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Abstract

Mathematics has long been conveyed through
natural language, primarily for human under-
standing. With the rise of mechanized mathe-
matics and proof assistants, there is a growing
need to understand informal mathematical text,
yet most existing benchmarks focus solely on
English, overlooking other languages. This
paper introduces RoMath, a Romanian math-
ematical reasoning benchmark suite compris-
ing three subsets: Baccalaureate, Competitions
and Synthetic, which cover a range of mathe-
matical domains and difficulty levels, aiming
to improve non-English language models and
promote multilingual AI development. By fo-
cusing on Romanian, a low-resource language
with unique linguistic features, RoMath ad-
dresses the limitations of Anglo-centric mod-
els and emphasizes the need for dedicated re-
sources beyond simple automatic translation.
We benchmark several open-weight language
models, highlighting the importance of creat-
ing resources for underrepresented languages.
The code and datasets are available for research
purposes.

“Matematica s-o fi scriind cu cifre dar poezia nu se
scrie cu cuvinte.”1

Nichita Stănescu, “Matematica poetică”,
Poem dedicated to mathematician Solomon Marcus.

1 Introduction

Mathematics has been a central intellectual preoc-
cupation to humans since the beginning of civiliza-
tion, the first mathematical writings dating back
approximately 4000 years (Friberg, 1981). His-
torically and in the present, mathematics has been
mostly written, spoken and taught in natural lan-
guage, albeit with its own specialized vocabulary,
having strict formalism only sparsely introduced
between free-text explanations and reasoning. The

1English translation: "Mathematics may be written with
numbers, but poetry is not written with words."

primary audience of mathematical reasoning is
other humans, not computers. The natural language
of mathematics contains a mix of formulas, sym-
bols, neologisms, jargon and words with different
meanings than their common meaning (e.g., “real”
/ “imaginary” numbers). Mathematics implies rigor
and precise reasoning, qualitatively different from
general NLP. There is a pressing need to automat-
ically process and understand the existing large
amount of mathematical text written in natural lan-
guage to enable efficient knowledge extraction, fa-
cilitate automated theorem proving, and enhance
accessibility for both researchers and automated
systems.

Recently, Large Language Models (LLMs) have
shown great promise in handling a multitude of
natural language tasks, including tackling mathe-
matical reasoning problems (Ahn et al., 2024; Yue
et al., 2023; Azerbayev et al., 2024; Shao et al.,
2024). Out of the common benchmark suite for
evaluating LLMs, datasets such as GSM8k (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021)
remained central in the development of reasoning
models (Jaech et al., 2024; DeepSeek-AI et al.,
2025), and continue to be challenging even for the
larger, proprietary models (Arora et al., 2023).

Current mathematics benchmarks and datasets
have focused solely on English, mostly disregard-
ing other low-resourced languages. The tacit re-
quirement for using AI tools is fluency in English
(Shi et al., 2022). However, mathematical reason-
ing ability is independent of the underlying lan-
guage (Rescorla, 2024) and Anglo-centric models
have been shown to exhibit the same biases of the
English language, even when prompted in other
languages (Wendler et al., 2024; Wang et al., 2023;
Liu et al., 2023). The focus on datasets and mod-
els in a language other than English allows the
democratization of learning for underrepresented
languages and cultures.

Recently, Romanian LLM development has
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started to flourish with initiatives such as
OpenLLM-Ro (Masala et al., 2024), having fine-
tuned several LLMs on Romanian text. However,
for evaluation, the authors used translated versions
of popular English datasets and several native Ro-
manian benchmarks, but no evaluation was per-
formed on dedicated reasoning tasks in Romanian.
Aside from code generation (Cosma et al., 2024;
Dumitran et al., 2024), currently, there is no rea-
soning benchmark for Romanian.

In this paper, we propose RoMath2,3, a Roma-
nian mathematical reasoning benchmarking suite
comprised of three datasets, Baccalaureate, Com-
petitions and Synthetic, each with its own particu-
larities. RoMath aims to provide a comprehensive
benchmark suite, having high-school-level prob-
lems across multiple domains (linear and abstract
algebra, calculus, limits, geometry, probabilities)
and across multiple levels of difficulty, ranging
from easy calculations, to baccalaureate-level prob-
lems, to more difficult, proof-centric, competition-
level problems. The purpose of RoMath is to pro-
vide a mathematical benchmark for Romanian and
to stimulate the development of enhanced reason-
ing capabilities of non-English LLMs.

This work makes the following contributions:

1. We construct and release RoMath, a novel
mathematical reasoning benchmark suite with
76,910 problem statements in Romanian, con-
sisting of three subsets, each with its own
particularities and difficulty levels: Baccalau-
reate (5,777 problems), Competitions (1,133
problems) and Synthetic (63,000 problems).
We collect and curate math problems using a
semi-automatic workflow using foundational
LLMs for providing structured output from
unstructured raw OCR input and annotating
problems with relevant metadata.

2. We provide a comprehensive benchmark of
several English and Romanian open-weight
LLMs under several common scenarios - zero-
shot, LoRA fine-tuning (Hu et al., 2022) and
training with verifiable rewards using GRPO
(Shao et al., 2024). Furthermore, we provide
an evaluation procedure using an LLM-as-a-
judge paradigm (Zheng et al., 2023) for proofs,
and analyze its performance to properly esti-
mate solution correctness.

