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Abstract

Mathematical information retrieval requires un-
derstanding the complex relationship between
natural language and formulae. This paper
presents a benchmarking study on Formula-
Text Cross-Retrieval, comparing a sparse base-
line (BM25), off-the-shelf dense embeddings
(OpenAl, BGE), and a fine-tuned dual-encoder
model. Our model, trained with a contrastive
objective on the ARQAR dataset, significantly
outperforms all baselines, achieving state-of-
the-art results. Ablation studies confirm the
importance of linearization, a shared-weight ar-
chitecture, and the Multiple Negatives Ranking
loss. The work provides a strong foundation
for mathematical NLP applications.

1 Introduction

The articulation of mathematical concepts repre-
sents a unique and challenging domain for Natural
Language Processing (NLP), characterized by a
seamless yet complex interplay between natural
language (NL) and formal mathematical expres-
sions. This interweaving of two distinct modalities
is fundamental to scientific communication, yet
it poses significant challenges for automated pro-
cessing and information retrieval (IR). The ability
to retrieve a relevant mathematical formula based
on a textual description, or conversely, to find ex-
planatory text for a given equation, is a critical task
that can accelerate literature review, aid in educa-
tional contexts, and facilitate the autoformalization
of mathematical knowledge. This task, which we
term Formula-Text Cross-Retrieval, requires mod-
els to develop a deep, joint understanding of both
natural language semantics and the syntactic and
semantic structure of mathematical notation.
Traditional IR methods, such as lexical term
matching algorithms (e.g., BM25 (Robertson and
Zaragoza, 2009)), often fall short in this domain.
They struggle with the inherent vocabulary mis-
match problem; a user’s query might describe a

concept in words (e.g., “Pythagorean theorem”)
that never explicitly appears in the text adjacent to
the relevant formula (a? + b?> = ¢?). Furthermore,
mathematical notation is highly symbolic and com-
positional, making it poorly suited for keyword-
based approaches that ignore mathematical seman-
tics. The recent rise of deep learning-based dense
embedding models (Reimers and Gurevych, 2019)
offers a promising alternative. These models map
sentences and, by extension, mathematical expres-
sions into a high-dimensional vector space where
semantic similarity corresponds to geometric prox-
imity. This allows for efficient similarity search via
nearest-neighbor algorithms, potentially capturing
deep semantic relationships beyond lexical overlap
(similar to (Zeng et al., 2025)).

In this paper, we present a comprehensive bench-
marking study to advance Formula-Text Cross-
Retrieval. We define and evaluate this task in two
symmetric directions: (1) Text-to-Formula Re-
trieval, where a natural language query is used
to retrieve relevant mathematical expressions, and
(2) Formula-to-Text Retrieval, where a formula
query is used to retrieve its relevant natural lan-
guage context. We systematically compare the
efficacy of a traditional sparse retrieval baseline
(BM25), state-of-the-art off-the-shelf dense embed-
ding models from large language models (LLMs),
and a finely tuned dual-encoder neural architec-
ture. Our proposed model is specifically designed
to learn an aligned representation space for natural
language and linearized LaTeX formulas. Through
rigorous evaluation on a publicly available bench-
mark, we demonstrate the superiority of tuned
dense embeddings and provide a qualitative anal-
ysis of the learned representation space (Ma et al.,
2025). Our work aims to establish a strong founda-
tion for future research in mathematical informa-
tion retrieval.
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2 Literature Review

Our work is at the intersection of mathematical in-
formation retrieval, dense passage retrieval, and the
application of large language models to scientific
domains. The challenge of searching within math-
ematical content has a rich history, most notably
explored in the NTCIR Conference series, which
featured dedicated Math IR tasks (Aizawa et al.,
2014, 2016). These initiatives established standard-
ized evaluation frameworks and highlighted the lim-
itations of traditional symbolic and keyword-based
methods, such as matching via formula patterns
(Zhao et al., 2014) or leveraging inverted indices
over expanded query terms (Lopez and Youssef,
2014). These approaches, while foundational, of-
ten failed to grasp the semantic intent behind a
user’s query.

