,iilor. Textul in format LaTeX trebuie
delimitat folosind simbolurile ‘ \(‘ s, i ‘\)‘. Rezolvările
incomplete sau incorecte vor fi evaluate cu scoruri mai
mici. Asigură-te că răspunsurile sunt concise, fără prea
multe explicat,ii inutile.""",
},
add few shot examples here: User => Problem statement,
Assistant => Solution
{
"role": "user",
"content": """Care este rezolvarea următoarei probleme?

{problem_statement}""",
}

Table 7: Romanian prediction prompt.

107

{ "role": "system",
"content": """Asumă-t,i rolul unui profesor de matematică responsabil cu evaluarea răspunsurilor student,ilor pentru o
problemă de matematică în raport cu solut,iile corecte furnizate. Solut,iile pot include demonstrat,ii, valori exacte, răspunsuri
cu alegere multiplă sau aproximări numerice.

Criterii de Evaluare:
1. **Echivalent, ă Matematică**: Evaluează răspunsurile pe baza echivalent,ei matematice, nu doar a preciziei numerice.
Verifică dacă diferite expresii algebrice sau simbolice sunt echivalente. Asigură-te că sunt echivalent,e precum \(
\frac{\sqrt{6}-\sqrt{2}}{2} \) fiind echivalent cu \(\sqrt{2 - \sqrt{3}} \).
2. **Scor**: Atribuie un scor de ’1’ pentru orice răspuns care se potrives, te sau este echivalent cu solut,ia furnizată, fie că este
o valoare exactă, o variantă de răspuns (de exemplu, A, B, C) sau o aproximare numerică corect rotunjită. Atribuie un scor de
’0’ pentru răspunsuri incorecte. Nu furniza niciun fel de explicat,ie.
3. **Tratarea Alegerii Multiple**: Dacă solut,ia furnizată este o variantă de răspuns (de exemplu, A, B, C, D, E, F) s, i
studentul identifică această alegere corect, trateaz-o ca fiind corectă. Dacă solut,ia este o valoare exactă s, i studentul furnizează
alegerea corespunzătoare care reflectă corect această valoare în conformitate cu contextul problemei, tratează-o de asemenea
ca fiind corectă.
4. **Echivalent, ă Numerică**: Tratează răspunsurile numerice ca fiind echivalente dacă sunt corecte cu cel put,in două
zecimale sau mai mult, în funct,ie de precizia furnizată în solut,ie. De exemplu, atât 0.913, cât s, i 0.91 ar trebui acceptate dacă
solut,ia este exactă cu două zecimale.
5. **Identităt,i Algebrice s, i Simbolice**: Recunoas, te s, i acceptă forme algebrice echivalente, cum ar fi \(\sin^2(x) +
\cos^2(x) = 1 \) sau \(e^{i\pi} + 1 = 0 \), ca fiind corecte.
6. **Forme Trigonometrice s, i Logaritmice**: Acceptă expresii trigonometrice s, i logaritmice echivalente, recunoscând
identităt,i s, i transformări care ar putea modifica forma, dar nu s, i valoarea.
7. **Demonstrat,ii Matematice**: Evaluează demonstrat,iile matematice pe baza corectitudinii s, i a logicii, nu a stilului sau a
formei. Asigură-te că demonstrat,iile sunt complete s, i corecte, chiar dacă sunt prezentate într-un mod diferit de solut,ia furnizată.

Formatul As, teptat al Răspunsului: Prezintă răspunsul final cu un scor doar de ’0’ sau ’1’, unde ’0’ semnifică o solut,ie
gres, ită, iar ’1’ semnifică o solut,ie corectă. Nu include nicio altă informat,ie sau explicat,ii suplimentare în răspuns.

Problema de matematică este:
{question}.

Solut,ia corectă din baremul de corectare este:
{true}.

Te rog să evaluezi solut,ia studentului cu precizie pentru a asigura o evaluare exactă s, i corectă."""
},
{
"role": "user", "content": "Solut,ia studentului este {prediction}. Furnizează un doar scor de ’0’ sau ’1’, unde ’0’ semnifică o
solut,ie gres, ită, iar ’1’ semnifică o solut,ie corectă. Bazează-t,i evaluarea pe criteriile de evaluare furnizate si pe solut,ia corecta
din barem.",
}

Table 8: Romanian judge prompt.

108

{
"role": "system",
"content": """Assume the role of a math teacher responsible for evaluating student responses for a math problem against the
provided correct solutions. Solutions may include proofs, exact values, multiple-choice answers, or numerical approximations.

Evaluation Criteria:
1. **Mathematical Equivalence**: Evaluate answers based on mathematical equivalence, not just numerical accuracy.
Check if different algebraic or symbolic expressions are equivalent. Ensure that there are equivalences such as \(
\frac{\sqrt{6}-\sqrt{2}}{2} \) being equivalent to \(\sqrt{2 - \sqrt{3}} \).
2. **Scoring**: Assign a score of ’1’ for any answer that matches or is equivalent to the provided solution, whether it is an
exact value, a choice label (e.g., A, B, C), or a correctly rounded numerical approximation. Assign a score of ’0’ for incorrect
answers. Do not provide any explanatory feedback.
3. **Handling Multiple Choices**: If the solution provided is a choice (e.g., A, B, C, D, E, F) and the student identifies this
choice correctly, treat it as correct. If the solution is an exact value and the student provides the corresponding choice that
reflects this value correctly according to the problem’s context, also treat it as correct.
4. **Numerical Equivalence**: Treat numerical answers as equivalent if they are correct to at least two decimal places
or more, depending on the precision provided in the solution. For instance, both 0.913 and 0.91 should be accepted if the
solution is accurate within two decimal places.
5. **Symbolic and Algebraic Identities**: Recognize and accept equivalent algebraic forms, such as \(\sin^2(x) + \cos^2(x)
= 1 \) or \(e^{i\pi} + 1 = 0 \), as correct.
6. **Trigonometric and Logarithmic Forms**: Accept equivalent trigonometric and logarithmic expressions, acknowledging
identities and transformations that might alter the form but not the value.
7. **Mathematical Proofs**: Evaluate mathematical proofs based on correctness and logic, not style or form. Ensure proofs
are complete and correct, even if presented differently from the provided solution.
Expected Output Format: Present your final answer with a score of ’0’ or ’1’ only, where ’0’ signifies an incorrect solution,
and ’1’ signifies a correct solution. Do not include any additional information or feedback in your response.

The math problem is:
{question}.

The correct solution from the answer key is:
{true}.

Please evaluate the student’s response with precision to ensure accurate and fair grading."""
},
{
"role": "user",
"content": "The student answer is prediction. Provide a score of ’0’ or ’1’ only, where ’0’ signifies an incorrect solution, and
’1’ signifies a correct solution. Base your evaluation on the provided evaluation criteria and the correct solution from the
answer key.",
}

Table 9: English judge prompt.

109

RoMath-Baccalaureate

deepseek-ai/deepseek-math-7b-instruct
Problem Statement: Să se calculeze modulul numărului complex

√
3 + i.

Solution: 2
Generated Solution: Pentru a calcula modulul unui număr complex, folosim formula |z| =

√
a2 + b2 , unde z = a + bi.

În cazul nostru, a =
√

3 s, i b = 1.
Aplicând formula, obt,inem:

|z| =
√

(
√
3)2 + 12 =

√
3 + 1 =

√
4 = 2.

Deci, modulul numărului complex
√
3 + i este 2.

Răspuns: 2 .

OpenLLM-Ro/RoLlama3-8b-Instruct
Problem Statement: Să se demonstreze că vectorii u⃗ = −2⃗i + 3⃗j s, i v⃗ = 3⃗i + 2⃗j sunt perpendiculari.
Solution: Din a⃗ · b⃗ = −2 · 3 + 3 · 2 = 0 ⇒ a⃗ ⊥ b⃗
Generated Solution: Pentru a demonstra că vectorii u⃗ = −2⃗i + 3⃗j s, i v⃗ = 3⃗i + 2⃗j sunt perpendiculari, trebuie să arătăm că produsul lor punct este egal cu 0.
Produsul punct al celor doi vectori u⃗ s, i v⃗ este dat de:
u⃗ · v⃗ = (−2⃗i + 3⃗j) · (3⃗i + 2⃗j)
Acum, putem calcula produsul punct:
u⃗ · v⃗ = (−2)(3) + (3)(2) = −6 + 6 = 0
Deoarece produsul punct al celor doi vectori este egal cu 0, vectorii u⃗ s, i v⃗ sunt perpendiculari.

RoMath-Competitions

deepseek-ai/deepseek-math-7b-instruct
Problem Statement: Într-o clasă sunt 22 de elevi, dintre care 12 sunt fete. Să se determine în câte moduri se poate alege un comitet al clasei format din 3 fete s, i 2 băiet,i.
Solution: Numărul băiet,ilor este 22 − 10 = 12. Fetele pot fi alese în C3

12 = 220 moduri. Băiet,ii pot fi ales, i în C2
10 = 45 moduri. Comitetul format din 3 fete s, i 2 băiet,i dintre cei

22 de elevi ai clasei poate fi format în C3
12 · C2

10 = 9900 moduri.
Generated Solution: Pentru a rezolva această problemă, trebuie să utilizăm formula combinării. Combinarea este o modalitate de a alege un set de elemente dintr-o mult,ime mai mare, fără
a uita la ordinea elementelor.
În acest caz, trebuie să alegem 3 fete din 12 s, i 2 băiet,i din 10 (deoarece 22 - 12 = 10).
Formula combinării este:

C(n, k) =
n!

k!(n − k)!

unde n este numărul total de elemente, k este numărul de elemente ce trebuie alese, iar ""!"" semnifică factorialul unui număr.
Pentru a calcula numărul de moduri în care putem alege 3 fete din 12, aplicăm formula:

C(12, 3) =
12!

3!(12 − 3)!
=

12!

3!9!
=

12 × 11 × 10

3 × 2 × 1
= 220

Pentru a calcula numărul de moduri în care putem alege 2 băiet,i din 10, aplicăm formula:

C(10, 2) =
10!

2!(10 − 2)!
=

10!

2!8!
=

10 × 9

2 × 1
= 45

Pentru a calcula numărul total de moduri în care putem forma comitetul, înmult,im cele două rezultate:

220 × 45 = 9900

Deci, există 9900 de moduri în care se poate forma comitetul.

Răspunsul final este 9900 .

OpenLLM-Ro/RoLlama3-8b-Instruct
Problem Statement: Un grădinar a plantat într-una dintre grădinile pe care le îngrijes, te parcele cu tufe de trandafir din soiuri distincte, astfel încât fiecare parcelă cont,ine trandafiri dintr-un
alt soi. Într-o zi are de realizat un aranjament floral din aces, ti trandafiri. Analizează tufele s, i procedează în felul următor: din prima parcelă taie trei trandafiri, din cea de a doua taie de două
ori mai mult,i decât din prima s, .a.m.d., tăind dintr-o parcelă de două ori mai mult,i trandafiri decât din parcela precedentă. Care este numărul minim de trandafiri pe care trebuie să-1 aibă
parcela a IX-a pentru a putea fi folosită la realizarea aranjamentului floral?
Solution: Parcela a IX a trebuie să aibă cel put,in: 3 · 28 = 3 · 256 = 768
Generated Solution: Să notăm numărul de trandafiri din fiecare parcelă ca P1, P2, P3,..., P9. Conform problemei, numărul de trandafiri din fiecare parcelă este dat de:
P1 = 3
P2 = 2 * P1 = 2 * 3 = 6
P3 = 2 * P2 = 2 * 6 = 12
P4 = 2 * P3 = 2 * 12 = 24
P5 = 2 * P4 = 2 * 24 = 48
P6 = 2 * P5 = 2 * 48 = 96
P7 = 2 * P6 = 2 * 96 = 192
P8 = 2 * P7 = 2 * 192 = 384
P9 = 2 * P8 = 2 * 384 = 768
Deci, numărul minim de trandafiri din parcela a IX-a este 768.

Table 10: Qualitative examples of correct zero-shot predictions for RoMath-Baccalaureate and RoMath-
Competitions.

110

RoMath-Baccalaureate

deepseek-ai/deepseek-math-7b-instruct
Problem Statement: Să se rezolve în mult,imea numerelor reale ecuat,ia 2x = 4x .
Solution: x=0
Generated Solution: Pentru a rezolva ecuat,ia 2x = 4x , putem scrie 4x ca (22)x , adică 22x .
Astfel, ecuat,ia devine 2x = 22x .
Prin urmare, putem scrie x = 2x.
Împărt,ind ambii membri ai ecuat,iei cu x, obt,inem 1 = 2.
Această ecuat,ie nu are solut,ii în mult,imea numerelor reale, deoarece 1 nu este egal cu 2.
Deci, ecuat,ia 2x = 4x nu are solut,ii în mult,imea numerelor reale.

Răspuns: Nu are solut,ii

OpenLLM-Ro/RoLlama3-8b-Instruct

Problem Statement: Să se calculeze determinantul

∣∣∣∣∣∣

1 3 5
7 9 11
2 4 6

∣∣∣∣∣∣
.

Solution: 0
Generated Solution: Pentru a calcula determinantul matricei date, putem folosi metoda de expansiune prin rânduri. Să calculăm determinantul:∣∣∣∣∣∣

1 3 5
7 9 11
2 4 6

∣∣∣∣∣∣
În primul rând, putem elimina primul rând s, i primul element din al doilea rând:∣∣∣∣

9 11
2 4

∣∣∣∣
Acum, putem calcula determinantul matricei 2x2 rămase:∣∣∣∣

9 11
2 4

∣∣∣∣ = 9 · 4 − 11 · 2 = 36 − 22 = 14

Deci, determinantul matricei date este 14.

RoMath-Competitions

deepseek-ai/deepseek-math-7b-instruct

Problem Statement: Într-un plan, raportat la reperul ortogonal de axe de coordonate (xxOy) se dau punctele: A(0; 6); B(5; 4); C(−1; 4). Pentru a = 5 să se scrie ecuat,ia medianei
corespunzătoare laturii BC.

Solution: Determină coordonatele mijlocului lui [BC] notat cu M : xM = 5−1
2

= 2, yM = 4+4
2

= 4 ⇔ M(2, 4) Ecuat,ia dreptei (AM):

∣∣∣∣∣∣

x y 1
0 6 1
2 4 1

∣∣∣∣∣∣
= 0 ⇒ AM :

x + y − 6 = 0.
Generated Solution: Pentru a scrie ecuat,ia medianei corespunzătoare laturii BC, trebuie să găsim mijlocul segmentului BC, notat M.
Mijlocul unui segment este dat de media aritmetică a coordonatelor punctelor de capăt ale segmentului. Astfel, coordonatele punctului M sunt:
M(xM; yM) = ((xB + xC) / 2; (yB + yC) / 2)
M(-1 + 5 / 2; 4 + 4 / 2) = M(2; 4)
Mediana AM este dreapta care unes, te punctul A cu mijlocul M al segmentului BC.
Ecuat,ia unei drepte în plan, cunoscând coordonatele a două puncte A(x1; y1) s, i B(x2; y2), este: (y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)
Aplicând formula pentru mediana AM, avem: (y - 6) / (4 - 6) = (x - 0) / (2 - 0)
Simplificând, obt,inem: (y - 6) / (-2) = x / 2
Ecuat,ia medianei AM este: y - 6 = -2x sau 2x + y - 6 = 0
Pentru a = 5, ecuat,ia medianei corespunzătoare laturii BC este: 2x + y - 6 = 0

OpenLLM-Ro/RoLlama3-8b-Instruct
Problem Statement: În raport cu un reper cartezian xOy, considerăm un purice P care sare doar în puncte având ambele coordonate întregi. La o săritură, puricele se deplasează doar pe
verticală sau pe orizontală. După o săritură nu este obligatoriu să schimbe direct,ia de deplasare, dar respectă următoarea regulă: sare 3 unităt,i, apoi 2 unităt,i, 3 unităt,i, 2 unităti etc. De
exemplu, dacă M se află init,ial în punctul (1, 2), la prima mutare ar putea fi în punctul (1, 5), iar apoi în (1, 7) dacă păstrează direct,ia, sau în (3,5), dacă îs, i schimbă direct,ia. Dacă P se
află init,ial în origine, demonstrat,i că poate ajunge în punctul (2013, 0).
Solution: Puricele se poate deplasa doar orizontal, astfel: după două sărituri ajunge în punctul (5, 0), după patru ajunge în (10, 0) s, i, tot as,a, după 804 sărituri ajunge în (2010, 0). La
următoarea săritură va ajunge în (2013, 0).
Generated Solution: Pentru a demonstra că puricele poate ajunge în punctul (2013, 0), vom arăta că poate ajunge în orice punct cu coordonate întregi prin repetarea ciclului de deplasare.
Să notăm deplasarea verticală ca v s, i deplasarea orizontală ca h. Ciclul de deplasare este dat de secvent,a (v, h, v, h, v, h, . . .), unde v = 3 s, i h = 2. Aceasta înseamnă că puricele
se deplasează în sus 3 unităt,i, apoi în dreapta 2 unităt,i, apoi în sus 3 unităt,i, apoi în dreapta 2 unităt,i, s, i as,a mai departe.
Acum, să luăm în considerare punctul (2013, 0). Deoarece puricele poate sări doar în puncte cu coordonate întregi, trebuie să găsim o secvent,ă de deplasări care să conducă la acest punct.
Putem observa că ciclul de deplasare dat poate fi repetat de 2013 ori pentru a ajunge la punctul (2013, 0).
Pentru a vedea acest lucru, să luăm în considerare deplasările necesare pentru a ajunge la punctul (2013, 0) din origine:
1. Deplasare verticală de 3 unităt,i (de la (0, 0) la (0, 3)).
2. Deplasare orizontală de 2 unităt,i (de la (0, 3) la (2, 3)).
3. Deplasare verticală de 3 unităt,i (de la (2, 3) la (2, 6)).
4. Deplasare orizontală de 2 unităt,i (de la (2, 6) la (4, 6)).
5. Deplasare verticală de 3 unităt,i (de la (4, 6) la (4, 9)).
6. Deplasare orizontală de 2 unităt,i (de la (4, 9) la (6, 9)).
7. Deplasare verticală de 3 unităt,i (de la (6, 9) la (6, 12)).
8. Deplasare orizontală de 2 unităt,i (de la (6, 12) la (8, 12)).
9. Deplasare verticală de 3 unităt,i (de la (8, 12) la (8, 15)).
10. Deplasare orizontală de 2 unităt,i (de la (8, 15) la (10, 15)).
Putem continua acest proces până când ajungem la punctul (2013, 0). Deoarece ciclul de deplasare poate fi repetat de 2013 ori, puricele poate ajunge în punctul (2013, 0) după
efectuarea ciclului de deplasare de 2013 ori.

Table 11: Qualitative examples of incorrect zero-shot predictions for RoMath-Baccalaureate and RoMath-
Competitions.

111

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 112–123
November 9, 2025 ©2025 Association for Computational Linguistics

Into The Limits of Logic: Alignment Methods for Formal Logical
Reasoning

Francisco F. López-Ponce1,2, Gemma Bel-Enguix 2

1Posgrado en Ciencias e Ingeniería de la Computación - UNAM
2Grupo de Ingeniería Lingüística - UNAM

francisco.lopez.ponce@ciencias.unam.mx, gbele@iingen.unam.mx

Abstract

We implement Large Language Model Align-
ment algorithms to formal logic reasoning tasks
involving natural-language (NL) to first-order
logic (FOL) translation, formal logic inference,
and premise retranslation. These methodolo-
gies were implemented using task-specific pref-
erence datasets created based on the FOLIO
datasets and LLM generations. Alignment was
based on DPO, this algorithm was implemented
and tested on off-the-shelf and pre-aligned mod-
els, showing promising results for higher qual-
ity NL-FOL parsing, as well as general align-
ment strategies1. In addition, we introduce
a new similarity metric (LogicSim) between
LLM-generated responses and gold standard
values, that measures logic-relevant informa-
tion such as premise count and overlap between
answers and expands evaluation of NL-FOL
translation pipelines2. Our results show that
LLMs still struggle with logical inference, how-
ever alignment benefits semantic parsing and
retranslation of results from formal logic to nat-
ural language.

1 Introduction

Reasoning using a formal logic language is one
of the basis of mathematical thinking. Being able
to abstract a problem in natural language and ex-
press the distinct variables and relationships be-
tween them in logical terms helps mitigating ambi-
guity and unclear relationships. Using these formal
representations, a step-by-step inference procedure
can be carried out in order to obtain a logically
valid conclusion of the presented premises. This
type of reasoning is crucial for, not only mathemat-
ics but, any discipline in need of an explainable
decision making process.

1Datasets and models can be found freely on HuggingFace:
https://huggingface.co/Kurosawama

2Code can be accessed via this paper’s GitHub:
https://github.com/Kurocaguama/Into-The-Limits-of-Logic

State-of-the-art Large Language Models (LLMs)
exhibit human-like reasoning capabilities for var-
ious tasks such as coding, general academic ex-
amination, and reading comprehension (OpenAI,
2023; Anthropic, 2024). However, formal logic and
mathematical reasoning has proven to be an area
of expertise where LLMs consistently underper-
form: the Claude 3 series of models barely reach
a 42% Accuracy in the AMC 12 (Mathematical
Association of America, 2025), and a 61% on the
MATH dataset (Hendrycks et al., 2021), even with
such scores Claude outperforms models like GPT 4.
Given the connection between logic, mathematics,
and human cognitive processes (Yang et al., 2024b),
improving an LLM’s performance in this area is an
open research problem. Not only is this interesting
as a stand-alone problem, it has very positive impli-
cations for the explainability of LLMs. Having a
model that can correctly infer and explain step-by-
step said process would benefit most current uses
of LLMs.

In this article we focus on an end-to-end infer-
ence process divided into three main steps. Given
a set of premises in natural language (NL) the first
step is a translation of the premises from natural
language to first-order logic (FOL). The second
step is an LLM-based inference procedure based
on the FOL representations. The final step corre-
sponds to a retranslation of the conclusion from
FOL to natural language. For each step we im-
plement an LLM Alignment methodology focused
on the corresponding task in order to improve a
model’s performance, as well as a corresponding
evaluation.

LLM Alignment methods are post-training
strategies that modify a model’s internal weights
in order to generate text that caters with human
selected responses for a wide range of downstream
tasks. Alignment strategies, based on reinforce-
ment learning with human feedback (Christiano
et al., 2017), were originally implemented for auto-

112

matic summarization (Stiennon et al., 2020). How-
ever, recent research uses these strategies to adjust
an LLM’s behavior to generate safe and useful re-
sponses (Ouyang et al., 2022; Bai et al., 2022; Ji
et al., 2025). Interestingly, alignment methods have
been shown to improve an LLM’s performance
in tasks outside safety and harmfulness, making
them an integral part of post training for newer
releases of models (DeepSeek-AI et al., 2025; Ope-
nAI, 2025).

Our approach differs from similar methodolo-
gies that work with the same NL-FOL workflow
by omitting the dependency on prompting, the use
of an external solver, and self-verification. By inte-
grating translation and inference capabilities into
a model via alignment, we obtain a robust model
capable of solving our problem on its own without
the need of external tools. Additionally, we present
a novelty metric that measures logical similarity
between two sets of premises based on information
concerning predicates and logical connectors. This
metric allows us to finely evaluate LLMs during
the workflow, expanding our focus from the sin-
gle truth value that NL-FOL workflows are usually
evaluated by.

We tested our methodology around the FOLIO
dataset (Han et al., 2024), a human created and an-
notated dataset focused on natural language to first-
order logic translation and inference, that is easily
adaptable to our three step pipeline. Evaluation was
in accordance to FOLIO and step-specific metrics.
Our results show that off-the-shelf LLMs can be
easily adjusted to become efficient semantic parsers
with a limited amount of information, even being
able to follow particular prompt-structures aside
from the logical benefit. Pre-aligned models per-
form decently without any logic-based alignment,
yet their performance falters after our alignment
strategy is applied, suggesting that our methodol-
ogy needs to be polished in order to work as an
additional layer of post-training.

2 Related Work

2.1 LLMs for Logic-Based Reasoning

Early work in this area, such as ProofWriter
(Tafjord et al., 2021), tested how well LLMs could
reproduce proof generation based on given facts
and rules, opting for a generative strategy over clas-
sification systems based on pretrained models such
as PRover (Saha et al., 2020).

Recent work has covered a wide variety of gen-

erative strategies similar to ProofWriter. Pan et al.
(2023)’s Logic-LM and Olausson et al. (2023)’s
LINC are an example of tool-augmented systems
that test an identical end-to-end problem as our-
selves. A key difference is that they incorporate
the use of an external solver for the inference and
retranslation part of the problem, an addition that
enables both systems to outperform classic prompt-
ing strategies like Chain-of-Thought (Wei et al.,
2023) reasoning. Further research has improved
tool-augmented systems (Raza and Milic-Frayling,
2025; Kirtania et al., 2024), even surpassing Logi-
cLM’s and LINC’s results. However, the addition
of the external solver reduces the impact of the
LLM within the logic pipeline, limiting the influ-
ence to the symbolic formalization of the pipeline.
Yao et al. (2023) endows an LLM with a search
function over possible answers in order to emulate
a tree search. This removes the need of the external
solver but still requires certain calculations to be
carried out independently of the LLM.

Most LLM-only approaches rely on prompting
and in-context learning, often modifying the struc-
ture of the prompt to carry out procedures like
abstracting, formalizing, and explaining before an-
swering (Ranaldi et al., 2025), formulating the so-
lution as a Python function (Lyu et al., 2023), or
giving the prompt a task-specific solution struc-
ture (Zhou et al., 2024). An extension of these
approaches that is highly similar to our work, is
the use of LLM Alignment methods in order to
optimize a task-oriented Supervised Fine-Tuning
(Ranaldi and Freitas, 2024). A slight difference
however, is that this work focuses on general rea-
soning rather than formal logic.

2.2 Alignment Methodologies
Initial works in LLM Alignment taught models
how to summarize texts (Stiennon et al., 2020)
and how to behave in terms of safety and useful-
ness (Ouyang et al., 2022) using Supervised Fine-
Tuning (SFT) to obtain a reference model for sam-
pling, and PPO (Schulman et al., 2017) as a training
strategy with another LLM. However, PPO is an on-
line algorithm that uses two LLMs during training,
meaning that it’s a resource heavy option that now
serves more as a baseline comparison rather than a
widely used strategy. Alternative algorithms have
been developed that solve this problem, particularly
Direct Preference Optimization (DPO) (Rafailov
et al., 2023). This algorithm avoids fine-tuning
a reference model as well as the sampling from

113

Figure 1: Step-Independent Alignment (left) and Mixture-of-Steps Alignment (right).

said model, it does so by working on a preference
dataset that compares pairs of responses to a given
prompt. DPO is a widely used algorithm for align-
ment in state-of-the-art LLMs (Grattafiori et al.,
2024).

Further research regarding alignment algorithms
has been carried out. The Group Relative Policy
Optimization algorithm (GRPO) (Shao et al., 2024)
is a memory-optimized version of PPO that avoids
the reference model, and instead shows explicitly
which responses are preferred by giving a prompt
and a "correct" completion of said prompt.

Mathematically speaking, each strategy has its
strengths and weaknesses that make it an adequate
candidate for alignment (Xu et al., 2024). However
we can’t just rely solely on mathematical intuition
given that we’re working with text data as well as a
concrete problem that can’t be solely encapsulated
with loss functions. For said reason we opt for DPO
due to the nature of preference datasets used during
training. This type of datasets enables a model
to compare different answers, analyze differences
between them, and consider the preference score
in order to adequately adjust the model’s response.
In logical and mathematical reasoning there isn’t
always a single correct way to derive a proof, or to
semantically parse a set of premises. We believe
that by having a dynamic set of scores that measure
correctness, a model should be able to efficiently
adapt to varying sets of premises, inference steps,
and lexical themes.

2.3 Logic and Mathematics Evaluation

LLM logical evaluation has a plethora of datasets
to work with. However, not every dataset centered

on logical reasoning actually evaluates formal log-
ical language reasoning. Datasets like LogiQA
(Liu et al., 2020) and LogicNLI (Tian et al., 2021)
are good resources for natural language reason-
ing, however there’s no logical formalization of the
premises and answers within those datasets.

Newer benchmarks such as FOLIO (Han et al.,
2024), LogicBench (Parmar et al., 2024), or
MALLS (Yang et al., 2024a), deal with the for-
malization of the premises in first-order logic. In
particular, FOLIO is an expert-written and human-
reviewed dataset (contrary to the other two), that
covers each step of an end-to-end pipeline for logic-
inference.

3 Experiments

In this section we describe our end-to-end work-
flow with a working example, the creation of the
preference datasets used for alignment, selected
LLM checkpoints, and experimental setup.

3.1 Problem Definition

As previously mentioned, our inference procedure
is divided into three separate steps, each evaluated
independently to determine weak points throughout
the end-to-end workflow.

The first step of our three step inference pro-
cess is the translation of a set of premises from
natural language to first order logic. This task is
also referred to as semantic parsing, and is shared
across many logic-based reasoning systems (Pan
et al., 2023; Olausson et al., 2023; Raza and Milic-
Frayling, 2025). The second step is the inference
procedure based solely on the premises in their
FOL syntax. The LLM should use logically valid

114

inference steps3 in order to obtain a unique con-
clusion, expressed in FOL syntax, to the problem
formulation. The third and final step corresponds
to a retranslation of the conclusion to natural lan-
guage. An example of the whole process can be
seen in table 1. The example is extracted from the
validation set of the FOLIO dataset.

3.2 Alignment

In order to train an LLM in each task an alignment
strategy based on the corresponding step is imple-
mented. Two variations of the alignment procedure
are possible: Step-Independent Alignment (training
with only a single step of the pipeline) and Mixture-
of-Steps Alignment (training using the full pipeline).
Step-Independent Alignment generates three dis-
tinctly aligned models, one for each corresponding
step. On the other hand, Mixture-of-Steps returns
a single model aligned to all of the steps. Figure 1
shows a diagram of the end-to-end inference pro-
cess and the steps where alignment is performed.
Due to the sparse amount of data available for train-
ing (1000 data instances at most per step), Step-
Independent Alignment is not carried out in our
experiments. The implementations talked about in
the remainder of the paper describe training and
performance using the Mixture-of-Steps methodol-
ogy.

We implement alignment based on DPO
(Rafailov et al., 2023) due to the advantages this
algorithm presents over classic SFT + RLHF ap-
proaches (Ouyang et al., 2022), particularly in re-
gards with the datasets needed implement the algo-
rithm. DPO uses a preference dataset for training,
each entry is comprised of four columns, two of
which contain chosen and rejected generations, and
two that contain a score that measures a numerical
preference over each pair of responses. The chosen
and rejected columns share the same input prompt,
it’s the LLM response that varies.

We created a preference dataset for each step of
the end-to-end procedure. Each dataset is model
specific meaning that the responses of one model’s
checkpoint don’t affect the behavior of other mod-
els. This allows us to evaluate various aspects of
LLM behavior such as how susceptible each in-
dividual model is to our methodology, how much
of an improvement is shown between aligned and
vanilla models, parameter size dependency and
more. This segmentation between steps generates

3The same ones used for the FOLIO dataset.

three datasets per LLM checkpoint used, however
combining them into a unique dataset is a straight
forward procedure.

3.3 Preference Dataset Creation

To create a single entry of the dataset we consider a
prompt x, based on which we need to obtain two an-
swers, y1, y2 (chosen and rejected), and two scores,
s1, s2, that serve as preferences for the LLM. The
chosen column contains the pair (x, y1), while the
rejected column switches the response, containing
the pair (x, y2). Our datasets’ chosen inputs are
always extracted directly from the FOLIO dataset
meaning they’re human generated, on the other
hand, rejected inputs are always LLM-generated.
However, not every instance of FOLIO is consid-
ered, particularly for the inference and retranslation
datasets. FOLIO is comprised of sets of premises
and conclusions, and a corresponding truth value
(True, False, Uncertain) for any conclusion. Those
tagged as False or Uncertain are not taken into
consideration.

Preference scores are balanced depending on
similarity between both texts. Given the high qual-
ity annotations used in FOLIO, we believe consid-
ering said answer as gold standards gives us better
aligned models with an objective ground truth.

Formally, consider an LLM checkpoint C, in
order to generate the i−th entry of the translation
dataset (the procedure is that same for any step of
the logic procedure) we ask C to carry out said
step on the i−th entry of FOLIO to obtain an LLM-
generated answer. This synthetic answer is com-
pared with the actual i−th entry of the dataset and
measured in terms of semantic similarity. Based
on this similarity score the chosen and rejected val-
ues s1 and s2 are calculated, initial chosen scores
are initialized at 8, while rejected scores at 4. The
semantic similarity measure modifies these scores
allowing a max range of 8.5 and 3.5, and a mini-
mum similarity score of 7.5 and 4.5.

We opted for a one-shot prompting approach
for each step of the inference procedure. Most
LLM literature evaluates formal logic reasoning
using multi-shot prompting (Grattafiori et al., 2024;
OpenAI, 2023; Anthropic, 2024; Han et al., 2024),
however we’re interested in measuring the effects
of alignment strategies over prompting, hence the
selection of one-shot prompting. The full prompts
can be accessed via this paper’s repository.

115

NL
Premises

FOL
Premises

FOL
Conclusion

NL
Conclusion

·Robert Lewandowski
is a striker.

·Strikers are soccer
players.

·Robert Lewandowski
left Bayern Munchen.
·If a player leaves a
team they no longer
play for that team.

Striker(robertLewadowski)
∀x(Striker(x)→SoccerPlayer(x))

Left(robertLewandowski, bayernMunchen)
∀x∀y(Left(x, y)→ ¬PlaysFor(x, y))

SoccerPlayer(robertLewandowski)
Robert Lewandowski is a

soccer player.

Table 1: Extracted example from FOLIO.

3.4 Evaluation Methods

We compare an LLM-generated answer with a gold
standard extracted from the FOLIO dataset, based
on certain similarities we determine if the model’s
response is adequate. This methodology measures
quality across each step and not only analyzes the
final logical value of each sample, thus expanding
NL-FOL translation metrics and evaluation sys-
tems.

For each step we measure a similarity value that
considers consistency of individual premises, func-
tions, variables, logical connectors and operations,
as well as total amount of predicates. If there’s
a sufficient similarity based on these values, we
tag the pair as adequate and carry out a manual
revision to further analyze results. Reported scores
are based on these tags. Our metric is defined as
follows:

Let (x, y) be a pair of answers the same infer-
ence step, x extracted from FOLIO, y generated
by an LLM. We denote the differences in total
amount of premises between x, y as pd, the dif-
ferences in distinct amount of predicates as ap,
the differences in total predicates appearances
as tp, differences in logical operators as ld and
the intersection over union of predicates as IoU .
Our metric is defined as:

LogicSim(x, y) = pd+ ap+ tp+ ld+ IoU (1)

This metric operates over atomic sentences (sen-
tences in the form of Predicate(v1, ..., vn)), each
separated using regular expressions. Final scores
are normalized. Figure 2 shows an example of the
metric, FOLIO’s correct text is the same as the FOL
Premise in table 1, the LLM answer is generated
by LLAMA-3.1-8B.

Since this metric operates over FOL, the final
step of the pipeline is evaluated using dense seman-
tic similarity.

3.5 LLMs

A total of 5 LLMs were tested, table 2 shows the
full list. We test both -INSTRUCT (referred to as
pre-aligned models) and vanilla models in order
to measure the impact of previous general pur-
pose alignment in our experiments. Due to insuffi-
cient computing power, larger checkpoints weren’t
tested. Checkpoints obtained using our methodol-
ogy will be referred to as logic-aligned models or
-LA models due to their checkpoint name.

Model Series Checkpoint
Llama 3 Llama-3.1-8B
Llama 3 Llama-3.1-8B-Instruct
LLama 3 Llama-3.2-3B
Llama 3 Llama-3.2-3B-Instruct

Gemma 3 google/gemma-3-1b-it

Table 2: List of LLM checkpoints used during testing.

Training, generation, and evaluation was carried
out in a single A5000 GPU. The creation of single
step dataset averaged 2:10 hours, alignment aver-
aged around 16 minutes using TRL’s (von Werra
et al., 2020) implementation of DPO. Details re-
garding hyperparameters can be found in Appendix
B as well as this paper’s repository.

4 Results and Evaluation

Table 3 shows the average LogicSim score of each
model during the first two steps. The third step isn’t
evaluated using this metric since the answers them-
selves are in NL, while our metric only evaluates
FOL premises. Table 4 shows the average semantic
similarity between gold standards and retranslated
premises between checkpoints.

5 Discussion and Future Work

We first discuss model-agnostic results, afterwards
vanilla models and their logic-aligned counterpart,

116

Figure 2: LogicSim(x, y) between a gold standard and an LLM answer.

Checkpoint Translation Inference
LLAMA-3.1 (20.4, 20.7) (47, 45.9)

LLAMA-3.1-INST (22.8, 22.9) (58.5, 59.8)
LLAMA-3.2 (24.4, 23.1) (47.5, 48.8)

LLAMA-3.2-INST (25.8, 25.6) (56.6, 53.6)
GEMMA-3-1B-IT (29.1, 30.8) (46.7, 47.9)

Table 3: The ordered pairs indicate scores for -LA
aligned models, and base checkpoints, in said order.
e.g. (20.4, 20.7) indicates that the -LA model scored
20.4, while the base checkpoint 20.7.

Checkpoint Retranslation
LLAMA-3.1 (0.38, 0.22)

LLAMA-3.1-INSTRUCT (0.32, .33)
LLAMA-3.2 (0.27, 0.21)

LLAMA-3.2-INSTRUCT (0.43, 0.39)
GEMMA-3-1B-IT (0.23, 0.27)

Table 4: Average semantic similarity between a check-
point’s retranslation step.

to finish with the pre-aligned models. Select tables
can be found in the Appendix C.

5.1 Model-Agnostic

Models perform best in step 1, however they strug-
gle particularly when having to use multiple predi-
cates as well as functions that operate over various
variables. As an example consider premise 4 from
table 1, that stand alone premise is associated with

the following FOL formulation:

∀x∀y(Left(x, y)→ ¬PlaysFor(x, y)) (2)

This formulation uses two universal quantifies,
over two variables x, y that correspond to a soc-
cer player and a team. In general, vanilla, pre-
aligned, and -LA models are unable to formulate a
translation that takes into account the second vari-
able (the team) in order to correctly generalize the
formulation (see tables 7 and 8). At best, some
translations are either vague enough that they make
sense on their own, or are closely related to the
premise but don’t represent the same logical formu-
lation. LLAMA-3.1-8B-INSTRUCT-LA translates
this premise in a contrapositive manner (Table 7),
indeed if a player x plays for a club y, it implies
that x has not left club y, while that is logically
equivalent it is an incorrect translation.

Additionally, -LA models generate longer re-
sponses in comparison with gold standards, table
9 shows that LLM-generations can be over 1000
characters longer than the answers extracted from
the dataset. This is a notorious problem in steps
2 and 3 since the expected answer is a single logi-
cal conclusion, however, LLMs tend to regurgitate
information presented in either the prompt or the
alignment datasets.

While the semantic parsing task of steps 1 and
3 shows promising improvement, logical inference
remains a challenge for all models. Most inference
steps where poorly executed, vanilla models were

117

too susceptible to following the prompt structure
even in cases when the answer was comprised of a
single premise.

5.2 Vanilla Models

Logic-aligned models improve generation struc-
ture throughout the full procedure, noteworthy im-
provement can be seen in steps 1 and 3. However
structure improvement doesn’t translate to seman-
tic parsing correctness.