2GitHub: github.com/cosmaadrian/romath
3Huggingface: hf.co/datasets/cosmadrian/romath

3. We show that simple translation of problem
statements is not enough, as sub-par transla-
tions of precise mathematical language sig-
nificantly reduce performance. Consequently,
we emphasize the need for more dedicated
resources in languages other than English.

2 Related Work

Pretraining datasets for mathematics. There
has been an ongoing interest in representation learn-
ing for both mathematical expressions and text
(Peng et al., 2021; Collard et al., 2022). However,
beyond representation learning, with the recent suc-
cess of LLMs in a wide range of tasks, there has
been increased attention to training and evaluating
the mathematical reasoning of LLMs. For pretrain-
ing, the general approach is to filter Common Crawl
web pages and PDFs to obtain high quality math to-
kens. For instance, datasets such as MathWebPages
(Lewkowycz et al., 2022), ProofPile (Azerbayev
et al., 2023a), and OpenWebMath (Paster et al.,
2023) are used to pretrain high-performing LLMs
specialized in math, such as Minerva (Lewkowycz
et al., 2022) and LLema (Azerbayev et al., 2023b).

Mathematical reasoning benchmarks. Regard-
ing benchmarks, the most popular dataset is
GSM8K (Cobbe et al., 2021), containing middle-
school Math Word Problems (MWPs). An im-
proved variant that contains process supervision
(i.e., supervision at each intermediary reasoning
step) is PRM800K (Lightman et al., 2023). How-
ever, these datasets are regarded as too simple to
demonstrate the advanced mathematical reasoning
of LLMs. Consequently, MATH (Hendrycks et al.,
2021) is a comparatively more difficult dataset, con-
taining high-school problems from domains such as
calculus, linear algebra, geometry and number the-
ory. MathVISTA (Lu et al., 2024) is another similar
benchmark, that contains mathematical reasoning
in visual contexts (e.g., plots, natural images, func-
tions).

Aside from simple word problems (Cobbe et al.,
2021) and datasets focused on QA-type problems,
more difficult competition-level benchmarks have
been proposed. For instance, ARB (Sawada et al.,
2023) is a dataset comprised of problems from
math competitions and problems from specialized
books, with special care taken to avoid data con-
tamination. While it contains problems that re-
quire proofs, ARB only contains 105 problems.
MathOdyssey (Fang et al., 2024) contains difficult
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Name # Problems Level Language Notes

APE210K (Zhao et al., 2020) 210K E Chinese Requires basic arithmetic and common sense

MATH23K (Ling et al., 2017) 23K E Chinese Contains questions, answers and rationales

CMATH (Wei et al., 2023) 1.7K E Chinese Contains number of reasoning steps

ARMATH (Alghamdi et al., 2022) 6K E Arabic Novel problems and inspired by MATH23K

GSM8K (Cobbe et al., 2021) 8.5k M English Linguistically diverse.

MATH (Hendrycks et al., 2021) 12.5k H English Problems are put into difficulty levels 1-5

PRM800K (Lightman et al., 2023) 12k H English MATH w/ step-wise labels

MathOdyssey (Fang et al., 2024) 387 H C English Problems from GAIC Math 2024

ARB (Sawada et al., 2023) 105 C English Contest problems and university math proof

AQUA (Ling et al., 2017) 100K C English GRE&GMAT questions

RoMath
Baccalaureate 5.8k H Romanian Easy-medium, baccalaureate problems.

Competitions 1.1k M H Romanian Difficult, proofs, competition problems.

Synthetic 63k H Romanian Calculation-based, procedurally generated.

Table 1: Comparison with other mathematical reasoning benchmarks. RoMath is the only Romanian mathematics
benchmark outside of translated versions of English benchmarks. Table adapted from Ahn et al. (2024).

E = Elementary, M = Middle School, H = High School, C = College.

high-school and university-level problems, but it is
similarly small, as it contains only 387 problems.

Non-English benchmarks. Regarding datasets
in languages other than English, there have been
efforts in Arabic with datasets such as ArMATH
(Alghamdi et al., 2022) and Chinese with Ape210k
(Zhao et al., 2020), Math23k (Ling et al., 2017),
CMath (Wei et al., 2023). Otherwise, outside of
(automatically) translated versions of popular sets
such as GSM8k (Masala et al., 2024), as far as we
know, no datasets currently exist for Romanian or
other Latin languages.

Comparison with prior work. Table 1 shows a
comparison between similar datasets and RoMath.
RoMath comprises middle-school, high-school and
competitive high-school problems in Romanian
covering multiple subjects and types of problems
(proofs, calculations, equations, etc.). Different
from prior datasets, RoMath is the first dedicated
resource for mathematical reasoning in Romanian,
a low-resource language of ∼23M speakers, which
has its unique linguistic particularities (Dinu and
Dinu, 2005; Dinu and Enăchescu, 2007).

3 Method

We describe below the process for collecting Bac-
calaureate and Competitions, the two subsets that
are collected by crawling publicly available PDFs.

The Synthetic subset is comprised of programmati-
cally generated problems directly in Romanian.