The field of IR was revolutionized by the adop-
tion of neural networks and the concept of dense
retrieval (Guu et al., 2020; Karpukhin et al., 2020).
Instead of relying on sparse lexical matches, these
methods use deep neural networks to encode
queries and documents into dense vector repre-
sentations, enabling retrieval based on semantic
similarity. Models like Sentence-BERT (Reimers
and Gurevych, 2019) and DPR (Karpukhin et al.,
2020) demonstrated the power of bi-encoder archi-
tectures trained with contrastive learning objectives,
such as Multiple Negatives Ranking loss (Hender-
son et al., 2017), to create high-quality embedding
spaces. More recent general-purpose models like
BGE (Xiao et al., 2023) and ES (Wang et al., 2022)
have pushed the state-of-the-art further. However,
these models are predominantly trained on the gen-
eral web and Wikipedia text, leaving their perfor-
mance on specialized domains like mathematics an
open question.

Currently, there has been growing interest in de-
veloping NLP systems specifically for mathematics.
This includes work on mathematical word problem
solving (Amini et al., 2019), premise selection (Irv-
ing et al., 2016), and the creation of large-scale data
sets for mathematical reasoning (Hendrycks et al.,
2021). A key challenge is the representation of
mathematical formulae. Early approaches explored
encoding formula structure using graph neural net-
works (Shen et al., 2020) or generating embeddings
from their LaTeX source (Paster, 2022). The rise
of large language models pre-trained on code and
scientific text, such as Minerva (Lewkowycz et al.,
2022), LLEMMA (Azerbayev et al., 2023), and

Codex (Chen et al., 2021), has demonstrated re-
markable mathematical reasoning capabilities, of-
ten accessed via in-context learning. Furthermore,
the ARQAR dataset (Seyedi et al., 2024) provides a
valuable recent resource with aligned text-formula
pairs specifically designed for tasks such as cross-
retrieval.

Despite these advancements, a significant gap
remains in the systematic application and evalua-
tion of modern dense embedding techniques for
the specific symmetric task of Formula-Text Cross-
Retrieval. Many existing mathematical IR efforts
predate the latest developments in dense retrieval or
do not leverage the power of fine-tuning on aligned
corpora. Although general LLM embedding APIs
are powerful, their black-box nature and cost struc-
ture make them less practical for many research
applications compared to a dedicated, fine-tuned
model. Furthermore, there is a lack of direct com-
parison between these modern paradigms (sparse,
off-the-shelf dense, fine-tuned dense) on a com-
mon benchmark. Our work aims to address these
gaps by providing a controlled benchmarking study.
We fine-tune a modern biencoder architecture on a
dedicated mathematical corpus to learn a joint text-
formula embedding space and evaluate its perfor-
mance against strong baselines and zero-shot LLM
counterparts, thereby contributing a clear analysis
of the current state of this critical task.

3 Methodology

3.1 Data Preparation and Linearization

The foundation of our approach is the creation of
a high-quality dataset of aligned natural language
and formula pairs. We utilize the ARQAR dataset
(Seyedi et al., 2024) for this purpose, as it provides
manually curated pairs of text snippets and their
corresponding mathematical formulae, which is
ideal for supervised training and evaluation. A criti-
cal preprocessing step, often overlooked in general-
text IR but essential for mathematics, is the lin-
earization of mathematical formulae. Mathematical
expressions are inherently two-dimensional struc-
tures with complex spatial relationships (e.g., sub-
scripts, fractions, superscripts). To process them
with standard transformer-based text encoders, we
flatten them into a one-dimensional token sequence.
This is achieved by converting the LaTeX source
code into a sequence of tokens that unambiguously
represent the structure. For instance, the formula
Ty, is linearized as #  {n} , and the fraction { be-
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comes ‘7. This linearized representation preserves
the syntactic information of the formula in a format
amenable to subword tokenization, allowing us to
treat both modalities—text and equations—within
the same encoding paradigm. This step directly
addresses a deficiency in prior work that relied on
complex graph-based encoders (Shen et al., 2020),
as it allows us to leverage powerful, pre-trained
sentence transformers out-of-the-box, significantly
simplifying the model architecture while still cap-
turing essential semantic information.
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(Text, Formula) Pairs

Formula Linearization

(LaTeX to Token Sequence)
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Figure 1: Architecture of the proposed fine-tuned dual-
encoder model.