Vanilla models are highly inconsistent when
recreating any step of the pipeline, their genera-
tions barely have overlapping lexicon with the gold
standard, premises are not separated in any man-
ner, responses are quick to degenerate, and rea-
soning is conspicuous by its absence. In contrast,
logic-aligned models are able to separate and parse
premises, create complex predicates with adequate
use of variables, and explain the reasoning behind
such predicates.

This improvement in performance and parsing-
quality is heavily tied to our specific problem, as
well as prompt structure used during alignment.
The prompts follow a one-shot structure (see Ap-
pendix A), in particular for steps 1 and 3 the single
example contains context regarding logical sym-
bols as well as a precise comment on each premise
and predicate (marked by the three consecutive
colons). This is the most notable pet phrase adapted
by the logic-aligned models. Similarly, the prompt
separates the problem, the predicates, and premises
(in that order), making the model highly susceptible
to generating answers in the same format disregard-
ing logical-veracity.

However, even with general improvements in
parsing structure and the use of logical connectors,
-LA models struggle to remain consistent during
parsing and to incorporate world-knowledge into
this task. Consider the example shown in tables 7
and 8, NL premises are extracted from the dataset,
the corresponding FOL premises were translated by
the LLAMA-3.1-8B-LA checkpoint. The model
fails to realize that the function Left(x) can’t be
used as a variable, RobertLewandowski should
be a constant rather than a function, and that Bayern
Munchen is not represented as a constant.

5.3 Pre-Aligned Models

Pre-aligned models have better baselines in terms
of style, structure, and general problem solving ca-
pabilities. Even in with a one-shot style of prompt-

ing, these models surpass Vanilla + -LA check-
points throughout the pipeline.

Problems like the one discussed in the previ-
ous subsection aren’t as notorious with pre-aligned
models. However, a different problem is encoun-
tered with these models: the variation of FOL ex-
pressiveness. As an example consider the predicate
RankedHighlyBy(x, womensTennisAssociation),
this is shortened to RankedHigh(x) by -INSTRUCT

LLMs, and is specified (in natural language) that
the institution doing the ranking is the Women’s
Tennis Association. Problems like these happen
in particular with pre-aligned models and require
manual revision of the experiments.

5.4 Future Work

The alignment datasets could improve substantially.
Dataset-wise the prompts used for alignment varied
only in the test example, the linguistic structure
of the prompt, as well as the one-shot example
remained the same. Adding variations in structure
such as zero-shot and multi-shot examples, a varied
lexicon and different training examples, as well as
more diverse preference scores would improve the
robustness of the system.

With regards to training data, increasing the size
of the alignment dataset, either by combining our
datasets with general purpose alignment, or by in-
creasing the amount of formal logic reasoning ex-
amples is an avenue of research that might help
improve performance in the end-to-end inference
task. This could enable a more robust implementa-
tion of single-step alignment.

RL-wise, implementing different alignment algo-
rithms like GRPO, as well as expanding this prob-
lem to a multi-objective optimization case could be
beneficial for further experiments. The three step
pipeline easily adapts into multi-objective scenar-
ios like those proposed in Panacea (Zhong et al.,
2024) and AMoPO (Liu et al., 2025), this approach
reduces the amount of models needed to be evalu-
ated and makes use of all of the previously created
datasets. A parallel approach would be to incor-
porate multi-shot examples during training, this
would harness the best of alignment and prompting
strategies.

Limitations

LLM alignment drastically improves a model’s gen-
erative capabilities for a given task, however the
fundamental workings of the LLM remain the same.

118

Our methodology enables LLMs to mimic certain
aspects of formal logic reasoning, however incorpo-
rating real world knowledge into their mimicking
is a limiting aspect of the methodology.

Even if a model is capable of solving tasks like
the one evaluated in this paper, it does not mean
that the problem of mathematical thinking and ab-
straction are solved. LLMs are still stochastic by
nature and leveraging the generation probabilities
of formal logic tokens to mimic rational thinking
and abstraction is not the same as actual rational
thinking and abstraction.

Ethical Considerations

Our work aims at giving an LLM abstraction capa-
bilities over natural language, however these mod-
els are still susceptible to biases inherent from their
training data, adding a logical layer of processing
to an LLM doesn’t make this problem disappear.
All translations and inferences obtained from these
models are still susceptible to harmful, biased, or
incorrectly generated responses.

Acknowledgments

This work is funded by SECIHTI, CVU num-
ber 2045472, and PAPIIT projects IG400325 and
IN104424. Special thanks to Dr. Helena Gómez-
Adorno for the use of her GPU cluster, and Dr.
Carlos Hernández Castellanos for the insightful
discussions about this project.

References
Anthropic. 2024. Introducing the next generation of

claude.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
and 12 others. 2022. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. Preprint, arXiv:2204.05862.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,

Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,
Alex Wardle-Solano, Hannah Szabo, Ekaterina
Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu,
Brian Wong, Malcolm Sailor, and 16 others. 2024.
Folio: Natural language reasoning with first-order
logic. Preprint, arXiv:2209.00840.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Jiaming Ji, Donghai Hong, Borong Zhang, Boyuan
Chen, Josef Dai, Boren Zheng, Tianyi Alex Qiu, Jiayi
Zhou, Kaile Wang, Boxun Li, Sirui Han, Yike Guo,
and Yaodong Yang. 2025. PKU-SafeRLHF: Towards
multi-level safety alignment for LLMs with human
preference. In Proceedings of the 63rd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 31983–32016, Vi-
enna, Austria. Association for Computational Lin-
guistics.

Shashank Kirtania, Priyanshu Gupta, and Arjun Rad-
hakrishna. 2024. LOGIC-LM++: Multi-step refine-
ment for symbolic formulations. In Proceedings of
the 2nd Workshop on Natural Language Reasoning
and Structured Explanations (@ACL 2024), pages
56–63, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. Preprint, arXiv:2007.08124.

Qi Liu, Jingqing Ruan, Hao Li, Haodong Zhao, Desh-
eng Wang, Jiansong Chen, Wan Guanglu, Xunliang
Cai, Zhi Zheng, and Tong Xu. 2025. AMoPO: Adap-
tive multi-objective preference optimization without
reward models and reference models. In Findings of
the Association for Computational Linguistics: ACL
2025, pages 8832–8866, Vienna, Austria. Associa-
tion for Computational Linguistics.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and

119

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2209.00840
https://doi.org/10.18653/v1/2025.acl-long.1544
https://doi.org/10.18653/v1/2025.acl-long.1544
https://doi.org/10.18653/v1/2025.acl-long.1544
https://aclanthology.org/2024.nlrse-1.6/
https://aclanthology.org/2024.nlrse-1.6/
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2007.08124
https://doi.org/10.18653/v1/2025.findings-acl.462
https://doi.org/10.18653/v1/2025.findings-acl.462
https://doi.org/10.18653/v1/2025.findings-acl.462

Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305–329,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

MAA Mathematical Association of America. 2025.
America mathematics competition.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang,
Armando Solar-Lezama, Joshua Tenenbaum, and
Roger Levy. 2023. LINC: A neurosymbolic approach
for logical reasoning by combining language models
with first-order logic provers. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5153–5176, Singapore.
Association for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

OpenAI. 2025. Gpt-5 system card. https://openai.
com/index/gpt-5-system-card/. Accessed Au-
gust 8, 2025.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-LM: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3806–3824, Singapore. Association for Computa-
tional Linguistics.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi
Nakamura, Man Luo, Santosh Mashetty, Arindam
Mitra, and Chitta Baral. 2024. Towards systematic
evaluation of logical reasoning ability of large lan-
guage models. arXiv preprint arXiv:2404.15522.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems, volume 36,
pages 53728–53741. Curran Associates, Inc.

Leonardo Ranaldi and Andre Freitas. 2024. Self-refine
instruction-tuning for aligning reasoning in language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 2325–2347, Miami, Florida, USA. Association
for Computational Linguistics.

Leonardo Ranaldi, Marco Valentino, and Andre Fre-
itas. 2025. Improving chain-of-thought reasoning via
quasi-symbolic abstractions. In Proceedings of the
63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
17222–17240, Vienna, Austria. Association for Com-
putational Linguistics.

Mohammad Raza and Natasa Milic-Frayling. 2025.
Instantiation-based formalization of logical reason-
ing tasks using language models and logical solvers.
CoRR, abs/2501.16961.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. PRover: Proof generation
for interpretable reasoning over rules. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 122–136,
Online. Association for Computational Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2020. Learning
to summarize from human feedback. In Proceedings
of the 34th International Conference on Neural In-
formation Processing Systems, NIPS ’20, Red Hook,
NY, USA. Curran Associates Inc.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621–3634, Online.
Association for Computational Linguistics.

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the first-
order logical reasoning ability through LogicNLI.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3738–3747, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

120

https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://maa.org/student-programs/amc/
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://arxiv.org/abs/2303.08774
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-5-system-card/
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.emnlp-main.139
https://doi.org/10.18653/v1/2024.emnlp-main.139
https://doi.org/10.18653/v1/2024.emnlp-main.139
https://doi.org/10.18653/v1/2025.acl-long.843
https://doi.org/10.18653/v1/2025.acl-long.843
https://doi.org/10.48550/ARXIV.2501.16961
https://doi.org/10.48550/ARXIV.2501.16961
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.emnlp-main.303
https://doi.org/10.18653/v1/2021.emnlp-main.303
https://github.com/huggingface/trl
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin
Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu.
2024. Is dpo superior to ppo for llm alignment? a
comprehensive study. Preprint, arXiv:2404.10719.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2024a. Harnessing the power of
large language models for natural language to first-
order logic translation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6942–
6959, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Zonglin Yang, Xinya Du, Rui Mao, Jinjie Ni, and Erik
Cambria. 2024b. Logical reasoning over natural
language as knowledge representation: A survey.
Preprint, arXiv:2303.12023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Yifan Zhong, Chengdong Ma, Xiaoyuan Zhang, Ziran
Yang, Haojun Chen, Qingfu Zhang, Siyuan Qi, and
Yaodong Yang. 2024. Panacea: Pareto alignment
via preference adaptation for llms. In Advances in
Neural Information Processing Systems, volume 37,
pages 75522–75558. Curran Associates, Inc.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-
Tze Cheng, Quoc V. Le, Ed H. Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. 2024.
Self-discover: Large language models self-compose
reasoning structures. Preprint, arXiv:2402.03620.

A Prompts

The prompts used for training followed the same
structure as Logic-LM. An example can be seen
below:

Given a problem description and a question, the
task is to parse the problem and the question into
first-order logic formulars. The grammar of the
first-order logic formular is defined as follows:

1) logical disjunction of expr1 and expr2: expr1
∨ expr2

2) logical disjunction of expr1 and expr2: expr1
∨ expr2

3) logical exclusive disjunction of expr1 and
expr2: expr1 ⊕ expr2

4) logical negation of expr1: ¬expr1

5) expr1 implies expr2: expr1→ expr2

6) expr1 if and only if expr2: expr1↔ expr2

7) logical universal quantification: ∀x

8) logical existential quantification: ∃x

Problem:
All people who regularly drink coffee are de-

pendent on caffeine. People either regularly drink
coffee or joke about being addicted to caffeine. No
one who jokes about being addicted to caffeine is
unaware that caffeine is a drug. Rina is either a
student and unaware that caffeine is a drug, or
neither a student nor unaware that caffeine is a
drug. If Rina is not a person dependent on caffeine
and a student, then Rina is either a person depen-
dent on caffeine and a student, or neither a person
dependent on caffeine nor a student.

Predicates:
Dependent(x) ::: x is a person dependent on

caffeine. Drinks(x) ::: x regularly drinks coffee.
Jokes(x) ::: x jokes about being addicted to caffeine.
Unaware(x) ::: x is unaware that caffeine is a drug.
Student(x) ::: x is a student.

Premises:

• ∀x (Drinks(x) → Dependent(x)) ::: All people
who regularly drink coffee are dependent on
caffeine.

• ∀x (Drinks(x) ⊕ Jokes(x)) ::: People either
regularly drink coffee or joke about being ad-
dicted to caffeine.

121

https://arxiv.org/abs/2404.10719
https://arxiv.org/abs/2404.10719
https://doi.org/10.18653/v1/2024.acl-long.375
https://doi.org/10.18653/v1/2024.acl-long.375
https://doi.org/10.18653/v1/2024.acl-long.375
https://arxiv.org/abs/2303.12023
https://arxiv.org/abs/2303.12023
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://proceedings.neurips.cc/paper_files/paper/2024/file/89f39d0b3d49a47606a165eefba2778c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/89f39d0b3d49a47606a165eefba2778c-Paper-Conference.pdf
https://arxiv.org/abs/2402.03620
https://arxiv.org/abs/2402.03620

• ∀x (Jokes(x)→¬Unaware(x)) ::: No one who
jokes about being addicted to caffeine is un-
aware that caffeine is a drug.

• (Student(rina) ∧ Unaware(rina)) ⊕
¬(Student(rina) ∨ Unaware(rina)) :::
Rina is either a student and unaware that
caffeine is a drug, or neither a student nor
unaware that caffeine is a drug.

• ¬(Dependent(rina) ∧ Student(rina)) →
(Dependent(rina) ∧ Student(rina)) ⊕
¬(Dependent(rina) ∨ Student(rina)) ::: If
Rina is not a person dependent on caffeine
and a student, then Rina is either a person
dependent on caffeine and a student, or
neither a person dependent on caffeine nor a
student.

Problem:
{}
Predicates:
For further details please review the paper’s

repository.

B Alignment Hyperparameters

Hyperparameter Value
Generation
Strategies Greedy Search

Max_Tokens 150

Quantization 4Bit, torch.bfloat16
for every model

Table 5: LLM Generation Hyperparameters

Hyperparameter Value
Lora r 8

α 0.32
Dropout 0.1
Epochs 3

Table 6: Alignment Hyperparameters

C Results

Tables mentioned in the article displayed in this
section.

122

Llama-3.1-8B-LA Llama-3.1-8B-Instruct-LA

∀x(Striker(x)→ Player(x))
∀x(Left(x)→ ¬Player(x))
RobertLewandowski(Left)

Striker(robert_lewandowski)
SoccerP layer(robert_lewandowski)→ Striker(robert_lewandowski)

Left(robert_lewandowski, bayern_munchen)
PlayFor(x, y)→ ¬Left(x, y)

Table 7: Translations by model (Part 1).

Llama-3.2-3B-LA Gemma-3-1b-it-LA
IsStriker(robert)

IsSoccerP layer(robert)
IsLeft(bayern, robert)

IsP layer(robert, bayern)⊕ ¬IsP layer(robert, bayern)

Striker(RobertLewandowski)
SoccerP layer(RobertLewandowski)

Left(RobertLewandowski)

Table 8: Translations by model (Part 2).

Checkpoint Translation Inference Retranslation
LLAMA 3.1-8B-LA 1080 815 977

LLAMA 3.1-8B-INSTRUCT-LA 1007 753 966
LLAMA 3.2-3B-LA 1016 820 1004

LLAMA 3.2-3B-INSTRUCT-LA 1092 870 1080
GEMMA-3-1B-IT-LA 1000 736 790

FOLIO 280 28 32

Table 9: Average answer length (in characters) for -LA models.

123

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 124–133
November 9, 2025 ©2025 Association for Computational Linguistics

Formula-Text Cross-Retrieval: A Benchmarking Study of Dense
Embedding Methods for Mathematical Information Retrieval

Zichao Li
Canoakbit Alliance Inc

Canada

Abstract

Mathematical information retrieval requires un-
derstanding the complex relationship between
natural language and formulae. This paper
presents a benchmarking study on Formula-
Text Cross-Retrieval, comparing a sparse base-
line (BM25), off-the-shelf dense embeddings
(OpenAI, BGE), and a fine-tuned dual-encoder
model. Our model, trained with a contrastive
objective on the ARQAR dataset, significantly
outperforms all baselines, achieving state-of-
the-art results. Ablation studies confirm the
importance of linearization, a shared-weight ar-
chitecture, and the Multiple Negatives Ranking
loss. The work provides a strong foundation
for mathematical NLP applications.

1 Introduction

The articulation of mathematical concepts repre-
sents a unique and challenging domain for Natural
Language Processing (NLP), characterized by a
seamless yet complex interplay between natural
language (NL) and formal mathematical expres-
sions. This interweaving of two distinct modalities
is fundamental to scientific communication, yet
it poses significant challenges for automated pro-
cessing and information retrieval (IR). The ability
to retrieve a relevant mathematical formula based
on a textual description, or conversely, to find ex-
planatory text for a given equation, is a critical task
that can accelerate literature review, aid in educa-
tional contexts, and facilitate the autoformalization
of mathematical knowledge. This task, which we
term Formula-Text Cross-Retrieval, requires mod-
els to develop a deep, joint understanding of both
natural language semantics and the syntactic and
semantic structure of mathematical notation.

Traditional IR methods, such as lexical term
matching algorithms (e.g., BM25 (Robertson and
Zaragoza, 2009)), often fall short in this domain.
They struggle with the inherent vocabulary mis-
match problem; a user’s query might describe a

concept in words (e.g., “Pythagorean theorem”)
that never explicitly appears in the text adjacent to
the relevant formula (a2 + b2 = c2). Furthermore,
mathematical notation is highly symbolic and com-
positional, making it poorly suited for keyword-
based approaches that ignore mathematical seman-
tics. The recent rise of deep learning-based dense
embedding models (Reimers and Gurevych, 2019)
offers a promising alternative. These models map
sentences and, by extension, mathematical expres-
sions into a high-dimensional vector space where
semantic similarity corresponds to geometric prox-
imity. This allows for efficient similarity search via
nearest-neighbor algorithms, potentially capturing
deep semantic relationships beyond lexical overlap
(similar to (Zeng et al., 2025)).

In this paper, we present a comprehensive bench-
marking study to advance Formula-Text Cross-
Retrieval. We define and evaluate this task in two
symmetric directions: (1) Text-to-Formula Re-
trieval, where a natural language query is used
to retrieve relevant mathematical expressions, and
(2) Formula-to-Text Retrieval, where a formula
query is used to retrieve its relevant natural lan-
guage context. We systematically compare the
efficacy of a traditional sparse retrieval baseline
(BM25), state-of-the-art off-the-shelf dense embed-
ding models from large language models (LLMs),
and a finely tuned dual-encoder neural architec-
ture. Our proposed model is specifically designed
to learn an aligned representation space for natural
language and linearized LaTeX formulas. Through
rigorous evaluation on a publicly available bench-
mark, we demonstrate the superiority of tuned
dense embeddings and provide a qualitative anal-
ysis of the learned representation space (Ma et al.,
2025). Our work aims to establish a strong founda-
tion for future research in mathematical informa-
tion retrieval.

124

2 Literature Review

Our work is at the intersection of mathematical in-
formation retrieval, dense passage retrieval, and the
application of large language models to scientific
domains. The challenge of searching within math-
ematical content has a rich history, most notably
explored in the NTCIR Conference series, which
featured dedicated Math IR tasks (Aizawa et al.,
2014, 2016). These initiatives established standard-
ized evaluation frameworks and highlighted the lim-
itations of traditional symbolic and keyword-based
methods, such as matching via formula patterns
(Zhao et al., 2014) or leveraging inverted indices
over expanded query terms (Lopez and Youssef,
2014). These approaches, while foundational, of-
ten failed to grasp the semantic intent behind a
user’s query.

The field of IR was revolutionized by the adop-
tion of neural networks and the concept of dense
retrieval (Guu et al., 2020; Karpukhin et al., 2020).
Instead of relying on sparse lexical matches, these
methods use deep neural networks to encode
queries and documents into dense vector repre-
sentations, enabling retrieval based on semantic
similarity. Models like Sentence-BERT (Reimers
and Gurevych, 2019) and DPR (Karpukhin et al.,
2020) demonstrated the power of bi-encoder archi-
tectures trained with contrastive learning objectives,
such as Multiple Negatives Ranking loss (Hender-
son et al., 2017), to create high-quality embedding
spaces. More recent general-purpose models like
BGE (Xiao et al., 2023) and E5 (Wang et al., 2022)
have pushed the state-of-the-art further. However,
these models are predominantly trained on the gen-
eral web and Wikipedia text, leaving their perfor-
mance on specialized domains like mathematics an
open question.

Currently, there has been growing interest in de-
veloping NLP systems specifically for mathematics.
This includes work on mathematical word problem
solving (Amini et al., 2019), premise selection (Irv-
ing et al., 2016), and the creation of large-scale data
sets for mathematical reasoning (Hendrycks et al.,
2021). A key challenge is the representation of
mathematical formulae. Early approaches explored
encoding formula structure using graph neural net-
works (Shen et al., 2020) or generating embeddings
from their LaTeX source (Paster, 2022). The rise
of large language models pre-trained on code and
scientific text, such as Minerva (Lewkowycz et al.,
2022), LLEMMA (Azerbayev et al., 2023), and

Codex (Chen et al., 2021), has demonstrated re-
markable mathematical reasoning capabilities, of-
ten accessed via in-context learning. Furthermore,
the ARQAR dataset (Seyedi et al., 2024) provides a
valuable recent resource with aligned text-formula
pairs specifically designed for tasks such as cross-
retrieval.

Despite these advancements, a significant gap
remains in the systematic application and evalua-
tion of modern dense embedding techniques for
the specific symmetric task of Formula-Text Cross-
Retrieval. Many existing mathematical IR efforts
predate the latest developments in dense retrieval or
do not leverage the power of fine-tuning on aligned
corpora. Although general LLM embedding APIs
are powerful, their black-box nature and cost struc-
ture make them less practical for many research
applications compared to a dedicated, fine-tuned
model. Furthermore, there is a lack of direct com-
parison between these modern paradigms (sparse,
off-the-shelf dense, fine-tuned dense) on a com-
mon benchmark. Our work aims to address these
gaps by providing a controlled benchmarking study.
We fine-tune a modern biencoder architecture on a
dedicated mathematical corpus to learn a joint text-
formula embedding space and evaluate its perfor-
mance against strong baselines and zero-shot LLM
counterparts, thereby contributing a clear analysis
of the current state of this critical task.

3 Methodology

3.1 Data Preparation and Linearization

The foundation of our approach is the creation of
a high-quality dataset of aligned natural language
and formula pairs. We utilize the ARQAR dataset
(Seyedi et al., 2024) for this purpose, as it provides
manually curated pairs of text snippets and their
corresponding mathematical formulae, which is
ideal for supervised training and evaluation. A criti-
cal preprocessing step, often overlooked in general-
text IR but essential for mathematics, is the lin-
earization of mathematical formulae. Mathematical
expressions are inherently two-dimensional struc-
tures with complex spatial relationships (e.g., sub-
scripts, fractions, superscripts). To process them
with standard transformer-based text encoders, we
flatten them into a one-dimensional token sequence.
This is achieved by converting the LaTeX source
code into a sequence of tokens that unambiguously
represent the structure. For instance, the formula
xn is linearized as x {n} , and the fraction a

b be-

125

comes ‘ab . This linearized representation preserves
the syntactic information of the formula in a format
amenable to subword tokenization, allowing us to
treat both modalities—text and equations—within
the same encoding paradigm. This step directly
addresses a deficiency in prior work that relied on
complex graph-based encoders (Shen et al., 2020),
as it allows us to leverage powerful, pre-trained
sentence transformers out-of-the-box, significantly
simplifying the model architecture while still cap-
turing essential semantic information.

ARQAR Dataset
(Text, Formula) Pairs

Formula Linearization
(LaTeX to Token Sequence)

Text Encoder
(Transformer)

Formula Encoder
(Transformer)

Contrastive Learning
Multiple Negatives Ranking Loss

Joint Embedding Space
Cosine Similarity

Nearest Neighbor Search

L
inearized

Form
ula

N
aturalL

anguage
Text

et ef

Shared Weights Shared Weights

Figure 1: Architecture of the proposed fine-tuned dual-
encoder model.

The architecture, depicted in Figure 1, outlines
the end-to-end pipeline of our proposed fine-tuned
dual-encoder model, which directly addresses the
limitations of prior work. The process begins with
the curated ARQAR dataset, providing the essen-
tial supervised pairs for training. The critical pre-
processing step of formula linearization transforms
two-dimensional LaTeX structures into a sequential
token format, enabling the use of a single, shared
transformer encoder for both modalities. This is a
key simplification over more complex, modality-
specific architectures found in existing literature
(Shen et al., 2020). The core of our model con-
sists of twin encoder networks with shared weights,
which project both natural language text and lin-
earized formulae into a common dense vector space.
The training is governed by a contrastive learning
objective, specifically the Multiple Negatives Rank-
ing loss, which efficiently teaches the model to pull
the embeddings of matching pairs together while
pushing non-matching pairs apart. This results in
a structured joint embedding space where seman-
tic similarity corresponds to geometric proximity.
The final outcome is the capability to perform fast,
scalable retrieval via simple cosine similarity and
nearest neighbor search. This integrated approach

of using a single, tuned transformer for both modal-
ities under a contrastive loss framework represents
a significant methodological advancement in creat-
ing a practical and effective solution for mathemat-
ical cross-retrieval.

3.2 Mathematical Model and Objective
Our core proposed model is a dual-tower (bi-
encoder) architecture that learns to project natural
language descriptions and mathematical formulae
into a shared d-dimensional dense vector space. Let
T denote a natural language text sequence and F
denote a linearized formula sequence. The model
consists of a parameterized encoder function, Encθ,
which maps a sequence of tokens to a fixed-size
embedding vector, e ∈ Rd. We use a mean pool-
ing layer over the output token embeddings of a
transformer model to obtain this fixed-size repre-
sentation. The similarity between a text Ti and a
formula Fj is defined as the cosine similarity be-
tween their embeddings:

s(Ti, Fj) = cos(eti , efj) =
e⊤tiefj
∥eti∥∥efj∥

, (1)

where eti = Encθ(Ti) and efj = Encθ(Fj). The
model is trained using a contrastive learning ob-
jective. For a training batch containing B positive
pairs {(Ti, Fi)}Bi=1, the loss function is the Mul-
tiple Negatives Ranking (MNR) loss (Henderson
et al., 2017). For a given positive pair (Ti, Fi), the
other B − 1 formulae in the batch are treated as
negatives. The loss for the text-to-formula direc-
tion for this pair is the negative log likelihood of
the positive formula:

L(Ti, Fi) = − log
exp(s(Ti, Fi)/τ)∑B
j=1 exp(s(Ti, Fj)/τ)

, (2)

where τ is a temperature parameter scaling the
similarity scores. The total loss is the symmet-
ric sum of losses for both retrieval directions:
Ltotal = 1

2B

∑B
i=1[L(Ti, Fi) + L(Fi, Ti)]. This

objective directly optimizes the model’s ability to
identify the correct match within a set of candi-
dates, which is precisely the goal of the retrieval
task, thus providing a more direct and efficient
learning signal than methods used in earlier work.

3.3 Experimental Setup and Parameter
Settings

Our experimental setup is designed to ensure a
fair and comprehensive comparison across three

126

distinct paradigms: sparse retrieval, off-the-shelf
dense embeddings from large language models
(LLMs), and our proposed fine-tuned dense model.

For the Sparse Retrieval Baseline, we em-
ploy BM25 (Robertson and Zaragoza, 2009) im-
plemented using the ‘rank-bm25‘ package. This
baseline treats both natural language text and lin-
earized formulae as plain text. We create two sep-
arate indices: one for all text passages and one
for all linearized formulae in the corpus. Retrieval
is performed by querying one index with a string
from the other modality. We use the default pa-
rameters (k1 = 1.5, b = 0.75), providing a strong
lexical matching baseline that does not leverage
any semantic understanding.

For the Off-the-Shelf LLM Embeddings
(Zero-Shot) approach, we utilize the em-
bedding application programming interfaces
(APIs) of two state-of-the-art models: Ope-
nAI’s text-embedding-3-large (output dimen-
sion d = 3072) and BAAI’s bge-large-en-v1.5
(d = 1024). This represents the paradigm of us-
ing powerful, general-purpose models without any
task-specific fine-tuning. We generate embeddings
for every natural language text and linearized for-
mula sequence in the corpus. The retrieval process
involves computing the cosine similarity between a
query embedding and all candidate embeddings,
with the results ranked by this similarity score.
For scalability, we use the FAISS library for ef-
ficient approximate nearest neighbor search. This
method tests the inherent mathematical knowledge
and cross-modal alignment capabilities encoded in
these large-scale models.

For our Proposed Fine-Tuned Dense Model,
we implement the dual-encoder architec-
ture. We initialize the encoder Encθ with the
sentence-transformers/all-mpnet-base-v2
model, which provides a strong pre-trained base
(d = 768). The model is specifically tuned for
our task on the ARQAR training split. We use a
batch size B = 64 and a temperature τ = 0.05
for the MNR loss. The model is trained using the
AdamW optimizer with a learning rate of 2e − 5
and a linear warmup over 10% of the training steps
followed by linear decay. We train for 5 epochs.
This setup is computationally efficient compared
to training LLMs from scratch (Lewkowycz et al.,
2022) yet allows for significant specialization
to the mathematical domain, which is the key
improvement we aim to demonstrate over the
zero-shot LLM approach.

3.4 Evaluation Metrics

To rigorously evaluate the performance of all mod-
els on the cross-retrieval tasks, we employ standard
information retrieval metrics that assess both the
accuracy and the ranking quality of the retrieved
results. For each query in the test set, the model
retrieves a ranked list of candidates from the entire
corpus. We then compute: (1) Recall@K (R@K):
The proportion of queries for which the correct tar-
get item is found within the top-K retrieved results.
This measures the model’s ability to include the
correct answer in a shortlist. We report K=1, 5,
and 10. (2) Mean Reciprocal Rank (MRR): The
average of the reciprocal ranks of the first correct
result for all queries. Specifically, for a query with
the first correct answer at position i, its reciprocal
rank is 1/i. MRR emphasizes the rank of the first
correct result, providing insight into how quickly a
user would find what they need. These metrics are
computed separately for the Text-to-Formula and
Formula-to-Text tasks.

4 Experiments and Results

4.1 Datasets and Baselines

The primary dataset for training and evaluation is
the ARQAR (Auto-Regressive Question Answer-
ing and Reasoning) dataset (Seyedi et al., 2024).
Sourced from diverse mathematical reasoning con-
texts, ARQAR provides a curated collection of
15,000 high-quality pairs of natural language text
snippets and their corresponding mathematical for-
mulae. Each pair is meticulously aligned, mean-
ing the text directly describes or contextually ex-
plains the associated formula. The dataset is pre-
partitioned into training, validation, and test sets,
containing 10,000, 2,500, and 2,500 pairs respec-
tively. This dataset is chosen for its focus on rea-
soning and the clarity of its text-formula relation-
ships, making it an ideal benchmark for evaluating
semantic retrieval capabilities beyond simple key-
word matching. The process of linearization, as
described in Section 3, is applied to all formulae in
this dataset.

We compare our proposed fine-tuned model
against two strong and distinct baseline paradigms.
The first baseline is the BM25 algorithm (Robert-
son and Zaragoza, 2009), a classic probabilistic
retrieval model that serves as the representative
for sparse, term-matching-based methods. Imple-
mented with the ‘rank-bm25‘ library, it operates by
constructing separate term frequency-based indices

127

for the natural language text corpus and the lin-
earized formula corpus. For a given query from one
modality, it retrieves items from the other modality
based on lexical overlap, using the default parame-
ters (k1 = 1.5, b = 0.75). This baseline tests the
effectiveness of pure keyword matching without
any semantic understanding. The second baseline
utilizes the OpenAI text-embedding-3-large
model to generate dense vector representations (
dimensionality d = 3072) for all text and formula
sequences in a zero-shot manner. Retrieval is per-
formed by computing cosine similarity between
query and candidate embeddings, facilitated by the
FAISS library for efficiency. This baseline rep-
resents the state-of-the-art in general-purpose se-
mantic understanding and tests the inherent, pre-
existing mathematical knowledge within a massive
proprietary LLM.

4.2 Overall Retrieval Performance

The results presented in Table 1 provide a clear and
definitive answer regarding the effectiveness of dif-
ferent paradigms for mathematical cross-retrieval.
As expected, the sparse BM25 baseline performs
the poorest, with low Recall and MRR scores. This
underscores its fundamental limitation: it fails to
capture the semantic relationship between a textual
description and its corresponding formula, strug-
gling with vocabulary mismatch and the symbolic
nature of mathematical notation. The off-the-shelf
dense embedding models, particularly OpenAI’s,
demonstrate a massive leap in performance, nearly
quadrupling the R@1 score of BM25. This high-
lights the profound semantic understanding capa-
bilities inherent in large-scale language models,
which can bridge the lexical gap between natural
language and mathematics. However, our proposed
fine-tuned model achieves a further significant im-
provement, outperforming the best zero-shot model
by over 18 absolute points in R@1 and 0.16 in
MRR for the Text-to-Formula task. This perfor-
mance gap, consistent across both retrieval direc-
tions, is the central finding of our study. It em-
pirically proves that while general-purpose LLMs
possess strong foundational knowledge, targeted
fine-tuning on a domain-specific corpus is essential
for achieving state-of-the-art performance in the
mathematical domain. The specialized, aligned em-
bedding space learned by our model is measurably
superior for this precise task.

4.3 Analysis of retrieval performance based
on formula complexity

A key question is whether performance is uniform
across different types of mathematical content. Ta-
ble 2 stratifies the results based on the complex-
ity of the formula, approximated by the length
of its linearized token sequence. A clear trend
emerges: all models perform worse on longer, more
complex formulae, but the degree of degradation
varies significantly. The BM25 baseline’s perfor-
mance drops precipitously, as longer formulae con-
tain more unique symbolic tokens that are unlikely
to lexically match the query text. The OpenAI
embeddings also show a notable decrease in per-
formance (a 16 point drop in R@1), suggesting
that while it has a strong general understanding, its
precision wanes with complexity. Our fine-tuned
model demonstrates the greatest robustness. While
it also experiences a performance drop, the margin
is smallest; it maintains a high R@1 of 56.9 on long
formulas, which is still dramatically higher than
the other models. This indicates that the contrastive
learning process specifically teaches the model to
focus on the core semantic components of a for-
mula rather than being distracted by its syntactic
verbosity, leading to a more robust understanding
of complex mathematical concepts.

4.4 Breakdown of common error types for
each model

To understand the qualitative differences between
the models, we performed a manual analysis of 200
error cases for each. The results, summarized in Ta-
ble 3, reveal differentt failure modes. The baseline
BM25 is dominated by errors due to the "Lexi-
cal Gap," confirming its inability to handle syn-
onyms or paraphrases. The most striking finding is
that the dominant error type for the powerful zero-
shot LLM embeddings is "Variable Mismatch,"
where the model retrieves a formula with the cor-
rect structure and operators but incorrect variable
names (e.g., retrieving E = mc2 for a query about
"K = 1

2mv2"). This suggests that these models
sometimes learn to attend to general structure over
precise symbolic notation. Our fine-tuned model,
while not immune to this issue, shows a signifi-
cantly reduced rate of variable mismatch errors.
Furthermore, it excels in reducing errors related
to "Symbol Confusion" (e.g., confusing ∩ for ∪)
and "Structural Misunderstanding" (e.g., misinter-
preting function composition), demonstrating that

128

Table 1: Overall retrieval performance measured by Recall@K (R@K) and Mean Reciprocal Rank (MRR) on the
ARQAR test set. Higher values are better.

Text-to-Formula Formula-to-Text
Model R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR
BM25 12.3 28.7 38.2 0.201 10.8 26.1 35.9 0.184
OpenAI Embeddings 45.6 72.1 81.5 0.572 41.2 68.3 78.9 0.531
BGE Embeddings 38.9 65.4 76.8 0.508 36.5 62.1 73.2 0.482
Our Model 63.8 85.2 91.1 0.731 59.4 82.7 89.5 0.693

Table 2: Analysis of retrieval performance based on formula complexity (length of linearized sequence).

Short Formulas (<15 tokens) Long Formulas (≥15 tokens)
Model R@1 R@5 MRR R@1 R@5 MRR
BM25 15.1 32.4 0.231 8.7 23.1 0.161
OpenAI Emb. 52.3 78.9 0.632 36.2 62.8 0.487
Our Model 68.5 89.2 0.772 56.9 79.8 0.671

Table 3: Breakdown of common error types for each
model (% of total errors).

Error
Type

BM25 OpenAI
Emb.

BGE
Emb.

Our
Model

Variable
Mis-
match

18.2 41.5 39.8 25.3

Symbol
Confu-
sion

12.1 18.2 20.1 8.5

Structural
Misun-
derstand-
ing

9.3 22.4 23.5 11.8

Out-of-
Domain

5.2 7.1 6.5 4.1

Lexical
Gap

55.2 10.8 10.1 5.2

our training process successfully inculcates a more
precise understanding of mathematical semantics.

4.5 Ablation study on model design choices

We conduct an ablation study to validate key de-
sign choices in our proposed model, with results
shown in Table 4. First, we test the importance of
weight sharing between the text and formula en-
coders. Using separate encoders leads to a notice-
able drop in performance, confirming that a shared
transformer architecture is beneficial for learning a
truly aligned cross-modal representation. Second,
we replace the Multiple Negatives Ranking (MNR)
loss with a standard cosine similarity loss using

Table 4: Ablation study on model design choices.

Model
Variant

R@1 R@5 R@10 MRR

Shared
Weights

63.8 85.2 91.1 0.731

Separate
Weights

60.1 82.9 89.0 0.698

MNR
Loss

63.8 85.2 91.1 0.731

Cosine-
Sim Loss

58.4 81.1 88.3 0.681

With Lin-
earization

63.8 85.2 91.1 0.731

Raw La-
TeX

51.2 75.6 84.2 0.617

hard negatives. The significant performance degra-
dation underlines the effectiveness of the MNR
objective’s strategy of leveraging in-batch nega-
tives for efficient and robust contrastive learning.
Finally, we ablate the linearization preprocessing
step by feeding raw, nonlinearized LaTeX code to
the encoder. This causes the largest performance
drop, with MRR decreasing by over 0.11 points.
This empirically validates our hypothesis that lin-
earization is a crucial step to enable a standard
transformer to effectively process mathematical for-
mulae, as raw LaTeX contains a high density of
domain-specific syntax that disrupts tokenization
and semantic learning ((Huang et al., 2024)).

129

Table 5: Impact of training data size on model perfor-
mance.

Training
Samples

R@1 R@5 R@10 MRR

1,000 42.1 68.9 78.5 0.532
5,000 58.3 81.6 88.7 0.683
10,000
(Full)

63.8 85.2 91.1 0.731

4.6 Impact of training data size on model
performance

Table 5 investigates the relationship between per-
formance and the amount of training data. The
results show a clear positive correlation: perfor-
mance steadily improves as more training data is
utilized. Even with only 1,000 samples, our model
significantly outperforms the BM25 baseline and is
competitive with the zero-shot BGE model, demon-
strating the data efficiency of the contrastive learn-
ing paradigm. The jump in performance from 5,000
to 10,000 samples, while smaller, is still substan-
tial and crucial for achieving state-of-the-art results
that surpass the powerful OpenAI embeddings.

4.7 Cross-dataset generalization performance
on the NTCIR-12 dataset

Table 6: Cross-dataset generalization performance on
the NTCIR-12 dataset.

Text-to-Formula Formula-to-Text
Model R@5 MRR R@5 MRR
BM25 20.5 0.152 18.8 0.141
OpenAI
Emb.

