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Abstract

We implement Large Language Model Align-
ment algorithms to formal logic reasoning tasks
involving natural-language (NL) to first-order
logic (FOL) translation, formal logic inference,
and premise retranslation. These methodolo-
gies were implemented using task-specific pref-
erence datasets created based on the FOLIO
datasets and LLM generations. Alignment was
based on DPO, this algorithm was implemented
and tested on off-the-shelf and pre-aligned mod-
els, showing promising results for higher qual-
ity NL-FOL parsing, as well as general align-
ment strategiesl. In addition, we introduce
a new similarity metric (LogicSim) between
LLM-generated responses and gold standard
values, that measures logic-relevant informa-
tion such as premise count and overlap between
answers and expands evaluation of NL-FOL
translation pipelines’. Our results show that
LLMs still struggle with logical inference, how-
ever alignment benefits semantic parsing and
retranslation of results from formal logic to nat-
ural language.

1 Introduction

Reasoning using a formal logic language is one
of the basis of mathematical thinking. Being able
to abstract a problem in natural language and ex-
press the distinct variables and relationships be-
tween them in logical terms helps mitigating ambi-
guity and unclear relationships. Using these formal
representations, a step-by-step inference procedure
can be carried out in order to obtain a logically
valid conclusion of the presented premises. This
type of reasoning is crucial for, not only mathemat-
ics but, any discipline in need of an explainable
decision making process.

"Datasets and models can be found freely on HuggingFace:
https://huggingface.co/Kurosawama

2Code can be accessed via this paper’s GitHub:
https://github.com/Kurocaguama/Into-The-Limits-of-Logic

State-of-the-art Large Language Models (LLMs)
exhibit human-like reasoning capabilities for var-
ious tasks such as coding, general academic ex-
amination, and reading comprehension (OpenAl,
2023; Anthropic, 2024). However, formal logic and
mathematical reasoning has proven to be an area
of expertise where LLMs consistently underper-
form: the Claude 3 series of models barely reach
a 42% Accuracy in the AMC 12 (Mathematical
Association of America, 2025), and a 61% on the
MATH dataset (Hendrycks et al., 2021), even with
such scores Claude outperforms models like GPT 4.
Given the connection between logic, mathematics,
and human cognitive processes (Yang et al., 2024b),
improving an LLM’s performance in this area is an
open research problem. Not only is this interesting
as a stand-alone problem, it has very positive impli-
cations for the explainability of LLMs. Having a
model that can correctly infer and explain step-by-
step said process would benefit most current uses
of LLMs.

In this article we focus on an end-to-end infer-
ence process divided into three main steps. Given
a set of premises in natural language (NL) the first
step is a translation of the premises from natural
language to first-order logic (FOL). The second
step is an LLLM-based inference procedure based
on the FOL representations. The final step corre-
sponds to a retranslation of the conclusion from
FOL to natural language. For each step we im-
plement an LLM Alignment methodology focused
on the corresponding task in order to improve a
model’s performance, as well as a corresponding
evaluation.

LLM Alignment methods are post-training
strategies that modify a model’s internal weights
in order to generate text that caters with human
selected responses for a wide range of downstream
tasks. Alignment strategies, based on reinforce-
ment learning with human feedback (Christiano
et al., 2017), were originally implemented for auto-
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matic summarization (Stiennon et al., 2020). How-
ever, recent research uses these strategies to adjust
an LLM’s behavior to generate safe and useful re-
sponses (Ouyang et al., 2022; Bai et al., 2022; Ji
etal., 2025). Interestingly, alignment methods have
been shown to improve an LLM’s performance
in tasks outside safety and harmfulness, making
them an integral part of post training for newer
releases of models (DeepSeek-Al et al., 2025; Ope-
nAl, 2025).

Our approach differs from similar methodolo-
gies that work with the same NL-FOL workflow
by omitting the dependency on prompting, the use
of an external solver, and self-verification. By inte-
grating translation and inference capabilities into
a model via alignment, we obtain a robust model
capable of solving our problem on its own without
the need of external tools. Additionally, we present
a novelty metric that measures logical similarity
between two sets of premises based on information
concerning predicates and logical connectors. This
metric allows us to finely evaluate LLMs during
the workflow, expanding our focus from the sin-
gle truth value that NL-FOL workflows are usually
evaluated by.