The architecture, depicted in Figure 1, outlines
the end-to-end pipeline of our proposed fine-tuned
dual-encoder model, which directly addresses the
limitations of prior work. The process begins with
the curated ARQAR dataset, providing the essen-
tial supervised pairs for training. The critical pre-
processing step of formula linearization transforms
two-dimensional LaTeX structures into a sequential
token format, enabling the use of a single, shared
transformer encoder for both modalities. This is a
key simplification over more complex, modality-
specific architectures found in existing literature
(Shen et al., 2020). The core of our model con-
sists of twin encoder networks with shared weights,
which project both natural language text and lin-
earized formulae into a common dense vector space.
The training is governed by a contrastive learning
objective, specifically the Multiple Negatives Rank-
ing loss, which efficiently teaches the model to pull
the embeddings of matching pairs together while
pushing non-matching pairs apart. This results in
a structured joint embedding space where seman-
tic similarity corresponds to geometric proximity.
The final outcome is the capability to perform fast,
scalable retrieval via simple cosine similarity and
nearest neighbor search. This integrated approach

of using a single, tuned transformer for both modal-
ities under a contrastive loss framework represents
a significant methodological advancement in creat-
ing a practical and effective solution for mathemat-
ical cross-retrieval.

3.2 Mathematical Model and Objective

Our core proposed model is a dual-tower (bi-
encoder) architecture that learns to project natural
language descriptions and mathematical formulae
into a shared d-dimensional dense vector space. Let
T denote a natural language text sequence and F'
denote a linearized formula sequence. The model
consists of a parameterized encoder function, Encyg,
which maps a sequence of tokens to a fixed-size
embedding vector, e € R%. We use a mean pool-
ing layer over the output token embeddings of a
transformer model to obtain this fixed-size repre-
sentation. The similarity between a text 7; and a
formula Fj is defined as the cosine similarity be-
tween their embeddings:

-
€, €f;

$(Tin 1) = cos(en e) = e

ey
where e;; = Ency(7;) and ey, = Ency(F}). The
model is trained using a contrastive learning ob-
jective. For a training batch containing B positive
pairs {(T}, F;)} 2 ,, the loss function is the Mul-
tiple Negatives Ranking (MNR) loss (Henderson
et al., 2017). For a given positive pair (7}, F;), the
other B — 1 formulae in the batch are treated as
negatives. The loss for the text-to-formula direc-
tion for this pair is the negative log likelihood of
the positive formula:

exp(s(Ti, F9)/7)
Sy exp(s(Ty, Fy)/7)

where 7 is a temperature parameter scaling the
similarity scores. The total loss is the symmet-
ric sum of losses for both retrieval directions:
Lol = 55 Sy [L(T;, Fy) + L(F;, T;)]. This
objective directly optimizes the model’s ability to
identify the correct match within a set of candi-
dates, which is precisely the goal of the retrieval
task, thus providing a more direct and efficient
learning signal than methods used in earlier work.

L(T;, F;) = —log , (2)

3.3 Experimental Setup and Parameter
Settings

Our experimental setup is designed to ensure a
fair and comprehensive comparison across three
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distinct paradigms: sparse retrieval, off-the-shelf
dense embeddings from large language models
(LLMSs), and our proposed fine-tuned dense model.

For the Sparse Retrieval Baseline, we em-
ploy BM25 (Robertson and Zaragoza, 2009) im-
plemented using the ‘rank-bm25° package. This
baseline treats both natural language text and lin-
earized formulae as plain text. We create two sep-
arate indices: one for all text passages and one
for all linearized formulae in the corpus. Retrieval
is performed by querying one index with a string
from the other modality. We use the default pa-
rameters (k1 = 1.5, b = 0.75), providing a strong
lexical matching baseline that does not leverage
any semantic understanding.

For the Off-the-Shelf LLM Embeddings
(Zero-Shot) approach, we utilize the em-
bedding application programming interfaces
(APIs) of two state-of-the-art models: Ope-
nAl’s text-embedding-3-large (output dimen-
sion d = 3072) and BAAI’s bge-large-en-v1.5
(d = 1024). This represents the paradigm of us-
ing powerful, general-purpose models without any
task-specific fine-tuning. We generate embeddings
for every natural language text and linearized for-
mula sequence in the corpus. The retrieval process
involves computing the cosine similarity between a
query embedding and all candidate embeddings,
with the results ranked by this similarity score.
For scalability, we use the FAISS library for ef-
ficient approximate nearest neighbor search. This
method tests the inherent mathematical knowledge
and cross-modal alignment capabilities encoded in
these large-scale models.