3.1 Dataset Construction

In order to construct a high-quality set of mathe-
matical problems paired with solutions, we crawl
publicly available PDFs from country-wide math-
ematics competitions and questions from the Ro-
manian baccalaureate exam. Figure 1 showcases
our approach. After collecting raw PDFs, usually
having separate documents for problem sets and
their respective solutions, we utilize an academic
document-focused OCR (i.e., MathPix (Mathpix,
2024)) to extract the underlying text and mathemat-
ical formulas / statements in LaTeX format. The
final output is represented in Markdown format.

To parse the content, instead of relying on brit-
tle handcrafted rules and regex expressions, we
utilize a commercial LLM (i.e., Claude 3 Sonnet
(Anthropic, 2024)) to parse the raw text and to out-
put structured JSON from unstructured Markdown.
The LLM is provided with several examples of how
to structure the final JSON (see Appendix A, Ta-
ble 6 for the system prompt). The JSON output
contains the LaTeX-formatted problem statement
and its appropriate solution. Finally, we again uti-
lize a commercial LLM to annotate the domain
of the problem and to extract final answers for
non-proof problems for easier evaluation (similar
to Hendrycks et al. (2021), we enclose the final
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Figure 1: Overall diagram of our approach to curating problems from existing PDFs. We employ MathPix (Mathpix,
2024) to OCR PDFs and obtain markdown with LaTeX formatting for mathematical statements. We further process
the markdown using proprietary LLMs to split into sub-problems, associate problems with the appropriate solution
and annotate each problem with metadata.

Figure 2: Distribution of the number of problems per
domain for Baccalaureate, Competitions and Synthetic.

answer, if it exists, into a \boxed{} tag). If a
problem contains multiple sub-problems, we en-
sure that each sub-problem is self-contained and
that the solution does not rely heavily on previ-
ous sub-problems’ solutions. To split a problem
into sub-problems, we used a prompt (presented
in Appendix A, Table 6) with specific instructions
for parsing the data and output sub-questions that
are self-contained. For example, if a problem is
structured as follows:

<problem_statement>
<question_1>
<question_2>

The output is formatted as two separate, stan-
dalone problems:

<problem_statement> <question_1>
<problem_statement> <question_2>

Additionally, through manual inspection, we fur-
ther removed any sub-questions that contained ref-
erences to previous sub-questions (e.g., “Using the
result from a) compute [. . . ]”). Figure 2 shows the
distribution of problems per domain.

3.2 RoMath Suite

RoMath is comprised of three subsets: Baccalau-
reate, Competitions and Synthetic. By its construc-
tion, each subset of RoMath features problems that

Synthetic
Problem Statement: Care este rezultatul împărt,irii lui -54 la -36495?
Solution: 6

4055

Problem Statement: Fie u definit ca fiind (2 − 18
15

) · 5. Găses, te valoarea lui r din
ecuat,iile u · y + 8 = 0, −28 = 3 · r + 4 · y − 5.
Solution: −5
Baccalaureate
Problem Statement: Se consideră funct,ia f : R → R, f(x) = ex − x. Să se
calculeze

∫ 1
0 f(x)dx.

Solution:
∫ 1
0 f(x)dx = e − 3

2
. Solut,ia finală este e −

3

2

Problem Statement: Se consideră funct,iile fn : R → R, f1(x) =

x3 − 3x2 + 3x şi fn+1(x) = (f1 ◦ fn) (x), ∀n ∈ N∗, ∀x ∈ R. Să se
rezolve în mult,imea numerelor reale ecuat,ia f1(x) + f2(x) + f3(x) − 3 = 0.
Solution: Observăm că x = 1 este solut,ie. Dacă x > 1 ⇒ f1(x) + f2(x) +
f3(x) > 3. Analog dacă x < 1 ⇒ f1(x) + f2(x) + f3(x) < 3. Deci

x = 1 este solut,ie unică. Solut,ia finală este x = 1

Competitions
Problem Statement: Se consideră numerele complexe u, v s, i z astfel încât
|u| = |v| = 1 s, i |u + v| =

√
3. Să se demonstreze că: u · v + u · v = 1.

Solution: |u + v|2 = 3 ⇔ (u + v)(u + v) = 3 ⇔ u · v + u · v = 1

Problem Statement: Să se rezolve, în R, inecuat,ia:
(

2
5

) 6−5x
5x+2 ≤ 25

4

Solution:
(

2
5

) 6−5x
5x+2 ≤ 25

4
=

(
5
2

)−2 ⇒ 6−5x
5x+2

≥ −2, cu x ̸= − 2
5

.
6−5x
5x+2

≥ −2 ⇒ x+2
5x+2

≥ 0 ⇒ x ∈ (−∞,−2] ∪
(
− 2

5
,∞

)

Table 2: Qualitative examples from each subset of Ro-
Math.

require both single-step and multi-step reasoning
for solving problems correctly. Usually, single-step
reasoning problems involve simple calculations,
while multi-step reasoning problems require solv-
ing intermediate solutions to reach a valid conclu-
sion. Table 2 showcases selected examples from
each subset.