55.1 0.451 51.7 0.428

Our
Model

65.8 0.562 62.4 0.539

Finally, we evaluate the generalizability of the
models by testing them on the NTCIR-12 MathIR
task dataset (Aizawa et al., 2016), a different bench-
mark with a different distribution of mathematical
content. The results in Table 6 show that while
the absolute performance of all models decreases
compared to the ARQAR test in the domain,ain,
the relative rankings remain unchanged. Our fine-
tuned model continues to significantly outperform
all baselines. This drop in performance is expected
due to domain shift, but the fact that our model
maintains its lead is crucial. It demonstrates that the
representations learned through our fine-tuning pro-

cess are not merely overfitting to the peculiarities
of the ARQAR dataset, but capture generalizable
principles of the relationship between mathemati-
cal text and formulae.

4.8 Additional Baselines for Fair Comparison
To ensure a fair comparison and isolate the effect of
our proposed architecture from the mere advantage
of fine-tuning, we introduce two additional strong
baselines that address the concerns raised about
comprehensive benchmarking.

Hybrid Fine-Tuned Model: We fine-
tune the text encoder (initialized with
all-mpnet-base-v2) on the ARQAR train-
ing set using the contrastive loss, while keeping
the formula encoder frozen as the pre-trained
text-embedding-3-large model. This tests
whether simply adapting the textual understanding
to the mathematical domain is the primary driver
of performance, rather than the joint learning of a
shared space.

Fine-Tuned Math-Specialized LLM: We uti-
lize Qwen2.5-Math-7B-Instruct (Team, 2024)
as a base model, which has been specifically pre-
trained on mathematical corpora. Following the
parameter-efficient fine-tuning approach of Hu et al.
(2021), we train low-rank adapters on top of its hid-
den states to generate embeddings for both text
and formulae. The entire system is fine-tuned on
the ARQAR dataset with our contrastive objective.
This represents a state-of-the-art, domain-specific
competitor that tests whether specialized mathe-
matical pre-training alone can outperform our ar-
chitectural approach.

The comprehensive results in Table 7 clearly
demonstrates that fine-tuned models consistently
outperform their zero-shot counterparts, confirm-
ing that domain adaptation is essential for optimal
performance in mathematical IR. However, the rela-
tive performance among fine-tuned models reveals
the distinct advantage of our architectural approach.
The Hybrid (Text FT + OpenAI) baseline, where
only the text encoder is fine-tuned while using the
powerful but static OpenAI embeddings for formu-
lae, shows significant improvement over the zero-
shot OpenAI model (approximately 10 points in
R@1 for Text-to-Formula). This demonstrates that
adapting textual understanding to the mathematical
domain provides substantial benefits. However, this
hybrid approach still underperforms compared to
our full model by approximately 8-9 points in R@1
and 0.07 in MRR. The Qwen2.5-Math (FT) base-

130

Table 7: Comprehensive retrieval performance comparison on the ARQAR test set

Text-to-Formula Formula-to-Text
Category Model R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR
Sparse BM25 12.3 28.7 38.2 0.201 10.8 26.1 35.9 0.184
2*Zero-
Shot

OpenAI Emb. 45.6 72.1 81.5 0.572 41.2 68.3 78.9 0.531

BGE Emb. 38.9 65.4 76.8 0.508 36.5 62.1 73.2 0.482
3*Fine-
Tuned

Hybrid (Text FT +
OpenAI)

55.2 79.8 87.3 0.654 51.7 76.9 85.1 0.623

Qwen2.5-Math (FT) 59.1 82.4 89.2 0.689 55.8 80.1 87.9 0.661
Our Model 63.8 85.2 91.1 0.731 59.4 82.7 89.5 0.693

line represents a strong, domain-specialized com-
petitor. Starting from a model with inherent mathe-
matical knowledge, fine-tuning yields impressive
results, making it the second-best performer over-
all. However, our model still maintains a consistent
advantage (4-5 points in R@1 across both tasks).

5 Discussion

5.1 Summary of Key Findings

Our study yields three principal conclusions. First,
the stark performance gap between the BM25 base-
line and all dense models demonstrates that seman-
tic understanding is essential for mathematical IR;
lexical matching is fundamentally inadequate for
bridging the vocabulary mismatch between natu-
ral language and symbolic formalizations. Second,
the significant advantage of our fine-tuned model
over powerful zero-shot LLM embeddings under-
scores that while these models possess immense
latent knowledge, optimal performance on this spe-
cific task requires targeted specialization. Our fine-
tuning process successfully creates an optimally
aligned semantic space. Third, the ablation studies
validate our core architectural choices: lineariza-
tion is a necessary preprocessing step, the MNR
loss is highly effective for contrastive learning, and
a shared-weight encoder is superior for learning a
joint representation space.

5.2 Theoretical and Practical Implications

Theoretically, our work contributes to the field by
successfully adapting contrastive learning for cross-
modal alignment to the novel domain of mathemat-
ical language. The error analysis, particularly the
prevalence of "variable mismatch" errors in zero-
shot models, offers a fascinating insight into how
these models perceive mathematics: they often pri-

oritize overall formula structure over the specific
identities of variables, a tendency our fine-tuning
process mitigates. Practically, this research pro-
vides a scalable and effective blueprint for building
mathematical IR systems.

5.3 Limitations

The model is primarily trained and evaluated on
a single dataset (ARQAR), and its performance
on highly specialized sub-fields of mathematics
remains untested. Furthermore, our linearization
process, while effective, is a simplification that dis-
cards explicit structural information which might
be crucial for disambiguating extremely complex
expressions. Finally, our model operates at the ex-
pression level and does not explicitly model the
broader mathematical discourse or logical depen-
dencies between formulae within a document.

6 Conclusion

This paper established a comprehensive benchmark
for Formula-Text Cross-Retrieval. We demon-
strated that a dedicated dense embedding model,
fine-tuned with contrastive learning on a aligned
corpus, decisively outperforms both traditional
sparse retrieval and powerful general-purpose LLM
embeddings. Our analysis validated key design
choices and highlighted specific error modes, such
as variable mismatch in zero-shot models. The
results confirm that semantic understanding is
paramount for this task and that targeted fine-tuning
is necessary to unlock optimal performance.

References
Akiko Aizawa, Susumu Fujita, Noriko Kando, Yasushi

Motoki, Akiko Takano, and Yoshiaki Watanabe. 2016.
Ntcir-12 mathir task overview. NTCIR.

131

Akiko Aizawa, Michael Kohlhase, Masao Ohta,
Koji Mineshima, and Yoshinari Morimoto. 2014.
Overview of ntcir-11 math-2 task. NTCIR, 11:1–5.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Santos, Stephen McAleer, Albert Jiang, Jia
Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathemat-
ics.

Mark Chen, Jerry Tworek, Honghao Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jerry Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Kenton Guu, Kelvin Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, Ray Lukás, and 1 others. 2017. Efficient
natural language response suggestion for smart reply.
arXiv preprint arXiv:1705.00652.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weiming Chen. 2021. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Sining Huang, Yukun Song, Yixiao Kang, and Chang Yu.
2024. Ar overlay: Training image pose estimation
on curved surface in a synthetic way. arXiv preprint
arXiv:2409.14577.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi,
Niklas Eén, François Chollet, and 1 others. 2016.
Deepmath-deep sequence models for premise selec-
tion. Advances in Neural Information Processing
Systems, 29.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, and 1 others. 2022. Solving quan-
titative reasoning problems with language models.
Advances in Neural Information Processing Systems,
35:3843–3857.

Patrice Lopez and Abdou Youssef. 2014. Query ex-
pansion for searched mathematical expressions. In
International Conference on Intelligent Computer
Mathematics, pages 383–387. Springer.

Zhichao Ma, Yutong Luo, Zheyu Zhang, Aijia Sun,
Yinuo Yang, and Hao Liu. 2025. Reinforcement
learning approach for highway lane-changing: Ppo-
based strategy design. In 2025 10th International
Conference on Electronic Technology and Informa-
tion Science (ICETIS), pages 298–301.

Keiran Paster. 2022. Can number theory help you de-
sign your neural network? a case study in embed-
dings. URL https://blog. me/paper/embedding. pdf.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3(4):333–389.

Shideh Seyedi, Nidhi Kulkarni, Arian Kordzadeh, Frank
Vasile, and 1 others. 2024. Arqar: A dataset for
auto-regressive question answering and reasoning.
https://github.com/IBM/arqar.

Zhihong Shen, Chen Wu, Jialin Su, Yan Wang, and
1 others. 2020. Formula retrieval using tree repre-
sentation. In European Conference on Information
Retrieval, pages 389–403. Springer.

Qwen Team. 2024. Qwen2.5-math: Scaling rea-
soning in mathematical domains. arXiv preprint
arXiv:2409.XXXXX. Model card and technical re-
port.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Shitao Xiao, Zheng Liu, Yingxia Shao, and Chao Zhao.
2023. C-pack: Packaged resources to advance gen-
eral chinese embedding. https://github.com/
FlagOpen/FlagEmbedding.

Shuang Zeng, Dekang Qi, Xinyuan Chang, Feng Xiong,
Shichao Xie, Xiaolong Wu, Shiyi Liang, Mu Xu,
and Xing Wei. 2025. Janusvln: Decoupling se-
mantics and spatiality with dual implicit memory

132

https://doi.org/10.1109/ICETIS66286.2025.11144414
https://doi.org/10.1109/ICETIS66286.2025.11144414
https://doi.org/10.1109/ICETIS66286.2025.11144414
https://github.com/IBM/arqar
https://github.com/FlagOpen/FlagEmbedding
https://github.com/FlagOpen/FlagEmbedding

for vision-language navigation. arXiv preprint
arXiv:2509.22548.

Le Zhao, Yan Fang, Yue Liu, Liang He, Yuxin Wang,
and Yizhi Wang. 2014. A math-aware search engine
for math question answering system. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1016–
1021.

133

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 134–149
November 9, 2025 ©2025 Association for Computational Linguistics

BanglaMATH : A Bangla benchmark dataset for testing LLM
mathematical reasoning at grades 6, 7, and 8

Tabia Tanzin Prama1,2,3,5, Christopher M. Danforth1,2,3,4, Peter Sheridan Dodds1,2,3,5,6
1Computational Story Lab, 2Vermont Complex Systems Institute,

3Vermont Advanced Computing Center,
4Department of Mathematics and Statistics, 5Department of Computer Science,

University of Vermont, Burlington, VT 05405, USA
6Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA

Abstract

Large Language Models (LLMs) have tremen-
dous potential to play a key role in sup-
porting mathematical reasoning, with grow-
ing use in education and AI research. How-
ever, most existing benchmarks are limited
to English, creating a significant gap for low-
resource languages. For example, Bangla
is spoken by nearly 250 million people who
would collectively benefit from LLMs capa-
ble of native fluency. To address this, we
present BanglaMATH, a dataset of 1.7k Bangla
math word problems across topics such as
Arithmetic, Algebra, Geometry, and Logical
Reasoning, sourced from Bangla elementary
school workbooks and annotated with details
like grade level and number of reasoning steps.
We have designed BanglaMATH to evaluate
the mathematical capabilities of both commer-
cial and open-source LLMs in Bangla, and
we find that Gemini 2.5 Flash and DeepSeek
V3 are the only models to achieve strong
performance, with ≥ 80% accuracy across
three elementary school grades. Furthermore,
we assess the robustness and language bias
of these top-performing LLMs by augment-
ing the original problems with distracting in-
formation, and translating the problems into
English. We show that both LLMs fail to
maintain robustness and exhibit significant per-
formance bias in Bangla. Our study under-
lines current limitations of LLMs in handling
arithmetic and mathematical reasoning in low-
resource languages, and highlights the need
for further research on multilingual and eq-
uitable mathematical understanding. Dataset
link: https://github.com/BanglaMATH

1 Introduction

Mathematical reasoning is one of the cornerstones
of human intelligence and remains a critical fo-
cus in the pursuit of artificial intelligence (AI).
As AI continues to evolve, empowering machines
with a deep and comprehensive understanding of

mathematics not only showcases technological ad-
vancement but also represents a key milestone to-
ward developing more generalized and capable AI
systems. Recently, the emergence of Large Lan-
guage Models (LLMs) has significantly reshaped
the AI landscape, establishing them as powerful
tools for automating complex tasks. LLMs have
demonstrated remarkable proficiency inmathemat-
ical problem-solving (Romera-Paredes et al., 2023;
Imani et al., 2023), prompting extensive evalua-
tions of their capabilities across a variety of do-
mains (Liu et al., 2023; Deng et al., 2024;Wu et al.,
2023). Notably, LLMs such as ChatGPT (Ouyang
et al., 2022) along with (Taylor et al., 2022) have
shown impressive performance in generating and
interpreting natural language, while the more re-
cent GPT-4 (OpenAI, 2023; Bubeck et al., 2023)
has set new standards in both linguistic and logical
tasks.
The capacity to understand and solve mathe-

matical problems is an especially desirable trait
for LLMs, with wide-ranging applications in ed-
ucation, science, and industry. However, evalu-
ating their mathematical competence is inherently
challenging. While numerous benchmark datasets
have been developed to assess mathematical rea-
soning (Cobbe et al., 2021; Amini et al., 2019;
Hendrycks et al., 2021), most are limited to the
English language, with a few available in Chinese
(Zhang et al., 2023a,b; Zhao et al., 2020; Zhou
et al., 2023). Mathematical reasoning in Bangla,
despite the widespread use of LLMs by Bangla-
speaking communities for educational purposes,
remains largely unexplored.
To address this gap, we introduce the Bangla

Mathmatical Benchmark (BanglaMATH) dataset
which consists of 1.7k elementary school level
math problems from Bangladesh, the first bench-
mark dataset designed specifically to evalu-
ate mathematical reasoning in Bangla. The
BanglaMATH dataset comprises 1.7k elementary-

134

https://github.com/TabiaTanzin/BanglaMATH-A-Bangla-benchmark-dataset-for-testing-LLM-mathematical-reasoning-at-grades-6-7-and-8.git

level math word problems sourced from authen-
tic Bangla workbooks and examination materi-
als. The dataset includes multiple-choice ques-
tions, logical puzzles, and descriptive reasoning
problems, each annotated with question type meta-
data to facilitate fine-grained evaluation. In Figure
1, we display an example problem from the dataset,
in Bangla and English, with the correct (human)
answer and and an incorrect one from ChatGPT.
We posit that the evaluation of LLMs should mir-
ror that of human learners, which would allow us
to convey results in a manner that is more intuitive
and accessible.
We assess the performance of several widely

used Large Language Models (LLMs)—including
both commercial APIs and open-source models—
on the BanglaMATH dataset. Each problem in
BanglaMATH is annotated with grade-level infor-
mation, allowing us to conduct fine-grained eval-
uations similar to stating “ChatGPT scored 72 out
of 100 in a sixth-grade math exam.”
Our results show that Gemini 2.5 Flash and

DeepSeek V3 consistently achieve high perfor-
mance (accuracy ≥ 80%) across all three elemen-
tary school grade levels. We evaluate model per-
formance across varying levels of arithmetic and
reasoning complexity, and observe that accuracy
significantly decreases as problem complexity in-
creases. We also examine the robustness of these
models by injecting distracting information into
the math problems. Our findings reveal that both
of the top-performing models (Gemini 2.5 Flash
and DeepSeek V3) are easily misled by the pres-
ence of such irrelevant information, resulting in
incorrect reasoning and answers. To further in-
vestigate language bias in LLMs, we translate the
BanglaMATH dataset into English and re-evaluate
the top-performing models (Gemini 2.5 Flash and
DeepSeek V3). Interestingly, both models show
an improvement in accuracy by ≥ 6.5% when
tested on the English-translated version, highlight-
ing a performance disparity for low-resource lan-
guages like Bangla.

2 BanglaMATH Dataset

We can frame our work as being driven by the ques-
tion:

Do LLMs have the ability to perform
mathematical reasoning in Bangla?

To address this, we introduce the BanglaMATH
dataset, specifically designed to evaluate LLMs

on a diverse set of mathematical problems written
in Bangla. Our focus spans across various cate-
gories of mathematics, including Arithmetic, Alge-
bra, Geometry, and Logical Reasoning, to provide
a comprehensive assessment of LLMs’ general-
purpose reasoning and arithmetic capabilities.

2.1 Data Collection
The mathematical question dataset is compiled
from a wide range of elementary school level
sources, such as school exercise books, quizzes,
and exam equations. The original materials are pri-
marily in PDF or Microsoft Word formats. These
were converted into plain text using automated
tools where possible, with manual transcription
performed by human annotators when necessary.
Since our interest lies solely in text-based word
problems, we excluded any questions requiring vi-
sual or graphic interpretation. All collected ques-
tions undergo a rigorous pre-processing pipeline,
including de-duplication and cleaning. This is fol-
lowed by multiple rounds of human validation by
the authors to ensure the quality and accuracy of
the dataset.
Data annotation. Each problem in the dataset is

annotated with several attributes, including grade
level, answer, number of reasoning steps, expla-
nations, and the number of digits involved. We
provide a statistical summary of the BanglaMATH
benchmark dataset in Table 1.

Grade Size Steps Digits Length
Eight 516 2.19 2.26 10.17
Seven 679 1.82 2.09 8.99
Six 508 1.69 1.41 7.78

Table 1: Statistics of the BanglaMATH dataset.
“Length” denotes the average problem length in terms
of the number of words. “Steps” indicates the average
number of reasoning steps required to solve a problem.
“Digits” refers to the average number of digits involved
in each problem’s solution.

Grade. Each math problem in the dataset is an-
notated with its corresponding elementary school
grade. This information was collected while gath-
ering subsets of problems specific to each grade,
enabling more targeted and accurate grade-level
evaluation.
Ground Truth Answer. For each problem, we

also annotate the ground-truth answer. Most of the
answers are standalone numericals—integers, dec-
imals, fractions, or percentages. A small propor-

135

Figure 1: An example from the BanglaMATH dataset illustrating a discrepancy between the correct human-
provided explanation and the incorrect response generated by ChatGPT-4o (as of May 18, 2025).

tion of questions, however, have descriptive an-
swers. Among all problems, 9.63% require de-
scriptive answers, while 90.37% can be answered
with a single-word numerical response. We do not
provide the reasoning process leading to the an-
swer, as our dataset is intended solely for test pur-
poses.
Number of Steps. Additionally, for each prob-

lem, we manually annotate the number of reason-
ing steps required to solve it. For the majority of
problems, human annotators can easily reach con-
sensus on the number of steps. In a few cases,
the number of steps may vary depending on the
specific solution considered, but this ambiguity af-
fects only a small fraction of the dataset and should
not pose a significant issue. We use the number
of reasoning steps as a proxy for a problem’s com-
plexity, which reflects the level of logical analysis
and problem-solving strategies required for a lan-
guage model to arrive at the correct solution. Gen-
erally, more reasoning steps correspond to a more
intricate thought process and provide more oppor-
tunities for the model to make errors or lose track
of the problem’s structure.
Number of Digits. To determine the number of

digits, we identify the maximum base-10 length of
any number appearing in the problem using Algo-
rithm 1. Only digits 0–9 are counted; other sym-
bols, such as decimal points, percent signs, and

slashes, are ignored.

Algorithm 1 Compute Maximum Digit Count in a
Math Word Problem
1: functionmax_digit_count(problem_statement,

answer)
2: N ← extract all numbers from prob-

lem_statement as strings
3: Append str(answer) to N
4: digit_counts← [len(x) for each x ∈ N]
5: D ← max(digit_counts)
6: return D
7: end function

For example, in the problem statement shown in
Figure 1, the maximum number is 29, so the digit
count is 2. Table 2 shows the annotated samples of
BanglaMATH dataset.

3 Experimental Setup

3.1 Models

We evaluate a range of widely used LLMs capa-
ble of processing Bangla text and fine-tuned for
general-purpose reasoning tasks. These models,
developed by various organizations, differ in archi-
tecture, size, and access methods—some are avail-
able via APIs, others through open-source model
weights.

136

Table 2: Sample problems with their English translations (not part of the dataset) and human annotations. The
columns “Answer,” “#Steps,” and “#Digits” refer to the ground truth answer, number of reasoning steps, and the
maximum number of digits in the problem, respectively

Grade Question (Bangla) Question (English) Answer
(Bangla)

Answer
(English)

#Steps #Digits

6
ডাক্তার এক েরািগেক
সকাল ৬টা েথেক দুপুর
১২টা পযর্ন্ত আধ ঘন্টা
পরপর ১িট েটবেলট েখেত
বলেলন। েরাগীর েমাট
কতিট েটবেলট প্রেয়াজন?

The doctor asked a pa-
tient to take 1 tablet ev-
ery half hour from 6
AM to 12 PM. How
many tablets does the
patient need in total?

১৩ টা
13 2 2

7
একিট ৫০০ িমটার লম্বা েট্র-
েনর গিত ৬০ িকেলািমটার
হেল ,অধর্িকেলামীটার লম্বা
একিট েসতু পািড় িদেত েট্র-
নিটর কতক্ষণ সময় লাগ-
েব?

If the speed of a 500 m
long train is 60 km/h,
how much time will it
take to cross a half km
long bridge?

১ িমিনট
1 minute 2 3

8
প্রথম সাতিট েমৗিলক
সংখয্ার গড় িনণর্য় কর।
(ক) 5.60 (খ) 8.28 (গ)
7.42 (ঘ) 6.84

Find the average of the
first seven prime num-
bers. (a) 5.60 (b) 8.28
(c) 7.42 (d) 6.84

খ
B 3 1

8
যখন একিট আিটর্েকল
20% লােভ িবিক্র হয়,
তখন এিট েথেক যখন
এিট 20% হাের িবিক্র হয়
তার েচেয় 60 টাকায় েবিশ
িবিক্র হয়। আিটর্েকলিটর
দাম কত? (ক) 150 টাকা
(খ) 200 টাকা (গ) 140
টাকা (ঘ) 120 টাকা

When an article sells at
20% profit, it sells for
Rs.60 more than when
it sells at 20%. How
much does the article
cost? (a) Rs.150 (b)
Rs.200 (c) Rs.140 (d)
Rs.120

ক
A 3 3

6
েকােনা সংখয্া অেঙ্কর সা-
হােযয্ েলখােক অঙ্কপাতন
বেল?

What is Notation?
েকােনা
সংখয্া
অেঙ্কর
সাহােযয্
েলখােক
অঙ্কপাতন
বেল

system of
written
symbols
used to
represent
numbers

1 -

• GPT-4 (OpenAI, 2023) (released on March
14, 2023) is a multimodal LLM that demon-
strates human-level performance across a
range of professional and academic bench-
marks. Based on the Transformer architec-
ture, it is pre-trained to predict the next to-
ken in a sequence and is capable of analyzing,
reading, and generating up to 25,000 words
(32,768 tokens) per input. The model is esti-

mated to have 1.76 trillion parameters which
is accessible via ChatGPT Plus and the Ope-
nAI API. In this experiment, we utilized the
OpenAIAPI to access and evaluate the GPT-4
model.

• LLaMA 4 (AI, 2025) (released April 5, 2025)
is the latest model from Meta AI designed to
enable more personalized and natively mul-

137

timodal experiences. LLaMA 4 is available
in two main versions: Llama 4 Scout, a 17-
billion active parameter model with 16 ex-
perts, and Llama 4 Maverick, a 17-billion
active parameter model with 128 experts.
Llama 4 Maverick is regarded as the best
multimodal model in its class, outperforming
GPT-4o and Gemini 2.0 Flash and DeepSeek
v3 in reasoning and coding tasks. In this ex-
periment, we evaluate the Llama 4 Maverick
model using the Meta.AI 1 website.

• Gemini 2.5 Flash (Gemini Team, 2025) (re-
leased June 17, 2025) is the latest model
from Google, featuring a maximum input of
1,048,576 tokens and a default maximum out-
put of 65,535 tokens and built on a sparse
mixture-of-experts (MoE) (Clark et al., 2022)
Transformer architecture. It incorporates ad-
vanced reasoning capabilities, allowing users
to observe the model’s “thinking process” as
it generates responses. Gemini 2.5 Flash also
introduces agentic AI, supports real-time ap-
plications, and is optimized for large context
processing with up to 1 million input tokens.
The model is accessible through Google AI
Studio and Vertex AI. For this experiment, we
evaluated Gemini 2.5 Flash using the Google
AI Studio 2 platform.

• Grok 3 (released February 17, 2025) is
the latest AI model from xAI, combining
transformer-based language modeling with
symbolic reasoning modules in a 1.2 trillion
parameter architecture (Inaba et al., 2003).
Grok 3 employs 128 expert networks with dy-
namic routing, enabling specialized process-
ing for different task types while maintaining
83% parameter activation efficiency (Doshi
et al., 2023). Unlike traditional mixture-of-
experts (MoE) models, Grok 3 introduces
cross-expert attention gates, allowing knowl-
edge sharing between specialized compo-
nents without catastrophic interference. The
training corpus comprises 13.4 trillion tokens
which is accessible via official website and X.
For this experiment, we use Grok 3 through
official website3.

• DeepSeek-V3 (DeepSeek-AI et al., 2024) (re-
1https://ai.meta.com/
2https://deepmind.google/
3https://grok.com

Direct Prompting (DP)

তোমাকে একটি গণিত প্রশ্ন দেওয়া হবে বাংলায়।
প্রশ্নটি বুঝে শুধুমাত্র সেই প্রশ্নের উত্তর বাংলায় দাও।
ব্যাখ্যা, ধাপ লিখবে না — কেবলমাত্র প্রশ্নের উত্তর বাংলায়
দাও।

প্রশ্ন: {question}
উত্তর: {Answer}

Translated Prompt

You will be given a math question in Bengali.
Understand the question and provide only the
answer in Bengali.
Do not write any explanation—only give the answer

Question: {question}
Answer: {Answer}

Figure 2: Example prompt provided to the LLMs. Note
that Bengali is an alternative name for the language
Bangla.

leased December 26, 2024) is a Mixture-of-
Experts (MoE) language model with 671 bil-
lion total parameters, of which 37 billion are
activated for each token. DeepSeek-V3 uti-
lizes Multi-head Latent Attention (MLA) and
the DeepSeekMoE architecture, building on
advances from DeepSeek-V2, to enable ef-
ficient inference and cost-effective training.
The model is pre-trained on 14.8 trillion to-
kens, and optimized through supervised fine-
tuning and reinforcement learning. It can be
accessed directly via chat on the official web-
site and API through the DeepSeek Platform.
For this experiment, we evaluated DeepSeek-
V3 using the official website.

3.2 Evaluation Procedure
In our experiments, we employ a zero-shot evalua-
tion approach, refraining from using any auxiliary
prompting strategies. Each math problem is pre-
sented to the LLMs in its original Bangla text for-
mat, without any additional context, examples, or
instructions, as shown in Figure 2.
We deliberately choose zero-shot evaluation to

reflect a realistic and practical deployment sce-
nario. Since the LLMs considered in this study
are fine-tuned for general-purpose use and are de-
signed to function out-of-the-box, we argue that
zero-shot evaluation offers a more reliable mea-
sure of their baseline capabilities.

138

Finally, we calculate accuracy scores as part of
our evaluation. To assess performance, we extract
the numerical answer(s) generated by the model
and compare with the annotated ground truth an-
swers. We also conduct manual verification of
the LLM-generated outputs and their correspond-
ing ground truth answers to ensure the accuracy
of our evaluation, and to account for possible for-
matting inconsistencies or ambiguities in the re-
sponses. An LLM response is marked correct if
there is an exact numerical match for single-word
numerical responses, or if descriptive answers are
judged to be similar in meaning.

4 Result and Analysis

4.1 Grade level accuracy

The test results 4 are presented in Figure 3, illustrat-
ing the accuracy of each model. A notable down-
ward trend in accuracy can be observed, indicating
that the performance of all models declines when
grade level is increased. Although this outcome
is somewhat anticipated, given that higher grade
math problems generally present greater difficulty,
it is still surprising to observe that half of the mod-
els struggle even at grade 6. Among the mod-
els, DeepSeek V3 and Gemini 2.5 Flash emerge as
the models achieving consistent success—defined
as accuracy exceeding 80%—across all question
types.
LLaMA 4 demonstrates strong performance on

grade 6, but struggles with grades 7 and 8. Grock
3 succeeds in grades six and seven (accuracy ex-
ceeding 70%) but fails for grade eight. GPT-4
fails across all grades, having accuracy less than
70%. For certain math problems, all five mod-
els fail to produce the correct answer. Appendix
A.2 presents examples where the responses from
all five LLMs do not match the annotated ground
truth.
Overall, the results reveal that although these

math word problems are considered relatively sim-
ple for an average human adult, they continue
to pose significant challenges for general-purpose
open-source LLMs, particularly when presented in
Bangla.

4.2 Arithmetic Complexity

We examine how arithmetic complexity affects the
ability of LLMs to solve elementary math word

4Results are obtained early June, 2025.

Six Seven Eight
Grade

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
) 77.3 73.1

68.167.4 64.7 62.3

82.2 78.8 77.6
86.9 85.6 81.082.2 81.3 80.3

grok 3
gpt 4o

Llama 4 Maverick
Gemini 2.5 Flash

DeepSeek V3

Figure 3: Average test accuracy of LLMs mathematical
reasoning on the BanglaMATH dataset for grades 6, 7,
and 8

problems. During annotation, we focus on arith-
metic complexity of math problems, approximated
by the maximum number of digits in the numbers
involved. Intuitively, higher arithmetic or reason-
ing complexity should make problems more diffi-
cult and reduce model accuracy.

0 1 2 3 4 5
Number of Digits

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

grok 3
gpt 4o
Llama 4 Maverick
Gemini 2.5 Flash
DeepSeek V3

Figure 4: Average test accuracy for each LLM on the
BanglaMATH dataset, based on the number of digits in
the problem.

In Figure 4, we show the average test accuracy
of each model on BanglaMATH, grouped by the
number of digits in the problems. We observe that
as the number of digits increases, the accuracy for
all models drops. For problems involving zero
to two digits, DeepSeek-V3, Gemini 2.5 Flash,
and LLaMA 4 achieve over 80% accuracy. How-
ever, for Grok 3 and GPT-4, accuracy falls below
70% once problems require more than two-digit
arithmetic. The lowest accuracies are seen with
five-digit problems: among all model DeepSeek-
V3 and Gemini 2.5 Flash achieving highest ac-
curacy ≈ 75% while GPT-4 accuracy lowest ac-
curacy 58.13%. Overall, the trend clearly shows
that LLMs make more mistakes as the arithmetic
complexity, measured by the number of digits, in-

139

creases.

4.3 Reasoning Complexity

1 2 3 4
Number of Steps

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

grok 3
gpt 4o
Llama 4 Maverick
Gemini 2.5 Flash
DeepSeek V3

Figure 5: Average test accuracy for each LLM on the
BanglaMATH dataset, based on the number of reason-
ing steps required to solve each problem.

To evaluate how reasoning complexity influ-
ences the ability of state-of-the-art LLMs to solve
math problems, we determined the number of rea-
soning steps required to solve each problem during
the annotation process. Naturally, problems that
require a higher number of steps are considered to
have greater reasoning complexity.
As shown in Figure 5, model performance drops

significantly as reasoning complexity increases.
When a problem requires only one or two reason-
ing steps, all LLMs perform consistently well, with
accuracy > 70%. However, for problems requir-
ing four or more reasoning steps, the accuracy of
all models falls below< 50%. This pattern clearly
demonstrates that LLMs are much more likely to
make mistakes as reasoning complexity increases.

4.4 Robustness

0 1 2 3 4
Number of Distractors

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Gemini 2.5 Flash
DeepSeek-V3

Figure 6: Test accuracy for two LLMs (Gemini 2.5
Flash and Deepseeks v3) against the number of distrac-
tors on the subset of BanglaMATH dataset.

We evaluate the robustness of the two top-

performing LLMs (Gemini 2.5 Flash and
DeepSeek V3) against irrelevant information.
Here, irrelevant information refers to details that
are related to the context of the problem but
are inconsequential to its solution. This type of
robustness is especially important, as real-world
problems rarely appear in an idealized form where
all provided information is necessary. Therefore,
it is essential for LLMs to distinguish relevant
from irrelevant information and use only the
pertinent details to arrive at a correct solution. To
test this ability, we manually construct a small
distractor dataset containing 60 examples—20
from each grade level. Each example consists
of an original problem along with four modified
versions that include 1 to 4 pieces of irrelevant
information, referred to as distractors. Each dis-
tractor includes exactly one number and integrates
seamlessly into the original problem context,
making it appear contextually appropriate. We
test both models on this distractor dataset and
observe a significant drop in performance as
the number of distractors increases (see Figure
6). Both models experience an accuracy drop of
approximately 20% when only two distractors
are added. Notably, DeepSeek V3 suffers more
degradation than Gemini 2.5 Flash when the
number of distractors exceeds two.
In Appendix A.1, Table 3 shows examples of the

models’ responses to distractor-augmented prob-
lems and reveal that the models behave differently
in the presence of irrelevant information. Both
models adjust their reasoning based solely on the
added irrelevant details, often leading to incorrect
conclusions. Based on these results, we conclude
that neither model demonstrates strong robustness
to irrelevant information. This exposes a critical
weakness: even advanced LLMs struggle to filter
out distractions, highlighting the ongoing need for
improved contextual understanding in real-world
problem-solving tasks.

4.5 Language Bias
LLMs often exhibit decreased performance when
operating in languages other than English (Dey
et al., 2024). To investigate potential bias toward
low-resource languages like Bangla, we conducted
an experiment using a subset of 60 samples as
distractor dataset from the BanglaMATH dataset.
Each mathematical question was translated from
Bangla to English, and we evaluated the perfor-
mance of Gemini 2.5 Flash and DeepSeek V3

140

Gemini 2.5 Flash DeepSeek-V3
0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

88.1%
95.0%

86.7%
93.2%

+6.9% +6.5%

Math Problem in Bangla
Math Problem Translated in English

Figure 7: Test accuracy of Gemini 2.5 Flash and
DeepSeek V3 on BanglaMATH subset, comparing orig-
inal Bangla problems and English translations.

on both the original and translated versions. As
shown in Figure 7, both models demonstrate a per-
formance improvement of approximately 6.5% af-
ter translation. Notably, Gemini 2.5 Flash consis-
tently outperforms DeepSeek V3 in both Bangla
and English versions. However, the substantial
accuracy gain following translation underscores
a significant language bias—revealing that these
LLMs reason more effectively in English than in
Bangla. This disparity highlights a critical short-
coming: current LLMs trained on low-resource
languages like Bangla do not yet match their
English-language capabilities. Our findings em-
phasize the urgent need to enhance the mathemati-
cal reasoning abilities of LLMs across diverse lin-
guistic contexts, especially for underrepresented
and low-resource languages.

5 Related Works

Math-related datasets are available predominantly
in English (Hendrycks et al., 2021; Amini et al.,
2019; Cobbe et al., 2021), making them unsuitable
for evaluating the reasoning abilities of LLMs in
Bangla. Traditional math word problem (MWP)
datasets like AddSub (Hosseini et al., 2014) and
MultiArith (Roy and Roth, 2016) are integrated
into broader MWP repositories. Other simi-
lar datasets include SingleEq (Koncel-Kedziorski
et al., 2015), AQUA (Ling et al., 2017), and AsDiv
(Miao et al., 2020). GSM8K (Clark et al., 2022)
and SVAMP (Patel et al., 2021) take advantage of
detailed annotations and have prevailed in recent
evaluations of LLMs. Similarly, MATH dataset

(Hendrycks et al., 2021), which collects problems
from American high school mathematics compe-
titions and categorizes them into seven subjects:
Pre-algebra, Algebra, Number Theory, Counting
and Probability, Geometry, Intermediate Algebra,
and Pre-calculus. However, these problems are ex-
tremely challenging—even for humans, the accu-
racy rate is only 40%. Given that many LLMs are
still in early stages, using overly difficult problems
may have limited utility in evaluating their capabil-
ities.
Other than English, several Chinese and a Hindi

(Sharma et al., 2022) math-related datasets ex-
ist. AGI-Eval (Zhong et al., 2023) and C-Eval
(Huang et al., 2023) target general-purpose, multi-
disciplinary evaluation for LLMs and contain sub-
sets specifically designed to assess mathematical
abilities. The math problems in these datasets
range from middle school to college level and
are often quite complex. Similarly, Math23K
(Wang et al., 2017) and APE210K (Zhao et al.,
2020), CMATH (Wei et al., 2023) and K6 (Yang
et al., 2023), comprise elementary school-level
math word problems. CMATH and K6, are two
datasets that are relatively similar to ours and are
developed concurrently. Both focus on math word
problems from elementary school and organize in-
stances by grade level.
Our work is most direclty inspired by the

CMATH dataset, which contains 1.7K problems
collected from onlineworkbooks and exams, while
K6 comprises 600 problems collected from an ed-
ucational institution. However, neither of these
two datasets has been publicly released, which pre-
vents us from conducting an empirical compari-
son with them. Additionally, APE210K, contains
an enormous 210K Chinese math word problems
from elementary school. Its test set alone includes
as many as 5,000 problems. However, the test sets
do not provide annotations specific to LLM evalu-
ation.

6 Conclusion

We have introduced BanglaMATH, a novel dataset
designed to enable fine-grained evaluation of
Large Language Models (LLMs) on elementary-
level mathematical word problems in Bangla. To
the best of our knowledge, BanglaMATH is the
first Bangla mathematical benchmark dataset de-
signed to help evaluate the mathematical reason-
ing abilities of LLMs. Our results show that

141

https://ai.meta.com/blog/llama-4-multimodal-intelligence/?utm_source=twitter&utm_medium=organic_social&utm_content=image&utm_campaign=llama4
https://ai.meta.com/blog/llama-4-multimodal-intelligence/?utm_source=twitter&utm_medium=organic_social&utm_content=image&utm_campaign=llama4

BanglaMATH poses a significant challenge even
for state-of-the-art LLMs, with performance de-
clining as the grade level increases. Addition-
ally, we observe that as the arithmetic and reason-
ing complexity of problems increases, the accu-
racy of all evaluated models decreases. Our ro-
bustness analysis reveals that top-performing mod-
els such as Gemini 2.5 Flash and DeepSeek V3
struggle when faced with irrelevant or distracting
information, highlighting a vulnerability in real-
world problem comprehension. Furthermore, we
uncover a clear language bias—performance im-
proves when Bangla problems are translated into
English. This suggests that current LLMs are less
effective at reasoning in low-resource languages
like Bangla compared to English. We believe
BanglaMATH can serve as a valuable benchmark
for advancing non-English mathematical reason-
ing research, and help evaluate the cross-linguistic
mathematical reasoning capabilities of LLMs.

7 Limitations

While we have made a strong effort to evaluate the
Bangla mathematical reasoning abilities of vari-
ous LLMs, due to budget constraints and restricted
API access, we are unable to assess all available
LLMs. We encourage future work to expand on
this study by including a broader range of mod-
els, especially as more open-source and multilin-
gual LLMs become accessible. Our focus in this
work is on evaluating mathematical understand-
ing and the results underscore that mathematical
reasoning—particularly in non-English contexts
and in the presence of real-world distractions—
remains a significant challenge, even for state-of-
the-art models. We hope that BanglaMATH serves
as a valuable resource for future research aimed
at improving multilingual mathematical reasoning
and helps guide the development of LLMs that
are robust, linguistically inclusive, and capable of
solving real-world math problems effectively.

8 Ethics Statement

All problems in the BanglaMATH dataset are
based on publicly available elementary school-
level materials. No human subjects or sensitive
data were involved during the annotation process;
all annotations rely solely on the authors’ judg-
ment. We acknowledge that certain labels, such as
the number of steps in a solution, may vary based
on individual interpretation. We ensure responsi-

ble use of LLMs and adhere to ethical guidelines
in data handling and model evaluation.