We tested our methodology around the FOLIO
dataset (Han et al., 2024), a human created and an-
notated dataset focused on natural language to first-
order logic translation and inference, that is easily
adaptable to our three step pipeline. Evaluation was
in accordance to FOLIO and step-specific metrics.
Our results show that off-the-shelf LLMs can be
easily adjusted to become efficient semantic parsers
with a limited amount of information, even being
able to follow particular prompt-structures aside
from the logical benefit. Pre-aligned models per-
form decently without any logic-based alignment,
yet their performance falters after our alignment
strategy is applied, suggesting that our methodol-
ogy needs to be polished in order to work as an
additional layer of post-training.

2 Related Work
2.1 LLMs for Logic-Based Reasoning

Early work in this area, such as ProofWriter
(Tafjord et al., 2021), tested how well LLMs could
reproduce proof generation based on given facts
and rules, opting for a generative strategy over clas-
sification systems based on pretrained models such
as PRover (Saha et al., 2020).

Recent work has covered a wide variety of gen-

erative strategies similar to ProofWriter. Pan et al.
(2023)’s Logic-LLM and Olausson et al. (2023)’s
LINC are an example of tool-augmented systems
that test an identical end-to-end problem as our-
selves. A key difference is that they incorporate
the use of an external solver for the inference and
retranslation part of the problem, an addition that
enables both systems to outperform classic prompt-
ing strategies like Chain-of-Thought (Wei et al.,
2023) reasoning. Further research has improved
tool-augmented systems (Raza and Milic-Frayling,
2025; Kirtania et al., 2024), even surpassing Logi-
cLM’s and LINC’s results. However, the addition
of the external solver reduces the impact of the
LLM within the logic pipeline, limiting the influ-
ence to the symbolic formalization of the pipeline.
Yao et al. (2023) endows an LLM with a search
function over possible answers in order to emulate
a tree search. This removes the need of the external
solver but still requires certain calculations to be
carried out independently of the LLM.

Most LLM-only approaches rely on prompting
and in-context learning, often modifying the struc-
ture of the prompt to carry out procedures like
abstracting, formalizing, and explaining before an-
swering (Ranaldi et al., 2025), formulating the so-
lution as a Python function (Lyu et al., 2023), or
giving the prompt a task-specific solution struc-
ture (Zhou et al., 2024). An extension of these
approaches that is highly similar to our work, is
the use of LLM Alignment methods in order to
optimize a task-oriented Supervised Fine-Tuning
(Ranaldi and Freitas, 2024). A slight difference
however, is that this work focuses on general rea-
soning rather than formal logic.

2.2 Alignment Methodologies

Initial works in LLM Alignment taught models
how to summarize texts (Stiennon et al., 2020)
and how to behave in terms of safety and useful-
ness (Ouyang et al., 2022) using Supervised Fine-
Tuning (SFT) to obtain a reference model for sam-
pling, and PPO (Schulman et al., 2017) as a training
strategy with another LLM. However, PPO is an on-
line algorithm that uses two LLLMs during training,
meaning that it’s a resource heavy option that now
serves more as a baseline comparison rather than a
widely used strategy. Alternative algorithms have
been developed that solve this problem, particularly
Direct Preference Optimization (DPO) (Rafailov
et al., 2023). This algorithm avoids fine-tuning
a reference model as well as the sampling from
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Figure 1: Step-Independent Alignment (left) and Mixture-of-Steps Alignment (right).

said model, it does so by working on a preference
dataset that compares pairs of responses to a given
prompt. DPO is a widely used algorithm for align-
ment in state-of-the-art LLMs (Grattafiori et al.,
2024).

Further research regarding alignment algorithms
has been carried out. The Group Relative Policy
Optimization algorithm (GRPO) (Shao et al., 2024)
is a memory-optimized version of PPO that avoids
the reference model, and instead shows explicitly
which responses are preferred by giving a prompt
and a "correct" completion of said prompt.

Mathematically speaking, each strategy has its
strengths and weaknesses that make it an adequate
candidate for alignment (Xu et al., 2024). However
we can’t just rely solely on mathematical intuition
given that we’re working with text data as well as a
concrete problem that can’t be solely encapsulated
with loss functions. For said reason we opt for DPO
due to the nature of preference datasets used during
training. This type of datasets enables a model
to compare different answers, analyze differences
between them, and consider the preference score
in order to adequately adjust the model’s response.
In logical and mathematical reasoning there isn’t
always a single correct way to derive a proof, or to
semantically parse a set of premises. We believe
that by having a dynamic set of scores that measure
correctness, a model should be able to efficiently
adapt to varying sets of premises, inference steps,
and lexical themes.