For our Proposed Fine-Tuned Dense Model,
we implement the dual-encoder architec-
ture. We initialize the encoder Ency with the
sentence-transformers/all-mpnet-base-v2
model, which provides a strong pre-trained base
(d = 768). The model is specifically tuned for
our task on the ARQAR training split. We use a
batch size B = 64 and a temperature 7 = 0.05
for the MINR loss. The model is trained using the
AdamW optimizer with a learning rate of 2e — 5
and a linear warmup over 10% of the training steps
followed by linear decay. We train for 5 epochs.
This setup is computationally efficient compared
to training LLMs from scratch (Lewkowycz et al.,
2022) yet allows for significant specialization
to the mathematical domain, which is the key
improvement we aim to demonstrate over the
zero-shot LLM approach.

3.4 Evaluation Metrics

To rigorously evaluate the performance of all mod-
els on the cross-retrieval tasks, we employ standard
information retrieval metrics that assess both the
accuracy and the ranking quality of the retrieved
results. For each query in the test set, the model
retrieves a ranked list of candidates from the entire
corpus. We then compute: (1) Recall@K (R@K):
The proportion of queries for which the correct tar-
get item is found within the top- K retrieved results.
This measures the model’s ability to include the
correct answer in a shortlist. We report K=1, 5,
and 10. (2) Mean Reciprocal Rank (MRR): The
average of the reciprocal ranks of the first correct
result for all queries. Specifically, for a query with
the first correct answer at position ¢, its reciprocal
rank is 1/7. MRR emphasizes the rank of the first
correct result, providing insight into how quickly a
user would find what they need. These metrics are
computed separately for the Text-to-Formula and
Formula-to-Text tasks.

4 Experiments and Results

4.1 Datasets and Baselines

The primary dataset for training and evaluation is
the ARQAR (Auto-Regressive Question Answer-
ing and Reasoning) dataset (Seyedi et al., 2024).
Sourced from diverse mathematical reasoning con-
texts, ARQAR provides a curated collection of
15,000 high-quality pairs of natural language text
snippets and their corresponding mathematical for-
mulae. Each pair is meticulously aligned, mean-
ing the text directly describes or contextually ex-
plains the associated formula. The dataset is pre-
partitioned into training, validation, and test sets,
containing 10,000, 2,500, and 2,500 pairs respec-
tively. This dataset is chosen for its focus on rea-
soning and the clarity of its text-formula relation-
ships, making it an ideal benchmark for evaluating
semantic retrieval capabilities beyond simple key-
word matching. The process of linearization, as
described in Section 3, is applied to all formulae in
this dataset.

We compare our proposed fine-tuned model
against two strong and distinct baseline paradigms.
The first baseline is the BM25 algorithm (Robert-
son and Zaragoza, 2009), a classic probabilistic
retrieval model that serves as the representative
for sparse, term-matching-based methods. Imple-
mented with the ‘rank-bm25° library, it operates by
constructing separate term frequency-based indices
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for the natural language text corpus and the lin-
earized formula corpus. For a given query from one
modality, it retrieves items from the other modality
based on lexical overlap, using the default parame-
ters (k1 = 1.5, b = 0.75). This baseline tests the
effectiveness of pure keyword matching without
any semantic understanding. The second baseline
utilizes the OpenAl text-embedding-3-large
model to generate dense vector representations (
dimensionality d = 3072) for all text and formula
sequences in a zero-shot manner. Retrieval is per-
formed by computing cosine similarity between
query and candidate embeddings, facilitated by the
FAISS library for efficiency. This baseline rep-
resents the state-of-the-art in general-purpose se-
mantic understanding and tests the inherent, pre-
existing mathematical knowledge within a massive
proprietary LLM.

4.2 Overall Retrieval Performance

The results presented in Table 1 provide a clear and
definitive answer regarding the effectiveness of dif-
ferent paradigms for mathematical cross-retrieval.
As expected, the sparse BM25 baseline performs
the poorest, with low Recall and MRR scores. This
underscores its fundamental limitation: it fails to
capture the semantic relationship between a textual
description and its corresponding formula, strug-
gling with vocabulary mismatch and the symbolic
nature of mathematical notation. The off-the-shelf
dense embedding models, particularly OpenAl’s,
demonstrate a massive leap in performance, nearly
quadrupling the R@1 score of BM25. This high-
lights the profound semantic understanding capa-
bilities inherent in large-scale language models,
which can bridge the lexical gap between natural
language and mathematics. However, our proposed
fine-tuned model achieves a further significant im-
provement, outperforming the best zero-shot model
by over 18 absolute points in R@1 and 0.16 in
MRR for the Text-to-Formula task. This perfor-
mance gap, consistent across both retrieval direc-
tions, is the central finding of our study. It em-
pirically proves that while general-purpose LLMs
possess strong foundational knowledge, targeted
fine-tuning on a domain-specific corpus is essential
for achieving state-of-the-art performance in the
mathematical domain. The specialized, aligned em-
bedding space learned by our model is measurably
superior for this precise task.