Baccalaureate is composed of problems and so-
lutions from the Romanian Baccalaureate exam.
The Romanian Baccalaureate is a country-wide
exam for graduating high-school students, com-
prised of three subjects, each with several problems
and sub-problems. Students taking the Baccalau-
reate exam consider the calculus problems, such
as solving an integral or computing a limit, to be
the most difficult. However, the calculus problems
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rarely require more than 2 steps of reasoning and
some calculation. This subset contains a total of
5777 problems: 4.3k problems for training and
1.48k for testing. Most problems (4617 / ∼ 80%)
in this subset are verifiable (i.e., have a single fi-
nal answer), while some (1160 / ∼ 20%) require
proofs. Furthermore, 4038 / ∼ 69% problems in
this category also have intermediate steps provided
in the ground-truth solution. In this set, there are
multiple domains, with varying difficulty: geome-
try, combinatorics, abstract algebra, linear algebra,
calculus (integrals and derivatives), and limits. In
all categories, we discarded any problem that re-
quired reasoning over images or plots. For instance,
geometry problems do not have an accompanying
drawing or figure. If we encountered images in
the source PDFs, we removed the problem entirely
through manual inspection. The Baccalaureate
subset includes only standalone geometry prob-
lems: an example of such a problem would be the
following (here, translated in English for conve-
nience): “In a Cartesian coordinate system xOy
we consider the points An(n, 0) and Bn(0, n), with
n ∈ {1, 2, 3}. Calculate the area of the triangle
A1A2B2.”

Competitions is the hardest subset of RoMath,
containing 1133 problems sourced from mathemat-
ics competitions, with problems ranging from lo-
cal to inter-county and olympiad events, out of
which 804 problems are for training and 329 for
testing. Different from Baccalaureate, this sub-
set also contains middle-school problems. Around
half of the problems (594 / ∼ 52%) require proofs
for a complete solution, while the rest are directly
verifiable. Almost all problems in this subset have
intermediate explanations. The problems in Com-
petitions are considered hard, requiring insight and
problem-solving skills outside of simple symbol
manipulations (Polya, 1971). The extraction and
post-processing steps are identical to those in Bac-
calaureate.

Synthetic is programmatically generated, using
the approach of Saxton et al. (2019), in which we
manually translate the source key-phrases and for-
mulations in Romanian. Problems in this subset
have a single final answer. Problems are mostly
algebraic in nature, and are split into arithmetic, cal-
culus, derivatives, integrations, polynomials, com-
position of problems, comparisons, manipulating
expressions (e.g., simplification), numbers, mea-
surements. All problems in this subset are verifi-

able, having only a single final answer provided,
without intermediate steps, making it difficult to di-
rectly provide an answer without the use of external
tools or chain-of-thought prompting. In contrast
to the other sub-sets in RoMath, there is less lin-
guistic variation present in problem statements, but
there is complete control over correctness and diffi-
culty. We emphasize that Synthetic is not a direct
translation of the problems contained in DeepMind
Mathematics (Saxton et al., 2019), but rather a
manual translation of the phrases that are used to
generate the problems. As such, one could gener-
ate an indefinite number of problems. We make
the code for generating Synthetic open-source and
provide, for convenience, 63k generated problems,
out of which 55.9k problems for training and 7.1k
for testing.

3.3 Evaluation Procedure

Generally, there are two ways to evaluate solutions:
(i) for verifiable problems (i.e., containing a single
final answer), correctness is estimated by direct
string comparison between the model answer and
the correct answer after normalization (Hendrycks
et al., 2021; Cobbe et al., 2021) and (ii) using a
proof-checker for problems requiring proofs (Li
et al., 2024).

Evaluating the correctness of a solution to math-
ematical proof problems is still an open problem.
Using a proof-checker is not always feasible as it
requires the problems and solutions to already be
formalized into the language of the proof-checker
(Trinh et al., 2024), an unrealistic requirement for
most mathematics written in natural language. For
proof-type problems, where it is necessary to check
for correctness at every reasoning step in natural
language, there is no consensus on the evaluation
procedure outside of formal proof-checkers.

However, more recent methods (Fang et al.,
2024) have adopted a “soft” evaluation of proof
solutions by employing an external judge LLM
tasked to output a correctness score given the prob-
lem statement, the correct solution and a provided
solution to be scored.

To evaluate solutions to RoMath, we propose
the following procedure: For evaluating verifiable
problems, we adopt the procedure from Hendrycks
et al. (2021) for string comparison after the solu-
tions are normalized; this requires the model to
output solutions in a \boxed{} tag. However,
if the model does not provide the solution in this
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format or if the problem requires a proof, we em-
ploy a judge LLM to estimate correctness, inspired
by several other works (Zheng et al., 2023; Fang
et al., 2024). Since the use of proprietary LLMs
is prohibitively expensive, there are concerns with
reproducibility, and there is no information on the
architecture and training dataset, we use existing
open-weight models.

4 Baselines and Results

4.1 Judge Evaluation

Very few analyses have been performed to gauge
the performance of the judge LLM: for instance, a
more recent study (Bavaresco et al., 2024) showed
that LLMs exhibit a large variance across datasets
in correlation to human judgments. However, there
is no study estimating the performance of judge
LLMs for mathematical reasoning in a language
other than English. Using LLMs as judges is a rea-
sonable proxy for estimating performance, and we
show in Section 4.4 that performance is relatively
robust across multiple judges.

In this section, we conduct an analysis of the per-
formance of multiple open-weight judge models in
evaluating solution correctness in Romanian, using
both Romanian and English system prompts (see
Appendix A Tables 8 and 9).