2.3 Logic and Mathematics Evaluation

LLM logical evaluation has a plethora of datasets
to work with. However, not every dataset centered

on logical reasoning actually evaluates formal log-
ical language reasoning. Datasets like LogiQA
(Liu et al., 2020) and LogicNLI (Tian et al., 2021)
are good resources for natural language reason-
ing, however there’s no logical formalization of the
premises and answers within those datasets.

Newer benchmarks such as FOLIO (Han et al.,
2024), LogicBench (Parmar et al., 2024), or
MALLS (Yang et al., 2024a), deal with the for-
malization of the premises in first-order logic. In
particular, FOLIO is an expert-written and human-
reviewed dataset (contrary to the other two), that
covers each step of an end-to-end pipeline for logic-
inference.

3 Experiments

In this section we describe our end-to-end work-
flow with a working example, the creation of the
preference datasets used for alignment, selected
LLM checkpoints, and experimental setup.

3.1 Problem Definition

As previously mentioned, our inference procedure
is divided into three separate steps, each evaluated
independently to determine weak points throughout
the end-to-end workflow.

The first step of our three step inference pro-
cess is the translation of a set of premises from
natural language to first order logic. This task is
also referred to as semantic parsing, and is shared
across many logic-based reasoning systems (Pan
et al., 2023; Olausson et al., 2023; Raza and Milic-
Frayling, 2025). The second step is the inference
procedure based solely on the premises in their
FOL syntax. The LLM should use logically valid
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inference steps® in order to obtain a unique con-
clusion, expressed in FOL syntax, to the problem
formulation. The third and final step corresponds
to a retranslation of the conclusion to natural lan-
guage. An example of the whole process can be
seen in table 1. The example is extracted from the
validation set of the FOLIO dataset.

3.2 Alignment

In order to train an LLM in each task an alignment
strategy based on the corresponding step is imple-
mented. Two variations of the alignment procedure
are possible: Step-Independent Alignment (training
with only a single step of the pipeline) and Mixture-
of-Steps Alignment (training using the full pipeline).
Step-Independent Alignment generates three dis-
tinctly aligned models, one for each corresponding
step. On the other hand, Mixture-of-Steps returns
a single model aligned to all of the steps. Figure 1
shows a diagram of the end-to-end inference pro-
cess and the steps where alignment is performed.
Due to the sparse amount of data available for train-
ing (1000 data instances at most per step), Step-
Independent Alignment is not carried out in our
experiments. The implementations talked about in
the remainder of the paper describe training and
performance using the Mixture-of-Steps methodol-
ogy.

We implement alignment based on DPO
(Rafailov et al., 2023) due to the advantages this
algorithm presents over classic SFT + RLHF ap-
proaches (Ouyang et al., 2022), particularly in re-
gards with the datasets needed implement the algo-
rithm. DPO uses a preference dataset for training,
each entry is comprised of four columns, two of
which contain chosen and rejected generations, and
two that contain a score that measures a numerical
preference over each pair of responses. The chosen
and rejected columns share the same input prompt,
it’s the LLLM response that varies.

We created a preference dataset for each step of
the end-to-end procedure. Each dataset is model
specific meaning that the responses of one model’s
checkpoint don’t affect the behavior of other mod-
els. This allows us to evaluate various aspects of
LLM behavior such as how susceptible each in-
dividual model is to our methodology, how much
of an improvement is shown between aligned and
vanilla models, parameter size dependency and
more. This segmentation between steps generates

3The same ones used for the FOLIO dataset.

three datasets per LLM checkpoint used, however
combining them into a unique dataset is a straight
forward procedure.

3.3 Preference Dataset Creation

To create a single entry of the dataset we consider a
prompt z, based on which we need to obtain two an-
swers, y1, ¥2 (chosen and rejected), and two scores,
s1, S2, that serve as preferences for the LLM. The
chosen column contains the pair (x, y1), while the
rejected column switches the response, containing
the pair (x,y2). Our datasets’ chosen inputs are
always extracted directly from the FOLIO dataset
meaning they’re human generated, on the other
hand, rejected inputs are always LLM-generated.
However, not every instance of FOLIO is consid-
ered, particularly for the inference and retranslation
datasets. FOLIO is comprised of sets of premises
and conclusions, and a corresponding truth value
(True, False, Uncertain) for any conclusion. Those
tagged as False or Uncertain are not taken into
consideration.