4.3 Analysis of retrieval performance based
on formula complexity

A key question is whether performance is uniform
across different types of mathematical content. Ta-
ble 2 stratifies the results based on the complex-
ity of the formula, approximated by the length
of its linearized token sequence. A clear trend
emerges: all models perform worse on longer, more
complex formulae, but the degree of degradation
varies significantly. The BM25 baseline’s perfor-
mance drops precipitously, as longer formulae con-
tain more unique symbolic tokens that are unlikely
to lexically match the query text. The OpenAl
embeddings also show a notable decrease in per-
formance (a 16 point drop in R@1), suggesting
that while it has a strong general understanding, its
precision wanes with complexity. Our fine-tuned
model demonstrates the greatest robustness. While
it also experiences a performance drop, the margin
is smallest; it maintains a high R@1 of 56.9 on long
formulas, which is still dramatically higher than
the other models. This indicates that the contrastive
learning process specifically teaches the model to
focus on the core semantic components of a for-
mula rather than being distracted by its syntactic
verbosity, leading to a more robust understanding
of complex mathematical concepts.

4.4 Breakdown of common error types for
each model

To understand the qualitative differences between
the models, we performed a manual analysis of 200
error cases for each. The results, summarized in Ta-
ble 3, reveal differentt failure modes. The baseline
BM25 is dominated by errors due to the "Lexi-
cal Gap," confirming its inability to handle syn-
onyms or paraphrases. The most striking finding is
that the dominant error type for the powerful zero-
shot LLM embeddings is "Variable Mismatch,"
where the model retrieves a formula with the cor-
rect structure and operators but incorrect variable
names (e.g., retrieving £/ = mc? for a query about
"K = %mvz”). This suggests that these models
sometimes learn to attend to general structure over
precise symbolic notation. Our fine-tuned model,
while not immune to this issue, shows a signifi-
cantly reduced rate of variable mismatch errors.
Furthermore, it excels in reducing errors related
to "Symbol Confusion" (e.g., confusing N for U)
and "Structural Misunderstanding" (e.g., misinter-
preting function composition), demonstrating that
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Table 1: Overall retrieval performance measured by Recall@K (R@K) and Mean Reciprocal Rank (MRR) on the

ARQAR test set. Higher values are better.

Text-to-Formula Formula-to-Text
Model R@l R@5 R@10 MRR | R@l R@5 R@10 MRR
BM25 123 28.7 38.2 0.201 | 10.8 26.1 359 0.184
OpenAl Embeddings | 45.6 72.1 81.5 0572 | 412 68.3 78.9  0.531
BGE Embeddings 389 654 76.8 0508 | 365 62.1 732 0482
Our Model 63.8 852 91.1 0.731 | 594 827 89.5 0.693

Table 2: Analysis of retrieval performance based on formula complexity (length of linearized sequence).

Short Formulas (<15 tokens) | Long Formulas (>15 tokens)
Model R@1 R@5 MRR R@1 R@5 MRR
BM25 15.1 324 0.231 8.7 23.1 0.161
OpenAl Emb. | 52.3 78.9 0.632 36.2 628 0.487
Our Model 68.5 89.2 0.772 569 79.8 0.671

Table 3: Breakdown of common error types for each
model (% of total errors).

Our
Model

Error BM?25

Type

OpenAl BGE
Emb. Emb.

Variable 41.5 39.8 25.3
Mis-

match

18.2

Symbol | 12.1 18.2 20.1 8.5

Confu-
sion

Structural | 9.3 22.4 23.5 11.8

Misun-
derstand-
ing

Out-of- 6.5 4.1

Domain

52 7.1

Lexical 55.2 10.8 10.1 5.2

Gap

our training process successfully inculcates a more
precise understanding of mathematical semantics.