References
Meta AI. 2025. The Llama 4 herd: The begin-
ning of a new era of natively multimodal AI
innovation. https://ai.meta.com/blog/llama-4-
multimodal-intelligence/?utm_source=twitter&
utm_medium=organic_social&utm_content=
image&utm_campaign=llama4. Released April
2025. Accessed: July 2025.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. MathQA: Towards interpretable math word
problem solving with operation-based formalisms.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with GPT-4. arXiv
preprint arXiv:2303.12712.

A. Clark, D. de las Casas, A. Guy, A. Mensch,
M. Paganini, J. Hoffmann, B. Damoc, B. Hechtman,
T. Cai, S. Borgeaud, G. van den Driessche, E. Ruther-
ford, T. Hennigan, M. Johnson, K. Millican, A. Cas-
sirer, C. Jones, E. Buchatskaya, D. Budden, and 7
others. 2022. Unified scaling laws for routed lan-
guage models. arXiv preprint arXiv:2202.01169.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bing-Li
Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai
Dai, Daya Guo, Dejian Yang, Deli Chen, Dong-Li
Ji, Erhang Li, Fangyun Lin, Fucong Dai, and 179
others. 2024. DeepSeek-V3 technical report. ArXiv,
abs/2412.19437.

Naihao Deng, Zhenjie Sun, Ruiqi He, Aman Sikka, Yu-
long Chen, Lin Ma, Yue Zhang, and Rada Mihalcea.
2024. Tables as images? Exploring the strengths and
limitations of LLMs on multimodal representations
of tabular data. arXiv preprint arXiv:2402.12424.

Krishno Dey, Prerona Tarannum, Md. Arid Hasan, Im-
ran Razzak, and Usman Naseem. 2024. Better to
ask in English: Evaluation of large language models
on English, low-resource and cross-lingual settings.
ArXiv, abs/2410.13153.

142

https://ai.meta.com/blog/llama-4-multimodal-intelligence/?utm_source=twitter&utm_medium=organic_social&utm_content=image&utm_campaign=llama4
https://ai.meta.com/blog/llama-4-multimodal-intelligence/?utm_source=twitter&utm_medium=organic_social&utm_content=image&utm_campaign=llama4
https://arxiv.org/abs/2202.01169
https://api.semanticscholar.org/CorpusID:275118643
https://api.semanticscholar.org/CorpusID:273404215
https://api.semanticscholar.org/CorpusID:273404215
https://api.semanticscholar.org/CorpusID:273404215
https://api.semanticscholar.org/CorpusID:264406083
https://api.semanticscholar.org/CorpusID:264406083
https://api.semanticscholar.org/CorpusID:264406083
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://api.semanticscholar.org/CorpusID:428579
https://api.semanticscholar.org/CorpusID:428579
https://api.semanticscholar.org/CorpusID:258685666
https://api.semanticscholar.org/CorpusID:258685666
https://api.semanticscholar.org/CorpusID:258685666
https://api.semanticscholar.org/CorpusID:61598070
https://api.semanticscholar.org/CorpusID:61598070
https://api.semanticscholar.org/CorpusID:61598070
https://api.semanticscholar.org/CorpusID:4894130
https://api.semanticscholar.org/CorpusID:12777818
https://api.semanticscholar.org/CorpusID:12777818
https://api.semanticscholar.org/CorpusID:220047831
https://api.semanticscholar.org/CorpusID:220047831
https://openai.com/research/gpt-4

Darshil Doshi, Aritra Das, Tianyu He, and Andrey Gro-
mov. 2023. To grok or not to grok: Disentangling
generalization and memorization on corrupted algo-
rithmic datasets. ArXiv, abs/2310.13061.

Google Gemini Team. 2025. Gemini 2.5: Pushing
the frontier with advanced reasoning, multimodal-
ity, long context, and next generation agentic capa-
bilities. https://storage.googleapis.com/deepmind-
media/gemini/gemini_v2_5_report.pdf. Released
June 17, 2025. Accessed: July 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. arXiv preprint
arXiv:2103.03874.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning to
solve arithmetic word problemswith verb categoriza-
tion. In Conference on Empirical Methods in Natu-
ral Language Processing.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Fanchao
Qi, Yao Fu, Maosong Sun, and Junxian He. 2023.
C-Eval: A multi-level multi-discipline Chinese
evaluation suite for foundation models. ArXiv,
abs/2305.08322.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. In Proceedings of the Association
for Computational Linguistics (ACL), pages 37--42.

Tsuneo Inaba, Kenji Tsuchida, Tadahiko Sugibayashi,
Shuichi Tahara, and Hiroaki Yoda. 2003. Resistance
ratio read (R/sup 3/) architecture for a burst oper-
ated 1.5V MRAM macro. Proceedings of the IEEE
2003 Custom Integrated Circuits Conference, 2003.,
pages 399--402.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585--597.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Annual Meeting of the Association for
Computational Linguistics.

Siyang Liu, Naihao Deng, Sahand Sabour, Yilin Jia,
Minlie Huang, and Rada Mihalcea. 2023. Task-
adaptive tokenization: Enhancing long-form text
generation efficacy in mental health and beyond.
In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 15264--15281, Singapore. Associ-
ation for Computational Linguistics.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and develop-
ing English math word problem solvers. In Annual
Meeting of the Association for Computational Lin-
guistics.

OpenAI. 2023. Gpt-4 technical report. Technical re-
port, OpenAI.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter
Welinder, Paul F. Christiano, Jan Leike, and Ryan
Lowe. 2022. Training language models to follow
instructions with human feedback. In Advances in
Neural Information Processing Systems (NeurIPS).

Arkil Patel, S. Bhattamishra, and Navin Goyal. 2021.
Are NLP models really able to solve simple math
word problems? In North American Chapter of the
Association for Computational Linguistics.

Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, and 1 others. 2023. Mathematical discover-
ies from program search with large language models.
Nature, pages 1--3.

Subhro Roy and Dan Roth. 2016. Solving general arith-
metic word problems. ArXiv, abs/1608.01413.

Harshita Sharma, Pruthwik Mishra, and Dipti Misra
Sharma. 2022. HAWP: A dataset for Hindi arith-
metic word problem solving. In International Con-
ference on Language Resources and Evaluation.

Ross Taylor, Marcin Kardas, Guillem Cucurull,
Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic.
2022. Galactica: A large language model for
science. arXiv preprint arXiv:2211.09085.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Con-
ference on Empirical Methods in Natural Language
Processing.

Tianwen Wei, Jian Luan, W. Liu, Shuang Dong, and
Bin Quan Wang. 2023. CMATH: Can your lan-
guage model pass chinese elementary school math
test? ArXiv, abs/2306.16636.

Yufan Wu, Yinghui He, Yilin Jia, Rada Mihalcea, Yu-
long Chen, and Naihao Deng. 2023. HiToM: A
benchmark for evaluating higher-order theory of
mind reasoning in large language models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 10691--10706, Singapore.
Association for Computational Linguistics.

143

https://api.semanticscholar.org/CorpusID:232223322
https://api.semanticscholar.org/CorpusID:232223322
https://api.semanticscholar.org/CorpusID:232223322
https://api.semanticscholar.org/CorpusID:560565
https://api.semanticscholar.org/CorpusID:560565
https://api.semanticscholar.org/CorpusID:252357293
https://api.semanticscholar.org/CorpusID:252357293
https://api.semanticscholar.org/CorpusID:910689
https://api.semanticscholar.org/CorpusID:910689
https://api.semanticscholar.org/CorpusID:259287423
https://api.semanticscholar.org/CorpusID:259287423
https://api.semanticscholar.org/CorpusID:261582750
https://api.semanticscholar.org/CorpusID:261582750
https://api.semanticscholar.org/CorpusID:258108259
https://api.semanticscholar.org/CorpusID:258108259
https://api.semanticscholar.org/CorpusID:258108259
https://arxiv.org/abs/2309.01686
https://arxiv.org/abs/2309.01686

Z. Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Ze-
hai He, Yuyi Guo, Jinfeng Bai, and Jie Tang. 2023.
GPT can solve mathematical problems without a cal-
culator. ArXiv, abs/2309.03241.

Beichen Zhang, Kun Zhou, Xilin Wei, Wayne Xin
Zhao, Jing Sha, Shijin Wang, and Ji-Rong Wen.
2023a. Evaluating and improving tool-augmented
computation-intensive math reasoning. arXiv
preprint arXiv:2306.02408.

Mengxue Zhang, Zichao Wang, Zhichao Yang, Weiqi
Feng, andAndrew S. Lan. 2023b. Interpretable math
word problem solution generation via step-by-step
planning. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 6858--6877.

Wei Zhao, Mingyue Shang, Yang Liu, LiangWang, and
Jingming Liu. 2020. APE210K: A large-scale and
template-rich dataset ofmathword problems. InPro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo
Liang, Shuai Lu, Yanlin Wang, Amin Saied Sanosi
Saied,Weizhu Chen, andNanDuan. 2023. AGIEval:
A human-centric benchmark for evaluating founda-
tion models. In NAACL-HLT.

Zihao Zhou, Qiufeng Wang, Mingyu Jin, Jie Yao,
Jianan Ye, Wei Liu, Wei Wang, Xiaowei Huang,
and Kaizhu Huang. 2023. MathAttack: Attacking
large language models towards math solving ability.
CoRR, abs/2309.01686.

144

A Appendix

A.1 Model Responses Under Distractor Augmentation

Table 3: Math problem with increasing distractors and model responses from Gemini 2.5 Flash and DeepSeek V3.
The “# Distractor” column shows how many irrelevant phrases were added. The first row is the original problem;
subsequent rows include 1–4 distractors. The table compares how Gemini Flash 2.5 and DeepSeek V3 reasoning
changes with added distractions.

#
Distractors

Math Problem Gemini Flash 2.5
Response

DeepSeek V3
Response

0
েখলনা গািড় িনেয় েখলার সময় িমনু্ট েদখেলা ,
েসনু্টর গািড়র সংখয্া তার েচেয় েবিশ এবং েসনু্ট
েক বলেলা, তুিম আমােক দুইটা গািড় দাও তাহেল
আমােদর গািড়র সংখয্া সমান হেব ।েসনু্ট উেল্টা
েজাড় কের িমনু্টর েথেক ২িট গািড় িনেয় িহসাব
কের বলল তার গািড়র সংখয্া এখন িমনু্টর িদ্বগুণ
। শুরুেত কার কয়িট গািড় িছল ?
Mintu saw that Sentu had more toy cars
than him. He said, “Give me 2 cars and
we’ll have the same number.” Sentu in-
stead took 2 cars from Mintu and said,
“Now I have double the cars you have.”
What were their original counts?

Answer: Mintu had 10
cars, Sentu had 14.
Reasoning: Because
if Sentu gave 2 cars,
both would have 12;
if Sentu took 2 cars,
he would have 16 and
Mintu 8 — and 16 = 2
× 8.

Answer:Mintu:
10, Sentu: 14
Reasoning: If
Sentu gives
2 cars, both
have 12; if
Sentu takes 2,
he has 16 and
Mintu 8 → 16
= 2×8

1
"েখলনা গািড় িনেয় েখলার সময় িমনু্ট েদখেলা ,
েসনু্টর গািড়র সংখয্া তার েচেয় েবিশ এবং েসনু্ট
েক বলেলা, তুিম আমােক দুইটা গািড় দাও তাহেল
আমােদর গািড়র সংখয্া সমান হেব ।েসনু্ট উেল্টা
েজাড় কের িমনু্টর েথেক ২িট গািড় িনেয় িহসাব
কের বলল তার গািড়র সংখয্া এখন িমনু্টর িদ্বগুণ
।তােদর েমাট েখলনা গািড়র সংখয্া ২৫িটর কম
িছল। শুরুেত কার কয়িট গািড় িছল ?
Mintu saw that Sentu had more toy cars
than him. He said, Give me 2 cars and
we’ll have the same number. Sentu in-
stead took 2 cars from Mintu and said,
Now I have double the cars you have.
“The total number of toy cars was less than
25 ". What were their original counts?

Answer: Mintu had 6
cars, Sentu had 10
Reasoning: Mintu ini-
tially had 6 cars and
Sentu had 10 — their
total is 16, which is
less than 25, this is the
only pair that satisfies
both conditions.

Answer:Mintu:
10, Sentu: 14
Reasoning:
Although the
total is 24,
this is the
only pair that
satisfies both
conditions, so
unchanged

145

2
েখলনা গািড় িনেয় েখলার সময় িমনু্ট েদখেলা ,
েসনু্টর গািড়র সংখয্া তার েচেয় েবিশ এবং েসনু্ট
েক বলেলা, তুিম আমােক দুইটা গািড় দাও তাহেল
আমােদর গািড়র সংখয্া সমান হেব ।েসনু্ট উেল্টা
েজাড় কের িমনু্টর েথেক ২িট গািড় িনেয় িহসাব
কের বলল তার গািড়র সংখয্া এখন িমনু্টর িদ্বগুণ
। তােদর েমাট েখলনা গািড়র সংখয্া ২৫িটর কম
িছল। প্রিতিট গািড়র দাম িছল ৩০ টাকা।শুরুেত
কার কয়িট গািড় িছল ?
Mintu saw that Sentu had more toy cars
than him. He said, Give me 2 cars and
we’ll have the same number. Sentu in-
stead took 2 cars from Mintu and said,
Now I have double the cars you have. “
The total number of toy cars was less than
25. Each car cost 30 Taka.” What were
their original counts?

Answer: Mintu had 6
cars, Sentu had 10
Reasoning:The price
is irrelevant; since the
number conditions
match, the answer
remains unchanged.

Answer:Mintu:
10, Sentu: 14
Reasoning:
Price or total
cost does not
affect the
logic; the pre-
vious answer
remains valid

3
েখলনা গািড় িনেয় েখলার সময় িমনু্ট েদখেলা ,
েসনু্টর গািড়র সংখয্া তার েচেয় েবিশ এবং েসনু্ট
েক বলেলা, তুিম আমােক দুইটা গািড় দাও তাহেল
আমােদর গািড়র সংখয্া সমান হেব ।েসনু্ট উেল্টা
েজাড় কের িমনু্টর েথেক ২িট গািড় িনেয় িহসাব
কের বলল তার গািড়র সংখয্া এখন িমনু্টর িদ্বগুণ
। তােদর েমাট েখলনা গািড়র সংখয্া ২৫িটর কম
িছল। প্রিতিট গািড়র দাম িছল ৩০ টাকা।তারা প্র-
িতিদন ৩ ঘণ্টা েখলনা গািড় িদেয় েখেল। শুরুেত
কার কয়িট গািড় িছল ?
Mintu saw that Sentu had more toy cars
than him. He said, Give me 2 cars and
we’ll have the same number. Sentu in-
stead took 2 cars from Mintu and said,
Now I have double the cars you have. “
The total number of toy cars was more
than 25. Each car cost 30 Taka.They play
3 hours a day with the cars ". What were
their original counts?

Answer: Mintu had 6
cars, Sentu had 10
Reasoning:playing
time is irrelevant; the
answer is based solely
on the car count logic.
Price or total cost does
not affect the logic;
the previous answer re-
mains valid

Answer:Mintu:
10, Sentu: 14
Reasoning:
Playing time
is irrelevant;
the answer is
determined by
the number
logic alone

146

4
েখলনা গািড় িনেয় েখলার সময় িমনু্ট েদখেলা ,
েসনু্টর গািড়র সংখয্া তার েচেয় েবিশ এবং েসনু্ট
েক বলেলা, তুিম আমােক দুইটা গািড় দাও তাহেল
আমােদর গািড়র সংখয্া সমান হেব ।েসনু্ট উেল্টা
েজাড় কের িমনু্টর েথেক ২িট গািড় িনেয় িহসাব
কের বলল তার গািড়র সংখয্া এখন িমনু্টর িদ্বগুণ
। তােদর েমাট েখলনা গািড়র সংখয্া ২৫িটর কম
িছল। প্রিতিট গািড়র দাম িছল ৩০ টাকা।তারা প্র-
িতিদন ৩ ঘণ্টা েখলনা গািড় িদেয় েখেল।তােদর
েখলনা গািড়র সংগ্রেহ ১০িট িবিভন্ন মেডল িছল।
শুরুেত কার কয়িট গািড় িছল ?
Mintu saw that Sentu had more toy cars
than him. He said, Give me 2 cars and
we’ll have the same number. Sentu in-
stead took 2 cars from Mintu and said,
Now I have double the cars you have.
“The total number of toy cars was more
than 25. Each car cost 30 Taka.They play
3 hours a day with the cars.Their collec-
tion included 10 different models ". What
were their original counts?

Answer:Insufficient
Information
Reasoning: The given
information in this
problem makes it
impossible to confirm
solutions.

Answer:Mintu:
6, Sentu: 14

Reasoning:
new condi-
tion (number
of models)
suggests a
different
solution

A.2 LLM Response

Table 4: Example math problems from the BanglaMATH dataset where all LLMs provide incorrect answers.

Questions
(Bangla)

Answer
(Bangla)

Math Prob-
lem (En-
glish)

Answer
(English)

GPT-
4

LLaMA Gemini
2.5
Flash

Deep
Seek-
V3

grok
3

১০ বছর পূেবর্
িমিল ও পু-
ষ্পার বয়েসর
অনুপাত িছল
৭:১। বতর্ মােন
তােদর বয়েসর
অনুপাত িছল
৩:১। ১৬ বছর
পূেবর্ িমিল ও
পুষ্পার বয়েসর
অনুপাত কত?

১৬ বছর
পূেবর্ পুষ্পার
জন্ম হয়িন

10 years ago,
the ratio of
Mili and
Pushpa’s
ages was 7:1.
At present,
their age
ratio is 3:1.
What was
their age
ratio 16 years
ago?

Pushpa
was not
born 16
years ago

16:1 13:1 13:1 5:1 5:1

147

পিনর ও রিব-
েনর আেয়র
অনুপাত ৪:৩,
রিবন ও তপ-
েনর অনুপাত
৫:৪। পিনেরর
আয় ১২০০০
টাকা হেল,
িতনজেনর
েমাট আয় কত?

২৮২০০ টা-
কা

The income
ratio of Ponir
and Robin
is 4:3, and
the ratio of
Robin and
Topon is 5:4.
If Ponir’s
income is
12,000 Taka,
what is the
total income
of the three?

28,200
Taka

39,600
Tk.

31,200
Tk.

26,100
Tk.

31,200
Tk

22,500
Tk

েখলনা গািড়
িনেয় েখলার
সময় িমনু্ট েদ-
খেলা, েসনু্টর
গািড়র সংখয্া
তার েচেয়
েবিশ। েসনু্টেক
বলেলা, তুিম
আমােক দুইটা
গািড় দাও তা-
হেল আমােদর
গািড়র সংখয্া
সমান হেব।
েসনু্ট উেল্টা
েজাড় কের
িমনু্টর েথেক
২িট গািড় িনেয়
বলল তার
গািড়র সংখয্া
এখন িমনু্টর
িদ্বগুণ। শুরুেত
কার কয়িট
গািড় িছল?

েসনু্টর
িছল ১০িট,
িমনু্টর িছল
১৪িট েখ-
লনা গািড়

While play-
ing with toy
cars, Mintu
noticed that
Sentu had
more cars
than him.
Mintu said,
“If you give
me two cars,
we’ll have
the same
number.”
Sentu instead
forcibly took
two cars
from Mintu
and said,
“Now I have
double the
cars you
have.” How
many toy
cars did
each have
originally?

Sentu had
10, Mintu
had 14 toy
cars

Mintu
had
6,
Shentu
had
10
cars

Mintu
had 14,
Shentu
had 18
cars

Mintu
had 6,
Shentu
had 10
cars

Mintu
had
6,
Shentu
had
10
cars

Mintu
had
6,
Shentu
had
10
cars
.

148

েকান একিট
িবেয়র অনুষ্ঠােন
রান্না করেত
বাবুির্চ​ ও তার
সহকমীর্ েমাট
৪০০িট েপঁয়াজ
কােটন। বাবুির্চ​
প্রিত িমিনেট
অন্তত ৩িট েপঁ-
য়াজ এবং তার
সহকমীর্ প্রিত
িমিনেট অন্তত
২িট েপঁয়াজ
কাটেত পাের।
যিদ বাবুির্চ​
তার সহকমীর্র
েচেয় ২৫ িমিনট
আেগ েপঁয়াজ
কাটা বন্ধ কের,
তেব েক কতিট
েপঁয়াজ েকেট-
িছল আর কার
কতক্ষণ সময়
েলেগিছল?

বাবুচীর্ ৭০
িমিনেট
২১০িট,
সহকারী
৯৫ িমিনেট
১৯০িট

At a wedding
ceremony,
a chef and
his assistant
together cut
400 onions.
The chef can
cut at least
3 onions per
minute, and
the assistant
at least 2
onions per
minute. If the
chef stopped
cutting 25
minutes
before the
assistant did,
how many
onions did
each cut and
how long did
they work?

Chef: 210
onion
(70 min),
Assistant:
190 onion
(95 min)

Chef:
240
onion
As-
sis-
tant:
160
onion

Chef:
240
onion
Assis-
tant:
160
onion

Chef:
175
onion
Assis-
tant:
240
onion

Chef:
240
onion
As-
sis-
tant:
160
onion

Chef:
240
onion
As-
sis-
tant:
160
onion

কািরম সােহ-
েবর ৩ পুত্র
এবং প্রথম ২
জন যমজ। ৩
পুেত্রর বতর্ মান
বয়েসর সমষ্টি
২৯ বছর।
৬ বছর পূেবর্
তােদর বয়েসর
সমষ্টি িছল ১২
বছর। পুত্রেদর
বতর্ মান বয়স
কত?

১২, ১২, ৩
বছর

Mr. Karim
has three
sons, the first
two are twins.
The sum of
their current
ages is 29
years. Six
years ago,
the sum of
their ages
was 12 years.
What are
their current
ages?

12, 12,
and 3
years old

10,10,
9

5,5,10 9,9 ,11 10,10,
9

12,12,
5

149

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 150–167
November 9, 2025 ©2025 Association for Computational Linguistics

Logically Constrained Decoding

Franklin Ma and Alan J. Hu
Department of Computer Science
University of British Columbia

franklin.ma@ubc.ca, ajh@cs.ubc.ca

Abstract

Constrained decoding is a state-of-the-art tech-
nique for restricting the output of a Large Lan-
guage Model (LLM) to obey syntactic rules,
e.g., a regular expression or context-free gram-
mar. In this paper, we propose a method for
extending constrained decoding beyond syn-
tactic constraints, to enforcing formal, logical
constraints that reflect some world model be-
ing reasoned about. We demonstrate proof-of-
concept implementations for the game of chess,
and for propositional resolution proofs: we con-
strain the LLM’s decoding such that the LLM is
free to output whatever tokens it wants, as long
as it does not make illegal moves (chess) or un-
sound proof steps (resolution). We believe this
technique holds promise for improving LLMs’
generation of precise, formal reasoning, as is
particularly necessary for mathematics.

1 Introduction

Proof is the quintessential distinguishing feature
of mathematical discourse. Like other forms of
argumentation, the statements in a proof must be
syntactically correct and semantically meaningful,
and the overall text should lead to the desired con-
clusion. What makes proofs distinctive is that each
statement must be sound, i.e., it must obey formal
logical rules with respect to the preceding state-
ments. This is akin to the moves in a game or
puzzle: each step must be a legal move. Many
applications require such precise, correct, logical
reasoning, underscoring the importance of research
on NLP for mathematics.

Large Language Models (LLMs) have made ex-
traordinary progress on mathematical reasoning,
e.g., both OpenAI and Google DeepMind recently
announced gold-medal-level performance on Inter-
national Math Olympiad problems (Wei, 2025; Lu-
ong and Lockhart, 2025). However, even leading-
edge frontier models frequently make mistakes.
In this paper, we do not concern ourselves with

8 0Z0Z0Z0Z
7 S0a0skop
6 0ZpZ0o0Z
5 ZpZ0Z0Z0
4 0O0Z0Z0Z
3 ZpONZ0O0
2 0Z0Z0O0O
1 Z0Z0ZKZ0

a b c d e f g h

Figure 1: ChatGPT-5 (White) is playing against Stock-
fish 17.1 (Black). On move 30, White attempts Rxe7+
(shown in blue), i.e., taking Black’s rook at e7 and at-
tacking Black’s king with White’s rook at a7. This is
illegal as Black’s bishop on c7 is in the way.

wild hallucinations, but rather focus on formally
invalid reasoning: statements that, given the pre-
cise logic of the world model underlying the rea-
soning, are illegal or incorrect. For example, we
pitted ChatGPT-5 against the well-known chess en-
gine Stockfish (Romstad et al., 2008–present) in
a casual game.1 ChatGPT played a solid opening,
but stumbled a bit in the mid-game, reaching the
position shown in Fig. 1 with ChatGPT (White)
to play its 30th move. At this point, ChatGPT
attempted a flagrantly illegal move, presumably

1The details of the game are unimportant, but for the cu-
rious: We used Stockfish version 17.1, with default settings
except a depth-limit of 15. ChatGPT-5 played White, and
Stockfish played Black. The moves played were: 1. e4 e5 2.
Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Nxe4 6. d4 b5 7. Bb3
d5 8. dxe5 Be6 9. c3 Be7 10. Re1 O-O 11. Nbd2 Bc5 12.
Nxe4 dxe4 13. Qxd8 Rfxd8 14. Rxe4 Bxb3 15. axb3 Rd1+
16. Re1 Rxe1+ 17. Nxe1 Nxe5 18. Bf4 Bd6 19. Bxe5 Bxe5
20. Nd3 Bd6 21. Re1 a5 22. Ra1 f6 23. Kf1 Kf7 24. Ke2 c6
25. g3 Bc7 26. b4 Re8+ 27. Kf1 a4 28. b3 axb3 29. Ra7 Re7,
whereupon ChatGPT attempted an illegal move.

150

indicating that it had lost track of the underlying
world model (the board state). Or, for a more math-
ematical example, we asked ChatGPT-5 to produce
a resolution-based refutation proof for a pigeon-
hole problem with 3 pigeonholes. (See §2.2 and
§4.2 for more explanation.) ChatGPT produced 74
logically sound (but sometimes useless or repeti-
tive) resolution steps, before declaring on the 75th
step, confidently but completely unfoundedly, that
it had reached a contradiction and completed the
“proof”. We witnessed similar failures with Claude
Sonnet 4.

Considerable research has boosted performance
of language models on complex reasoning tasks,
with techniques like chain-of-thought (Wei et al.,
2023) and reinforcement learning with verified re-
wards (Wang et al., 2025). However, such tech-
niques do not guarantee that the LLM will not
produce logically illegal outputs. Furthermore, it
seems inefficient to try to train language models
to do fully precise, logical reasoning, when ex-
isting symbolic techniques can handle that well.
For example, Pan et al. 2025 show that it is theo-
retically possible for a custom-programmed trans-
former to decide propositional satisfiability (albeit
inefficiently), but that an empirically trained trans-
former for 3SAT generalizes and scales poorly; in
contrast, existing SAT solvers routinely solve prac-
tical problem instances with millions of variables.
We believe a neuro-symbolic approach — i.e., aug-
menting the language model with logical, symbolic
reasoning — holds great promise to marry the best
attributes of both approaches.2

Specifically, we build our work on constrained
decoding, a state-of-the-art technique for restricting
the output of an LLM to obey syntactic rules, e.g.,
a regular expression (Beurer-Kellner et al., 2023;
Willard and Louf, 2023) or context-free grammar
(Willard and Louf, 2023; Ugare et al., 2024).3 We
propose to lift the concept of constrained decod-
ing beyond syntactic constraints, to enforcing for-
mal, logical constraints that reflect some underly-
ing world model. We demonstrate proof-of-concept

2There is even intriguing neuroscience evidence in support
of such an approach. In a brain imaging study on highly edu-
cated subjects, professional mathematicians used completely
different neural pathways to solve math problems, whereas the
non-mathematically trained subjects relied solely on their lan-
guage pathways, with lower accuracy (Amalric and Dehaene,
2016).

3In recent work, Mündler et al. 2025 have also extended
constrained decoding beyond syntactic constraints, to generate
type-safe code. Our work is philosophically very much aligned
with theirs.

implementations for the game of chess, and for
propositional resolution proofs. We show that our
method is easily implemented with several different
open-source language models, ensuring generation
of guaranteed-correct outputs, while not otherwise
perturbing the language models.

2 Background

2.1 Chess

For 60 years, the game of chess has been pro-
claimed “the Drosophila of AI”.4 “Drosophila”
refers to Drosophila melanogaster, a species of
fruit fly that has been a favorite subject of biological
research as a model organism: they are cheap and
fast to raise, relatively simple for experiments and
analysis, yet they can illuminate the same concepts
important in larger and more relevant organisms.
AI research has used chess for exactly analogous
reasons, and we follow this tradition by using chess
for our initial implementation and experiments.

Chess is a two-player, deterministic (i.e., there is
no luck involved), perfect-information (i.e., there
is no hidden information, like face-down playing
cards), turn-based (i.e., the players take turns mak-
ing moves) game. Each player starts with a stan-
dard set of playing pieces, arranged on the play-
ing board in a standard configuration. One player
(dubbed “White”) plays the light-colored pieces,
and moves first; the other player (“Black”) plays
the dark-colored pieces. There are a variety of
types of pieces, with specific formal rules govern-
ing how each piece is allowed to move on the board,
and to “capture” (remove from the board) pieces
from the opposing player. For example, in the
board position shown in Fig. 1, White’s piece on
square a7 is called a “rook” and is allowed in a
single turn to move any distance vertically or hori-
zontally, but only through empty squares. It could
also move to square c7, resulting in the removal
from the board of Black’s “bishop” currently on
that square. But it is not allowed to move past
c7, because Black’s bishop occupies that square
and blocks further movement. Each player has one
distinguished piece, called the “king”, and to win
the game, a player tries to reach a game state in
which one is attacking the opponent’s king such
that they cannot prevent their king being captured
(called “checkmate”). It is also possible for a game

4According to Ensmenger 2012, this metaphor originated
with Russian mathematician Alexander Kronrod in 1965 and
first appeared in print in (Simon and Chase, 1973).

151

to end as a draw, in which neither player wins. For
example, if a player has no legal moves, but his
king is not under attack, then the game ends in a
draw.

Chess has a rich literature, spanning centuries.
We have presented just enough concepts so that
a reader unfamiliar with chess can follow the key
points of this paper. We reiterate that our goal is
not to produce a superior chess engine, but to use
chess as an example of an underlying world model
with formal rules, which we can use to constrain
an LLM playing chess, such that it never makes an
illegal move.

2.2 Propositional Resolution Proofs
In propositional logic, all variables are Boolean
(true/false), and there are no function or predi-
cate symbols. Many logical operators are stan-
dard, e.g., AND, OR, NOT, etc., but it is standard
to assume that formulas are in conjunctive nor-
mal form (CNF): a literal is either a variable x,
or its negation x; a clause is the disjunction of
a set of literals, e.g., (x1 + x2 + x3); and a for-
mula is the conjunction of a set of clauses, e.g.,
(x1 + x2 + x3)(x3 + x4 + x5). (We use + to de-
note OR, and juxtaposition to denote AND.) Propo-
sitional logic is the foundational layer of logical
reasoning, making it an ideal testbed for the rea-
soning capabilities of any AI system. As such, we
propose that propositional logic be the drosophila
of reasoning.5

Formally, a mathematical proof is simply a se-
quence of statements, leading from a set of assump-
tions to a desired conclusion, such that (1) each
statement is logically implied by the assumptions
and preceding statements in the proof, and (2) this
implication can be efficiently checked, usually syn-
tactically according to the rules of a given proof sys-
tem. Specifically, in this paper, we focus on proof
by resolution: given two clauses (A1+· · ·+An+x)
and (B1+ · · ·+Bm+x), where the Ai and Bj are
literals, and x is some variable, then the conjunc-
tion of the two clauses implies the clause (called
the “resolvent”) (A1+ · · ·+An+B1+ · · ·+Bm).
In a proof by resolution, each statement in the
proof must be the resolvent of clauses from the
assumptions or previously generated proof state-

5Pan et al. 2025 express a similar sentiment: “Boolean SAT
solving captures the essence of deductive logical reasoning
because: 1) Boolean logic lies as the foundation of all logical
reasoning, and 2) many modern SAT solvers are inherently
formal deductive systems that implement the resolution proof
system.”

ments. Resolution is known to be a sound (i.e., no
false statement can be proven) and complete (i.e.,
any true statement can be proven) proof system.
Without loss of generality, we further restrict our-
selves in this paper to proofs by refutation, mean-
ing that the desired conclusion is to imply false,
which proves that the original assumptions are a
contradiction.

For convenience in interacting with the text-
based LLMs, we adopt the common convention
of denoting variables simply by their number, and
denoting negation using the minus sign. So the ear-
lier example of clauses (x1+x2+x3)(x3+x4+x5),
would be denoted (1 + 2 + −3) (3 + −4 + 5).

2.3 Constrained Decoding

At a high level, a typical LLM works as follows:
1: initialize buf ← initial prompt
2: repeat
3: dist ← Softmax(Nnet(buf))
4: sample next_token from dist
5: append next_token to buf
6: until next_token = EOS

where buf is the context buffer; Nnet is the neural
network in the LLM that produces weights for each
possible next token; dist is a probability distribu-
tion over the possible next tokens, generated via
some version of softmax; and EOS is the end-of-
sequence token.

The goal is to constrain the LLM to generate only
output that obeys some syntax rules. But given the
large investment in training the network Nnet, we
do not want to modify it. And given that evaluating
Nnet(buf) is slow, we wish to avoid any backtrack-
ing or speculative evaluation.

Constrained decoding takes advantage of this ba-
sic LLM architecture to modify only the decoding
step, to mask out illegal token choices: (Changes
are highlighted in green.)

1: initialize buf ← initial prompt
2: initialize parser P.INIT(buf)
3: repeat
4: dist ← Softmax(Nnet(buf))
5: mask ← P.LEGALNEXTTOKENS()
6: disallow in dist any token not in mask
7: sample next_token from dist
8: append next_token to buf
9: update P.UPDATESTATE(next_token)

10: until next_token = EOS

Here, P is some sort of parsing engine for the syn-
tactic constraints being enforced. For example, if

152

we wish to force the LLM output to obey a regular
expression, then P could maintain a finite-state au-
tomaton that tracks all states from which there is a
path to an accepting state. By restricting the next to-
ken to always be in P.LEGALNEXTTOKENS(), we
guarantee that the generated output cannot violate
the regular expression.

Constrained decoding has the desired properties:
Nnet is not modified, and not evaluated more than
necessary, and the output is guaranteed to obey
the syntactic restrictions. An additional desirable
property is that it is “minimally invasive” (Beurer-
Kellner et al., 2024), meaning all legal behavior
of the LLM is still allowed, with the same rel-
ative probabilities. Clever implementation can
make constrained decoding very efficient. For ex-
ample, “token misalignment” occurs if the LLM
and parser tokenize the text stream differently;
this can be solved efficiently by pre-computing
what is essentially small automaton that performs
a limited look-ahead at what tokens the parse is
prepared to accept. (Beurer-Kellner et al., 2024;
Hamilton and Mimno, 2025) It is also useful to
be able to switch between constrained and uncon-
strained decoding, because restricting the LLM
to only constrained output can limit its reasoning
ability. (Banerjee et al., 2025) This can be accom-
plished easily by having the parser recognize spe-
cific token sequences to start and stop enforcing
constraints.

3 Logically Constrained Decoding

But what if we wish to enforce richer constraints
than mere syntax? For example, we might wish to
generate a program that obeys specified functional
properties, or a mathematical proof that is logi-
cally sound. For such an application, syntactical
constraints are insufficient, because there is an un-
derlying world model, upon which the correctness
or incorrectness of an output depends. For program
correctness, this world model might include the
values and types of program variables, assumptions
on program paths, and the semantics of various
operators. For mathematical proof, the underly-
ing model might include constraints (assumed or
derived) on the domains and interpretations of all
formal symbols, and the status of assumptions and
proof goals.

In this paper, we propose the concept of logically
constrained decoding. We retain the framework of
constrained decoding, with its desirable attributes,

but we seek to enforce formal, logical constraints
that reflect some world model underlying the rea-
soning.

The basic idea is actually very simple. The key
insight is that the parser P in (normal, syntactic)
constrained decoding is already doing logically
constrained decoding, but just for a very limited,
underlying world model. For regular expressions,
the world model is just a finite automaton; for
CFGs, a pushdown automaton. Why not substi-
tute a richer world model?

So, in logically constrained decoding, we gen-
eralize the parser into a symbolic constraint en-
gine. Just as in normal constrained decoding, it
watches the generated tokens, and updates the state
of its internal world model. And just as in normal
constrained decoding, it reasons about this world
model to mask out illegal next tokens, guaranteeing
that the generated output is correct with respect to
this underlying world model. The difference is that
this world model can be more complex, involving
symbolic reasoning.

The challenge, of course, is the LEGALNEXTTO-
KENS operation. For purely syntactic constraints,
with a finite or pushdown automaton as the under-
lying world model, the legal next tokens can be cal-
culated via standard automata-theoretic techniques.
But for more general constraints, it’s not obvious
that one can compute the set of legal next tokens,
i.e., tokens that are the next token in the prefix
of an overall correct output. Are there any non-
trivial, non-syntactic world models for which we
can implement logically constrained decoding? We
answer this question affirmatively with two simple,
but non-trivial examples: chess and propositional
resolution proofs.

Chess, as a “Drosophila” experiment, turns out
to be easy, but illustrates constraining LLM output
according to formal, logical rules completely un-
like the syntax-focused prior work on constrained
decoding. The underlying world model is simply
the state of the chess board.6 As the LLM gener-
ates chess moves, the symbolic constraint engine
updates the board state. For the LEGALNEXTTO-
KENS operations, the constraint engine solves for
the set of legal next moves in the current game
state, looks at the partially generated move from

6Chess afficianados will note that aside from the obvious
positions of pieces on the board, state includes some additional
information, like en passant pawns, castling options, etc. But
this is all finite-state and well-documented, e.g., in Forsyth-
Edwards notation.

153

the LLM (if any), and allows any token that can
lead to generating one of the complete legal moves.

Propositional resolution proofs are our second,
more complex example. Propositional proofs are
the essence of mathematical proof, and as men-
tioned earlier, resolution lies at the core of practi-
cal, modern SAT solvers. In this case, the state of
the underlying world model is the set of clauses
that were either given as assumptions, or have been
proven already. A legal “move” is a resolvent of ex-
isting clauses. (We can also enforce that the move
does not generate a duplicate of an existing clause,
or a useless tautology like (x+x).) When the LLM
is trying to generate its next move, the symbolic
constraint engine enforces that each additional to-
ken maintains that the generated output be a prefix
of a legal resolvent. For example, given assump-
tions (1) (−1 + 2) (−2), the legal resolvents are
(2) (generated by resolving (1) and (−1 + 2)),
and (−1) (generated by resolving (−1 + 2) and
(−2)). So, the LLM is constrained7 to generating
a (next, and then either a 2 or a −, and then if it
had generated (2, it must generate a) next, and if
it had generated (−, it must generate a 1 next, etc.

So, it is possible in theory to do logically con-
strained decoding for two small, but non-trivial
problems. But is it efficient enough to improve the
accuracy of real LLMs? That is a question that
must be answered empirically.