Preference scores are balanced depending on
similarity between both texts. Given the high qual-
ity annotations used in FOLIO, we believe consid-
ering said answer as gold standards gives us better
aligned models with an objective ground truth.

Formally, consider an LLM checkpoint C, in
order to generate the :—th entry of the translation
dataset (the procedure is that same for any step of
the logic procedure) we ask C' to carry out said
step on the ¢—th entry of FOLIO to obtain an LLM-
generated answer. This synthetic answer is com-
pared with the actual ¢—th entry of the dataset and
measured in terms of semantic similarity. Based
on this similarity score the chosen and rejected val-
ues s1 and sy are calculated, initial chosen scores
are initialized at 8, while rejected scores at 4. The
semantic similarity measure modifies these scores
allowing a max range of 8.5 and 3.5, and a mini-
mum similarity score of 7.5 and 4.5.

We opted for a one-shot prompting approach
for each step of the inference procedure. Most
LLM literature evaluates formal logic reasoning
using multi-shot prompting (Grattafiori et al., 2024;
OpenAl, 2023; Anthropic, 2024; Han et al., 2024),
however we’re interested in measuring the effects
of alignment strategies over prompting, hence the
selection of one-shot prompting. The full prompts
can be accessed via this paper’s repository.
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NL FOL FOL NL
Premises Premises Conclusion Conclusion
‘Robert Lewandowski
is a striker.
“Strikers are soccer Striker(robert Lewadowski)
players.

Robert Lowandowski Ve (Striker(z) —SoccerPlayer(z))

left Bayern Munchen.
-If a player leaves a
team they no longer
play for that team.

VaVy(Left(z,y) — —PlaysFor(z,y))

Left(robert Lewandowski, bayernMunchen)

Robert Lewandowski is a

SoccerPlayer(robert Lewandowski) soccer player

Table 1: Extracted example from FOLIO.

3.4 Evaluation Methods

We compare an LLM-generated answer with a gold
standard extracted from the FOLIO dataset, based
on certain similarities we determine if the model’s
response is adequate. This methodology measures
quality across each step and not only analyzes the
final logical value of each sample, thus expanding
NL-FOL translation metrics and evaluation sys-
tems.

For each step we measure a similarity value that
considers consistency of individual premises, func-
tions, variables, logical connectors and operations,
as well as total amount of predicates. If there’s
a sufficient similarity based on these values, we
tag the pair as adequate and carry out a manual
revision to further analyze results. Reported scores
are based on these tags. Our metric is defined as
follows:

Let (z,y) be a pair of answers the same infer-
ence step, = extracted from FOLIO, y generated
by an LLM. We denote the differences in total
amount of premises between x, y as pd, the dif-
ferences in distinct amount of predicates as ap,
the differences in total predicates appearances
as tp, differences in logical operators as [d and
the intersection over union of predicates as JoU.
Our metric is defined as:

LogicSim(z,y) = pd+ap+tp+1d+ IoU (1)

This metric operates over atomic sentences (sen-
tences in the form of Predicate(v1, ..., v,)), each
separated using regular expressions. Final scores
are normalized. Figure 2 shows an example of the
metric, FOLIO’s correct text is the same as the FOL
Premise in table 1, the LLM answer is generated
by LLAMA-3.1-8B.

Since this metric operates over FOL, the final
step of the pipeline is evaluated using dense seman-
tic similarity.

3.5 LLMs

A total of 5 LLMs were tested, table 2 shows the
full list. We test both -INSTRUCT (referred to as
pre-aligned models) and vanilla models in order
to measure the impact of previous general pur-
pose alignment in our experiments. Due to insuffi-
cient computing power, larger checkpoints weren’t
tested. Checkpoints obtained using our methodol-
ogy will be referred to as logic-aligned models or
-L A models due to their checkpoint name.

Model Series Checkpoint
Llama 3 Llama-3.1-8B
Llama 3 Llama-3.1-8B-Instruct
LLama 3 Llama-3.2-3B
Llama 3 Llama-3.2-3B-Instruct
Gemma 3 google/gemma-3-1b-it

Table 2: List of LLM checkpoints used during testing.