We programmatically construct a dataset of 300
problems from the training sets of Baccalaureate
and Competitions containing correct and incorrect
solutions (Meadows et al., 2023). Correct solu-
tions are maintained in their original form, and we
remove natural language text (keeping only math-
ematical expressions) of the original ground-truth
solution, and incorrect solutions are either original
solutions with some operators / number modified
(e.g., + sign changed to −, or < symbol changed
to ≥, and others) or a similar solution, but not ex-
actly the same, from another problem based on the
Levenstein distance.

In Table 3, we showcase the performance of
multiple LLMs-as-judges on our programmatically
generated dataset to estimate judge performance.
We tested Qwen2 (Yang et al., 2024) family of mod-
els, as well as the math-specialized variant Qwen2-
Math-7B, deepseek-math (Shao et al., 2024), Phi-3
(Abdin et al., 2024), Llama3-70B (Dubey et al.,
2024), Mathstral (Mistral AI, 2024), and Mixtral-
8x7b (Jiang et al., 2024). For this synthetic dataset,
we obtained that Qwen2-7B-Instruct prompted in
English obtained the best overall results of 91%

accuracy, judging solution correctness. Surpris-
ingly, the math-specialized models severely under-
performed at this task. As such, unless otherwise
specified, we used Qwen2-7B-Instruct prompted in
English as a judge for the rest of the non-verifiable
results.

Judge Model System
Prompt

Acc. ↑ FPR ↓ FNR ↓

deepseek-math-7b-instruct ro 0.51 0.66 0.31
Meta-Llama-3-70B-Instruct ro 0.86 0.24 0.03
Mixtral-8x7B-Instruct-v0.1 ro 0.84 0.27 0.03
Qwen2-Math-7B-Instruct ro 0.87 0.22 0.03
Qwen2-7B-Instruct ro 0.90 0.17 0.02

deepseek-math-7b-instruct en 0.74 0.31 0.22
Meta-Llama-3-70B-Instruct en 0.84 0.29 0.01
Mixtral-8x7B-Instruct-v0.1 en 0.84 0.27 0.03
Qwen2-Math-7B-Instruct en 0.89 0.16 0.06
Qwen2-7B-Instruct en 0.91 0.12 0.05

Table 3: Judge LLM performance on a programmat-
ically generated dataset of correct and incorrect solu-
tions.

4.2 Model Benchmark

We chose to benchmark several open-weight LLMs,
as opposed to proprietary models, to make the
benchmark reproducible and to avoid unnecessary
inference costs. We evaluated the performance un-
der 0-shot and LoRA fine-tuned models for Qwen2-
7B, Phi-3, Meta-Llama-8B and math-specialized
variants such as Qwen2-Math-7B, deepseek-math-
7b, Mathstral-7b. We evaluated larger models un-
der 0-shot setting: Meta-Llama-70B and Mixtral-
8x7B. Furthermore, we also evaluated Romanian-
specialized models trained with continual pretrain-
ing on Romanian tokens, but with no focus on math
tokens: RoLlama3-8B and RoMistral-7b (Masala
et al., 2024). The prompt used is presented in Ap-
pendix A, Table 7.

For fine-tuning the models, we used LoRA (Hu
et al., 2022), using a rank of 8, alpha of 32 and
dropout of 0.1, applied on all linear layers. Due to
hardware limitations, we used a small batch size of
4 and a learning rate of 0.00002 with a linear decay
over the 3 training epochs.

In Table 4, we showcase the performance of
the models under zero-shot, and LoRA-fine-tuned
scenarios. The best performing model on the Bac-
calaureate subset is deepseek-math-7b, while on
Competitions and Synthetic Mathstral-7b obtains
the best results. However, the Romanian models,
RoLlama-8b and RoMistral-7b obtain competitive
results on all subsets, which can be attributed to
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Baccalaureate Competitions Synthetic
Model Scenario Accuracy F1 Accuracy F1 Accuracy F1

R
om

an
ia

n OpenLLM-Ro/RoLlama3-8b-Instruct 0-shot 0.50 0.67 0.48 0.65 0.18 0.30
fine-tuned 0.18 0.31 0.50 0.67 – –

OpenLLM-Ro/RoMistral-7b-Instruct 0-shot 0.50 0.66 0.44 0.61 0.16 0.27
fine-tuned 0.18 0.31 0.36 0.53 – –

G
en

er
al

-P
ur

po
se Qwen/Qwen2-7B-Instruct 0-shot 0.40 0.57 0.55 0.71 0.29 0.45

fine-tuned 0.54 0.70 0.48 0.65 – –

microsoft/Phi-3-mini-4k-instruct 0-shot 0.36 0.53 0.33 0.50 0.07 0.14
fine-tuned 0.25 0.40 0.41 0.58 – –

meta-llama/Meta-Llama-3-8B-Instruct 0-shot 0.34 0.51 0.53 0.69 0.25 0.40
fine-tuned 0.18 0.31 0.33 0.49 – –

M
at

h-
Sp

ec
ia

liz
ed Qwen/Qwen2-Math-7B-Instruct 0-shot 0.32 0.48 0.55 0.71 0.27 0.43

fine-tuned 0.48 0.65 0.57 0.73 – –

deepseek-ai/deepseek-math-7b-instruct 0-shot 0.56 0.72 0.59 0.74 0.21 0.35
fine-tuned 0.29 0.44 0.56 0.72 – –

mistralai/Mathstral-7b-v0.1 0-shot 0.30 0.46 0.61 0.75 0.36 0.53
fine-tuned 0.21 0.34 0.56 0.71 – –