4 Empirical Results

We now evaluate how well logically constrained
decoding works on our two example world mod-
els. Specifically, we explore (1) Is it easily imple-
mentable in practice on real LLMs? (2) Does it
improve the quality of LLM outputs on these prob-
lems in practice? and (3) What is the impact on the
LLMs’ token throughput?

To answer the first question, we imple-
mented logically constrained decoding for these
two problems on several different LLM fami-
lies: Qwen2.5 7B / 14B / 32B (Qwen et al.,
2025), Llama 3.1 8B (Grattafiori et al., 2024),
Gemma3 7B / 14B / 27B (Team et al., 2025), Phi4-
mini (Microsoft et al., 2025), and Ministral-8B
(Jiang et al., 2024). We selected these models be-
cause they are open-source, and fit on our comput-
ing infrastructure. (Our experiments were run on a

7As noted earlier, the symbolic constraint engine can be de-
signed to allow the LLM some unconstrained thinking tokens,
and only constrain specific parts of the output.

shared cluster, using Dell EMC C4140 GPU com-
pute nodes, with 8GB RAM per core, and NVIDIA
Tesla V100 GPUs with 16GB or 32GB.) All mod-
els are instruction fine-tuned. To account for nu-
merical instability, Gemma3 models were run with
FP32, while others in FP16. 8-bit quantization
was used for all Gemma3 models and Qwen2.5
32B. Code was in Python, using the HuggingFace
Transformers Library (Wolf et al., 2020). Overall,
we encounted no particular difficulties in imple-
menting logically constrained decoding with these
LLMs. Our code is available on GitHub8.

We evaluate the effect on LLM output quality
in §4.1 for chess, and §4.2 for resolution proofs.
In §4.3, we report on the effect of logically con-
strained decoding on LLM performance (token
throughput).

4.1 Chess Results
We first investigate how much improvement log-
ically constrained decoding provides to LLMs to
avoid illegal moves. Anecdotally, LLMs play open-
ings well, but gradually perform worse as the game
progresses. As we saw in Figure 1, even frontier
models eventually attempt moves that violate the
rules of chess. Thus, as our figure of merit, we look
at the number of legal moves an LLM can make
before it makes an illegal move. At the syntax
level, we ask models to output moves in Standard
Algebraic Notation (SAN). While several other no-
tation systems exist (i.e. Long Algebraic Notation
or Portable Game Notation), we consider a move
valid only if it is written in SAN. More importantly,
though, we check whether each move is a valid
move according to the rules of chess, for the cur-
rent board configuration.

To create a consistent opponent, we play LLMs
against the Stockfish chess engine. We down-
loaded the latest 17.1 version and performed exper-
iments across 5 difficulty settings, with a depth of
15 plies. At lower difficulties, Stockfish chooses
moves more randomly.

Because of the randomness in both Stockfish
and the LLMs, we play 20 games (10 as White, 10
as Black) for each model, with and without logi-
cally constrained decoding. When it is Stockfish’s
turn, it plays (with some randomness, depending
on the difficulty) what it believes to be the best
move. When it is the LLM’s turn, we allow it to
generate a maximum of 10 tokens, which is longer

8https://github.com/terwo/logically-c
onstrained-decoding

154

https://github.com/terwo/logically-constrained-decoding
https://github.com/terwo/logically-constrained-decoding

Games by Type
Reason Unconstrained Constrained Total

Illegal Move 897 0 897
Checkmated 3 898 901
Draw 0 2 2

Total 900 900 1800

Table 1: Chess Game Outcomes Across All Experi-
ments. For each of the Unconstrained condition (the
original LLM) and the Constrained condition (the LLM
with logically constrained decoding), we played 9 LLMs
against 5 different levels of Stockfish for 20 games each,
for a total of 900 games. Without the benefit of logi-
cally constrained decoding, the LLMs attempted illegal
moves in 897 out of 900 games; in the other 3, the
LLM lost before it could make an illegal move. With
logically constrained decoding, the LLMs never made
illegal moves in any game. Draws were due to the five-
fold repetition rule.

than any possible SAN move in any position. For
the Constrained condition, we allow the start of
a legal move to have leading whitespace, and the
end to have trailing whitespace, but do not allow
whitespace between partial continuations of them.
For example, “ Nf4” is allowed but “N f4” is not.
Each completed set of moves (one from both White
and Black) is then formatted into the prompt for
the LLM’s next move. Full prompts are detailed in
Appendix A.

Detailed experimental results are shown in Fig-
ure 2. On average, the unconstrained models gener-
ated roughly 5 moves before making an illegal one,
whereas the logically constrained models played
legal moves for much longer, until the natural end
of the game. Table 1 summarizes the reasons that
each game ended, over all experiments. Clearly,
logically constrained decoding makes a dramatic
difference in LLM correctness for chess.

4.2 Resolution Proof Results

These experiments are to assess the improvement
that logically constrained decoding provides to
LLMs, to prevent the generation of incorrect proof
steps. Unlike in chess, there is no value in gener-
ating a longer proof — a proof is either correct or
not. Therefore, we count the number of correctly
generated proofs, over repeated trials, as our figure
of merit.

Similar to the variety of chess notations, there
are various syntaxes to represent a clause in propo-
sitional logic. We chose the notation common in
Boolean SAT solving and in electrical engineering,

where the plus sign + symbolizes a logical OR.
As the challenge problem for the proofs, we

chose the well-known Pigeonhole Problem:
proving that it’s impossible to place n + 1
pigeons in n pigeonholes if no two pigeons can
share a pigeonhole. These are hard proofs: the
propositional encoding for this problem has Θ(n2)
variables and Θ(n3) clauses, and the resolution
proof has an exponential lower-bound in size.
We generate problem instances that encode the
pigeonhole problem for 1, 2, and 3 holes. Our
specific SAT encoding is shown in Appendix B.

For 1 and 2 holes, we run each model 50 times
for each constraint condition (with and without
logically constrained decoding). For 3 holes, due to
limited time and computing resources, we could not
complete the full number of trials — more details
below. Similar to our implementation for playing
chess, LLMs were permitted to output tokens that
correspond to brackets, literals, or plus signs with
leading or trailing whitespace. The LLMs are also
allowed to output reasoning steps in separate lines
that start with a double backslash //, and output
the clauses for the proof on new lines. The prompts
used are in Appendix A.

Discussing the results in increasing order of pi-
geonhole size:

1 Pigeonhole, 2 Pigeons: Many unconstrained
models were able to successfully generate resolu-
tion proofs for the pigeonhole problem with only
1 hole and 2 pigeons. With the benefit of logi-
cally constrained decoding, the success rate goes
to 100%. A correct resolution proof for this en-
coding is very short (only 2 resolvents before the
empty clause), so we limited the output generation
to 100 tokens. Figure 3 shows the accuracy for
both constraint conditions across all models for 50
iterations.

2 Pigeonholes, 3 Pigeons: With 2 pigeonholes,
the proof becomes much harder. Across 50 itera-
tions, no Unconstrained models were able to suc-
cessfully complete the resolution proof. In con-
trast, with logically constrained decoding, every
model successfully generated a correct proof 100%
of the time. Figure 4 depicts these results graph-
ically. We limited the output generation to 1000
tokens. We also attempted this proof informally
on some commercial frontier models. (We do not
have the resources to do extensive experiments on
these models.) ChatGPT-5 completed this proof

155

0

10

20

30

40

50
Av

er
ag

e
N

um
be

r o
f M

ov
es

Qwen2.5-7B-Instruct Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct

0

10

20

30

40

50

Av
er

ag
e

N
um

be
r o

f M
ov

es

gemma-3-4b-it gemma-3-12b-it gemma-3-27b-it

0 5 10 15 20
Difficulty

0

10

20

30

40

50

Av
er

ag
e

N
um

be
r o

f M
ov

es

Phi-4-mini-instruct

0 5 10 15 20
Difficulty

Llama-3.1-8B-Instruct

0 5 10 15 20
Difficulty

Ministral-8B-Instruct-2410

Unconstrained
Constrained

Figure 2: Detailed Experimental Outcomes for Chess Games. There are nine subgraphs here, one for each LLM,
labeled above the subgraph. On each subgraph, the x-axis is the Stockfish difficulty level that was the opponent
of the LLM. The y-axis is the average number of moves played, over 20 games. (The whiskers show 1 standard
deviation.) For each experimental condition, the blue bar on the left is for the original, unconstrained LLM, and
the orange bar on the right is with logically constrained decoding. In the unconstrained condition, the LLMs make
illegal moves very soon after starting to play. With logically constrained decoding, the LLMs never make illegal
moves, so last long enough to eventually lose, losing faster to the stronger Stockfish difficulty settings.

Qwen2.5-7B

Qwen2.5-14B

Qwen2.5-32B

Gemma3-4B

Gemma3-12B

Gemma3-27B

Phi-4-Mini

Llama-3.1-8B

Ministral-8B

Model

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Unconstrained
Constrained

Figure 3: Results for Pigeonhole Proofs of Size 1. The
y-axis is the fraction of proof attempts that were cor-
rect (out of 50 attempts). The x-axis has a pair of bars
for each LLM. In each pair, the blue bar on the left is
the success rate for the original, unconstrained LLM;
the orange bar on the right is the success rate with log-
ically constrained decoding. A missing bar indicates
0% correct proofs. These small LLMs are able to gen-
erate correct resolution proofs in many cases, but this
improves to 100% with logically constrained decoding.

Qwen2.5-7B

Qwen2.5-14B

Qwen2.5-32B

Gemma3-4B

Gemma3-12B

Gemma3-27B

Phi-4-Mini

Llama-3.1-8B

Ministral-8B

Model

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Unconstrained
Constrained

Figure 4: Results for Pigeonhole Proofs of Size 2. This
graph has the same interpretation as Figure 3. However,
all the blue bars are missing, because no unconstrained
LLM was able to complete this proof correctly. The
constrained LLM successfully completes the resolution
proof on all attempts.

156

1 2 3
Pigeonhole

0

5

10

15

20

25

30
Av

er
ag

e
To

ke
ns

 p
er

 S
ec

on
d

Unconstrained
Constrained

Figure 5: The average tokens per second generated
by Qwen2.5-7B across both Unconstrained and Con-
strained conditions. The logically constrained decoding
for pigeonhole instances of size 3 is optimized by en-
forcing the LLM to only choose possible resolvents of
minimal length.

successfully, but Claude Sonnet 4 did not.

3 Pigeonholes, 4 Pigeons: Due to limited time
and computing resources, we reduced the number
of trials from 50 to 20 per experimental condition.
None of the unconstrained models were able to
successfully complete this resolution proof. We
limited the output generation to 3000 tokens.

For the logically constrained LLMs, we were not
able to complete the experiments. This is a long
and hard proof, and as the number of clauses in
the proof grew, the number of resolvents became
unmanageably large. However, if we relax the goal
of minimal invasiveness, we can exploit the logical
structure of clauses to improve efficiency: specif-
ically, if a partially generated clause is already a
legal resolvent, it is pointless to allow the clause
to grow any longer, as that only makes the clause
weaker. Accordingly, we can modify the constraint
engine to force the LLM not to generate a need-
lessly long resolvent. With this optimization, even
the small Qwen2.5 7B model manages to complete
the proof correctly. In contrast, as described in the
introduction, ChatGPT-5 tries to make an unsound
deduction in its proof attempt.

4.3 Effect on LLM Performance

As a measure of the effect of logically constrained
decoding on LLM throughput, we measured the
average number of tokens per second across all
resolution proofs generated by Qwen2.5-7B in Fig-
ure 5. The optimization mentioned above is applied
to the pigeonhole instances of size 3. The latency
overhead is generally minimal in our experiments.

On the downside, our symbolic constraint en-
gine for the resolution proofs doesn’t scale well
as the proof length grows, because it is trying to
generate all possible resolvents. For example, the
shortest proof generated by Qwen2.5-7B on the
3-pigeonhole proofs was 126 clauses long, and on
this shorter proof, the throughput was 24.7 tokens
per second. In contrast, the longest proof took 627
clauses, which slowed the throughput down to 5.5
tokens per second. This motivates our future work,
to explore more efficient proof systems that avoid
this blow-up in the number of resolvents.

5 Conclusion and Future Work

We have introduced logically constrained decoding,
which lifts the concept of constrained decoding be-
yond syntactic constraints to enforcing logically
correct output with respect to an underlying, for-
mal world model. We have demonstrated proof-of-
concept implementations for chess and for propo-
sitional resolution proofs, on nine different LLMs.
Our technique guarantees that the small LLMs do
not generate illegal outputs for the problems be-
ing solved, and enables them to generate correct
outputs on problems that even state-of-the-art, pro-
prietary frontier models solve incorrectly.

The main line for future work is to expand the ap-
plicability of our technique to additional domains,
such as code generation or richer proof systems
(e.g., Lean). The principle challenge is how to turn
the logical constraints into something that can be
enforced efficiently at the token level. For code
generation, we are excited by the work of Mündler
et al. (Mündler et al., 2025) on constrained gen-
eration of type-safe programs. For mathematical
proof, we are currently developing a more efficient
technique for a more powerful proof system than
resolution.

Limitations

In empirical research on LLMs, there is always the
risk of unexpected behavior due to minor variations
in prompts. For example, there are many notations
for Boolean OR in common use that might have
appeared in training data, so an LLM might be-
have differently if we had prompted it to use ∨ or
even \lor, instead of +. We have not explored
varying the prompts, but we do not expect that our
results would change materially. Our prompts are
disclosed in Appendix A.

We can modify and perform experiments only

157

on open-source language models, so it is unclear
to what degree our results can be applied to pro-
prietary, frontier models. Similarly, even with
open-source models, we were limited by our avail-
able computing resources to using smaller models.
We believe these are sufficient to demonstrate the
promise of our approach, but more extensive exper-
iments would be valuable.

In our prompts, we suggest limits to how the
LLM can “think aloud” in its answers. This is
purely to simplify our implementation, so that our
symbolic reasoning engine can easily ignore the
unstructured portions of the LLM output. Baner-
jee et al. 2025 show that strictly constraining LLM
outputs can reduce the LLM’s reasoning ability,
but this can be restored by allowing the LLM to
generate unconstrained output with only clearly de-
limited parts subject to the constraints. Our chess
experiments did not allow arbitrary unconstrained
“thinking” outputs, so the LLMs likely did not play
as well as they might have. Nevertheless, we were
evaluating LLMs only on whether moves were le-
gal or not. Our resolution proof experiments did
allow the LLMs to generate unconstrained outputs
within comments, along the lines suggested by
Banerjee et al.

Our current implementation for resolution does
not scale to larger proofs. Even so, we are able
to generate correct proofs with smaller LLMs for
problems that befuddle large, frontier LLMs. As
noted above, we are working on a much more effi-
cient proof system, which should scale better.

Acknowledgements

This research was funded through an Undergrad-
uate Summer Research Award and a Discovery
Grant, both from the Natural Sciences and En-
gineering Research Council of Canada (NSERC).
This research was also supported through the com-
putational resources and services provided by Ad-
vanced Research Computing at the University of
British Columbia.

References
Marie Amalric and Stanislas Dehaene. 2016. Origins

of the brain networks for advanced mathematics in
expert mathematicians. Proceedings of the National
Academy of Sciences, 113(18):4909–4917.

Debangshu Banerjee, Tarun Suresh, Shubham Ugare,
Sasa Misailovic, and Gagandeep Singh. 2025.

CRANE: Reasoning with constrained LLM gener-
ation. In 42nd International Conference on Machine
Learning.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2023. Prompting is programming: A query language
for large language models. Proc. ACM Program.
Lang., 7(PLDI).

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2024. Guiding LLMs the right way: Fast, non-
invasive constrained generation. In Proceedings of
the 41st International Conference on Machine Learn-
ing, ICML’24. JMLR.org.

Nathan Ensmenger. 2012. Is chess the drosophila of
artificial intelligence? a social history of an algorithm.
Social Studies of Science, 42(1):5–30.

Siavash Golkar, Mariel Pettee, Michael Eickenberg,
Alberto Bietti, Miles Cranmer, Geraud Krawezik,
Francois Lanusse, Michael McCabe, Ruben Ohana,
Liam Parker, Bruno Régaldo-Saint Blancard, Tiberiu
Tesileanu, Kyunghyun Cho, and Shirley Ho. 2024.
xval: A continuous numerical tokenization for scien-
tific language models. Preprint, arXiv:2310.02989.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas

158

https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1073/pnas.1603205113
https://openreview.net/forum?id=wKs9fHYxCV
https://openreview.net/forum?id=wKs9fHYxCV
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://arxiv.org/abs/2310.02989
https://arxiv.org/abs/2310.02989

Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat

Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng

159

Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Sil Hamilton and David Mimno. 2025. Lost in
space: Finding the right tokens for structured out-
put. Preprint, arXiv:2502.14969.

Alexey Ignatiev, Antonio Morgado, and Joao Marques-
Silva. 2018. PySAT: A Python toolkit for prototyping
with SAT oracles. In SAT, pages 428–437.

Alexey Ignatiev, Zi Li Tan, and Christos Karamanos.
2024. Towards universally accessible SAT technol-
ogy. In SAT, pages 4:1–4:11.

Albert Jiang, Alexandre Abou Chahine, Alexandre
Sablayrolles, Alexis Tacnet, Alodie Boissonnet,
Alok Kothari, Amélie Héliou, Andy Lo, Anna Per-
onnin, Antoine Meunier, Antoine Roux, Antonin
Faure, Aritra Paul, Arthur Darcet, Arthur Mensch,
Audrey Herblin-Stoop, Augustin Garreau, Austin
Birky, Avinash Sooriyarachchi, Baptiste Rozière,
Barry Conklin, Bastien Bouillon, Blanche Savary
de Beauregard, Carole Rambaud, Caroline Feld-
man, Charles de Freminville, Charline Mauro, Chih-
Kuan Yeh, Chris Bamford, Clement Auguy, Corentin
Heintz, Cyriaque Dubois, Devendra Singh Chaplot,
Diego Las Casas, Diogo Costa, Eléonore Arcelin,
Emma Bou Hanna, Etienne Metzger, Fanny Olivier
Autran, Francois Lesage, Garance Gourdel, Gas-
pard Blanchet, Gaspard Donada Vidal, Gianna Maria
Lengyel, Guillaume Bour, Guillaume Lample, Gus-
tave Denis, Harizo Rajaona, Himanshu Jaju, Ian
Mack, Ian Mathew, Jean-Malo Delignon, Jeremy Fac-
chetti, Jessica Chudnovsky, Joachim Studnia, Justus
Murke, Kartik Khandelwal, Kenneth Chiu, Kevin
Riera, Leonard Blier, Leonard Suslian, Leonardo
Deschaseaux, Louis Martin, Louis Ternon, Lucile
Saulnier, Lélio Renard Lavaud, Sophia Yang, Mar-
garet Jennings, Marie Pellat, Marie Torelli, Marjorie
Janiewicz, Mathis Felardos, Maxime Darrin, Michael
Hoff, Mickaël Seznec, Misha Jessel Kenyon, Nayef
Derwiche, Nicolas Carmont Zaragoza, Nicolas Fau-
rie, Nicolas Moreau, Nicolas Schuhl, Nikhil Raghu-
raman, Niklas Muhs, Olivier de Garrigues, Patricia
Rozé, Patricia Wang, Patrick von Platen, Paul Ja-
cob, Pauline Buche, Pavankumar Reddy Muddireddy,
Perry Savas, Pierre Stock, Pravesh Agrawal, Renaud
de Peretti, Romain Sauvestre, Romain Sinthe, Ro-
man Soletskyi, Sagar Vaze, Sandeep Subramanian,
Saurabh Garg, Soham Ghosh, Sylvain Regnier, Szy-
mon Antoniak, Teven Le Scao, Theophile Gervet,
Thibault Schueller, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, Valeriia Nemychnikova, Wendy
Shang, William El Sayed, and William Marshall.
2024. Ministral 8b.

Thang Luong and Edward Lockhart. 2025. Ad-
vanced version of Gemini with Deep Think officially

achieves gold-medal standard at the International
Mathematical Olympiad. https://deepmind
.google/discover/blog/advanced-ver
sion-of-gemini-with-deep-think-off
icially-achieves-gold-medal-stand
ard-at-the-international-mathemati
cal-olympiad/. [Online; accessed 2025-Aug-
25].

Microsoft, :, Abdelrahman Abouelenin, Atabak Ash-
faq, Adam Atkinson, Hany Awadalla, Nguyen Bach,
Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav
Chaudhary, Congcong Chen, Dong Chen, Dongdong
Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen,
Yi ling Chen, Qi Dai, Xiyang Dai, Ruchao Fan, Mei
Gao, Min Gao, Amit Garg, Abhishek Goswami, Jun-
heng Hao, Amr Hendy, Yuxuan Hu, Xin Jin, Mah-
moud Khademi, Dongwoo Kim, Young Jin Kim,
Gina Lee, Jinyu Li, Yunsheng Li, Chen Liang, Xihui
Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia
Lopez, Chong Luo, Piyush Madan, Vadim Mazalov,
Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan,
Daniel Perez-Becker, Jacob Platin, Thomas Portet,
Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy, Ning
Shang, Yelong Shen, Saksham Singhal, Subhojit
Som, Xia Song, Tetyana Sych, Praneetha Vaddamanu,
Shuohang Wang, Yiming Wang, Zhenghao Wang,
Haibin Wu, Haoran Xu, Weijian Xu, Yifan Yang, Ziyi
Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang,
Li Lyna Zhang, Yunan Zhang, and Xiren Zhou. 2025.
Phi-4-mini technical report: Compact yet powerful
multimodal language models via mixture-of-loras.
Preprint, arXiv:2503.01743.

Niels Mündler, Jingxuan He, Hao Wang, Koushik
Sen, Dawn Song, and Martin Vechev. 2025. Type-
constrained code generation with language models.
Proceedings of the ACM on Programming Languages,
9(PLDI):601–626.

Leyan Pan, Vijay Ganesh, Jacob Abernethy, Chris Es-
poso, and Wenke Lee. 2025. Can transformers reason
logically? a study in SAT solving. In 42nd Interna-
tional Conference on Machine Learning (ICML).

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Tord Romstad, Marco Costalba, Joona Kiiski, and Stock-
fish Community. 2008–present. Stockfish: Strong
open-source chess engine. https://stockfis
hchess.org/. [Online; accessed 2025-Aug-25].

Herbert A. Simon and William G. Chase. 1973. Skill in
chess. American Scientist, 61:394–403.

160

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2502.14969
https://arxiv.org/abs/2502.14969
https://arxiv.org/abs/2502.14969
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.4230/LIPICS.SAT.2024.16
https://doi.org/10.4230/LIPICS.SAT.2024.16
https://mistral.ai/news/ministraux
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2503.01743
https://doi.org/10.1145/3729274
https://doi.org/10.1145/3729274
https://openreview.net/forum?id=5BGC2I2fxx
https://openreview.net/forum?id=5BGC2I2fxx
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://stockfishchess.org/
https://stockfishchess.org/

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Per-
rin, Tatiana Matejovicova, Alexandre Ramé, Mor-
gane Rivière, Louis Rouillard, Thomas Mesnard, Ge-
offrey Cideron, Jean bastien Grill, Sabela Ramos,
Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo
Penchev, Gaël Liu, Francesco Visin, Kathleen Ke-
nealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin,
Robert Busa-Fekete, Alex Feng, Noveen Sachdeva,
Benjamin Coleman, Yi Gao, Basil Mustafa, Iain
Barr, Emilio Parisotto, David Tian, Matan Eyal,
Colin Cherry, Jan-Thorsten Peter, Danila Sinopal-
nikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran
Kazemi, Dan Malkin, Ravin Kumar, David Vilar,
Idan Brusilovsky, Jiaming Luo, Andreas Steiner,
Abe Friesen, Abhanshu Sharma, Abheesht Sharma,
Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei
Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur
Bapna, Antoine Miech, Antoine Yang, Antonia Pater-
son, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot,
Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie
Chen, Charline Le Lan, Christopher A. Choquette-
Choo, CJ Carey, Cormac Brick, Daniel Deutsch,
Danielle Eisenbud, Dee Cattle, Derek Cheng, Dim-
itris Paparas, Divyashree Shivakumar Sreepathi-
halli, Doug Reid, Dustin Tran, Dustin Zelle, Eric
Noland, Erwin Huizenga, Eugene Kharitonov, Fred-
erick Liu, Gagik Amirkhanyan, Glenn Cameron,
Hadi Hashemi, Hanna Klimczak-Plucińska, Har-
man Singh, Harsh Mehta, Harshal Tushar Lehri,
Hussein Hazimeh, Ian Ballantyne, Idan Szpektor,
Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe
Stanton, John Wieting, Jonathan Lai, Jordi Orbay,
Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jy-
otinder Singh, Kat Black, Kathy Yu, Kevin Hui, Ki-
ran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella
Valentine, Marina Coelho, Marvin Ritter, Matt Hoff-
man, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy,
Nathan Byrd, Nick Roy, Nikola Momchev, Nilay
Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil
Botarda, Paul Caron, Paul Kishan Rubenstein, Phil
Culliton, Philipp Schmid, Pier Giuseppe Sessa, Ping-
mei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shiv-
anna, Renjie Wu, Renke Pan, Reza Rokni, Rob
Willoughby, Rohith Vallu, Ryan Mullins, Sammy
Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal,
Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhat-
nagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan
Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,
Uday Kalra, Utku Evci, Vedant Misra, Vincent Rose-
berry, Vlad Feinberg, Vlad Kolesnikov, Woohyun
Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta,
Minh Giang, Phoebe Kirk, Anand Rao, Kat Black,
Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gus-
tavo Martins, Omar Sanseviero, Lucas Gonzalez,
Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan
Senter, Eli Collins, Joelle Barral, Zoubin Ghahra-
mani, Raia Hadsell, Yossi Matias, D. Sculley, Slav
Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals,
Jeff Dean, Demis Hassabis, Koray Kavukcuoglu,

Clement Farabet, Elena Buchatskaya, Jean-Baptiste
Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian
Borgeaud, Olivier Bachem, Armand Joulin, Alek An-
dreev, Cassidy Hardin, Robert Dadashi, and Léonard
Hussenot. 2025. Gemma 3 technical report. Preprint,
arXiv:2503.19786.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Mi-
sailovic, and Gagandeep Singh. 2024. Syncode: Llm
generation with grammar augmentation. Preprint,
arXiv:2403.01632.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren,
Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai He,
Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang
Wang, Simon Shaolei Du, and Yelong Shen. 2025.
Reinforcement learning for reasoning in large lan-
guage models with one training example. Preprint,
arXiv:2504.20571.

Alexander Wei. 2025. I’m excited to share that our latest
@OpenAI experimental reasoning LLM has achieved
a longstanding grand challenge in AI: gold medal-
level performance on the world’s most prestigious
math competition—the International Math Olympiad
(IMO). https://x.com/alexwei_/statu
s/1946477742855532918. [Online; accessed
2025-Aug-25].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Brandon T. Willard and Rémi Louf. 2023. Effi-
cient guided generation for large language models.
Preprint, arXiv:2307.09702.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. Preprint, arXiv:1910.03771.

161

https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20571
https://x.com/alexwei_/status/1946477742855532918
https://x.com/alexwei_/status/1946477742855532918
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

A Full Prompts

The prompts used for experiments are listed below. There is no whitespace after the colon in all prompts.

Chess Prompts

White’s Perspective

You are a chess grandmaster.
You are playing chess as White in the
starting position. You are playing
against a strong opponent.
Output your next, competitive move
in Standard Algebraic Notation
(SAN). Do not include move num-
bers.

White:

Black’s Perspective

You are a chess grandmaster.
You are playing chess as Black after
White has made their first move.
You are playing against a strong
opponent.
Output your next, competitive move
in Standard Algebraic Notation
(SAN). Do not include move num-
bers.

White:
{stockfish_chosen_move}
Black:

Figure 6: Prompts for Playing Chess Against Stockfish. If playing as Black, the first prompt will include the first
move chosen by Stockfish.

162

Unconstrained Resolution Prompt

Generate an unsatisfiability proof for the given clause database using only resolution steps.
Rules for Clauses:
1. Each clause must start with ’(’ and end with ’)’.
- Integers must be separated by ’+’ with optional spaces around it.
- Negated literals have a leading ’-’
- Example: (1 + -3 + 4) 2.
Each derived clause must be valid with respect to the original database and all previously generated
clauses.
- A clause C is valid if it is the resolvent of two existing clauses in the current set.
- The two parent clauses must share exactly one pair of complementary literals.
- The resolvent is formed by taking all literals from both parents except the complementary pair,
with duplicate literals removed.
3. Do not repeat any clauses already in the database or previously generated.

Output Format:
- Each line is either:
a) A comment line starting with ’//’ followed by reasoning, OR
b) A clause line in parentheses only, with no extra text.
- No introductions, no summaries, no prose outside of comment lines.
- First non-comment line must be a clause.
- The proof must end exactly with the empty clause ().
Example:
Clause database: (1 + 2) (1 + -2) (-1 + 2) (-1 + -2) (1 + 2 + 3)
Proof:
// Resolving (1 + 2) and (-1 + 2) on literals 1 and -1 gives (2)
(2)
// Resolving (1 + -2) and (-1 + -2) on literals 1 and -1 gives (-2)
(-2)
// Resolving (2) and (-2) gives the empty clause ()
()

Now, generate an unsatisfiability proof for the following:
Clause database: {clause_database}
Proof:

Figure 7: The Prompt to Generate Resolution Proofs with Unconstrained Decoding

163

Constrained Resolution Prompt

Generate an unsatisfiability proof for the given clause database using only resolution steps.
Rules for Clauses:
1. Each clause must start with ’(’ and end with ’)’.
- Integers must be separated by ’+’ with optional spaces around it.
- Negated literals have a leading ’-’
- Example: (1 + -3 + 4) 2.
Each derived clause must be valid with respect to the original database and all previously generated
clauses.
- A clause C is valid if it is the resolvent of two existing clauses in the current set.
- The two parent clauses must share exactly one pair of complementary literals.
- The resolvent is formed by taking all literals from both parents except the complementary pair,
with duplicate literals removed.
3. Do not repeat any clauses already in the database or previously generated.

Output Format:
- Each line is either:
a) A comment line starting with ’//’ followed by reasoning, OR
b) A clause line in parentheses only, with no extra text.
- No introductions, no summaries, no prose outside of comment lines.
- First non-comment line must be a clause.
- The proof must end exactly with the empty clause ().
Example:
Clause database: (1 + 2) (1 + -2) (-1 + 2) (-1 + -2) (1 + 2 + 3)
Proof: (2) (-2) ()

Now, generate an unsatisfiability proof for the following:
Clause database: {clause_database}
Proof:

Figure 8: The Prompt to Generate Resolution Proofs with Logically Constrained Decoding

164

B Pigeonhole Encoding

We encode our pigeonhole principle instances with n holes and k = n + 1 pigeons: for each pigeon
i ∈ {1, ..., k} and hole j ∈ {1, ..., n}, we introduce a new variable variable xij , which is True if pigeon i
is in hole j.

The CNF formula has two types of clauses:

1. Pigeon clauses
For each pigeon i, it must be in some hole

(xi1 + xi2 + ...+ xin) for each i ∈ {1, ..., k}

2. Hole clauses
For each hole j, for every pair of distinct pigeons i ̸= i′, both must not be in the same hole

(−xij +−xi′j) for each j ∈ {1, ..., n}, 1 ≤ i < i′ ≤ k

Since there are n+ 1 pigeons yet only n holes, the formula is unsatisfiable, which can be proven with
resolution.

We store these formulas in the DIMACS format. We load these formulas with the PySAT package
(Ignatiev et al., 2018, 2024). An example of our encoding for a pigeonhole instance of size 2 is as follows:

p cnf 6 9
1 2 0
3 4 0
5 6 0
-1 -3 0
-1 -5 0
-3 -5 0
-2 -4 0
-2 -6 0
-4 -6 0

165

C Tokenization

We only allow one consistent method of representing answers to each given problem (e.g., SAN for chess,
using plus signs OR in resolution proofs). In our implementation, we track the generation state, and
condition the valid next tokens on the current state. For example, in the resolution proof example, the
logically constrained model can only generate literals after outputting a left paranthesis or plus sign.

Therefore, we ensure that no tokenizer would split legal strings across states. After investigating how
each model family would tokenize text that represent legal moves / valid clauses under our specified
syntax, we did not find cases where strings that are composed of multiple states would be represented as
one token (e.g., "+ 3" could be tokenized separately as "+" and " 3" but not fully as one token). Many
tokenizers also represent larger numbers by splitting them up digit-by-digit (Golkar et al., 2024), and we
account for this in the state transitions for SAT solving by allowing the generation state to enter a "partial
literal" state.

166

D Sampling Parameters

We use all defaults provided by the HuggingFace Transformers library. We explicitly set temperature =
1.0, but otherwise defer to the model’s default configuration (e.g., top-k, top-k, etc.).

Pigeonhole Size (n) Max Token Limit

1 100
2 1000
3 3000

Table 2: Maximum Token Limits Allocated Depending on the Pigeonhole Size

167

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 168–175
November 9, 2025 ©2025 Association for Computational Linguistics

Modeling Tactics as Operators: Effect-Grounded Representations for Lean
Theorem Proving

Elisaveta Samoylov Soroush Vosoughi
Department of Computer Science, Dartmouth College

{elisaveta.v.samoylov.26@dartmouth.edu, Soroush.Vosoughi}@dartmouth.edu

Abstract

Interactive theorem provers (ITPs) such as Lean
expose proof construction as a sequence of tac-
tics applied to proof states. Existing machine
learning approaches typically treat tactics ei-
ther as surface tokens or as labels conditioned
on the current state, eliding their operator-like
semantics. This paper introduces a represen-
tation learning framework in which tactics are
characterized by the changes they induce on
proof states. Using a stepwise Lean proof
corpus, we construct delta contexts—token-
level additions/removals and typed structural
edits—and train simple distributional models
(∆-SGNS and CBOW-∆) to learn tactic embed-
dings grounded in these state transitions. Ex-
periments on tactic retrieval and operator-style
analogy tests show that ∆-supervision yields
more interpretable and generalizable embed-
dings than surface-only baselines. Our findings
suggest that capturing the semantics of tactics
requires modeling their state-transformational
effects, rather than relying on distributional co-
occurrence alone.

1 Introduction & Related Work

Interactive theorem provers (ITPs) such as Lean ex-
pose proof construction as a sequence of tactics that
transform a proof state, the local context and cur-
rent goal(s), until all goals are discharged. Learn-
ing to select or synthesize tactics has therefore be-
come a central problem in neural theorem proving,
with notable progress in HOL4, HOL Light, and
Coq through systems such as TacticToe, HOList,
and CoqGym (Gauthier et al., 2021; Bansal et al.,
2019; Yang and Deng, 2019). In parallel, LeanDojo
has catalyzed research around Lean by providing
an open, reproducible environment, datasets, and
retrieval-augmented provers (Yang et al., 2023).

Yet, most existing approaches model tactics ei-
ther as labels to be predicted from the current state
or as tokens in tactic sequences, rather than as op-
erators that cause state change. This elides the

essential semantics of tactics, "what they do to the
proof state?," and can yield brittle representations
tied to surface forms, local names, or co-occurrence
statistics.

Problem formulation. We propose a
representation-learning view in which a tac-
tic, t, is characterized by its effect on the state.
Given triples (sbefore, t, safter) from stepwise
Lean proofs, we learn embeddings that make
E(safter) predictable from E(sbefore) and an
operator-like embedding et. Concretely, we use
simple CBOW/skip-gram objectives in which the
delta between state_before and state_after,
i.e., token-level additions/removals and typed edits
such as goal/hypothesis count changes or relation
normalizations, serves as the context of t. This
∆-supervision biases the model to encode a tactic
by the modification it induces (e.g., the tactic have
introduces new hypotheses, the tactic nlinarith
often discharges inequality goals, etc) rather than
by memorizing surface patterns.

Proof of concept. This paper is a
proof-of-concept showing that surface-level
distributional patterns that often suffice in
natural-language modeling are inadequate for
theorem proving. Capturing tactic semantics
demands tailored, effect-grounded representations
that model the proof-state transition induced by
each tactic.

We instantiate this idea on the Lean Work-
book corpus (Ying et al., 2024; InternLM, 2024),
which contains tens of thousands of contest-level
math problems formalized in Lean 4 with natural-
language statements, formal statements, and step-
wise proof states. Our models are deliberately min-
imal: (i) ∆-SGNS (center = tactic; contexts = pos-
itive ∆-tokens and typed edits) and (ii) CBOW-
∆ (contexts → tactic), trained in the spirit of
word2vec (Mikolov et al., 2013a,b). We evaluate
with (a) ∆→ tactic retrieval (does a bag of edits

168

identify the tactic?) and (b) an operator analogy
test adapted from translation embeddings (Bordes
et al., 2013): cos

(
E(sbefore) + et, E(safter)

)
.

Despite their simplicity, these models learn
meaningful, interpretable tactic embeddings that
reflect operator-like behavior.

Motivation and expected benefits. Two gaps
motivate ∆-supervision: (i) Generalization. State-
only classifiers and sequence models must implic-
itly infer a tactic’s effect as their representations of-
ten entangle names and pretty-print idiosyncrasies.
By centering supervision on structural edits (e.g.,
added hypotheses, reduced goal lists, relation flips),
∆-aware representations should transfer across the-
orems and libraries, complementing retrieval-based
systems such as LeanDojo (Yang et al., 2023). (ii)
Interpretability and modularity. Operator-style em-
beddings provide concrete semantics. In other
words, they predict how a state should move in
embedding space under t, enabling tactic-family
clustering, edit-level probing, and straightforward
integration into search controllers that prefer tactics
moving states toward a solved region.

Novelty relative to prior work. Prior systems
typically (a) learn tactic selection from the current
state, (b) predict the next tactic from tactic
sequences, or (c) fine-tune LLMs end-to-end
to emit Lean scripts (Gauthier et al., 2021;
Bansal et al., 2019; Yang and Deng, 2019; Yang
et al., 2023). In contrast, we elevate the state
transition to the supervisory signal: the label
for a tactic is its observed effect. This yields
compact, interpretable embeddings that are
immediately useful for tactic ranking and are
natural starting points for stronger operator models.

By reframing tactics as operators on proof states
and demonstrating that even bag-of-edits supervi-
sion suffices to obtain useful embeddings, this work
offers a lightweight, interpretable bridge between
ITP state representations and neural models, com-
plementary to environment-heavy frameworks and
retrieval-augmented provers (Yang et al., 2023).

2 Methodology

2.1 A brief primer on Lean and proof states

Lean is an ITP based on dependent type theory. A
proof proceeds by repeatedly applying tactics that
transform a proof state, which consists of (i) a local
context of named hypotheses and (ii) a (multi)set

of goals to be proved. In Lean’s pretty printer, the
turnstile symbol ⊢ separates the context from the
current goal.

Examples of Lean code can be found in Ap-
pendix B.

2.2 Dataset and supervision triples
We use a stepwise Lean proof corpus (Lean Work-
book), which provides, for each proof step, a triple
(sbefore, t, safter), where t is the head tactic ap-
plied to transform the pretty-printed proof state
sbefore into safter. Each record also includes a
proof_id (the theorem/proof identifier). The lines
are sorted such that their order corresponds to their
position within the proof. We operate on a 25.2k-
step slice for the experiments reported in this paper.

Our central idea is to treat the tactic t not merely
as a label but as an operator whose semantics are
expressed by the change from sbefore to safter. To
that end, we introduce ∆-contexts which track the
various changes in the state of the proof.

In the following sections, we outline the prepro-
cessing steps, the construction of the ∆-contexts,
and the construction of the two distributional mod-
els (∆-SGNS and CBOW-∆).