Training, generation, and evaluation was carried
out in a single A5S000 GPU. The creation of single
step dataset averaged 2:10 hours, alignment aver-
aged around 16 minutes using TRL’s (von Werra
et al., 2020) implementation of DPO. Details re-
garding hyperparameters can be found in Appendix
B as well as this paper’s repository.

4 Results and Evaluation

Table 3 shows the average LogicSim score of each
model during the first two steps. The third step isn’t
evaluated using this metric since the answers them-
selves are in NL, while our metric only evaluates
FOL premises. Table 4 shows the average semantic
similarity between gold standards and retranslated
premises between checkpoints.

5 Discussion and Future Work

We first discuss model-agnostic results, afterwards
vanilla models and their logic-aligned counterpart,
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FOLIO

Striker(robert Lewandowski)
W x(Striker(x) =» SoccerPlayer(x))
Left(robert Lewandowski, bayern Munchen)
W x W y(Left(x,y) = —PlaysFor(x,y))

Union
Striker(x), SoccerPlayer(x), Left(x,v)
PlaysFor(x,y), IsAStriker(x), IsASoccerPlayer(x)
Intersection

Left (x,y). PlaysFor(x,y)

LLM Answer

IsAStriker(“Robert Lewandowski™)
IsASoccerPlayer(x) =» IsAStriker(x)
Left(“Robert Lewandowski”, “Bayern Munchen™)
Left(x,v) = "PlaysFor(x.y)

$

Total Premises: 4

tp=20
Distinct Predicates: 4 - ap=0
Predicates Used: 6 pd=0
Id=3

Logical Operators: (6,3)

$

LogicSim(x,y) = §+ 3=10

3

Figure 2: LogicSim(z, y) between a gold standard and an LLM answer.

Checkpoint Translation Inference

LLAMA-3.1 (20.4,20.7) (47,45.9)
LLAMA-3.1-INST (22.8,22.9) (58.5,59.8)

LLAMA-3.2 (24.4,23.1) (47.5, 48.8)
LLAMA-3.2-INST (25.8,25.6) (56.6,53.6)
GEMMA-3-1B-IT  (29.1, 30.8) (46.7,47.9)

Table 3: The ordered pairs indicate scores for -LA
aligned models, and base checkpoints, in said order.
e.g. (20.4, 20.7) indicates that the -LLA model scored
20.4, while the base checkpoint 20.7.

Checkpoint Retranslation
LLAMA-3.1 (0.38, 0.22)
LLAMA-3.1-INSTRUCT (0.32, .33)
LLAMA-3.2 (0.27,0.21)
LLAMA-3.2-INSTRUCT (0.43, 0.39)
GEMMA-3-1B-IT (0.23,0.27)

Table 4: Average semantic similarity between a check-
point’s retranslation step.

to finish with the pre-aligned models. Select tables
can be found in the Appendix C.

5.1 Model-Agnostic

Models perform best in step 1, however they strug-
gle particularly when having to use multiple predi-
cates as well as functions that operate over various
variables. As an example consider premise 4 from
table 1, that stand alone premise is associated with

the following FOL formulation:
VaVy(Left(z,y) — —PlaysFor(z,y)) (2)

This formulation uses two universal quantifies,
over two variables x, y that correspond to a soc-
cer player and a team. In general, vanilla, pre-
aligned, and -L A models are unable to formulate a
translation that takes into account the second vari-
able (the team) in order to correctly generalize the
formulation (see tables 7 and 8). At best, some
translations are either vague enough that they make
sense on their own, or are closely related to the
premise but don’t represent the same logical formu-
lation. LLAMA-3.1-8B-INSTRUCT-LA translates
this premise in a contrapositive manner (Table 7),
indeed if a player x plays for a club y, it implies
that x has not left club y, while that is logically
equivalent it is an incorrect translation.

Additionally, -LA models generate longer re-
sponses in comparison with gold standards, table
9 shows that LLLM-generations can be over 1000
characters longer than the answers extracted from
the dataset. This is a notorious problem in steps
2 and 3 since the expected answer is a single logi-
cal conclusion, however, LLMs tend to regurgitate
information presented in either the prompt or the
alignment datasets.

While the semantic parsing task of steps 1 and
3 shows promising improvement, logical inference
remains a challenge for all models. Most inference
steps where poorly executed, vanilla models were
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too susceptible to following the prompt structure
even in cases when the answer was comprised of a
single premise.