L
ar

ge

meta-llama/Meta-Llama-3-70B-Instruct 0-shot 0.25 0.40 0.22 0.36 0.10 0.19
5-shot 0.08 0.15 0.09 0.16 0.07 0.13

mistralai/Mixtral-8x7B-Instruct-v0.1 0-shot 0.43 0.60 0.60 0.75 0.32 0.48
5-shot 0.25 0.40 0.25 0.40 0.24 0.38

Table 4: Results for various open-weight LLMs on Bac-
calaureate, Competitions and Synthetic, under 0-shot
and fine-tuned scenarios.

their better understanding of Romanian text com-
pared to English-focused models, since specializa-
tion on mathematical text did not receive a partic-
ular emphasis during training. Surprisingly, we
obtained that fine-tuning does not always result
in improved performance. Fine-tuning improves
performance on Baccalaureate for Qwen2-7b and
Qwen2-Math-7b, while on Competitions, RoLlama-
7b, Phi-3, Qwen2-Math-7b benefit from further
fine-tuning. One possible explanation is that the
solutions present in RoMath are qualitatively dif-
ferent (different formatting, explanation style) than
solutions present in other math datasets (Cobbe
et al., 2021; Hendrycks et al., 2021) and Chain-of-
Thought style prompting (Wei et al., 2022). Further
investigation on this effect is left as future work.
In Figure 3, we show extended results per problem
domain for each dataset. Qualitative examples of
generated solutions are shown in the Appendix A
Tables 10 and 11.

Figure 3: Performance of Romanian models and math-
specialized models on each domain from each RoMath
subset.

4.3 Training with Verifiable Rewards

Since a significant proportion of problems in Ro-
Math include intermediate steps and are verifiable,
we tested whether the problems are of sufficiently
high quality to enable training with rewards. We
adopt a part of the training procedure from Shao
et al. (2024), and fine-tune two variants of the
Llama3.2 (Dubey et al., 2024) (1B and 3B pa-
rameters) and Qwen2 (Yang et al., 2024) (0.5B
and 1.5B) family of models. For supervised fine-
tuning (SFT), we train on all problems from Bac-
calaureate and Competitions that contain interme-
diate steps to force the model to conform to the
specified output format of <rat,ionament> [. . . ]
</rat,ionament> <răspuns> [. . . ] </răspuns>.

Further, we train using GRPO (Shao et al., 2024)
with 4 completions per prompt on all verifiable
problems from Baccalaureate and Competitions,
using only a correctness reward and a format re-
ward. Figure 4 shows the performance on the
verifiable problems from the Baccalaureate sub-
set for this setting. Training with rewards reliably
boosts performance compared to only supervised
fine-tuning. As such, RoMath can be a useful re-
source for training Romanian reasoning models.

Figure 4: Performance of GRPO-trained LLama-3.2
and Qwen2 on on a subset of Baccalaureate that has
verifiable answers.

4.4 Impact of the Judge Model

In Figure 5, we compared multiple judge models
to gauge their effect on downstream performance.
Based on Table 3, we used Qwen2-7B, Llama-70B
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and Mixtral-8x7b as judges and used them to evalu-
ate the performance of the same Qwen2-7B, Llama-
70B and Mixtral-8x7b. We chose the same judges
and downstream models to check if judges pre-
fer the output of their own model. From Figure 5
we find that judges do not have “favorites”. How-
ever, we do find that, for example, in Competitions,
where there are more proofs than in Baccalaure-
ate, the Llama-70B and Mixtral-8x7b judges give
higher scores on average, which might explain
why results on the Competitions subset are higher:
judges might artificially inflate results. While the
differences between judges are small, there is a
clear ascending trend between them.

Figure 5: Performance using different judge models.

4.5 Translating Romanian Problems to
English

Translating domain-specific technical language is
non-trivial. Al-Tarawneh (2024) identified multi-
ple linguistic challenges that make translation dif-
ficult. Translating mathematics is challenging due
to the need for precise language, as even slight
ambiguities can alter meaning. Although mathe-
matical concepts are universal, their interpretation
varies across cultures. Additionally, mathematical
symbols and notations are not always standardized
across languages, and mathematical terms lack di-
rect equivalents in other languages, leading to po-
tential confusion if not properly accounted for.

We used the NLLB (NLLB Team et al., 2022)
family of models (600M, 1.3B, and 3.3B) to trans-
late from Romanian to English the test sets for
Baccalaureate and Competitions, as the models
have established numerical benchmarks on Roma-
nian to English translation. Directly translating
the full problem statement and solution resulted
in “gibberish” translations due to the mathematical

symbols present in the text. As such, we opted to
keep the LaTeX-delimited section intact and only
translate the surrounding natural language. While
this approach might lose some of the larger context,
we found it to be the only satisfactory approach.
Still, the resulting translations contain unnatural
English formulations and sometimes spurious text.
For instance, the problem statement “Se consideră
funct,ia f : R → R, f(x) = ex − x+ 1. Să se cal-
culeze limx→0

f(x)−f(0)
x ” is translated as “It’s con-

sidered function f : R → R, f(x) = ex − x+ 1.
Let’s figure it out. limx→0

f(x)−f(0)
x [♪ I’m not

gonna let you down ♪]”, in which the part “[♪ I’m
not gonna let you down ♪]” is introduced spuri-
ously by the translation model.