2.3 Preprocessing and canonicalization
Lean states are textual pretty-prints. To make edits
comparable across problems, we process the Lean
code in following steps in order to produce the delta
contexts :

• Tokenization. We split on Lean tokens and math-
ematical operators (including unicode) such as ⊢,
≤, ≥, ∧, *, /, +, -, :, =, (,).

• Alpha-renaming. In order to prevent name leak-
age, We anonymize local variable and hypothesis
names (e.g., a, b, c, h, ha, hb, ...) to
placeholders (_x1, _x2, _h1, _h2, . . .).

• Formatting normalization. We normalize
whitespace and numeric formats.

• Goal/context split. We detect the first ⊢ and
treat the tokens to its left as context and to its
right as goal; if no goal remains, we append a
marker NO_GOALS.

• Multi-goal states. If a state contains multiple
goals, we use the union of their tokens. Set-level
pooling keeps the representation permutation-
invariant.

2.4 Delta construction: tokens and typed edits
The first ∆-construction is token-level and consid-
ers the change in token-count in the context before

169

and after the tactic. For each pair (sbefore, safter),
we compute token-level deltas for each token w:

∆(w) = countsafter(w)− countsbefore(w). (1)

We keep only the positive token deltas and emit a
context symbol TOK_w for each net added token w,
repeated |∆(w)| times. To inject weak structure,
we add typed edit indicators extracted by simple
regex rules:

• Hypothesis count change: ∆_ADD_HYP /
∆_REM_HYP based on the changes in counts of
name : type hypothesis pairs in the context.

• Goal change: ∆_GOAL_SOLVED if ⊢ dis-
appears; otherwise ∆_GOALS_+k/-k for de-
tected changes.

• Relation flips: The ∆_REL_GE_TO_LE,
∆_REL_LE_TO_GE when the goal changes di-
rection.

• Operator counts: ∆_ADD/REM_SYM_σ for
σ ∈ {∧, *, /, +, -, =, ≤, ≥}.

The final delta context for a step is the multiset

C = {TOK_w : ∆(w)>0}
∪ {typed edit indicators}

Appendix A walks through a worked example
illustrating the procedures in Sections 2.3 and 2.4.

2.5 Models

We learn three lightweight distributional models
using only the delta contexts C and tactic heads t.
Let ex ∈ Rd denote the embedding of token/tactic
x.

∆-SGNS (tactic→ delta). We train a skip-gram
with negative sampling where the center word is
the tactic head TACTIC t, and each c ∈ C is a
context word. The per-pair loss is

ℓSGNS(t, c) = − log σ(e⊤t ec)

−
∑

c−∼Pn

log σ(−e⊤t ec−) (2)

with negatives c− drawn from a unigram distribu-
tion raised to the 3/4 power. This objective encour-
ages the tactic vector et to co-occur with the added
tokens and typed edits it tends to induce.

CBOW-∆ (delta→ tactic). We train a CBOW
model that averages the context embeddings and
predicts the tactic:

ēC =
1

|C|
∑

c∈C
ec (3)

ℓCBOW(C, t) = − log σ(ē⊤C et)

−
∑

t−∼Pn

log σ(−ē⊤C et−). (4)

with negatives t− sampled from the tactic fre-
quency distribution.

Sequence-only baseline (no state). For com-
parison, we train a skip-gram model over tactic
sequences within each proof (window size w),
ignoring states entirely (the standard tactic co-
occurrence baseline).

2.6 State embeddings and the
operator-analogy test

To probe operator-like behavior without a paramet-
ric state encoder, we define a simple bag-of-tokens
state embedding using the learned table:

v(s) =
1

|tok(s)|
∑

w∈tok(s)
eTOK_w. (5)

We then test the analogy by checking whether
v(sbefore) + et aligns with v(safter) in the learned
space. This mirrors translation tests in distribu-
tional semantics and knowledge-graph embeddings,
but here the translation vector is the tactic embed-
ding.

2.7 Training protocol and hyperparameters
We split data by proof_id into train/validation/test
with ratios 80/10/10 to avoid leakage across steps
of the same proof. To mitigate tactic imbalance
(e.g., the tactics simp and have are very frequent),
we cap training steps per tactic at a maximum K
(we use K = 5000). The validation/test are left
untouched. Unless otherwise stated, we use the
following settings (chosen for stability and speed):

• Dimensions: d = 256 for ∆-SGNS and
CBOW-∆; d = 128 for the sequence base-
line.

• Negative sampling: 15 negatives per pos-
itive for ∆-SGNS and CBOW-∆; 10 for
the sequence baseline; negatives drawn from
unigram3/4.

170

• Optimization: learning rate 0.03; gradi-
ent clipping at norm 5.0; 15 epochs (∆-
SGNS/CBOW-∆ and sequence baseline).

• Windows: sequence baseline window w = 4.

3 Experiments and Results

Our goal is to verify the central hypothesis that
a tactic is defined by its effect on the proof state.
To attribute performance to specific sources of sig-
nal and to rule out alternative explanations (e.g.,
sequence co-occurrence or name leakage), we run
three ablations that toggle which ∆-features are vis-
ible to the model: (1) Tokens-only — contexts con-
tain only added surface tokens (TOK_w). This tests
whether surface additions alone suffice to identify
tactics. (2) Typed-only — contexts contain only
typed structural edits (∆ADD_HYP, ∆GOAL_SOLVED,
relation flips, operator-count changes). This tests
whether structural signals alone are sufficient. (3)
Full — both tokens and typed edits. This tests com-
plementarity and the necessity of structural cues
for best performance.

We evaluate two ∆-aware models (∆-SGNS and
CBOW-∆) and a sequence-only SGNS baseline (no
states) in order to separate state-change supervision
from tactic co-occurrence.

3.1 Controls against leakage and
distributional artifacts

All ablations share the same proof-level split and
test cardinalities, so differences reflect the avail-
ability of ∆-features rather than label-set changes
or sample-size effects. Local-name anonymization
and pretty-print canonicalization further reduce the
chance of learning from spurious surface cues (e.g.,
hypothesis names). Together, these controls sup-
port the conclusion that the observed gains derive
from modeling state change.

3.2 ∆→ tactic retrieval
We report test-set Mean Reciprocal Rank
(MRR) and Recall@k for both ∆-SGNS (cen-
ter=tactic, contexts=∆-tokens) and CBOW-∆
(contexts→tactic). Table 1 shows the results.
CBOW-∆ shows clear complementarity: Full
outperforms Tokens-only and Typed-only (MRR
0.085 vs. 0.068/0.037), a ∼25% relative gain
over Tokens-only, indicating that typed edits
add non-redundant information beyond surface
additions. Typed-only retains non-trivial accuracy
(MRR 0.037), implying structural cues are

necessary but not sufficient. Tokens-only captures
surface regularities (rewrites, symbol traces) but
misses generalization afforded by typed edits. On
∆-SGNS, Tokens-only > Full suggests skip-gram
with a shared table is sensitive to heterogeneous
context types. Simple gating or reweighting of
typed cues likely will help when using SGNS.

∆-SGNS CBOW-∆

Ablation MRR R@1 R@5 R@10 MRR R@1 R@5 R@10

Full 0.032 0.017 0.047 0.054 0.085 0.058 0.116 0.144

Tokens 0.039 0.021 0.056 0.069 0.068 0.051 0.085 0.095

Typed 0.009 0.004 0.009 0.012 0.037 0.012 0.053 0.086

Table 1: Test ∆→ tactic retrieval. Higher is better.

3.3 Operator behavior
We test whether v(sbefore) + et aligns with v(safter)
in the learned space (cosine and rank among after-
states). Table 2 shows these results. Typed edits im-
prove alignment when combined with tokens: Full
surpasses Tokens-only (cosine 0.67 vs. 0.62; rank
422.3 vs. 429.2, lower is better). Under Typed-only,
the analogy metric is not meaningful because state
embeddings v(·) aggregate TOK_w vectors that are
untrained in that ablation (cosine ≈ 0, rank ≈ 1 by
construction).

Ablation Avg Cosine Avg Rank (lower↓) N

Full 0.67 422.3 2590
Tokens-only 0.62 429.2 2590
Typed-only 0.00 1.0 † 2590

Table 2: Operator-analogy for ∆-SGNS:
cosine

(
v(sbefore) + et, v(safter)

)
and rank of the

true after-state among test after-states.

3.4 Sequence-only baseline (control)
A tactic-sequence SGNS achieves next-tactic MRR
= 0.081 on N=525 bigrams. While this is a dif-
ferent prediction target, it serves as a control: co-
occurrence alone does not explain ∆→ tactic per-
formance, and the best CBOW-∆ MRR is achieved
on a strictly harder task that conditions on state
edits rather than neighboring tactics.

3.5 Structure of tactic embeddings
Figure 1 visualizes 2D UMAP projections of the
256-dimensional tactic embeddings learned under

171

the Full setting for CBOW-∆ (Fig 1a), ∆-SGNS
(Fig 1b), and the sequence-only baseline (Fig 1c).

These UMAP projections show that the CBOW-
∆ and ∆-SGNS spaces exhibit visually separable
clusters, consistent with effect-grounded organiza-
tion of tactics. By contrast, the sequence-only base-
line forms a diffuse, nearly isotropic cloud with
no obvious cluster structure under the same pro-
jection. These observations support our claim that
co-occurrence–only objectives, which can work
well in natural-language settings, do not induce
discriminative tactic representations in Lean to the
same extent as ∆-aware training.

4 Discussion and Conclusion

This paper introduced a representation-learning
perspective in which tactics are modeled as op-
erators defined by their effects on proof states.
By leveraging ∆-supervision—token-level addi-
tions/removals and typed structural edits—we
trained lightweight CBOW and skip-gram models
that learn embeddings grounded in state transitions.
Our experiments demonstrated that these embed-
dings capture tactic semantics more robustly than
surface-only or sequence-based baselines. Typed
edits, in particular, provided complementary in-
formation that improved generalization and inter-
pretability, enabling operator-style behaviors such
as tactic-family clustering and state-translation
analogies.

Beyond empirical gains, the central contribution
lies in showing that surface-level distributional reg-
ularities, often sufficient in natural language model-
ing, are inadequate for theorem proving. Capturing
the semantics of tactics requires effect-grounded
representations that model the transformations they
induce. While our models are deliberately minimal,
they establish a lightweight, interpretable bridge
between symbolic proof states and neural methods,
complementary to large-scale LLM fine-tuning and
retrieval-augmented provers. These findings moti-
vate future work on scaling ∆-supervision to larger
datasets, enriching structural edits, and integrating
operator embeddings into end-to-end proof search
systems.

Limitations

Our study is a proof-of-concept with several limi-
tations. First, we restrict ourselves to a relatively
small subset of the Lean Workbook corpus, leav-
ing open whether results scale to larger, more di-

(a) CBOW

(b) SGNS

(c) SEQ baseline

Figure 1: UMAP visualizations of the 256-dimensional
embeddings for CBOW, SGNS, and SEQ (sequence-
only baseline) under the Full setting.

verse mathematical domains. Second, our mod-
els are intentionally minimal and ignore contex-
tual subtleties such as multi-tactic interactions,
proof search heuristics, or long-range dependencies.
Third, the ∆-contexts rely on simple tokenization
and regex-based typed edits, which may omit more
nuanced structural information (e.g., type-class res-
olution or meta-variable instantiation). Finally, we
evaluate on proxy tasks such as retrieval and anal-

172

ogy, which, while informative, are not substitutes
for downstream proof success. Addressing these
limitations will require richer state encodings, inte-
gration with stronger search strategies, and broader
evaluation benchmarks.

Ethical considerations

This work focuses on mathematical theorem prov-
ing in Lean and does not involve human subjects,
sensitive data, or societal risks.

Acknowledgment

This work was partially supported by student re-
search awards from the Neukom Institute for Com-
putational Science, the Lovelace Research Pro-
gram, and the Leslie Center at Dartmouth College.

References
Kshitij Bansal, Sarah Loos, Markus Rabe, Christian

Szegedy, and Stewart Wilcox. 2019. HOList: An en-
vironment for machine learning of higher order logic
theorem proving. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
454–463. PMLR.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ra-
mana Kumar, and Michael Norrish. 2021. Tactictoe:
Learning to prove with tactics. Journal of Automated
Reasoning, 65(2):257–286.

InternLM. 2024. Lean workbook (and lean work-
book plus) dataset. https://huggingface.co/
datasets/internlm/Lean-Workbook. Hugging
Face dataset card; reports ∼57k Lean Workbook and
∼83k Lean Workbook Plus problems.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed represen-
tations of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26.

Kaiyu Yang and Jia Deng. 2019. Learning to prove
theorems via interacting with proof assistants. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 6984–6994.
PMLR.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. 2023. Leandojo:
Theorem proving with retrieval-augmented language
models. In NeurIPS 2023 Track on Datasets and
Benchmarks. Paper available at NeurIPS Datasets
and Benchmarks.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,
Dahua Lin, and Kai Chen. 2024. Lean workbook:
A large-scale lean problem set formalized from
natural language math problems. arXiv preprint
arXiv:2406.03847.

173

https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.neurips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
https://proceedings.neurips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
https://doi.org/10.1007/s10817-020-09580-x
https://doi.org/10.1007/s10817-020-09580-x
https://huggingface.co/datasets/internlm/Lean-Workbook
https://huggingface.co/datasets/internlm/Lean-Workbook
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://proceedings.mlr.press/v97/yang19a.html
https://proceedings.mlr.press/v97/yang19a.html
https://leandojo.org
https://leandojo.org
https://leandojo.org
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847

A Worked Example: Building a
∆-Context

We illustrate Sections 2.3–2.4 by reconstructing the
∆-context for the proof step:

State-Before
a b c : R
ha : 0 < a hb : 0 < b hc : 0 < c
habc : a ∗ b ∗ c = 1 h : a4 + b4 + c4 = 1

⊢ a3

(1− a8)
+

b3

(1− b8)
+

c3

(1− c8)
≥ 9

8

Tactic
have h1 := sq_nonneg (aˆ2 - 1)

State-After
a b c : R
ha : 0 < a hb : 0 < b hc : 0 < c
habc : a ∗ b ∗ c = 1 h : a4 + b4 + c4 = 1
h1 : 0 ≤ (a2 − 1)2

⊢ a3

(1− a8)
+

b3

(1− b8)
+

c3

(1− c8)
≥ 9

8

Step 1: Tokenization (Sec. 2.3). We split on
Lean/Unicode symbols and mathematical operators
and on identifiers. The subphrase

h1 : 0 ≤ (a2 − 1)2

is tokenized as

[h1, :, 0, ≤, (, a, ˆ, 2, -, 1,), ˆ, 2]
Step 2: Alpha-renaming / canonicalization
(Sec. 2.3). Local variable and hypothesis names
are anonymized to prevent name leakage:

a 7→ _x1 b 7→ _x2
c 7→ _x3 h1 7→ _h6
ha, hb, hc, habc, h 7→ _h1 . . . _h5

Thus the added hypothesis pretty-prints canoni-
cally as

_h6 : 0 ≤ (_x12 − 1)2.

Step 3: Formatting normalization (Sec. 2.3).
We normalize whitespace and numeric formats;
there is no effect on the symbol sequence above.

Step 4: Goal/context split (Sec. 2.3). We split at
the first ⊢. The new hypothesis belongs to the con-
text (left of ⊢); the goal (right of ⊢) is unchanged in
this step. There are no multiple-goal peculiarities
here (multi-goal pooling is unnecessary).

Step 5: Token-level deltas (Sec. 2.4). Let
∆(w) = countafter(w)− countbefore(w). The only
positive deltas arise from inserting the hypothesis
line _h6 : 0 ≤ (_x12−1)2. The multiset of added
tokens (with multiplicities) is:

_h6×1 :×1 0×1 ≤×1 (×1 _x1×1

^×2 2×2 -×1 1×1)×1

Step 6: Typed edit indicators (Sec. 2.4). Regex-
based structural edits are as follows:

∆ADD_HYP (one hypothesis added)
∆ADD_SYM_- (a minus sign added)
∆ADD_SYM_≤ (a ≤ added)

There is no ∆_GOAL_SOLVED and no relation flip
(≤↔≥) in this step.

Step 7: Final ∆-context C (Sec. 2.4). The train-
ing context is the multiset:

{ TOK__h6, TOK_:, TOK_0,
TOK_ ≤, TOK_(, TOK__x1, TOK_^,
TOK_2, TOK_^, TOK_2, TOK_-,
TOK_1, TOK_) }
∪ {∆ADD_HYP, ∆ADD_SYM_-,
∆ADD_SYM_≤ }

(Repeated TOK_ˆ and TOK_2 indicate multiplic-
ity.)

B Examples

Table B1 shows sample lean proofs with different
number of tactics. Table B2 shows examples of
State-Before, Tactic, State-After triples from the
Lean Work-book Corpus.

174

Proof # Tactics
1 norm_num [ha, hb, hc, habc, h]

have h1 := sq_nonneg (aˆ2 - 1)
have h2 := sq_nonneg (bˆ2 - cˆ2)
nlinarith

2 rintro a b c 〈h1, h2, h3, h4, h5, h6〉
nlinarith [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a)]

3 push_neg
refine’ 〈1, 1, 〈by norm_num, by norm_num〉, by norm_num〉

4 push_neg
refine’ 〈1, 2, 3, by norm_num〉

5 simp [Int.ModEq]
omega

Table B1: Sample proofs. Each line is one tactic.

State-Before Tactic State-After
x y z : Z
⊢ (xˆ2 + 1) * (yˆ2 + 1) * (zˆ2 +
1) =
(x + y + z)ˆ2
- 2 (x y + y z + z x)
+ (x y + y z + z x)ˆ2
- 2 x y z (x + y + z)
+ xˆ2 yˆ2 zˆ2 + 1

ring no goals

a b c : R
ha : 0 < a
hb : 0 < b
hc : 0 < c
habc : a ∗ b ∗ c = 1
h : a4 + b4 + c4 = 1
⊢ a3/(1−a8)+ b3/(1− b8)+

c3/(1− c8) ≥ 9 · 31/4
8

norm_num [ha, hb, hc, habc, h] a b c : R
ha : 0 < a
hb : 0 < b
hc : 0 < c
habc : a ∗ b ∗ c = 1
h : a4 + b4 + c4 = 1

⊢ 9

8
≤ a3/(1−a8)+ b3/(1−

b8) + c3/(1− c8)

a b c : R
ha : 0 < a
hb : 0 < b
hc : 0 < c
habc : a ∗ b ∗ c = 1
h : a4 + b4 + c4 = 1

⊢ 9

8
≤ a3/(1−a8)+ b3/(1−

b8) + c3/(1− c8)

have h1 := sq_nonneg (a^2 - 1) a b c : R
ha : 0 < a
hb : 0 < b
hc : 0 < c
habc : a ∗ b ∗ c = 1
h : a4 + b4 + c4 = 1
h1 : 0 ≤ (a2 − 1)2

⊢ 9

8
≤ a3/(1−a8)+ b3/(1−

b8) + c3/(1− c8)
a b c : R
ha : 0 < a
hb : 0 < b
hc : 0 < c
habc : a ∗ b ∗ c = 1
h : a4 + b4 + c4 = 1
h1 : 0 ≤ (a2 − 1)2

⊢ 9

8
≤ a3/(1−a8)+ b3/(1−

b8) + c3/(1− c8)

have h2 := sq_nonneg (b^2 - c^2) a b c : R
ha : 0 < a
hb : 0 < b
hc : 0 < c
habc : a ∗ b ∗ c = 1
h : a4 + b4 + c4 = 1
h1 : 0 ≤ (a2 − 1)2

h2 : 0 ≤ (b2 − c2)2

⊢ 9

8
≤ a3/(1−a8)+ b3/(1−

b8) + c3/(1− c8)
a b c : R
ha : 0 < a
hb : 0 < b
hc : 0 < c
habc : a ∗ b ∗ c = 1
h : a4 + b4 + c4 = 1
h1 : 0 ≤ (a2 − 1)2

h2 : 0 ≤ (b2 − c2)2

⊢ 9

8
≤ a3/(1−a8)+ b3/(1−

b8) + c3/(1− c8)

nlinarith no goals

Table B2: Sample sentences (before, tactic, after) from the Before-Tactic-After dataset.

175

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 176–185
November 9, 2025 ©2025 Association for Computational Linguistics

UniMath-CoT: A Unified Framework for Multimodal Mathematical
Reasoning with Re-Inference Affirmation

Zhixiang Lu1, Mian Zhou1, Angelos Stefanidis1, Jionglong Su1,

1School of Artificial Intelligence and Advanced Computing, Xi’an Jiaotong-Liverpool University
Correspondence: Jionglong.Su@xjtlu.edu.cn

Abstract

Large Language Models (LLMs) have achieved
considerable success in text-based mathemat-
ical reasoning, yet their potential remains un-
derexplored in the multimodal mathematics do-
main where joint text and image understand-
ing is imperative. A key bottleneck hindering
progress is the scarcity of high-quality, gen-
uinely multimodal benchmarks. To address
this gap, we construct a unified benchmark by
consolidating and curating three public multi-
modal mathematics datasets. We subsequently
propose the UniMath-CoT framework, which
establishes a robust performance baseline by
combining Chain-of-Thought (CoT) principles
with efficient Supervised Fine-Tuning (SFT)
based on Low-Rank Adaptation (LoRA). Fur-
thermore, to bolster the model’s reasoning ro-
bustness, we introduce an innovative verifica-
tion mechanism, AARI (Answer Affirmation
by Re-Inference), which leverages a special-
ized re-inference protocol to have the model
self-scrutinize and validate its initial conclu-
sions. Our comprehensive experiments show
that this integrated strategy substantially boosts
performance, surpassing a wide range of open-
source models and markedly closing the gap
with leading proprietary systems.

1 Introduction

Mathematical reasoning is a cornerstone of human
intelligence. Automating this process, particularly
for problems presented in a multimodal format that
integrates text with diagrams and figures, repre-
sents a significant frontier for artificial intelligence
(Seo et al., 2015). This capability has profound
implications for domains like personalized educa-
tion, scientific discovery, and engineering, where
complex information is often conveyed visually.

The advent of powerful Vision-Language Mod-
els (VLMs), such as GPT-4V, Gemini, and LLaVA
(OpenAI, 2023; Team et al., 2023; Liu et al.,
2024a), has opened new avenues for tackling this

Multiple-choice Calculation
0

15

30

45

Pe
rf

or
m

an
ce

 S
co

re

51.5

36.7

49.0

33.4

47.2

31.8

44.1

26.3

45.9

32.3

GPT-5
Gemini-2.5 Pro

Claude-4.1 Opus
GPT-4o

Ours

Figure 1: Performance comparison of our model against
leading proprietary VLMs on Multiple-choice and Cal-
culation problems. "Ours" refers to the Qwen2.5-VL
7B model fine-tuned with UniMath-CoT and enhanced
with AARI.

challenge. These models can, in principle, process
interleaved text and images to produce human-like
reasoning steps, moving beyond the text-only limi-
tations of earlier models (Wei et al., 2022). How-
ever, the landscape of multimodal mathematical
reasoning remains fragmented. Numerous datasets
exist (Lu et al., 2024; Ling et al., 2023; Liu et al.,
2024b; Wang et al., 2024), but they possess dis-
tinct formats, scopes, and a significant number of
instances where the visual component is not essen-
tial for solving the problem. This fragmentation
and lack of a unified, high-quality benchmark im-
pede the rigorous evaluation of VLMs and hinder
progress in the field. To address these challenges
and systematically advance the state of multimodal
mathematical reasoning, this paper makes three
primary contributions:

1. A Unified and Curated Multimodal Math-
ematics Dataset. We construct a new
benchmark by amalgamating three prominent
datasets: MathViTa, MathVision, and CMM-
MATH. We apply a rigorous filtering process
to remove unimodal instances, ensuring that

176

mailto:email@domain

every problem is genuinely multimodal. The
resulting dataset serves as a more challeng-
ing and realistic testbed for evaluating VLM
reasoning capabilities.

2. An Effective Reasoning Framework
(UniMath-CoT). We leverage and validate
UniMath-CoT, a structured Chain-of-Thought
approach tailored for the complexities
of joint visual and textual understand-
ing. Implemented via parameter-efficient
fine-tuning (LoRA) (Hu et al., 2021), this
framework guides the model to generate more
coherent and accurate reasoning paths than
conventional methods.

3. A Novel Answer Verification Technique
(AARI). We introduce AARI, a lightweight,
post-hoc strategy to boost model performance.
This technique directs the model to re-evaluate
its predicted answer through a secondary, con-
densed inference pass, acting as a powerful
self-correction mechanism that significantly
reduces errors and improves final accuracy.

Table 1: Distribution of samples by split, source, and
language. Each cell shows the absolute count and its
proportion relative to the split’s total count.

Split Dataset Language

Chinese English

Train

MathVision 0 (0.0%) 3157 (23.8%)
MathVista 357 (2.7%) 5428 (40.9%)
EduChat-Math 4255 (32.1%) 61 (0.5%)

Total 4612 (34.8%) 8646 (65.2%)

Test

MathVision 0 (0.0%) 187 (18.7%)
MathVista 45 (4.5%) 311 (31.1%)
EduChat-Math 455 (45.5%) 2 (0.2%)

Total 500 (50.0%) 500 (50.0%)

2 Related Works

Multimodal Math Datasets The development of
capable models for mathematical reasoning is in-
trinsically linked to the availability of high-quality
datasets. Early efforts in this domain often fo-
cused on text-based problems, with benchmarks
like GSM8K (Cobbe et al., 2021) and MathQA
(Amini et al., 2019) becoming standard testbeds for
evaluating the reasoning capabilities of LLMs.

The frontier has recently shifted towards multi-
modal problems that require understanding both

text and images. This has led to the creation of sev-
eral key benchmarks. For instance, Geometry3K
(Lu et al., 2021) provides high-school level geom-
etry problems with formally annotated diagrams.
More recently, a new wave of diverse datasets has
emerged, including MathVista (Lu et al., 2024), a
comprehensive benchmark aggregating problems
from 28 different sources; MathViTa (Ling et al.,
2023), which focusing on visual instruction tun-
ing for math; MathVision (Wang et al., 2024), de-
signed to test reasoning-intensive math problems;
and CMM-MATH (Liu et al., 2024b), a benchmark
specifically for Chinese multimodal mathematics.

While these datasets have been invaluable, their
varied formats, scopes, and annotation styles create
a fragmented landscape. This makes it challenging
to perform unified and fair evaluations of different
models. Our work addresses this gap directly by
curating and unifying three of these recent, diverse
datasets into a single, filtered benchmark, ensuring
all instances are genuinely multimodal and provid-
ing a more robust foundation for analysis.

Vision-Language Models (VLMs) The advent
of powerful VLMs, pioneered by models like
LLaVA (Liu et al., 2024a) and further advanced
by open-source models like Qwen-VL (Bai et al.,
2023) and proprietary systems like GPT-4V (Ope-
nAI, 2023) and Gemini (Team et al., 2023), has
enabled end-to-end multimodal reasoning. The
primary challenge has since shifted to effectively
eliciting their latent reasoning abilities.

The foundational technique for this is Chain-
of-Thought (CoT)(Wei et al., 2022) prompting
(Wei et al., 2022), which significantly improves
performance by instructing models to generate
step-by-step solutions. This paradigm has been
extended to the multimodal domain, with meth-
ods like Multimodal-CoT (Zhang et al., 2023) that
prompt the model to integrate information from
both modalities in its reasoning steps. While ef-
fective, these zero-shot prompting methods can be
sensitive to prompt formulation and may not be
optimal for a specific domain. An alternative is
to instill reasoning capabilities through training.
Our UniMath-CoT framework aligns with this di-
rection, employing supervised fine-tuning (SFT)
(Ouyang et al., 2022) to teach the model a special-
ized reasoning structure for multimodal math, aim-
ing for a more robust and replicable performance
than prompting alone.

177

Self-Correction and Answer Verification A key
limitation of LLMs, even when using CoT, is their
propensity for making logical or computational
errors within a reasoning chain. To mitigate this,
research has explored methods for self-correction
and answer verification (Lu et al., 2025; Li et al.,
2025). One approach involves training a separate
verifier model to score or judge the correctness of
solutions generated by a primary model (Cobbe
et al., 2021). Another popular direction is self-
refinement, where the model iteratively critiques
and improves its own output based on feedback
(Madaan et al., 2023).

While powerful, these methods can be computa-
tionally expensive, requiring either the training of
an additional model or multiple inference passes.
Our proposed AARI technique is situated within
this line of research but designed for efficiency.
It is a lightweight, single-pass verification step
that prompts the model to perform a final, focused
check on its answer. AARI functions as a post-hoc
self-correction mechanism that improves reliability
without the overhead of multi-step refinement or
external verifiers.

3 Methodology

Our methodology is designed to systematically en-
hance and evaluate the mathematical reasoning
capabilities of Vision-Language Models (VLMs).
It is founded on three core components: a newly
curated benchmark, a fine-tuned reasoning frame-
work, and a novel inference strategy for answer
verification as shown in Figure 2.

3.1 UniMath Benchmark Construction

A robust evaluation requires a high-quality bench-
mark. To this end, we construct UniMath, a unified
and curated benchmark derived from three recent
and diverse multimodal math datasets: MathVista
(Lu et al., 2024), MathVision (Wang et al., 2024),
and CMM-MATH (Liu et al., 2024b). The con-
struction process involves four critical steps:

1. Schema Unification: All problems from the
source datasets are converted into a standard-
ized JSON format. Each entry contains a
unique ID, the raw question text, an image,
the ground-truth answer, and, where available,
human-annotated reasoning steps. This cre-
ates a consistent data structure for all subse-
quent processing.

2. Answer Normalization: We develop and ap-
ply a rigorous parsing function, ϕ(·), to nor-
malize all answers. This function extracts nu-
merical values, correctly interprets fractions
and percentages, removes units, and standard-
izes multiple-choice options (e.g., converting
‘(A)‘ to ‘A‘). This ensures that evaluation is
based on mathematical correctness, not super-
ficial formatting differences.

3. Genuinely Multimodal Filtering: A key con-
tribution of UniMath is its focus on problems
requiring genuine multimodal reasoning. We
employ a systematic process to filter out in-
stances where the image is redundant or ex-
traneous, ensuring that a correct solution can
only be derived by integrating both visual and
textual information.

4. Problem Type and Scope Curation: To
maintain evaluation clarity and objectivity, we
further refine the benchmark by problem type
and answer scope. Specifically, we only select
two types of problems: multiple-choice ques-
tions and non-multiple-choice problems that
possess a unique, definitive solution. Further-
more, to avoid ambiguity with extremely large
numbers or complex symbolic expressions,
we constrain the answers for all non-multiple-
choice problems to be rational numbers within
the range of [-10,000, 10,000].

The final UniMath benchmark, shaped by this
rigorous curation process, serves as the foundation
for our experiments, providing a challenging and
standardized testbed for multimodal mathematical
reasoning.

3.2 UniMath-CoT Reasoning Framework
To move beyond the limitations of zero-shot
prompting, we propose UniMath-CoT, a framework
for teaching a VLM to generate structured, step-
by-step reasoning for multimodal math problems
through supervised fine-tuning (SFT).

The goal of UniMath-CoT is to train the model to
produce a specific, decomposable reasoning chain
that mirrors an ideal problem-solving process (see
Figure 3). This chain consists of several stages:
(1) Visual Grounding, where key information from
the image is extracted; (2) Problem Formulation,
where visual and textual information are integrated;
(3) Step-by-Step Planning; (4) Execution of the
plan with calculations; and (5) the Final Answer.

178

Figure 2: The overall framework of our work, encompassing the entire pipeline from data construction to model
training and inference-verification. We first integrate three public datasets (CMM-Math, MathVista, MATH-Vision)
through standardized alignment to build the unified UniMath benchmark. Subsequently, this benchmark is used to
generate CoT formatted samples for SFT of the base VLM. During inference, the preliminary answer from the SFT
model is passed through our proposed AARI module for re-inference and verification to produce a more reliable
final result.

Figure 3: The structured reasoning generation prompt
template for UniMath-CoT.

Formally, we define a problem instance as a
tuple P = (I,Q), where I represents the im-
age and Q is the corresponding textual question.
The desired output is a coherent reasoning chain
R = (s1, s2, . . . , sn) that culminates in the final
answer A. For training purposes, we concate-
nate these elements into a single target sequence
Y = (s1, . . . , sn, A), which the model must learn
to generate autoregressively.

Our primary objective is to fine-tune a base
Vision-Language Model (VLM), parameterized by
θ, to maximize the conditional likelihood of gener-
ating this ground-truth sequence Y given the prob-
lem instance P . To achieve this in a computation-
ally efficient manner, we employ Low-Rank Adap-
tation (LoRA) for parameter-efficient fine-tuning.

The training process minimizes the standard
cross-entropy loss, which is equivalent to mini-
mizing the negative log-likelihood of the target se-
quence. The loss function, LSFT, over our curated
training dataset Dtrain is formally expressed as the
expectation of this loss across all data samples:

LSFT(θ) = −E(P,Y)∼Dtrain [log pθ(Y |P)] (1)

where the log-likelihood of a single sequence is
decomposed autoregressively as:

log pθ(Y |P) =

|Y |∑

t=1

log pθ(yt|y<t, P) (2)

179

Algorithm 1 Answer Affirmation by Re-Inference

Require: Image I , question Q, initial answer A,
prompt P , VLMM, mode µ ∈ {t1, t2}

Ensure: Final answer A∗

1: if µ = t1 then ▷ Multiple-Choice
2: O = {O1, . . . , Ok}
3: for i = 1, . . . , k do
4: P ← “Is ‘Oi’ correct for Q given I?”
5: ifM(P) = “Correct” then
6: return Oi

7: return Fallback(O)
8: else if µ = t2 then ▷ Calculation
9: A+ ← ∅

10: for j = 1, . . . , N do
11: P ← “Is ‘Aj’ correct for Q given I?”
12: ifM(P) = “Correct” then
13: A+ ← A+ ∪ {Aj}
14: if |A+| > 0 then
15: return argmaxA∈A+ #{ i : Ai = A }
16: else
17: return Fallback(A)

This training paradigm compels the model not
only to predict the final answer but also to articulate
the underlying step-by-step derivation. By optimiz-
ing the entire reasoning path, this process endows
the model with a specialized and robust capability
for structured, multimodal problem-solving.

3.3 Answer Affirmation by Re-Inference
Even with a strong reasoning framework, VLMs
can produce fallacious conclusions from otherwise
sound reasoning chains. To address this, we in-
troduce a novel lightweight inference technique:
AARI, which is a two-stage process designed to
verify and self-correct the model’s initial conclu-
sion.

Stage 1: Candidate Generation Given a prob-
lem P = (I,Q), the fine-tuned model first gener-
ates a candidate solution, which includes the rea-
soning chain R1 and a preliminary answer A1. This
is the standard generative process:

(R1, A1) = argmax
R,A

Pθ(R,A|I,Q) (3)

Stage 2: Affirmation via Re-Inference Next,
instead of immediately accepting A1, we formu-
late a new verification prompt, P ′, which contains
the original problem, the generated reasoning, and
the candidate answer: P ′ = (I,Q,R1, A1). We

then task the model with assessing the validity of
A1 given R1. Let V be a latent variable represent-
ing the affirmation of the answer, where V = 1
signifies correctness and V = 0 signifies an error.
The model implicitly computes the posterior prob-
ability Pθ(V = 1|P ′). The final answer, Af , is
determined by this affirmation step:

Af =

{
A1 if pθ(V = 1|P ′) > 0.5

A2 otherwise
(4)

where A2 = argmaxA pθ(A|P ′, V = 0). In prac-
tice, this is implemented by prompting the model
with a question like, "Based on the provided rea-
soning, is the answer ’A1’ correct? Re-examine the
steps and confirm." If the model’s response is affir-
mative, we accept A1. If it is negative, we prompt
it to provide the corrected answer, A2. This re-
inference step forces the model to perform a final,
focused consistency check, effectively reducing un-
forced errors without requiring external verifiers or
complex iterative refinement.

4 Experiments

4.1 Experimental Setup
We conduct a comprehensive set of experiments
to evaluate our proposed framework. All evalua-
tions are performed on our newly constructed Uni-
Math benchmark, which covers a diverse range
of multimodal mathematics problems. The pri-
mary goals are to (1) assess the individual contri-
butions of the UniMath-CoT fine-tuning strategy
and the AARI inference mechanism through abla-
tion studies, and (2) compare our final model’s per-
formance against state-of-the-art open-source and
proprietary baselines. Our implementation is built
upon PyTorch 2.11+. We leverage the Transform-
ers library (v4.53+) for handling the underlying
Vision-Language Models. To manage the signifi-
cant computational requirements of fine-tuning, we
employ DeepSpeed (Rajbhandari et al., 2020) for
distributed training and memory optimization. For
our parameter-efficient fine-tuning approach, we
use LoRA with 64 lora rank, which is implemented
with the bitsandbytes library (v0.42). The de-
velopment environment requires Python 3.11 and
CUDA 12.6. All fine-tuning experiments were con-
ducted on a server equipped with NVIDIA A100
80GB GPUs, a 32-core AMD EPYC processor,
and 128GB of DDR4 memory. This configuration
supported a per-device batch size of 8 during the
LoRA fine-tuning process.

180

Table 2: Comprehensive benchmark on the UniMath dataset. We first establish a zero-shot performance leaderboard
across proprietary and open-source models (<10B). We then conduct a detailed ablation study on the top-performing
open-source model, Qwen2.5-VL, demonstrating the progressive performance gains from Chain-of-Thought (CoT),
a standard SFT (LoRA), and finally our AARI method. Our approach, highlighted in gray and marked with a star
(⋆), achieves state-of-the-art results among its peers, rivaling top proprietary systems.

Model / Method Problem Type Language Overall

Multiple-choice Calculation Chinese English Accuracy (%)

Proprietary Models (Zero-shot)
GPT-5 (OpenAI, 2024) 51.5 36.7 43.5 44.7 44.1
Gemini-2.5 Pro (Reid and Team, 2024) 49.0 33.4 40.1 42.3 41.2
Claude-4.1 Opus (Anthropic, 2024) 47.2 31.8 38.8 40.2 39.5
GPT-4o (OpenAI, 2023) 44.1 26.3 33.0 37.4 35.2

Open-Source Models (Zero-shot)
InternVL3 8B (Chen et al., 2024) 29.1 13.1 21.3 20.9 21.1
Ú + CoT Prompting 35.0 19.8 28.1 26.7 27.4
Ô + SFT (LoRA) 36.5 21.9 29.5 28.9 29.2
Qwen2.5-VL 7B (Bai et al., 2024) 30.5 13.7 23.8 20.4 22.1
Ú + CoT Prompting 35.3 19.5 28.2 26.6 27.4
Ô + SFT (LoRA) 37.2 21.5 31.4 30.9 31.2
DeepSeek-VL 7B (DeepSeek, 2024) 28.8 11.7 20.9 19.7 20.3
Ú + CoT Prompting 34.8 19.2 28.0 25.9 27.0
Ô + SFT (LoRA) 35.8 20.4 28.3 27.9 28.1

Our Method (Based on Qwen2.5-VL 7B)
Ç + UniMath-CoT with SFT (LoRA) 39.6 26.8 34.5 31.9 33.2
⋆ + AARI 45.9 32.3 40.2 38.0 39.1

4.2 Evaluation Metric
Our primary evaluation metric is Accuracy, de-
fined as the percentage of correctly solved prob-
lems. An answer is considered correct if the
model’s prediction, after applying a normaliza-
tion function ϕ(·), exactly matches the normalized
ground-truth answer. Formally, for a test set Dtest,
accuracy is defined as:

Accuracy =
1

|Dtest|

|Dtest|∑

i=1

I(ϕ(Âi) = ϕ(Ai)) (5)

where Âi is the predicted answer, Ai is the ground-
truth answer, and I(·) is the indicator function.