4.5 Ablation study on model design choices

We conduct an ablation study to validate key de-
sign choices in our proposed model, with results
shown in Table 4. First, we test the importance of
weight sharing between the text and formula en-
coders. Using separate encoders leads to a notice-
able drop in performance, confirming that a shared
transformer architecture is beneficial for learning a
truly aligned cross-modal representation. Second,
we replace the Multiple Negatives Ranking (MNR)
loss with a standard cosine similarity loss using

Table 4: Ablation study on model design choices.

Model R@1 R@5 R@10 MRR
Variant

Shared 63.8 852 911 0.731
Weights

Separate 60.1 829 89.0 0.698
Weights

MNR 63.8 852 911 0.731
Loss

Cosine- 584  8l1.1 88.3  0.681
Sim Loss

With Lin-| 63.8 852 91.1 0.731
earization

Raw La-| 512 756 842 0.617
TeX

hard negatives. The significant performance degra-
dation underlines the effectiveness of the MNR
objective’s strategy of leveraging in-batch nega-
tives for efficient and robust contrastive learning.
Finally, we ablate the linearization preprocessing
step by feeding raw, nonlinearized LaTeX code to
the encoder. This causes the largest performance
drop, with MRR decreasing by over 0.11 points.
This empirically validates our hypothesis that lin-
earization is a crucial step to enable a standard
transformer to effectively process mathematical for-
mulae, as raw LaTeX contains a high density of
domain-specific syntax that disrupts tokenization
and semantic learning ((Huang et al., 2024)).

129



Table 5: Impact of training data size on model perfor-
mance.

Training | R@1 R@5 R@10 MRR
Samples

1,000 42.1 689 785 0.532
5,000 583 81.6 88.7 0.683
10,000 63.8 852 911 0.731
(Full)

4.6 Impact of training data size on model
performance

Table 5 investigates the relationship between per-
formance and the amount of training data. The
results show a clear positive correlation: perfor-
mance steadily improves as more training data is
utilized. Even with only 1,000 samples, our model
significantly outperforms the BM25 baseline and is
competitive with the zero-shot BGE model, demon-
strating the data efficiency of the contrastive learn-
ing paradigm. The jump in performance from 5,000
to 10,000 samples, while smaller, is still substan-
tial and crucial for achieving state-of-the-art results
that surpass the powerful OpenAl embeddings.

4.7 Cross-dataset generalization performance
on the NTCIR-12 dataset

Table 6: Cross-dataset generalization performance on
the NTCIR-12 dataset.

Text-to-Formula | Formula-to-Text
Model R@5 MRR | R@5 MRR
BM25 20.5 0.152 18.8 0.141
OpenAl 55.1 0.451 51.7 0.428
Emb.
Our 65.8 0.562 62.4 0.539
Model

Finally, we evaluate the generalizability of the
models by testing them on the NTCIR-12 MathIR
task dataset (Aizawa et al., 2016), a different bench-
mark with a different distribution of mathematical
content. The results in Table 6 show that while
the absolute performance of all models decreases
compared to the ARQAR test in the domain,ain,
the relative rankings remain unchanged. Our fine-
tuned model continues to significantly outperform
all baselines. This drop in performance is expected
due to domain shift, but the fact that our model
maintains its lead is crucial. It demonstrates that the
representations learned through our fine-tuning pro-

cess are not merely overfitting to the peculiarities
of the ARQAR dataset, but capture generalizable
principles of the relationship between mathemati-
cal text and formulae.

4.8 Additional Baselines for Fair Comparison

To ensure a fair comparison and isolate the effect of
our proposed architecture from the mere advantage
of fine-tuning, we introduce two additional strong
baselines that address the concerns raised about
comprehensive benchmarking.

Hybrid Fine-Tuned Model: We fine-
tune the text encoder (initialized with
all-mpnet-base-v2) on the ARQAR train-
ing set using the contrastive loss, while keeping
the formula encoder frozen as the pre-trained
text-embedding-3-large model. This tests
whether simply adapting the textual understanding
to the mathematical domain is the primary driver
of performance, rather than the joint learning of a
shared space.

Fine-Tuned Math-Specialized LLM: We uti-
lize Qwen2.5-Math-7B-Instruct (Team, 2024)
as a base model, which has been specifically pre-
trained on mathematical corpora. Following the
parameter-efficient fine-tuning approach of Hu et al.
(2021), we train low-rank adapters on top of its hid-
den states to generate embeddings for both text
and formulae. The entire system is fine-tuned on
the ARQAR dataset with our contrastive objective.
This represents a state-of-the-art, domain-specific
competitor that tests whether specialized mathe-
matical pre-training alone can outperform our ar-
chitectural approach.