In Table 5, we showcase the performance of
math-specialized LLMs on the English-translated
version of Baccalaureate and Competitions using
the different sizes of NLLB. Compared to the orig-
inal Romanian text, translating severely degrades
performance. We found that performance improves
with the translation model size, but up to a cer-
tain point. The main point of failure is handling
the math LaTeX tokens without disrupting the sur-
rounding text. The use of an LLM for translation
might be more appropriate only if its reliability and
control of its output are properly established, and
proper benchmarks for translation in Romanian are
in place.

Model Translation Model Romanian
Accuracy

English-
Translated
Accuracy

Diff.

B
ac

ca
la

ur
ea

te

nllb-200-distilled-600M 0.04 –0.28
Qwen/Qwen2-Math-7B-Instruct nllb-200-1.3B 0.32 0.03 –0.29

nllb-200-3.3B 0.03 –0.29

nllb-200-distilled-600M 0.09 –0.47
deepseek-ai/deepseek-math-7b-instruct nllb-200-1.3B 0.56 0.05 –0.51

nllb-200-3.3B 0.07 –0.49

nllb-200-distilled-600M 0.07 –0.23
mistralai/Mathstral-7b-v0.1 nllb-200-1.3B 0.30 0.07 –0.23

nllb-200-3.3B 0.07 –0.23

C
om

pe
tit

io
ns

nllb-200-distilled-600M 0.17 –0.38
Qwen/Qwen2-Math-7B-Instruct nllb-200-1.3B 0.55 0.20 –0.35

nllb-200-3.3B 0.19 –0.36

nllb-200-distilled-600M 0.09 –0.50
deepseek-ai/deepseek-math-7b-instruct nllb-200-1.3B 0.59 0.12 –0.47

nllb-200-3.3B 0.10 –0.49

nllb-200-distilled-600M 0.19 –0.42
mistralai/Mathstral-7b-v0.1 nllb-200-1.3B 0.61 0.21 –0.40

nllb-200-3.3B 0.20 –0.41

Table 5: Results on RoMath-Baccalaureate and RoMath-
Competitions for math-specific LLMs in 0-shot setting
with English-translated problems. Performance drops
significantly due to poor quality translations.

5 Conclusions and Future Directions

In this paper, we proposed RoMath, a benchmark-
ing suite consisting of three datasets with mathe-
matical problems written in Romanian: Baccalau-
reate, Competitions and Synthetic. We detailed the
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construction process and composition for each sub-
set and benchmarked several open-weight LLMs
under different training and evaluation scenarios.
We are the first to provide quantitative results for
mathematical reasoning in Romanian.

Surprisingly, we found that mathematics prob-
lems written in Romanian can be properly handled
by English-centric models, providing proper solu-
tions in Romanian. It is unclear why this occurs, es-
pecially since such models are not explicitly trained
on Romanian math tokens and most models have
strong language filters to train only on English. Our
results suggest that such LLMs would potentially
receive a passing grade (i.e., more than 50%) on the
Romanian baccalaureate exam, scoring an average
of ∼56% across all problems in Baccalaureate.

An important future direction is reliable auto-
matic annotations with Chain-of-Thought (CoT)
traces for multilingual reasoning problems. Our
results indicate that a significant factor in improv-
ing performance in mathematical reasoning is the
presence of intermediate reasoning steps in the so-
lutions. Performance is not reliably improved by
fine-tuning without CoT, and the presence of more
detailed solutions enables scalable training with
reinforcement learning algorithms such as GRPO
(Shao et al., 2024). Currently, only a subset of
RoMath contains intermediate steps for problem
solutions, and further structured annotations could
significantly increase the data quality.

Limitations

The main limitation of this work is the use of an
external LLM as a judge to estimate solution cor-
rectness, which might skew the results and arti-
ficially inflate performance. For example, some
generated solutions for proof-type problems ob-
tain the correct final result, but the intermediate
steps are incorrect. In some cases, the judge model
deemed these types of solutions as correct, whereas
they are not. While this is an inherent limitation
in literature for mathematics datasets that contain
proofs, this is currently an open problem and there
are on-going efforts to formalize proof verification
(Gowers et al., 2024). Furthermore, we argued that
the proper way to evaluate solutions of generated
proofs is by using an external proof verification
tool such as Lean (de Moura et al., 2015).
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A Appendix

Given the following mathematics problems in Romanian
formatted in MathPix markdown, make a JSON with
subject and solution pairs, removing unnecessary
boilerplate and extra problem identifiers. The JSON must
contain the full problem definition and subject number (e.g.
subject 1b). Each sub-question must contain the whole
problem definition for completeness. Each subject must be
self-contained. Do not output anything else besides the
required JSON. Do not modify the latex describing the
mathematical formulas.
Example (truncated): "

PROBLEMS:

Se consideră matricea A =

(
1 1
1 0

)
şi

şirul (Fn)n≥0 definit prin relat,ia de recurent, ă
Fn+1 = Fn + Fn−1, n ∈ N∗, cu F0 = 0, F1 = 1.

a) Să se calculeze determinantul şi rangul matricei A.

b) Să se calculeze F2 şi F3.