4.3 Results and Analysis
Overall Performance As shown in Table 2,
our full approach that combining the UniMath-
CoT fine-tuning with the AARI inference strategy,
achieves a final accuracy of 39.1%. This result es-
tablishes a new state-of-the-art among open-source
models on this challenging task. Notably, our
model significantly surpasses the powerful propri-
etary model GPT-4o (35.2%) and becomes highly
competitive with Claude-4.1 Opus (39.5%).

250 500 750 1000 1250 1500 1750 2000
Max New Tokens

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Qwen2.5-VL 7B (Base)
Base + UniMath-CoT with SFT
Base + UniMath-CoT with SFT + AARI

Figure 4: Performance of different model versions under
varying maximum new token lengths.

The Impact of Each Component To isolate the
contributions of our proposed methods, we con-
ducted a detailed ablation study. We evaluated the
effectiveness of our fine-tuning framework. Start-
ing from a standard SFT Qwen2.5-VL 7B model
which achieves 31.2% accuracy, employing our
UniMath-CoT framework boosts the performance
to 33.2%, which validates that our specialized ap-
proach of training on structured, decomposable

181

Figure 5: Qualitative Comparison of Model Outputs on a Sample Problem.

reasoning paths is more effective than generic in-
struction tuning. We also assessed the impact of our
inference strategy. Applying AARI on top of the
UniMath-CoT model elevates the accuracy from
33.2% to 39.1%. This represents a remarkable
+5.9% increase, which corresponds to a 17.8% rel-
ative error reduction, underscoring the efficacy of
the self-verification mechanism. The benefits of
AARI are robust and consistent across all problem
categories, boosting accuracy on multiple-choice
(+6.3%) and calculation (+5.5%) problems, as de-
tailed in Table 2. This demonstrates that AARI is a
broadly applicable technique that enhances model
reliability.

Effect of Generation Length We also inves-
tigated the impact of the maximum generation
length (Max New Tokens) on performance. Fig-
ure 4 reveals two key findings. First, the per-
formance hierarchy remains consistent across all
token lengths, with the base model being outper-
formed by UniMath-CoT, which is in turn outper-
formed by the full model with AARI. This visually
confirms our ablation results. Second, all model
variants achieve their peak performance around
1024 max new tokens, suggesting this length pro-

vides an optimal balance between allowing for com-
plete reasoning and avoiding excessive, potentially
noisy, output.

Comprehensive Performance Profile To pro-
vide a more holistic, multi-dimensional view of
our model’s capabilities, we present a comparative
radar chart in Figure 6. This chart visualizes the
trade-offs between model size, inference speed, and
performance on different sub-tasks (Chinese, En-
glish, Multiple-choice, Calculation) for our model
and the baselines.

The chart clearly illustrates the well-rounded and
highly efficient profile of our approach. Compared
to its base model, Qwen2.5-VL 7B, our model
shows a significantly larger and more balanced per-
formance polygon. This expansion across all accu-
racy axes: Chinese, English, Multiple-choice, and
Calculation, visually confirms that the gains from
UniMath-CoT and AARI are comprehensive and
not limited to a single domain.

When compared against leading proprietary
models, our model demonstrates remarkable com-
petitiveness despite its significantly smaller param-
eter size. For instance, while models like GPT-
5 and Gemini-2.5 Pro exhibit the largest perfor-

182

mance polygons overall, our 7B model achieves an
accuracy profile that is notably competitive with,
and in some areas superior to, much larger models
like GPT-4o. This highlights the efficiency of our
approach: we have successfully closed a substantial
portion of the performance gap with state-of-the-art
systems while operating at a fraction of the compu-
tational scale. The radar chart thus underscores our
primary contribution: a clear and effective method-
ology for developing highly capable and efficient
open-source models for complex multimodal rea-
soning.

Qualitative Analysis To showcase the differ-
ences in multi-step reasoning, Figure 5 provides
a qualitative comparison of different models on a
geometry problem that requires robust spatial in-
terpretation. As shown, the base model fails due
to a misinterpretation of geometric relations, while
the UniMath-CoT model, despite an initial flawed
step, successfully self-corrects to find the correct
solution (Wei et al., 2022). This comparison high-
lights the critical role of structured reasoning and
verification mechanisms, like those in the CoT and
AARI models, in achieving reliable and accurate
mathematical problem-solving.

Model
Size
(B)

Response
Speed

(Tokens/s)
Chinese

Acc.

English
Acc.

Multiple-choice
Acc.

Calculation
Acc.

20 40 60 80 100

GPT-5

Model
Size
(B)

Response
Speed

(Tokens/s)
Chinese

Acc.

English
Acc.

Multiple-choice
Acc.

Calculation
Acc.

Gemini-2.5 Pro

Model
Size
(B)

Response
Speed

(Tokens/s)
Chinese

Acc.

English
Acc.

Multiple-choice
Acc.

Calculation
Acc.

Claude-4.1 Opus

Model
Size
(B)

Response
Speed

(Tokens/s)
Chinese

Acc.

English
Acc.

Multiple-choice
Acc.

Calculation
Acc.

GPT-4o

Model
Size
(B)

Response
Speed

(Tokens/s)
Chinese

Acc.

English
Acc.

Multiple-choice
Acc.

Calculation
Acc.

Qwen2.5-VL 7B

Model
Size
(B)

Response
Speed

(Tokens/s)
Chinese

Acc.

English
Acc.

Multiple-choice
Acc.

Calculation
Acc.

Ours

Figure 6: Multi-dimensional performance radar chart
comparison. (All accuracy scores are multiplied by 2;
parameter sizes for proprietary models are estimates.)

5 Conclusion and Limitation

In this work, we addressed key obstacles in mul-
timodal mathematical reasoning, namely bench-
mark fragmentation and the need for robust verifi-
cation. We introduced a tripartite contribution: (1)
UniMath, a unified and rigorously curated bench-
mark for genuinely multimodal math problems;
(2) UniMath-CoT, a fine-tuning framework that
teaches structured reasoning; and (3) AARI, a
novel, lightweight inference-time strategy for an-
swer verification. Our experiments validate the
power of this integrated approach. Our 7B model,
enhanced by UniMath-CoT and AARI, achieves
39.1% accuracy on the UniMath benchmark, set-
ting a new state-of-the-art for open-source models
and outperforming strong proprietary systems like
GPT-4o. A key finding is the remarkable effec-
tiveness of AARI, which alone contributes a 5.9 %
improvement, drastically reducing errors through
its efficient self-verification mechanism.

Our work provides a clear roadmap for building
powerful, open-source reasoning systems that rival
proprietary models. Crucially, AARI demonstrates
that inference-time self-correction is a highly ef-
fective strategy for boosting model factuality and
reliability, a principle with strong potential for gen-
eralization beyond mathematics to other complex
domains. Future work can extend this foundation
by exploring iterative self-correction mechanisms
and expanding the UniMath benchmark to new
modalities like video-based challenges.

Ethics Statement
Our work leverages Large Language Models
(LLMs) for complex mathematical problem-
solving, specifically geometric reasoning, rather
than direct text generation. While this application
domain typically presents fewer immediate ethical
concerns related to content generation biases, it is
crucial to acknowledge the broader ethical land-
scape of LLM usage. Recent investigations have in-
dicated that advanced prompting techniques, such
as Chain-of-Thought (CoT) prompting, may inad-
vertently introduce or amplify ethical biases within
LLM reasoning processes, even in non-generative
tasks (Shaikh et al., 2023). Therefore, future work
will involve a thorough examination of potential
biases that might emerge from our method’s re-
liance on CoT and answer affirmation techniques,
ensuring fairness and robustness in mathematical
reasoning applications.

183

https://www.anthropic.com/news/the-claude-3-model-family-opus-sonnet-haiku
https://www.anthropic.com/news/the-claude-3-model-family-opus-sonnet-haiku
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2409.02834
https://arxiv.org/abs/2409.02834
https://arxiv.org/abs/2409.02834

References
Aida Amini, Mark Hopkins, Tony Tung, Cissy Le,

Michael Huth, and Richard Socher. 2019. Mathqa:
Towards interpretable math word problem solving
with operation-based formalisms. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2957–2967.

Anthropic. 2024. The claude 3 model family: Opus, son-
net, haiku. https://www.anthropic.com/news/
the-claude-3-model-family-opus-sonnet-haiku.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Jinze Bai, Zhenting Tu, Shusheng Yang, Qian Ma,
Yichang Zhu, Shijie Wang, Peng Wang, Sinan Tan,
and Chang Zhou. 2024. Qwen2: A family of pow-
erful open-source language models. arXiv preprint
arXiv:2406.04741.

Zhe Chen, Weiyun Zhang, Wen Wang, Yiliang Liu,
Zhaoyang Zhang, Jian Wang, Jie Luo, Yu Qiao, and
Wenhai Wang. 2024. Internvl 1.5: A general vision-
language model. arXiv preprint arXiv:2404.16821.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

DeepSeek. 2024. Deepseek-vl: Towards real-world
vision-language understanding. arXiv preprint
arXiv:2403.05525.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. LoRA: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yulong Li, Zhixiang Lu, Feilong Tang, Simin Lai,
Ming Hu, Yuxuan Zhang, Haochen Xue, Zhaodong
Wu, Imran Razzak, Qingxia Li, and 1 others. 2025.
Rhythm of opinion: A hawkes-graph framework
for dynamic propagation analysis. arXiv preprint
arXiv:2504.15072.

He Ling, Sen Liu, Jian Liu, Yixuan Li, Guangda Shi,
Leyang Zhou, Zhaoyang Hu, Yixuan Sun, Xing Su,
Jiaxuan Yu, and 1 others. 2023. Mathvita: A visual
instruction tuning toolkit for general-purpose multi-
modal llms. arXiv preprint arXiv:2308.03720.

Haotian Liu, Chunyuan Li, Feiyu Li, and Michihiro Ya-
sunaga. 2024a. Visual instruction tuning. Advances
in Neural Information Processing Systems, 36.

Wentao Liu, Qianjun Pan, Yi Zhang, Zhuo Liu, Ji Wu,
Jie Zhou, Aimin Zhou, Qin Chen, Bo Jiang, and
Liang He. 2024b. Cmm-math: A chinese multimodal
math dataset to evaluate and enhance the mathemat-
ics reasoning of large multimodal models. Preprint,
arXiv:2409.02834.

Pan Lu, Swaroop Mishra, Tony Xia, Liangcheng Huang,
Ramana Al-Tawy, Yixin Jia, Wen-haw Zhang, Ping
Yang, Mohamed Abdel-Hady, Bassem Majumder,
and 1 others. 2024. Mathvista: Evaluating math-
ematical reasoning of foundation models in visual
contexts. arXiv preprint arXiv:2310.02255.

Pan Lu, Ran Zhang, Jivko Sashank, AI Wang, Mohit
Singh, Hongxin Zhu, and Yi Su. 2021. Inter-gps:
Interpretable geometry problem solving with formal
language and symbolic reasoning. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2028–2041.

Zhixiang Lu, Peichen Ji, Yulong Li, Ding Sun, Chenyu
Xue, Haochen Xue, Mian Zhou, Angelos Stefanidis,
Jionglong Su, and Zhengyong Jiang. 2025. Advanc-
ing low-resource machine translation: A unified data
selection and scoring optimization framework. In Ad-
vanced Intelligent Computing Technology and Appli-
cations, pages 482–493, Singapore. Springer Nature
Singapore.

Aman Madaan, Niket Tandon, Prakhar Gupta, Kevin
Hall, Luyu Gao, Sreyan Majumder, Julian McAuley,
Yiming Narayan, and Gena Sim. 2023. Self-refine:
Iterative refinement with self-feedback. Advances in
Neural Information Processing Systems, 36.

OpenAI. 2023. Gpt-4v(ision) system card.
https://cdn.openai.com/papers/GPTV_
System_Card.pdf.

OpenAI. 2024. Gpt-4o. https://openai.com/
index/hello-gpt-4o/.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. Preprint,
arXiv:1910.02054.

M. Reid and Gemini Team. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. Google AI.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geometry
problems: Combining text and diagram interpretation.
arXiv preprint arXiv:1509.04232.

184

https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_5_report.pdf
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2402.14804
https://arxiv.org/abs/2402.14804
https://arxiv.org/abs/2402.14804

Omar Shaikh, Hongxin Zhang, William Held, Michael
Bernstein, and Diyi Yang. 2023. On second thought,
let’s not think step by step! bias and toxicity in zero-
shot reasoning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4454–4470,
Toronto, Canada. Association for Computational Lin-
guistics.

Gemini Team and 1 others. 2023. Gemini: A fam-
ily of highly capable multimodal models. Preprint,
arXiv:2312.11805.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie
Zhan, and Hongsheng Li. 2024. Measuring mul-
timodal mathematical reasoning with math-vision
dataset. Preprint, arXiv:2402.14804.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ben Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 24824–24837.

Zhuosheng Zhang, Aston Li, Vladislav Lialin, Hai
Lu, Hanjung Lee, Mohammad Hosseini, Xiang Li,
Haotian Liu, Chunyuan Li, Mu Li, and Anima
Anandkumar. 2023. Multimodal chain-of-thought
reasoning in language models. arXiv preprint
arXiv:2302.00923.

185

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 186–194
November 9, 2025 ©2025 Association for Computational Linguistics

An in-depth human study of the mathematical reasoning abilities in Large
Language Models

Carolina Dias-Alexiou, Edison Marrese-Taylor, Yutaka Matsuo
Graduate School of Engineering, The University of Tokyo

{carolina.dias,emarrese,matsuo}@weblab.t.u-tokyo.ac.jp

Abstract

We study the generalization capabilities of
large language models (LLM) through the lens
of mathematical reasoning, asking if these mod-
els can recognize that two structures are the
same even when they do not share the same
nomenclature. We propose a human study to
evaluate if LLMs reproduce proofs that they
have most likely seen during training, but when
the symbols do not match the ones seen. To
test this in a controlled scenario, we look at
proofs in propositional calculus, foundational
for other logic systems, semantically complete
and widely discussed online. We replace the
implication operator (→) with an unrelated, ar-
bitrary symbol (♠) and ask experts to evaluate
how the output of a selection of LLMs changes
in terms of compliance, correctness, extensive-
ness and coherence. Our results show that
nearly all our tested models produce lower qual-
ity proofs in this test, in particular open-weights
models, suggesting the abilities of these LLMs
to reason in this context have important limita-
tions.

1 Introduction

Mathematical reasoning is a key aspect of human
intelligence that encompasses pattern recognition
and logical entailment. The development of artifi-
cial intelligence systems capable of tasks such as
solving applied and theoretical mathematical prob-
lems has been a long-standing focus of research in
the fields of machine learning and natural language
processing, dating back to the 1960s (Feigenbaum
and Feldman, 1963; Bobrow, 1964).

Our interest in this topic rises from recent at-
tempts to use language models for theorem prov-
ing by means of ITPs’ programming languages
and databases of theorems with their proofs. Deep
learning models can be trained in one of these many
programming languages, and then used to generate
mathematical proofs. Data sources for neural the-
orem proving in ITPs include interactive learning

environments that interface with ITPs, and datasets
derived from proofs in ITP libraries.

When it comes to mathematical reasoning, and in
particular to the ability of models to understand log-
ical statements, we note that despite the abundance
of studies, previous works generally assume that
only “variables” are the ones not constant through-
out problems. However, we see that in mathematics
different nomenclatures are used in different areas,
as well as in different time periods, to express the
same ideas. Examples of this fact include the use
of ⊃ and → to denote implication; Leibniz’s df

dx ,
Lagrange’s f ′, and Newton’s ḟ notation in differ-
ential calculus; the different notation for the inner
product for physicists ⟨·|·⟩ and for mathematicians
⟨·,·⟩; prefix f(x) and postfix (x)f notations for
functions; and different notations for the von Neu-
mann generated algebra, such as: W ∗(·,·) and · ∨ ·,
to name a few.

As we attempt to use LLMs to tackle proof gen-
eration tasks, for example using the “informal the-
orem proving” approach (please see §2 for more
details on this), we think researchers and practi-
tioners need to take this fact into consideration.
Furthermore, and in contrast to all these models,
current state-of-the-art models in NLP are trained
on large datasets of text extracted from the web. In
this case, we have limited or no control on the kinds
of expressions and/or operators that the models are
exposed to during training. We can, however, still
assume the models have been exposed mostly to
the standard nomenclature.

Given this scenario, we ask: can these models
recognize that two structures are the same even
if they do not share the same nomenclature? For
example, can models reproduce proofs that they
have most likely seen during training, but when
the symbols do not match the ones seen? If so, to
what extent are these proofs plausible and correct?
In order to answer these questions, we perform

186

an in-depth human evaluation to assess the quality
of the output generated by LLMs when prompted
to generate proofs similar to the ones seen during
training but with expressions that use a different
notation.

2 Related Work

Automated Theorem Proving The first proofs
using computers started appearing as early as the
1950s, soon after electronic computers became
available. This played a big role in the development
of the field of automated reasoning, which itself
led to the development of AI. Most of the early
work on computer-assisted proof was devoted to
automated theorem proving (ATP) (Harrison et al.,
2014), in which machines were expected to prove
assertions fully automatically. The increased avail-
ability of interactive time-sharing computer operat-
ing systems in the 1960s allowed the development
of interactive theorem provers (ITPs) in which the
machine and the user work together to produce a
formal proof. While ATPs include proof-search
algorithms to generate whole proofs, ITPs usually
check the validity of human input statements, al-
though they may also include reduced automated
tools.

More recently, work on “informal” theorem prov-
ing has presented an alternative medium for the-
orem proving, in which statements and proofs
are written in a mixture of natural language and
symbols used in “standard” mathematics (e.g., in
LATEX), and are checked for correctness by hu-
mans. Here we find the work of Welleck et al.
(2021) who developed NaturalProofs, a large-scale
dataset of 32k informal mathematical theorems,
definitions, and proofs, and provided a benchmark
for premise selection via retrieval and generation
tasks. Most of the data is taken from websites
like proofwiki.com, and though this enables more
flexibility when proving, the task is approached in
a way similar to ITPs.

Mathematical Reasoning in LLMs Early works
attempting to study the ability of models to recog-
nize patterns in mathematical expressions focused
on the manipulation of simple expressions using
standard notation. For example, Allamanis et al.
(2017) trained models on datasets in which pairs
of examples contain Boolean logic and arithmetic
expressions which are known to be equivalent. For
example, expressions like c2 and (c ·c)+(b−b) are
equivalent. However, expressions with the same

structure, but different variables, such as c·(a·a+b)
and f · (d · d+ e), are not. They showed that such
models were capable of relating non-paired expres-
sions, like a− (b− c) and b− (a+ c), as negations
of each other.

Evans et al. (2018) studied the ability of neu-
ral networks to understand logical entailment via
training models on synthetic datasets of logical
statements and their evaluations (True/False). Con-
cretely, they generated datasets of triples of the
form (A,B,A ⊨ B), where A and B are formu-
las of propositional logic, and A ⊨ B is 1 if A
entails B, and 0 otherwise. They concluded that,
from the models available at the time, those with a
tree structure seemed to be better for domains with
unambiguous syntax.

In these works, expressions are generated auto-
matically starting from a set of simple rules plus
a set of arbitrary combinations. This allows to
scale and control the types of expressions that are
shown to the model during training/inference. Later
Cobbe et al. (2021) and Rein et al. (2023) shifted to
a question-answer format using natural language,
with the release of the GSM8K and GPQA datasets,
respectively, while also extending the class of ques-
tions to other areas of mathematics, like calculus
and probability, where the ability to control for the
type of expressions is reduced.

3 Proposed Approach

To study the posed research questions under a con-
trolled scenario, we look at proofs in propositional
calculus, a branch of formal logic that deals with
propositions, which can be true or false, and rela-
tions between propositions, including the construc-
tion of arguments based on them (Wrenn, 2025).
Propositional calculus, also known as zeroth-order
logic, does not deal with quantifiers over non-
logical objects (unlike first-order or higher-order
logic). There are several reasons that we think
make this the ideal scenario for our study: (1) All
the machinery of propositional logic is included in
first-order logic, higher-order logic, and all math-
ematics. In this sense, propositional logic is the
foundation of other logic systems; (2) Propositional
calculus is semantically complete, i.e. any tautol-
ogy (true formulas) can be proved with the formal
axioms and the rules of inference of the system;
(3) Being the subject of common undergraduate
courses, demonstrations in this context have been
widely discussed online (for example, in fora such

187

proofwiki.com

as Math Stack Exchange) so we can reasonably as-
sume that LLMs have been exposed to these types
of proofs, and (4) It is a minimalist setup which al-
lows us to include the entire logical structure in the
prompt, thus reducing the amount of assumptions
needed.

Propositional calculus is typically studied with a
formal system, which contains a formal language
and a deductive system. The language is composed
of a set of well-formed formulas, which are strings
of symbols from an alphabet (composed of propo-
sitional variables and propositional connectives)
formed by a formal grammar (formation rules).
The deductive system, in turn, contains the rules
of inference, a function which takes premises and
returns conclusions. To assess how models general-
ize in this scenario, we compared proofs generated
by these models using “usual” and “unusual” sym-
bols for connectives.

We use a standard proof system usually referred
to as a Hilbert system. This is a deductive system
that generates theorems from axioms (tautologies
taken as starting point for further reasoning) and
modus ponens. Modus ponens can be summarized
as: If P implies Q and P is known to be true, one
can conclude that Q must also be true. It is gen-
erally expressed as {P → Q, P} ⊢ Q, where
the turnstile symbol (⊢) denotes derivability, i.e.
there is a formal derivation of a theorem from the
axioms. As for connectives, we limit it to the log-
ical and (∧), logical or (∨), the negation operator
(¬), and the implication operator (→). For the ax-
ioms, we use a common set of 14 axioms used in
undergraduate courses, shown in Figure 1.

For our study, we propose to replace the impli-
cation operator (→) with an unrelated, arbitrary
symbol (♠). In order to produce a significant per-
turbation in the input token distribution, we specifi-
cally select the unicode representation of the sym-
bol (U+2660) for the replacement. Alternative re-
placements are left for future work. We select two
common theorems from propositional calculus ex-
tracted from Rossegger (2019), as shown in Figure
2 and test models in two different scenarios, as
follows.

Full Context (FC) Our first evaluation scheme
is intended to simulate a noisy retrieval step prior
to the proof generation. Concretely, we offer the
model the complete set of axioms together with the
selected rule of inference, modus ponens. Thus, in
this scenario, we can also test the model’s ability

Axioms

(Ax 1) : ((ϕ ∧ ψ) → ϕ)

(Ax 2) : ((ϕ ∧ ψ) → ψ)

(Ax 3) : (ϕ → (ψ → (ϕ ∧ ψ)))
(Ax 4) : (ϕ → (ϕ ∨ ψ))
(Ax 5) : (ϕ → (ψ ∨ ϕ))
(Ax 6) : ((ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ)))

(Ax 7) : (ϕ → (ψ → ϕ))

(Ax 8) : ((ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)))

(Ax 9) : ((ϕ → ψ) → ((ϕ → ¬ψ) → ¬ϕ))
(Ax 10) : (¬ϕ → (ϕ → ψ))

(Ax 11) : (ϕ ∨ ¬ϕ)
(Ax 12) : ((ϕ ∧ ¬ϕ) → ψ)

(Ax 13) : ((ϕ → (ψ ∧ ¬ψ)) → ¬ϕ)
(Ax 14) : (¬¬ϕ → ϕ)

(MP) : {P → Q,P} ⊢ Q

Figure 1: Portion of the prompt provided to the LLMs
showing the content of the full context provided, namely,
the axioms and rules of inference we allow the models
to use.

to identify and retrieve only the axioms that are
needed to prove the selected theorem.

Selected Context (SC) We assume that the rel-
evant axioms for the requested proof have already
been selected by an oracle, and we offer only these
axioms and rule of inference to the model input.
For each question, we manually select the axioms
required (Axioms 6, 7, 10 for Question A; Axioms
7, 8 for Question B). In practice, we reassign iden-
tifier numbers to them, always starting from 1, to
avoid ambiguity.

A key point of our study is to ensure that the
generated proofs are checked by mathematicians.
Previous work has stressed the need to rely on ex-
perts for evaluation of theorem proving systems,
including the work of Welleck et al. (2022), who
carried on an in-depth annotation where an expert
annotator is presented with the theorem, proof-so-
far, and a generated next-step. Frieder et al. (2023)
also highlight that human evaluation of advanced
mathematics that approaches research level is ex-
pensive and requires experts. The evaluation of the
output of the language model for their work was
performed by the authors, who are all mathemati-
cians.

To perform the evaluation, we concretely rely on
a volunteer (one of the authors of this paper) who
has a Master’s degree in mathematics. We design
an annotation interface where for each case, we
show the annotator the exact input fed to the model,

188

Question A

Question: Prove that

⊢ ((¬P ∨Q) → (P → Q))

Answer:

((¬P → (P → Q)) → ((Q → (P → Q)) →
((¬P ∨Q) → (P → Q)))) (Ax 6)

(¬P → (P → Q)) (Ax 10)

((Q → (P → Q)) → ((¬P ∨Q) → (P → Q))) 1, 2 MP

(Q → (P → Q)) (Ax 7)

((¬P ∨Q) → (P → Q)) 3, 4 MP

Question B

Question: Prove that

{(P → Q), (Q → R)} ⊢ (P → R)

Answer:

(P → Q) (hyp)

(Q → R) (hyp)

((Q → R) → (P → (Q → R))) (Ax 7)

(P → (Q → R)) 2, 3 MP

((P → (Q → R)) → ((P → Q) → (P → R))) (Ax 8)

((P → Q) → (P → R)) 4, 5 MP

(P → R) 1, 6 MP

Figure 2: Details of the question (top: Question A,
bottom: Question B) utilized for our study, also showing
a possible proof which we allow our annotators to see.

as well as the output generated by it. Below, we list
the tasks that we require our annotator to perform.

• First, we ask the annotators if the output of
the model contains a proof.

• We present the steps of a correct proof and ask
the annotators to judge if each step appears in
the output of the model. Additionally, if the
step invokes an axiom or rule of inference, we
ask them to do the following.

– If the step invokes an axiom, we ask to
check if variables were substituted cor-
rectly.

– If the step uses a rule of inference, we ask
to check if the rule is properly invoked.

– We ask the annotator to judge whether
the step contributes to the proof in the
sense that it stirs the overall flow of the
proof in the right direction towards con-
clusion.

• With respect to the clarity of the overall text,

we ask the annotators to rate the output on a
scale of 0 to 4 via the following labels: “Very
Incoherent, Incoherent, Neither Coherent nor
Incoherent, Coherent, Very Coherent”.

• In order to evaluate the compliance to the task,
we ask whether the proof attempts to use in-
formation other than the necessary elements
that were provided to the model as input. Con-
cretely, we ask the annotators to indicate if the
proof uses an additional axiom, if this axiom
was provided in the input, and if it uses an
additional rule of inference, or an additional
hypothesis.

• Finally, we also allow the annotators to freely
provide us specific feedback by highlighting
spans of the model output that calls their at-
tention, to which they can add free-text com-
ments.

The above questions were designed to incorpo-
rate most, if not all, aspects that one would take into
consideration when grading the same questions in
an exam.

4 Results

For this study, we consider the following mod-
els: (1) API-based LLMs, including ChatGPT (gpt-
3.5-turbo-0125) (Brockman et al., 2023), Claude
3 Opus (claude-3-opus-20240229) (Anthropic,
2023), (2) Open-weights models, including Llama
3 (Meta-Llama-3-8B-Instruct) (Grattafiori and the
Llama 3 Team, 2024; AI@Meta, 2024), Llama
3.1 (Llama-3.1-8B-Instruct) (Int) and Gemma 2
(gemma-2-9b-it) (Team, 2024). The latter models
are obtained from HuggingFace, and quantized to
4-bits (Dettmers et al., 2023) to fit our GPU mem-
ory. For each input, we obtain 3 outputs from each
model using a different random seed. We computed
the following metrics to summarize model behavior
and measure performance.

• Percentage of times the model generated out-
put that contains a proof and where the model
did not utilize a hypothesis, axiom, or rule of
inference other than those provided. We con-
sider this a measure of the model compliance
with our instruction (Compliance).

• Percentage of steps from the gold standard
proof that appear in the generated proof, i.e.,
to what extent the model used the needed ax-
ioms and modus ponens (Extensiveness).

189

Model Ctx. Compliance Extensiveness Correctness Flow Clarity

→ ♠ → ♠ → ♠ → ♠ → ♠

GPT-3.5-turbo SC 66.67% 83.33% 62.38% 49.52% 30.00% 6.67% 33.33% 20.00% 2.67 2.33
FC 50.00% 100% 36.19% 30.48% 10.00% 6.67% 26.67% 16.67% 3.00 2.60

Claude 3 Opus SC 100% 100% 95.24% 93.14% 86.67% 72.00% 93.33% 84.00% 3.83 3.40
FC 100% 83.33% 85.71% 75.71% 66.67% 33.33% 80.00% 50.00% 3.67 3.00

Gemma 2 (9B) SC 0.00% 0.00% 11.90% 0.00% 0.00% 0.00% 3.33% 0.00% 4.00 -
FC 0.00% 0.00% 16.67% 0.00% 0.00% 0.00% 3.33% 0.00% 4.00 -

Llama 3 (8B) SC 50.00% 66.67% 49.52% 41.43% 3.33% 3.33% 16.67% 6.67% 1.83 1.80
FC 33.33% 83.33% 35.71% 21.90% 10.00% 3.33% 13.33% 0.00% 2.17 1.60

Llama 3.1 (8B) SC 33.33% 100% 42.38% 40.95% 0.00% 3.33% 6.67% 6.67% 1.17 1.17
FC 66.67% 50.00% 32.38% 24.29% 3.33% 0.00% 6.67% 6.67% 2.00 1.50

Table 1: Summary of the results of our human evaluation study, where Ctx. is short for context. Bold numbers
indicate the best score for each pair of (→, ♠) prompts for a given model, and we underline the best score across
the FC and SC scenarios for each model.

• Percentage of steps that appear in the gener-
ated proof and were correctly applied. In other
words, the steps that are correct (Correctness).

• Percentage of steps that appear in the output
providing an expression which is a step to-
wards finalizing the proof, even if it was not
correctly deduced (Flow).

• Average clarity score reported for the overall
text output from a given model (Clarity).

Table 1 summarizes the results of our evaluation.
With the exception of Compliance, all metrics show
a similar trend of decrease in model performance
when the questions are perturbed with♠. The same
is also true when we compare the Full Context to
the Selected Context. Most interestingly, the score
for Flow was always higher than the Correctness,
indicating that models tend to recall or retrieve
parts of the right answer from memory, even if they
cannot follow the correct sequence of logical steps.

We also observe that not only Compliance did
not follow the decrease trend seen for other metrics,
but also that most models showed an increase in
this metric when prompted with the arbitrary sym-
bol. In fact, this variation in Compliance appears
to strongly correlate with our ♠-based replacement
scenario. Overall, the average compliance with the
original symbol (→) is 43.85%, which compares
unfavorably against 71.89% for our replacement
scenario (♠). We note that such a significant gap
is not evident when looking at performance dif-
ferences due to variations in context, where we
observe an average Compliance of 60.22% for SC
and 63.39% for FC. Since invoking facts outside of

the givens in the prompt is a big factor in how we
compute the Compliance criteria, we believe this
counterintuitive increase in value can be at least
partially explained by the changes in the semantics
induced by our symbol replacement. Intuitively,
the semantic similarity between these expressions
and the examples seen during training should be
lower, making it more unlikely for the model to
retrieve relevant content seen during training, even
if not useful for the proof.

The model with the best performance across all
measures was Claude 3 Opus. Like for most mod-
els, its Extensiveness measure was subject to a
decrease when one compares the easiest scenario
(SC with→) to the hardest scenario (FC with ♠),
but its lowest value (75.71%) was still higher than
the highest Extensiveness measure of any other
model. However, it did experience a sharp decrease
in both Correctness (from 86.67% to 33.33%) and
Flow (from 93.33% to 50.00%), with the first be-
ing the largest difference in performance of any
metric for any model. As table 1 shows, there is
also a big difference in performance between the
API-based LLMs and the Open-weights models.
The Gemma 2 model refused to provide a proof in
most cases, as it can be seeing by its Compliance
measure, making it impossible to draw conclusions
about its abilities. We think these results suggests
open-weights models are significantly behind APIs,
which is well-aligned with performance measured
in popular automatic benchmarks.

To delve further into the data, we split the Clar-
ity into intervals, as seen in Table 3, and looked at
the other metrics’ behavior in each range (here we
excluded the cases in which the model did not pro-

190

Model Metric Scenario ∆

→ to ♠ SC to FC

GPT-3.5-turbo

Compliance 33.33% 0.00%
Extensiveness -9.29% -22.62%
Correctness -13.33% -10.00%
Flow -11.67% -5.00%
ExtraHyp -25.00% 8.33%
ExtraAxiom 0.00% 83.33%
ExtraROI -41.67% 8.33%
Clarity -0.38 0.32

Claude 3 Opus

Compliance -9.09% -8.33%
Extensiveness -6.84% -13.57%
Correctness -25.76% -30.00%
Flow -21.21% -24.09%
ExtraHyp 0.00% 0.00%
ExtraAxiom 27.27% 25.00%
ExtraROI 0.00% 0.00%
Clarity -0.57 -0.3

Gemma 2 (9B)

Compliance 0.00% 0.00%
Extensiveness -14.29% 2.38%
Correctness 0.00% 0.00%
Flow -3.33% 0.00%
ExtraHyp -41.67% 8.33%
ExtraAxiom 0.00% 0.00%
ExtraROI -8.33% -8.33%
Clarity -4 0

Llama 3 (8B)

Compliance 33.33% 0.00%
Extensiveness -10.95% -16.67%
Correctness -3.33% 3.33%
Flow -11.67% -5.00%
ExtraHyp -25.00% 8.33%
ExtraAxiom -16.67% 83.33%
ExtraROI -33.33% 0.00%
Clarity -0.3 0.09

Llama 3.1 (8B)

Compliance 25.00% -8.33%
Extensiveness -4.76% -13.33%
Correctness 0.00% 0.00%
Flow 0.00% 0.00%
ExtraHyp -25.00% -8.33%
ExtraAxiom 16.67% 83.33%
ExtraROI -8.33% 8.33%
Clarity -0.25 0.58

Table 2: Difference in model performance, measured
by our introduced metrics, when the model is presented
with the perturbed input versus the original symbol (de-
noted as “→ to ♠”), and when the model is presented
with the Selected Context versus the Full Context (de-
noted as “SC to FC”). Values in green denote an in-
crease in performance and values in red denote a de-
crease in performance.

vide a proof). We can see that models like Claude
3 Opus and Gemma 2 were more consistent in the
clarity of their outputs. Although we cannot guaran-
tee that the gold standard proof is the only possible
proof, we can see from Table 3 that Correctness
and Flow align well with the clarity score, i.e., they
all decrease as the clarity decreases. This indicates
that as the model struggles to complete the proof,
the output becomes more convoluted and difficult
to understand.

Model Clar. Ext. Corr. Flow

GPT-3.5-turbo

0∼1 60.00% 60.00% 0.00%
1∼2 57.14% 0.00% 0.00%
2∼3 32.00% 0.00% 8.00%
3∼4 49.64% 16.25% 33.75%

Claude 3 Opus 2∼3 60.00% 20.00% 20.00%
3∼4 88.44% 66.36% 79.09%

Gemma 2 (9B) 3∼4 34.29% 0.00% 8.00%

Llama 3 (8B)
1∼2 41.43% 3.33% 0.00%
2∼3 33.85% 4.62% 7.69%
3∼4 67.62% 13.33% 40.00%

Llama 3.1 (8B)

0∼1 20.00% 0.00% 5.00%
1∼2 37.50% 0.00% 2.50%
2∼3 42.54% 4.44% 13.33%
3∼4 25.71% 0.00% 0.00%

Table 3: Summary of our results grouping by Clarity
value bins, where Clar., Ext. and Corr. are short for
Clarity, Extensiveness and Correctness, respectively.

To better understand the impact of the different
scenarios on models, we compute the difference in
model performance when the model is presented
with the perturbed input versus the original symbol
and when the model is presented with the Selected
Context versus the Full Context. For this study, in
addition to the metrics introduced before, we also
compute:

• The percentage of times the model uses a hy-
pothesis that was not necessary (ExtraHyp),
as per our proof of reference.

• The percentage of times the model uses an
axiom that was not necessary (ExtraAxiom),
as per our proof of reference.

• The percentage of times the model uses a rule
of inference that was not provided in the input
(ExtraROI).

Table 2 summarizes these findings. The introduc-
tion of a perturbation in the input had a bigger
impact on Clarity than the change in context for
all models. Looking at “→ to ♠” for both Llama
models and ChatGPT,→ has a higher percentage of
steps, but also more unnecessary steps. The symbol
replacement seems to be curbing all types of steps.
For ChatGPT, we noticed that there is a bigger drop
in Extensiveness for “SC to FC” than “→ to ♠”,
but the drop in Correctness and Flow is smaller
for “SC to FC” than “→ to ♠”. This suggests that
ChatGPT struggles to retrieve the necessary axioms
from the givens, but the change in context does not
seem to significantly impact its Correctness. For

191

Claude, both changes seem equally challenging,
with the change in context having slightly bigger
impact on Extensiveness, Correctness, and Flow.
Claude 3 Opus was the only model to have a de-
crease across all metrics for both differences.

There are three different types of steps that could
appear in our studied proof: Hypotheses, Axioms,
and Rules of Inference. With that in mind, we split
each of our metrics into these three cases and sum-
marize the results on Table 4. We noticed that mod-
els tend to be better at manipulating axioms than
at listing hypotheses or applying rules of inference.
In particular, both Llama models struggled with
rules of inference (ROIs), with no Extensiveness
value being higher than 25% and all Correctness
values being 0%. For these two models we also
noticed that while mistakes on substitution (Cor-
rectness) seem to lead to fewer contributions to
the final proof (low Flow), mistakes on rules of
inference still lead to contributions. We think this
indicates that these models use rule of inference to
justify steps they “know” are needed, even though
the rule never correctly justifies said step.

We also observed that Gemma 2 never attempted
to use an axiom (all values are 0%), and its best
performance was on Extensiveness for hypotheses.
ChatGPT had the biggest gap on Extensiveness
for axioms (SC vs FC), and on the Full Context
scenario, it always made mistakes on substitution.
Claude 3 Opus was slightly worse at applying ROIs
than making substitutions on easiest scenario (SC
with→), but it did much worse at substitution than
on ROIs on the hardest scenario (FC with ♠). Its
only use of unnecessary steps was on the hardest
scenario and it used extra axioms.

We also analyze the spans highlighted by the
annotators, alongside the comments left by them
on each location. We collected a total of 304 an-
notations derived from highlighted spans, out of
which, 170 were unique. We note that more than
99% of these comments denote errors made my the
model, often related to the questions that were pre-
sented to the annotators. Based on this insight, we
use this information to empirically estimate “when”
models tend to make their first mistake as they gen-
erate the requested proof. Concretely, we compute
the position in terms of number of characters, nor-
malized by answer length, of the start of the spans
highlighted by the annotator. These relative posi-
tions are then averaged for all the answers for each
model.