5.2 Vanilla Models

Logic-aligned models improve generation struc-
ture throughout the full procedure, noteworthy im-
provement can be seen in steps 1 and 3. However
structure improvement doesn’t translate to seman-
tic parsing correctness.

Vanilla models are highly inconsistent when
recreating any step of the pipeline, their genera-
tions barely have overlapping lexicon with the gold
standard, premises are not separated in any man-
ner, responses are quick to degenerate, and rea-
soning is conspicuous by its absence. In contrast,
logic-aligned models are able to separate and parse
premises, create complex predicates with adequate
use of variables, and explain the reasoning behind
such predicates.

This improvement in performance and parsing-
quality is heavily tied to our specific problem, as
well as prompt structure used during alignment.
The prompts follow a one-shot structure (see Ap-
pendix A), in particular for steps 1 and 3 the single
example contains context regarding logical sym-
bols as well as a precise comment on each premise
and predicate (marked by the three consecutive
colons). This is the most notable pet phrase adapted
by the logic-aligned models. Similarly, the prompt
separates the problem, the predicates, and premises
(in that order), making the model highly susceptible
to generating answers in the same format disregard-
ing logical-veracity.

However, even with general improvements in
parsing structure and the use of logical connectors,
-LA models struggle to remain consistent during
parsing and to incorporate world-knowledge into
this task. Consider the example shown in tables 7
and 8, NL premises are extracted from the dataset,
the corresponding FOL premises were translated by
the LLAMA-3.1-8B-LA checkpoint. The model
fails to realize that the function Le ft(x) can’t be
used as a variable, RobertLewandowski should
be a constant rather than a function, and that Bayern
Munchen is not represented as a constant.

5.3 Pre-Aligned Models

Pre-aligned models have better baselines in terms
of style, structure, and general problem solving ca-
pabilities. Even in with a one-shot style of prompt-

ing, these models surpass Vanilla + -L A check-
points throughout the pipeline.

Problems like the one discussed in the previ-
ous subsection aren’t as notorious with pre-aligned
models. However, a different problem is encoun-
tered with these models: the variation of FOL ex-
pressiveness. As an example consider the predicate
RankedHighlyBy(x, womensTennisAssociation),
this is shortened to RankedHigh(z) by -INSTRUCT
LLMs, and is specified (in natural language) that
the institution doing the ranking is the Women’s
Tennis Association. Problems like these happen
in particular with pre-aligned models and require
manual revision of the experiments.

5.4 Future Work

The alignment datasets could improve substantially.
Dataset-wise the prompts used for alignment varied
only in the test example, the linguistic structure
of the prompt, as well as the one-shot example
remained the same. Adding variations in structure
such as zero-shot and multi-shot examples, a varied
lexicon and different training examples, as well as
more diverse preference scores would improve the
robustness of the system.

With regards to training data, increasing the size
of the alignment dataset, either by combining our
datasets with general purpose alignment, or by in-
creasing the amount of formal logic reasoning ex-
amples is an avenue of research that might help
improve performance in the end-to-end inference
task. This could enable a more robust implementa-
tion of single-step alignment.

RL-wise, implementing different alignment algo-
rithms like GRPO, as well as expanding this prob-
lem to a multi-objective optimization case could be
beneficial for further experiments. The three step
pipeline easily adapts into multi-objective scenar-
ios like those proposed in Panacea (Zhong et al.,
2024) and AMoPO (Liu et al., 2025), this approach
reduces the amount of models needed to be evalu-
ated and makes use of all of the previously created
datasets. A parallel approach would be to incor-
porate multi-shot examples during training, this
would harness the best of alignment and prompting
strategies.

Limitations

LLM alignment drastically improves a model’s gen-
erative capabilities for a given task, however the
fundamental workings of the LLM remain the same.
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Our methodology enables LL.Ms to mimic certain
aspects of formal logic reasoning, however incorpo-
rating real world knowledge into their mimicking
is a limiting aspect of the methodology.

Even if a model is capable of solving tasks like
the one evaluated in this paper, it does not mean
that the problem of mathematical thinking and ab-
straction are solved. LLMs are still stochastic by
nature and leveraging the generation probabilities
of formal logic tokens to mimic rational thinking
and abstraction is not the same as actual rational
thinking and abstraction.