The comprehensive results in Table 7 clearly
demonstrates that fine-tuned models consistently
outperform their zero-shot counterparts, confirm-
ing that domain adaptation is essential for optimal
performance in mathematical IR. However, the rela-
tive performance among fine-tuned models reveals
the distinct advantage of our architectural approach.
The Hybrid (Text FT + OpenAl) baseline, where
only the text encoder is fine-tuned while using the
powerful but static OpenAl embeddings for formu-
lae, shows significant improvement over the zero-
shot OpenAl model (approximately 10 points in
R@1 for Text-to-Formula). This demonstrates that
adapting textual understanding to the mathematical
domain provides substantial benefits. However, this
hybrid approach still underperforms compared to
our full model by approximately 8-9 points in R@1
and 0.07 in MRR. The Qwen2.5-Math (FT) base-
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Table 7: Comprehensive retrieval performance comparison on the ARQAR test set

Text-to-Formula Formula-to-Text

Category | Model R@l R@5 R@10 MRR | R@l R@5 R@I10 MRR
Sparse BM25 12.3  28.7 382 0.201 \ 10.8  26.1 359 0.184
2*%Zero- | OpenAl Emb. 45.6 721 81.5 0572 ] 412 683 789  0.531
Shot

BGE Emb. 389 654 76.8 0508 | 36.5 62.1 732 0482
3*Fine- | Hybrid (Text FT +| 552 79.8 873 0.654 | 51.7 769 85.1 0.623
Tuned OpenAl)

Qwen2.5-Math (FT) | 59.1 824 89.2 0.689 | 55.8 80.1 879 0.661

Our Model 63.8 852 91.1 0.731 | 594 827 89.5 0.693

line represents a strong, domain-specialized com-
petitor. Starting from a model with inherent mathe-
matical knowledge, fine-tuning yields impressive
results, making it the second-best performer over-
all. However, our model still maintains a consistent
advantage (4-5 points in R@1 across both tasks).

5 Discussion

5.1 Summary of Key Findings

Our study yields three principal conclusions. First,
the stark performance gap between the BM25 base-
line and all dense models demonstrates that seman-
tic understanding is essential for mathematical IR;
lexical matching is fundamentally inadequate for
bridging the vocabulary mismatch between natu-
ral language and symbolic formalizations. Second,
the significant advantage of our fine-tuned model
over powerful zero-shot LLM embeddings under-
scores that while these models possess immense
latent knowledge, optimal performance on this spe-
cific task requires targeted specialization. Our fine-
tuning process successfully creates an optimally
aligned semantic space. Third, the ablation studies
validate our core architectural choices: lineariza-
tion is a necessary preprocessing step, the MNR
loss is highly effective for contrastive learning, and
a shared-weight encoder is superior for learning a
joint representation space.

5.2 Theoretical and Practical Implications

Theoretically, our work contributes to the field by
successfully adapting contrastive learning for cross-
modal alignment to the novel domain of mathemat-
ical language. The error analysis, particularly the
prevalence of "variable mismatch" errors in zero-
shot models, offers a fascinating insight into how
these models perceive mathematics: they often pri-
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oritize overall formula structure over the specific
identities of variables, a tendency our fine-tuning
process mitigates. Practically, this research pro-
vides a scalable and effective blueprint for building
mathematical IR systems.

5.3 Limitations

The model is primarily trained and evaluated on
a single dataset (ARQAR), and its performance
on highly specialized sub-fields of mathematics
remains untested. Furthermore, our linearization
process, while effective, is a simplification that dis-
cards explicit structural information which might
be crucial for disambiguating extremely complex
expressions. Finally, our model operates at the ex-
pression level and does not explicitly model the
broader mathematical discourse or logical depen-
dencies between formulae within a document.

6 Conclusion

This paper established a comprehensive benchmark
for Formula-Text Cross-Retrieval. We demon-
strated that a dedicated dense embedding model,
fine-tuned with contrastive learning on a aligned
corpus, decisively outperforms both traditional
sparse retrieval and powerful general-purpose LLM
embeddings. Our analysis validated key design
choices and highlighted specific error modes, such
as variable mismatch in zero-shot models. The
results confirm that semantic understanding is
paramount for this task and that targeted fine-tuning
is necessary to unlock optimal performance.
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