As shown in Table 5, we see models tend to

make their first mistake relatively early in their gen-
eration, which is true even for the more advanced
black-box models. The table also shows how dif-
ferently each model behaves in terms of verbosity,
where we see models Llama 3 and 3.1 generat-
ing answers that are up to 3,000 characters long,
while API-based models like GPT-3.5 and Claude
3 Opus are significantly more concise. The rela-
tively lower value shown by Gemma is due to the
model often not generating an actual proof, which
artificially brings this number down. Compared to
our gold standard proofs, which contain 478 and
452 characters, these results show that models tend
to favor verbosity instead of precision when gen-
erating these kinds of proofs without specialized
prompts.

Finally, we analyze the content of the annota-
tions for each of the highlighted spans. We think
these may provide additional insights on the nature
of the mistakes by the models. In order to per-
form this analysis, we encode the annotations with
Sentence-BERT (Reimers and Gurevych, 2019),
via the all-MiniLM-L6-v2 model, using the Sen-
tenceTransformers1 package. We then perform
clustering using k-means via its scikit-learn im-
plementation (Pedregosa et al., 2011). We compute
clusters varying parameter k, the number of clus-
ters, with k = 1, . . . , 15, and select the top 3 results
as based on silhouette scores (Rousseeuw, 1987).
Finally, we visually analyze these best results by
performing PCA on the embedded annotation com-
ments, and plotting them on a 2D chart, coloring
the examples by cluster. We find the that k = 7
offers meaningful results, highlighting four distinct
behaviors models often engage in the following
cluster, which here we represent by the instance
closest to the centroid: (Cluster 0) “Inability to
recognize the Unicode symbol used to replace the
implication operator”, (Cluster 1) “Does not fol-
low from Axiom”, (Cluster 3) “Substitution Issue”,
(Cluster 5) “Incorrect usage of modus ponens”.

Discussion It is known that if we have a theo-
rem in propositional calculus, then it has arbitrarily
many proofs. One cannot even guarantee there is
a unique “minimal length” proof. Hence, one may
question our comparison of model outputs against
a fix proof. However, since we study changes, we
need a baselines to compare against. This also
makes it easier to evaluate the output systemati-
cally and consistently. We also note that if we

1github.com/UKPLab/sentence-transformers

192

github.com/UKPLab/sentence-transformers

Model Cxt.
Hypotheses Axioms Rules of Inference

Ext. ExtraHyp Ext. Corr. Flow ExtraAxiom Ext. Corr. Flow ExtraROI
→ ♠ → ♠ → ♠ → ♠ → ♠ → ♠ → ♠ → ♠ → ♠ → ♠

GPT-3.5-turbo SC 83% 67% 17% 17% 72% 69% 42% 14% 25% 14% 17% 0% 42% 28% 17% 0% 42% 28% 33% 0%
FC 67% 100% 50% 0% 22% 6% 0% 0% 8% 0% 83% 100% 44% 31% 17% 11% 44% 31% 50% 0%

Claude 3 Opus SC 100% 100% 0% 0% 92% 100% 92% 73% 92% 80% 0% 0% 94% 83% 83% 70% 94% 83% 0% 0%
FC 100% 100% 0% 0% 75% 69% 44% 17% 75% 36% 0% 50% 83% 67% 83% 42% 83% 67% 0% 0%

Gemma 2 (9B) SC 67% 0% 33% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 0% 0% 0% 6% 0% 17% 0%
FC 100% 0% 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 0% 0% 0% 6% 0% 0% 0%

Llama 3 (8B) SC 67% 33% 17% 0% 67% 83% 8% 8% 17% 8% 0% 0% 25% 6% 0% 0% 17% 6% 33% 17%
FC 50% 33% 33% 0% 56% 42% 19% 8% 14% 0% 100% 67% 14% 0% 0% 0% 14% 0% 50% 0%

Llama 3.1 (8B) SC 67% 0% 50% 0% 64% 86% 0% 8% 8% 6% 0% 0% 6% 6% 0% 0% 6% 6% 33% 0%
FC 100% 0% 17% 17% 19% 50% 6% 0% 0% 0% 67% 100% 22% 11% 0% 0% 14% 11% 17% 33%

Table 4: Results disaggregated for different categories: Hypotheses, Axioms, and Rules of Inference. For the sake
of presentation, values in this table are rounded to the closest integer.

Model Answer Len. Rel. Ann. Loc.

GPT-3.5 turbo 1,310 ± 500 15.573 % (10.34)
Claude 3 Opus 1,577 ± 594 14.126 % (10.18)
Gemma 2 (9B) 890 ± 43 28.247 % (11.90)
LLama 3 (8B) 2,181 ± 751 17.549 % (09.70)
Llama 3.1 (8B) 3,747 ± 5,024 33.592 % (21.69)

Table 5: Average length of model answers (Answer
Len.), in characters, with their respective standard de-
viations, and average relative location of the comments
left by the annotators (denoted as Rel. Ann. Loc.),
normalized be answer length. For the latter, numbers in
parenthesis show the standard deviation.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4 Clusters
0
1
2
3
4
5
6

x

y

Figure 3: Clusters of annotations related to model be-
havior recognized as a mistake by our annotators.

had access to the training data, we could ensure
we use the same proof used during training as our
gold standard, but this is difficult or impossible
in practice. To try to minimize this issue, we em-
ploy mathematicians to evaluate, which allow us to
also collect comments about any conflict that could
arise from this assumption. Finally, we would like
to note that, ultimately, the difficulty of the model
to follow the steps of the gold standard correlates
with the decrease of overall clarity of the output.

5 Conclusions

This paper studies the generalization capabilities
of LLM through the lens of mathematical reason-
ing. We perform an in-depth human evaluation
of the output of LLMs when they are prompted
to produce basic proofs in propositional calculus,
comparing their answers when we replace the im-
plication operator (→) with an unrelated, arbitrary
symbol (♠). Our results show that nearly all our
tested models produce lower quality proofs in this
test, in particular open-weights models, suggesting
the abilities of these LLMs to reason in this con-
text have important limitations. For future work
we would like to extend this study to incorporate
more proofs, models, and multiple annotators. We
would also like to analyze how models react to
other input perturbations, for example using other
replacement symbols, and/or alternative represen-
tations for them.

Limitations

While our study may provide valuable insights into
the mathematical reasoning abilities of large lan-
guage models, it is subject to several limitations.
First, our analysis is constrained to a finite and
small set of tasks, which do not capture the full
breadth of mathematical reasoning scenarios. Sec-
ond, human evaluation, while essential for assess-
ing nuanced reasoning steps, is inherently subjec-
tive and may introduce variability in judgments.
We would like to improve on this in future work by
working with multiple annotators. Third, the mod-
els examined represent a snapshot of current archi-
tectures and training paradigms. Finally, our study
focuses on English-language prompts leaving open
questions about performance across languages.

193

References
Introducing Llama 3.1: Our most capable models to

date. https://ai.meta.com/blog/meta-llama-3-1/.

AI@Meta. 2024. Llama 3 model card.

Miltiadis Allamanis, Pankajan Chanthirasegaran, Push-
meet Kohli, and Charles Sutton. 2017. Learning
Continuous Semantic Representations of Symbolic
Expressions. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, pages 80–
88. PMLR.

Anthropic. 2023. Introducing Claude. Anthropic.

Daniel G Bobrow. 1964. Natural language input for
a computer problem solving system. AI Technical
Reports.

Greg Brockman, Atty Eleti, Elie Georges, Joanne Jang,
Logan Kilpatrick, Rachel Lim, Luke Miller, and
Michelle Pokrass. 2023. Introducing ChatGPT and
Whisper APIs. OpenAI Blog.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training veri-
fiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient fine-
tuning of quantized llms. In Advances in Neural
Information Processing Systems, volume 36, pages
10088–10115. Curran Associates, Inc.

Richard Evans, David Saxton, David Amos, Pushmeet
Kohli, and Edward Grefenstette. 2018. Can Neural
Networks Understand Logical Entailment? In Inter-
national Conference on Learning Representations.

Edward A Feigenbaum and Julian Feldman. 1963. Com-
puters and thought.

Simon Frieder, Martin Trimmel, Rashid Alawadhi, and
Klaus Gy. 2023. LLM vs ITP. In The 3rd Workshop
on Mathematical Reasoning and AI at NeurIPS’23.

Aaron Grattafiori and the Llama 3 Team. 2024. The
llama 3 herd of models. Preprint, arXiv:2407.21783.

John Harrison, Josef Urban, and Freek Wiedijk. 2014.
History of Interactive Theorem Proving. In Hand-
book of the History of Logic, volume 9, pages 135–
214. Elsevier.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2023. GPQA:
A Graduate-Level Google-Proof Q&A Benchmark.
Preprint, arxiv:2311.12022.

Dino Rossegger. 2019. Introduction to Mathematical
Logic.

Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid
to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20:53–65.

Gemma Team. 2024. Gemma 2: Improving Open
Language Models at a Practical Size. Preprint,
arXiv:2408.00118.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh
Hajishirzi, Yejin Choi, and Kyunghyun Cho. 2021.
Naturalproofs: Mathematical theorem proving in nat-
ural language. In Thirty-fifth Conference on Neural
Information Processing Systems (NeurIPS) Datasets
and Benchmarks Track.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh
Hajishirzi, and Yejin Choi. 2022. Naturalprover:
Grounded mathematical proof generation with lan-
guage models. In Advances in Neural Information
Processing Systems (NeurIPS).

Chase B. Wrenn. 2025. Naturalistic Epistemology: In-
ternet Encyclopedia of Philosophy.

194

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.anthropic.com/index/introducing-claude
http://dspace.mit.edu/handle/1721.1/5922
http://dspace.mit.edu/handle/1721.1/5922
https://openai.com/blog/introducing-chatgpt-and-whisper-apis
https://openai.com/blog/introducing-chatgpt-and-whisper-apis
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.48550/arXiv.2311.12022
https://doi.org/10.48550/arXiv.2311.12022
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2104.01112
https://arxiv.org/abs/2104.01112
https://arxiv.org/abs/2205.12910
https://arxiv.org/abs/2205.12910
https://arxiv.org/abs/2205.12910
https://iep.utm.edu/propositional-logic-sentential-logic
https://iep.utm.edu/propositional-logic-sentential-logic

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 195–202
November 9, 2025 ©2025 Association for Computational Linguistics

Synthetic Proofs with Tool-Integrated Reasoning: Contrastive Alignment
for LLM Mathematics with Lean

Mark Obozov
Research Center of the Artificial Intelligence Institute

Innopolis University
Innopolis, Russia

obozovmark9@gmail.com

Michael Diskin
HSE University
Moscow, Russia

michael.s.diskin@gmail.com

Aleksandr Beznosikov
Innopolis University

Innopolis, Russia

Alexander Gasnikov
Innopolis University

Innopolis, Russia

Serguei Barannikov
Skoltech, CNRS
Moscow, Russia

Abstract
Modern mathematical reasoning benchmarks
primarily focus on answer finding rather than
proof verification, creating a gap in evaluating
the proving capabilities of large language mod-
els (LLMs). We present a methodology for
generating diverse mathematical proof tasks
using formal tools. Our approach combines
Lean-based synthetic problem generation with
a Tool-Integrated Reasoning (TiR) framework
for partial (sampling-based) proof validation,
and it uses contrastive preference optimization
to align the model’s proof outputs. Experiments
on the Qwen-2.5 family of models demonstrate
meaningful improvements in mathematical rea-
soning, particularly for smaller models. Our
aligned models achieve up to a 57% higher suc-
cess rate than baselines on the MiniF2F bench-
mark (across 0.5B, 1.5B, and 7B parameter
models). These results highlight the potential
of synthetic data and integrated validation for
advancing LLM-based mathematical reason-
ing.

1 Introduction

Mathematical reasoning is a fundamental challenge
for artificial intelligence. Despite significant ad-
vances in large language models (Li et al., 2024;
Yang et al., 2024a; DeepSeek-AI, 2024), achiev-
ing robust proof-solving capabilities comparable
to human mathematicians remains elusive. A core
difficulty lies in the vast search space of proofs:
any given statement can spawn an enormous graph
of conjectures and implications. Exhaustive search
in this space is infeasible — formal proof attempts
like AlphaProof (Hubert et al., 2024) can be compu-
tationally expensive at scale for complex problems.

Recent approaches using LLMs show promise
in their flexibility and reasoning ability. How-
ever, even models that excel at answer-focused
tasks (e.g., the MATH benchmark (Hendrycks
et al., 2021)) often struggle with formal proofs and

higher-level mathematical reasoning (Tsoukalas
et al., 2024; Glazer et al., 2024). This gap calls
for methodologies that combine the adaptability of
LLMs with the rigor of structured verification.

The contributions of this paper are as follows:

• Tree-Based Conjecture Generation: A tree-
based algorithm for synthetic conjecture gen-
eration using Lean (de Moura et al., 2015)
to produce diverse, valid mathematical prob-
lems.

• Tool-Integrated Reasoning: A Tool-
Integrated Reasoning (TiR) framework for
partial proof validation that does not require
full formalization of the proofs.

• Contrastive Alignment of Proofs: A con-
trastive preference optimization approach
(SimPO) to align the model’s proof genera-
tion with preferred (correct) solutions.

• New Proof Benchmark Dataset: A synthetic
dataset of 30,000 generated problems and
proofs for benchmarking mathematical rea-
soning in LLMs.

In our pipeline, Lean primarily serves as a gen-
eration and structuring environment: it provides
statements, neighborhood relations, and hints that
scaffold synthesis. Model outputs are informal
proofs. We rely on TiR and an LLM judge as
probabilistic filters at scale; comprehensive for-
mal checking in Lean is used only in a limited way
here and is left to future work.

Our experiments with Qwen-2.5 models (Yang
et al., 2024b) (0.5B–7B parameters) demonstrate
significant improvements in mathematical reason-
ing, particularly for smaller models. These results
highlight the potential of combining structured gen-
eration with flexible validation to advance mathe-
matical reasoning in AI systems.

195

2 Background

Formal theorem proving has traditionally relied on
search-based methods in proof assistants. Tools
like Lean’s Aesop tactic (Limperg and From, 2023)
and the HyperTree proof search algorithm (Poe-
sia et al., 2024a) can systematically explore proofs
but struggle with the combinatorial explosion of
possibilities in complex problems. More recently,
large language models have been applied to theo-
rem proving (Li et al., 2024; Yang et al., 2024a), but
purely data-driven approaches still face challenges
unless guided by formal structure. Synthetic data
generation has shown promise: for instance, Al-
phaGeometry (Trinh et al., 2024) trained an LLM
on two million procedurally generated geometry
problems, yielding impressive problem-solving per-
formance.

Aligning LLM outputs with desired solutions of-
ten requires learning from preferences. Reinforce-
ment Learning from Human Feedback (RLHF)
(Ouyang et al., 2022) showed that human feed-
back can effectively steer model behavior, and
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) achieved this without a separate re-
ward model. Recent contrastive approaches led
to the Simple Preference Optimization (SimPO)
(Meng et al., 2024) framework, which introduces
a margin γ to ensure the model scores a preferred
output higher than a dispreferred one by at least
a fixed gap. This margin-based criterion is well-
suited for mathematical proofs, where distinguish-
ing correct reasoning from subtly flawed reason-
ing is essential; alternative preference objectives
and recipes include KTO (Ethayarajh et al., 2024),
LMSI (Huang et al., 2022), ORPO (Hong et al.,
2024), and PPO (Schulman et al., 2017). Another
complementary direction is integrating external
tools into the reasoning loop. Tool-Integrated Rea-
soning (Gou et al., 2023) agents allow an LLM
to call formal solvers or checkers during problem
solving. We build on this idea by using formal
environment checks to partially verify generated
conjectures and proofs without requiring complete
formalization.

Self-improving systems represent another
promising direction, with recent work focusing on
agents that enhance their mathematical capabilities
by autonomously generating and filtering their
own proofs (Lin et al., 2024; Huang et al., 2022;
Poesia et al., 2024b), complemented by intrinsic
motivation algorithms like Minimo (Poesia et al.,

2024b) for exploring infinite action spaces without
predefined goals.

Current evaluation methodologies present signif-
icant limitations; standard benchmarks (Liu et al.,
2024; Hendrycks et al., 2021) typically rely on
answer-matching approaches that fail to validate
reasoning steps, while formal proof benchmarks
such as PutnamBench and MiniF2F (Tsoukalas
et al., 2024; Zheng et al., 2021) offer more rigorous
assessment environments with varying difficulty
distributions — PutnamBench featuring exception-
ally challenging problems and MiniF2F providing a
broader range suitable for evaluating models across
different skill levels — though they still require
bridging the gap between natural language reason-
ing and formal representations.

3 Synthetic Generation

3.1 Lean-Based Generation

We propose a tree-based algorithm to generate new
conjectures from existing ones. The method treats
mathematical statements as nodes in a proof graph
and leverages known proofs to create harder related
problems. Given an initial conjecture X0 with a
known proof Y , we perform a random walk of
N steps starting at X0, moving to a sequence of
neighboring conjectures in the graph. This pro-
duces a trajectory of intermediate conjectures that
lie progressively further from the root (axioms).
We then reverse this trajectory and prepend the
original proof Y , using X0 as a lemma to derive
a new conjecture. In essence, the algorithm finds
a new target statement that is “beyond” X0 in the
proof tree and constructs a valid proof for it using
Y . Algorithm 1 outlines the procedure.

The choice of neighbor selection in Algorithm 1
is crucial. We consider several strategies, including
Lean hints and tooling (e.g., Lean Copilot (Song
et al., 2024)), a formal environment (Peano (Poesia
et al., 2024b)), and lightweight LLM-based heuris-
tics such as symbol-overlap and predicted diffi-
culty; the walk stops on a fixed budget or when
predicted difficulty saturates.

3.2 Generating New Problems from Solutions

Another strategy for synthesis is to derive new
problems from known solutions. Given a solved
problem P0 with solution S0, we attempt to in-
vert it: generate a new problem P1 for which S0

(or a minimally modified version) serves as a so-
lution. This inverse-problem technique expands

196

Algorithm 1 Synthetic Conjecture Generation

Require: T = (V,E), N , X0, Y ▷ Proof graph,
steps, initial conjecture, and its proof

Ensure: X0 ∈ V and Y ⊆ V ▷ X0 and all proof
nodes in V

1: Xcurrent ← X0

2: Ttrace ← {} ▷ Initialize trace
3: for i = 1 to N do
4: Xnext ← choose a neighbor of Xcurrent ▷

Xnext ∈ N(Xcurrent)
5: Ttrace ← Ttrace ∪ {Xnext}
6: Xcurrent ← Xnext
7: end for
8: reverse Ttrace
9: Ttrace ← Y ∪Ttrace ▷ Prepend original proof Y

our dataset with challenging new problems while
retaining a valid solution path.

Illustration. If S0 proves u + v ≥ 2
√
uv

for u, v≥0, then substituting u = a2, v = b2 and
adding a constraint (e.g., a+b = 1) yields a variant
inequality where the same proof skeleton applies
with adjusted premises.

3.3 Generating Rejected Values
For contrastive training, we need not only correct
proofs but also plausible incorrect proofs as coun-
terexamples. We employ three techniques to auto-
matically generate such rejected outputs: (1) use a
smaller or less capable LLM to answer the problem
(weaker models often produce incorrect or subop-
timal solutions); (2) if the main model produces a
correct solution, prompt it to introduce a mistake
into its reasoning (and if it fails to solve the prob-
lem, its failed attempt is used as R); (3) perturb
the proof trajectory from our tree-based genera-
tor (Algorithm 1) to create a flawed solution path.
These methods yield contrastive pairs where yw
is a correct proof and yl is a similar but incorrect
attempt.

3.4 Tool-Integrated Validation
We integrate a validation step using external tools
to filter the generated data. Instead of asking the
LLM to produce a fully formal proof, we prompt it
to output a verification function f (e.g., a Python
snippet) that returns 1 if a conjecture holds for
given inputs and 0 otherwise. We then evaluate
f on N randomly sampled inputs from a domain-
specific environment to statistically test the con-
jecture; this is a sampling-based check and thus

provides no absolute soundness guarantee. Algo-
rithm 2 illustrates this process, which computes the
fraction of inputs for which f returns true.

Algorithm 2 TiR-Based Validation

Require: f : {. . . } → {1, 0}
Require: N ▷ Number of random trials
Require: E ▷ Input generator environment
Ensure: Empirical success rate of conjecture (frac-

tion of inputs where f returns 1)
1: success← 0
2: failure← 0
3: for i = 1 to N do
4: x← E .generate_input()
5: output← f(x)
6: if output = 1 then
7: success← success+ 1
8: else
9: failure← failure+ 1

10: end if
11: end for
12: return success

N

If f(x) = 1 for all N sampled inputs (i.e., a
success rate of 1.0), we consider the conjecture
validated for the sampled domain E ; adversarial
counterexamples may still exist (see Limitations).
For example, given the inequality conjecture a2 +
b2+ c2 ≥ ab+ac+ bc, our TiR prompt produces a
function f(a, b, c) that computes a2 + b2 + c2 and
ab+ ac+ bc and returns 1 if the inequality holds
(0 otherwise). Running Algorithm 2 on this f with
random numeric inputs quickly confirms the truth
of the conjecture.

4 Training Framework

Using the synthetic data and validation techniques
above, we construct training pairs for contrastive
alignment. For each problem x, we obtain a correct
proof yw (verified by TiR) and a corresponding
incorrect proof yl (generated via the strategies in
Section 3.3). We then fine-tune the model using
a SimPO-based objective, which encourages the
model to assign higher probability to yw over yl.

The training loss follows the SimPO formula-

197

tion:

LSimPO(πθ) =

− E(x,yw,yl)

[
log σ

(
log

β

|yw|
log πθ(yw|x) −

log
β

|yl|
log πθ(yl|x) − γ

)]
, (1)

where |y| denotes the length (number of tokens) of
output y. We set β = 2.0 (length normalization
against overly short outputs) and γ = 0.5 (margin
between preferred and rejected scores) based on
validation experiments. Here β provides a length-
normalization factor for the log-probabilities (pe-
nalizing overly short answers), and γ enforces a
minimum margin between the model’s scores for
the preferred and rejected outputs.

5 Experiments

5.1 Setup

We fine-tuned three Qwen-2.5 models (with 0.5B,
1.5B, and 7B parameters) on our synthetic proof
dataset. The SimPO objective (using β = 2.0, γ =
0.5) was implemented with a modified torchtune
library (torchtune maintainers and contributors,
2024). Each model was trained for 3 epochs on
two A100 80GB GPUs, and we selected the best
checkpoint based on validation performance. Gra-
dient checkpointing and offloading were used to
manage GPU memory during training.

For the synthetic data generation, we employed
both Lean and pure-LLM environments. We also
experimented with the Peano formal environment,
but it produced low-quality conjectures with our
algorithm and was excluded from the final dataset.
Our TiR validation framework was implemented to
handle a variety of mathematical structures (e.g.,
arithmetic, algebra, group theory, graph theory) and
was used primarily to filter out invalid conjectures
or proofs before they were added to the training
data.

We evaluated our aligned models on the MiniF2F
test benchmark, which consists of formal math
problems disjoint from those used in training.
Since our model outputs are informal proofs (not di-
rectly checkable by an automatic theorem prover),
we employed a separate judge model to assess so-
lution correctness. Specifically, we used a 32B dis-
tilled model (DeepSeek-R1-32B-Qwen-Distilled)
as an automated verifier: given a problem and our
model’s solution, it decides whether the solution is

Model Size Aligned Baseline

Qwen-2.5 0.5B 0.22 0.14
Qwen-2.5 1.5B 0.37 0.29
Qwen-2.5 7B 0.53 0.47

Table 1: MiniF2F judge-accepted pass rate (0–1).
“Aligned”: SimPO-trained on our synthetic pairs; “Base-
line”: original pretrained model. Higher is better. Veri-
fier: DeepSeek-R1-32B-Qwen-Distilled. Scope: single
family (Qwen-2.5).

correct (binary accept/reject). We report the judge-
accepted pass rate in [0, 1] averaged over MiniF2F
and compare it to the base model’s success rate
(baseline).

5.2 Results and Discussion
Our alignment approach markedly improved the
models’ problem-solving success rates. Table 1
summarizes each model’s performance versus its
unaligned baseline.

The results reveal several insights:

• Consistent Gains: Across all model sizes,
our aligned models outperform their baselines.
The smallest model (0.5B) enjoys the largest
relative gain (about +57% relative improve-
ment).

• Scaling Effects: The benefit of synthetic train-
ing persists as model size grows, though the
relative improvement is more pronounced for
smaller models. This suggests that smaller
models gain proportionally more from our ad-
ditional training data and alignment.

• Validation Efficacy: The TiR filtering ap-
pears effective in removing invalid proofs
from the training corpus, which helps ensure
the model learns from mostly correct and ver-
ifiable examples.

6 Scope and External Validity

Our empirical scope is intentionally narrow (Qwen-
2.5, MiniF2F) to isolate pipeline effects. The com-
ponents of our method (problem synthesis, TiR fil-
tering, contrastive alignment) are model-agnostic;
we expect transfer across families with two practi-
cal considerations: (i) evaluation — complement-
ing the LLM judge with selective formal checking
on representative subsets; (ii) domain coverage —
extending E and validators beyond algebra/number

198

theory (e.g., geometry and graphs require domain-
specific generators and metamorphic tests).

7 Conclusion

Our study demonstrates that combining synthetic
proof generation with partial formal validation can
substantially bolster an LLM’s mathematical rea-
soning abilities. In particular, training on generated
conjecture–proof pairs (with contrastive alignment)
enabled even relatively small models to solve sig-
nificantly more formal problems. This work rep-
resents a step toward AI systems that can not only
generate and verify mathematical proofs but also
gradually improve their own reasoning strategies.

To support reproducibility and accelerate
progress in mathematical reasoning research, we
will release our complete synthetic dataset of
30,000 problems and the Tool-Integrated Reason-
ing framework under open-source licenses. This
includes the tree-based generation algorithms, val-
idation mechanisms, and alignment methodology
described in this paper.

In future work, we plan to enhance the synthetic
generation process with chain-of-thought prompt-
ing to further improve conjecture quality, extend
our framework to other domains such as geome-
try (which may require specialized validation tech-
niques), strengthen the integration between LLM
reasoning and formal verification (improving the
TiR framework), and investigate more efficient
training strategies to scale to larger models.

8 Limitations

1. Sampling-based validation. TiR offers high-
precision but only sampling-based guarantees:
a conjecture that passes N random trials in E
may still be false (adversarial cases are possi-
ble).

2. Domain coverage. The synthetic set is
skewed toward algebra/number theory; ge-
ometry, analysis, and combinatorics require
domain-specific generators and validators that
we do not cover here.

3. LLM judge bias. Evaluation relies on an
automated LLM judge (binary accept/reject).
Despite high spot-check agreement, residual
bias may affect absolute scores.

4. Empirical scope. Experiments intentionally
target one model family (Qwen-2.5) and one

benchmark (MiniF2F) to isolate pipeline ef-
fects; cross-family/benchmark validation is
left for follow-up work.

9 Acknowledgements

The study was supported by the Ministry of Eco-
nomic Development of the Russian Federation
(agreement No. 139-10-2025-034 dd. 19.06.2025,
IGK 000000C313925P4D0002)

199

References
Leonardo de Moura, Soonho Kong, Jeremy Avigad,

Floris van Doorn, and Jakob von Raumer. 2015. The
Lean theorem prover (system description). In Au-
tomated Deduction – CADE-25, volume 9195 of
Lecture Notes in Computer Science, pages 378–388.
Springer.

DeepSeek-AI. 2024. DeepSeek-V3 technical report.
arXiv preprint arXiv:2412.19437.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. KTO: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego
Chicharro, Evan Chen, Alex Gunning, and et al.
2024. FrontierMath: A benchmark for evaluating ad-
vanced mathematical reasoning in AI. arXiv preprint
arXiv:2411.04872.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, and et al. 2023. ToRA:
A tool-integrated reasoning agent for mathematical
problem solving. arXiv preprint arXiv:2309.17452.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, and et al. 2021. Mea-
suring mathematical problem solving with the MATH
dataset. In Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track.

Jiwoo Hong, Noah Lee, and James Thorne. 2024.
ORPO: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and et al. 2022. Large
language models can self-improve. arXiv preprint
arXiv:2210.11610.

Thomas Hubert, Rishi Mehta, Laurent Sartran, and
Google DeepMind Team. 2024. AI achieves silver-
medal standard solving International Mathematical
Olympiad problems. Nature. News & Views.

Jia Li, Edward Shan, Xuefeng Wu, Yifei Ma, Rohan
Murty, Himanshu Arora, and et al. 2024. Numina-
Math: AI Mathematical Olympiad Progress Prize.

Jannis Limperg and Asta Halkjær From. 2023. Aesop:
White-box best-first proof search for Lean. In Pro-
ceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP
’23).

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean
Welleck. 2024. Lean-STaR: Learning to in-
terleave thinking and proving. arXiv preprint
arXiv:2407.10040.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong
Duan, Zhiwei Fei, Fengzhe Zhou, and et al. 2024.
MathBench: Evaluating the theory and application
proficiency of LLMs with a hierarchical mathematics
benchmark. arXiv preprint arXiv:2405.12209.

Yu Meng, Mengzhou Xia, and Danqi Chen.
2024. SimPO: Simple preference optimiza-
tion with a reference-free reward. arXiv preprint
arXiv:2405.14734.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, and et al. 2022.
Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155.

Gabriel Poesia, David Broman, Nick Haber, and Noah D.
Goodman. 2024a. HyperTree proof search for neural
theorem proving. arXiv preprint arXiv:2205.11491.

Gabriel Poesia, David Broman, Nick Haber, and
Noah D. Goodman. 2024b. Learning formal math-
ematics from intrinsic motivation. arXiv preprint
arXiv:2407.00695.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar.
2024. Towards large language models as copi-
lots for theorem proving in Lean. arXiv preprint
arXiv:2404.12534.

torchtune maintainers and contributors. 2024. torchtune:
PyTorch’s finetuning library.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and
Thang Luong. 2024. Solving Olympiad geometry
without human demonstrations. Nature, 625:476–
482.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy
Xin, Michelle Ding, Michael Jennings, and et al.
2024. PutnamBench: Evaluating neural theorem-
provers on the Putnam Mathematical Competition.
arXiv preprint arXiv:2407.11214.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, and et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, and et al. 2024b. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. miniF2F: A cross-system benchmark for for-
mal Olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

200

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1038/d41586-024-02441-2
https://doi.org/10.1038/d41586-024-02441-2
https://doi.org/10.1038/d41586-024-02441-2
https://github.com/project-numina/aimo-progress-prize
https://github.com/project-numina/aimo-progress-prize
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3573105.3575671
https://github.com/pytorch/torchtune
https://github.com/pytorch/torchtune
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5

A Examples of generated conjectures

Here are a few examples of generated problems
with our algorithms.

InternLM step generator was strong in algebra
problems generation with algorithm 1.

Basic problem

For a, b, c ≥ 0 and a+ b+ c = 1 prove that
1 + 12abc ≥ 4(ab+ bc+ ac)

We got a new problem and proof to it, which
further on the G than starting one:

New problem

1 + 12ab(1 − a − b) ≥ 4(ab + b(1 − a −
b) + (1− a− b)a)

B GeoGen and AlphaGeometry synthetic

In our methods, we did not touch geometrical prob-
lems as they require slightly different approaches.
Also, formalization of geometrical problems to
Lean-like languages is a quite complicated task.
Knowing this, we consider different approach to
synthetical geometric task generation. We analyzed
AlphaGeometry framework and examined its prob-
lems:
1. AlphaGeometry can’t solve problems that re-
quire non-trivial additional constructions. For in-
stance, median doubling.
2. Directed angles make it possible to solve really
generalized problems.
3. Projective theorems (Pascal theorem, Pappus’s
theorem, etc.), usually can’t be solved.
4. There is no numerical package that could help
to calculate geometrical problems in coordinates.
Knowing these facts, we used a slightly modified
version of GeoGen which included Humpy and
Dumpy points and created several configurations to
this algorithm. Then, we applied Qwen2.5 to trans-
late problems to AlphaGeometry language. Finally,
we searched for the solution with AlphaGeometry.
With this algorithm pairs problem/solution might
be conducted. Let’s consider examples of gener-
ated problems:

While we were able to generate some qualita-
tive geometrical problems with this algorithm, this
framework is computationally heavy, so we do not
highlight any alignment experiments related to the
geometrical data.

Figure 1: GeoGen example problem 1

C Real effects of small changes in
evaluation

We examined the following question: Can we pro-
duce new evaluation sets by applying small changes
to the questions similar to noise? For instance,
given a simple task:

Original problem

On a circle, there are 2n points: n red and
n blue. A red frog starts on one of the
red points, and a blue frog starts on one of
the blue points. Each minute, the red frog
jumps clockwise to the next red point, and
simultaneously, the blue frog jumps coun-
terclockwise to the next blue point. Prove
that for any initial positions of the frogs, it
is always possible to draw a line such that
the frogs are on opposite sides of the line at
all times.

Problem (With changes)

On a circle, there are 2n points: n red and
n blue. A red turtle starts on one of the
red points, and a blue turtle starts on one of
the blue points. Each second, the red turtle
hops clockwise to the next red point, and
simultaneously, the blue turtle hops coun-
terclockwise to the next blue point. Prove
that for any initial positions of the turtles,
it is always possible to draw a line such that
the turtles are on opposite sides of the line
at all times.

With recent works there was an active attention
to such mechanism as a potential way to produce
new evaluation frameworks. In our work we show

201

that such changes are inefficient. Changes of the
results from table 1 are bounded within [−1,+1].
Therefore, such a method of creating extra evalua-
tion data is not really working and affecting LLM
reasoning abilities.

D Examples of TiR validation function

In this section we provide a few examples of func-
tions that were generated during the TiR conjecture
validation procedure.

Conjecture 1 (Inequality) a2 + b2 + c2 >=
ab+ ac+ bc

def f(a, b, c):
"""
Evaluates the conjecture a^2 + b^2 +

c^2 >= ab + ac + bc.

Args:
a, b, c: Real numbers.

Returns:
1 if the conjecture holds , 0

otherwise.
"""
lhs = a**2 + b**2 + c**2
rhs = a*b + a*c + b*c
if lhs >= rhs:

return 1
else:

return 0

Conjecture 2 (Functional equation), IMO 2024
A function f : Q→ Q is called aquaesulian if the
following property holds: for every x, y ∈ Q,

f(x+ f(y)) = f(x) + y or

f(f(x) + y) = x+ f(y). (2)

Show that there exists an integer c such that for
any aquaesulian function f , there are at most c
different rational numbers of the form f(r)+f(−r)
for some rational number r, and find the smallest
possible value of c.

from fractions import Fraction

def aquaesulian_validator(x, y):
"""
A validator for an aquaesulian

function. This function will
return 1 if the conjecture

holds for the given x and y, and 0
otherwise.

Args:
x: Rational number (Fraction)
y: Rational number (Fraction)

Returns:
1 if conjecture holds , 0

otherwise.

"""
Define the function f (this is a

placeholder; define actual f
based on the conjecture)

For example , assume f(x) = x (
identity function for simplicity
in testing)

def f(z):
return z # Identity function

Check if f(x + f(y)) = f(x) + y or
f(f(x) + y) = x + f(y)

if f(x + f(y)) == f(x) + y:
return 1 # First condition

holds
elif f(f(x) + y) == x + f(y):

return 1 # Second condition
holds

else:
return 0 # Neither condition

holds

Conjecture 3 (Graph theory). There is a node
in a planar graph with degree less than 5.

def f(graph):
"""
Validator function for the

conjecture: in a planar graph ,
there exists at least one node

with degree less than 5.

Parameters:
graph (dict): A dictionary

representing the graph as an
adjacency list.

Each key is a node
, and the
value is a
list of its
neighbors.

Returns:
1 if there is a node with degree

less than 5, 0 otherwise.
"""
Iterate over each node and check

its degree
for node , neighbors in graph.items ()

:
if len(neighbors) < 5:

return 1 # Conjecture holds
: there exists a node
with degree < 5

return 0 # Conjecture does not hold
: no node with degree < 5

202

Author Index

Barannikov, Serguei, 195
Bel-Enguix, Gemma, 112
Beznosikov, Aleksandr, 195
Bucur, Ana-Maria, 95

Chen, Yun-Nung, 15
Cosma, Adrian, 95

Danforth, Christopher M., 134
Dias-Alexiou, Carolina, 186
Ding, Ning, 50
Diskin, Michael, 195
Dodds, Peter, 134
Dwyer, Matthew B., 1

Fang, Han, 15
Fatima, Maryam, 62
Fernando Lopez-Ponce, Francisco, 112

Gasnikov, Alexander, 195

He, Yun, 15
Hu, Alan J., 150

Ji, Yangfeng, 1
Jin, Di, 15

Khrulev, Ruslan, 77

Li, Zichao, 124
Lin, Yen-Ting, 15
Lu, Zhixiang, 176
Lv, Xingtai, 50

Ma, Franklin, 150
Ma, Hao, 15
Marrese-Taylor, Edison, 186
Matsuo, Yutaka, 186

Obozov, Mark, 195

Paraskevopoulos, Georgios, 34
Potamianos, Alexandros, 34
Prama, Tabia Tanzin, 134

Qi, Biqing, 50

Radoi, Emilian, 95
Rahnama, Arash, 15

Samoylov, Elisaveta, 168
Stefanidis, Angelos, 176
Su, Jionglong, 176
Sukhbaatar, Sainbayar, 15

Tian, Kai, 50
Tian, Yuandong, 15

Vosoughi, Soroush, 168

Wang, Sinong, 15
Wang, Yuru, 50
Weston, Jason E, 15
Williamson, Dane A, 1
Wu, Tianhao, 15

Xu, Tengyu, 15

Zeng, Sihang, 50
Zhang, Kaiyan, 50
Zhou, Bowen, 50
Zhou, Mian, 176
Zhu, Chen, 15
Zoumpoulidi, Maria-Eleni, 34

203

	Title page
	Copyright
	MathNLP 2025
	Organizing Committee
	Program Committee
	Table of Contents
	Syntactic Blind Spots: How Misalignment Leads to LLMs' Mathematical Errors
	Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback
	BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts
	Scalability of LLM-Based Multi-Agent Systems for Scientific Code Generation: A Preliminary Study
	FIRMA: Bidirectional Formal-Informal Mathematical Language Alignment with Proof-Theoretic Grounding
	CHECK-MAT: Probing the Mathematical Reasoning and Rubric-Alignment of Vision-Language Models on Handwritten Solutions
	RoMath: A Mathematical Reasoning Benchmark in Romanian
	Into The Limits of Logic: Alignment Methods for Formal Logical Reasoning
	Formula-Text Cross-Retrieval: A Benchmarking Study of Dense Embedding Methods for Mathematical Information Retrieval
	BanglaMATH : A Bangla benchmark dataset for testing LLM mathematical reasoning at grades 6, 7, and 8
	Logically Constrained Decoding
	Modeling Tactics as Operators: Effect-Grounded Representations for Lean Theorem Proving
	UniMath-CoT: A Unified Framework for Multimodal Mathematical Reasoning with Re-Inference Affirmation
	An in-depth human study of the mathematical reasoning abilities in Large Language Models
	Synthetic Proofs with Tool-Integrated Reasoning: Contrastive Alignment for LLM Mathematics with Lean