Ethical Considerations

Our work aims at giving an LLM abstraction capa-
bilities over natural language, however these mod-
els are still susceptible to biases inherent from their
training data, adding a logical layer of processing
to an LLM doesn’t make this problem disappear.
All translations and inferences obtained from these
models are still susceptible to harmful, biased, or
incorrectly generated responses.
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A Prompts

The prompts used for training followed the same
structure as Logic-LM. An example can be seen
below:

Given a problem description and a question, the
task is to parse the problem and the question into
first-order logic formulars. The grammar of the
first-order logic formular is defined as follows:

1) logical disjunction of exprl and expr2: exprl
V expr2

2) logical disjunction of exprl and expr2: exprl
V expr2

3) logical exclusive disjunction of exprl and
expr2: exprl & expr2

4) logical negation of exprl: —exprl

5) exprl implies expr2: exprl — expr2

6) exprl if and only if expr2: exprl < expr2
7) logical universal quantification: ¥Yx

8) logical existential quantification: 3x

Problem:

All people who regularly drink coffee are de-
pendent on caffeine. People either regularly drink
coffee or joke about being addicted to caffeine. No
one who jokes about being addicted to caffeine is
unaware that caffeine is a drug. Rina is either a
student and unaware that caffeine is a drug, or
neither a student nor unaware that caffeine is a
drug. If Rina is not a person dependent on caffeine
and a student, then Rina is either a person depen-
dent on caffeine and a student, or neither a person
dependent on caffeine nor a student.

Predicates:

Dependent(x) ::: x is a person dependent on
caffeine. Drinks(x) ::: x regularly drinks coffee.
Jokes(x) ::: x jokes about being addicted to caffeine.
Unaware(x) ::: x is unaware that caffeine is a drug.
Student(x) ::: x is a student.

Premises:

* Vx (Drinks(x) — Dependent(x)) ::: All people
who regularly drink coffee are dependent on
caffeine.

* Vx (Drinks(x) @& Jokes(x)) ::: People either
regularly drink coffee or joke about being ad-
dicted to caffeine.
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e Vx (Jokes(x) — —~Unaware(x)) ::: No one who
Jjokes about being addicted to caffeine is un-
aware that caffeine is a drug.

* (Student(rina) AN  Unaware(rina)) &
—(Student(rina) NV  Unaware(rina))
Rina is either a student and unaware that
caffeine is a drug, or neither a student nor
unaware that caffeine is a drug.

—(Dependent(rina) A Student(rina)) —
(Dependent(rina) N  Student(rina)) &
—(Dependent(rina) V Student(rina)) ::: If
Rina is not a person dependent on caffeine
and a student, then Rina is either a person
dependent on caffeine and a student, or
neither a person dependent on caffeine nor a
student.

Problem:

{

Predicates:
For further details please review the paper’s
repository.

B Alignment Hyperparameters

Hyperparameter Value
Generation
Strategies Greedy Search
Max_Tokens 150
4Bi h.bfloat1
Quantization it, torch.bfloat16

for every model

Table 5: LLM Generation Hyperparameters

Hyperparameter Value

Lorar 8
o} 0.32
Dropout 0.1
Epochs 3

Table 6: Alignment Hyperparameters

C Results

Tables mentioned in the article displayed in this
section.
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Llama-3.1-8B-LA Llama-3.1-8B-Instruct-LA

Striker(robert_lewandowski)
Soccer Player(robert_lewandowski) — Striker(robert_lewandowski)
Left(robert_lewandowski, bayern_munchen)
PlayFor(z,y) — —Left(x,y)

Va(Striker(xz) — Player(z))
Va(Left(x) — —Player(x))
RobertLewandowski(Left)

Table 7: Translations by model (Part 1).

Llama-3.2-3B-LA Gemma-3-1b-it-LA

IsStriker(robert)
IsSoccer Player(robert)
IsLeft(bayern,robert)
IsPlayer(robert, bayern) @& —IsPlayer(robert, bayern)

Striker(Robert Lewandowsksi)
Soccer Player(Robert Lewandowski)
Le ft(Robert Lewandowski)

Table 8: Translations by model (Part 2).

Checkpoint Translation Inference Retranslation
LrLAaMA 3.1-8B-LA 1080 815 977
LLAMA 3.1-8B-INSTRUCT-LA 1007 753 966
LLAMA 3.2-3B-LA 1016 820 1004
LLAMA 3.2-3B-INSTRUCT-LA 1092 870 1080
GEMMA-3-1B-1T-LA 1000 736 790
FOLIO 280 28 32

Table 9: Average answer length (in characters) for -L A models.
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