SOLUTIONS:
a) detA = −1 ̸= 0 ⇒ rangA = 2; b) F2 = 1, F3 = 2.
"

Example Output JSON:
[ {
"subject": "1a",

"definition": "Se consideră matricea A =

(
1 1
1 0

)

şi şirul (Fn)n≥0 definit prin relat,ia de recurent, ă
Fn+1 = Fn + Fn−1, n ∈ N∗, cu F0 = 0, F1 = 1. Să se
calculeze determinantul şi rangul matricei A.",
"solution": "detA = −1 ̸= 0 ⇒ rangA = 2"
},
{
"subject": "1b",

"definition": "Se consideră matricea A =

(
1 1
1 0

)

şi şirul (Fn)n≥0 definit prin relat,ia de recurent, ă
Fn+1 = Fn + Fn−1, n ∈ N∗, cu F0 = 0, F1 = 1. Să se
calculeze F2 şi F3.",
"solution": "F2 = 1, F3 = 2"
}
]
In this example, each sub-problem is self-contained and
is paired with the appropriate solution. The sub-problem
identifiers (e.g., "a)" and "b)") are stripped. The latex
markdown is left intact.

Real Input:

Table 6: Claude 3 Sonnet prompt to format raw Mark-
down into structured JSON.

106

http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685


{
"role": "system",
"content": """Es, ti un student olimpic la matematică care
a participat s, i câs, tigat multiple concursuri internat,ionale
de matematică. Rolul tău este să rezolvi probleme
de matematică de liceu s, i să oferi solut,ii complete s, i
corecte. Problemele care necesită demonstrat,ii trebuie
rezolvate complet cu tot,i pas, ii intermediari necesari.
Problemele care au un singur raspuns final trebuie
furnizate într-un format încadrat (‘\boxed‘). Matematica
trebuie scrisă în format LaTeX pentru a asigura claritatea
s, i precizia solut,iilor. Textul in format LaTeX trebuie
delimitat folosind simbolurile ‘ \(‘ s, i ‘\)‘. Rezolvările
incomplete sau incorecte vor fi evaluate cu scoruri mai
mici. Asigură-te că răspunsurile sunt concise, fără prea
multe explicat,ii inutile.""",
},
# add few shot examples here: User => Problem statement,
Assistant => Solution
{
"role": "user",
"content": """Care este rezolvarea următoarei probleme?

{problem_statement}""",
}

Table 7: Romanian prediction prompt.
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{ "role": "system",
"content": """Asumă-t,i rolul unui profesor de matematică responsabil cu evaluarea răspunsurilor student,ilor pentru o
problemă de matematică în raport cu solut,iile corecte furnizate. Solut,iile pot include demonstrat,ii, valori exacte, răspunsuri
cu alegere multiplă sau aproximări numerice.

## Criterii de Evaluare:
1. **Echivalent, ă Matematică**: Evaluează răspunsurile pe baza echivalent,ei matematice, nu doar a preciziei numerice.
Verifică dacă diferite expresii algebrice sau simbolice sunt echivalente. Asigură-te că sunt echivalent,e precum \(
\frac{\sqrt{6}-\sqrt{2}}{2} \) fiind echivalent cu \( \sqrt{2 - \sqrt{3}} \).
2. **Scor**: Atribuie un scor de ’1’ pentru orice răspuns care se potrives, te sau este echivalent cu solut,ia furnizată, fie că este
o valoare exactă, o variantă de răspuns (de exemplu, A, B, C) sau o aproximare numerică corect rotunjită. Atribuie un scor de
’0’ pentru răspunsuri incorecte. Nu furniza niciun fel de explicat,ie.
3. **Tratarea Alegerii Multiple**: Dacă solut,ia furnizată este o variantă de răspuns (de exemplu, A, B, C, D, E, F) s, i
studentul identifică această alegere corect, trateaz-o ca fiind corectă. Dacă solut,ia este o valoare exactă s, i studentul furnizează
alegerea corespunzătoare care reflectă corect această valoare în conformitate cu contextul problemei, tratează-o de asemenea
ca fiind corectă.
4. **Echivalent, ă Numerică**: Tratează răspunsurile numerice ca fiind echivalente dacă sunt corecte cu cel put,in două
zecimale sau mai mult, în funct,ie de precizia furnizată în solut,ie. De exemplu, atât 0.913, cât s, i 0.91 ar trebui acceptate dacă
solut,ia este exactă cu două zecimale.
5. **Identităt,i Algebrice s, i Simbolice**: Recunoas, te s, i acceptă forme algebrice echivalente, cum ar fi \( \sin^2(x) +
\cos^2(x) = 1 \) sau \( e^{i\pi} + 1 = 0 \), ca fiind corecte.
6. **Forme Trigonometrice s, i Logaritmice**: Acceptă expresii trigonometrice s, i logaritmice echivalente, recunoscând
identităt,i s, i transformări care ar putea modifica forma, dar nu s, i valoarea.
7. **Demonstrat,ii Matematice**: Evaluează demonstrat,iile matematice pe baza corectitudinii s, i a logicii, nu a stilului sau a
formei. Asigură-te că demonstrat,iile sunt complete s, i corecte, chiar dacă sunt prezentate într-un mod diferit de solut,ia furnizată.

## Formatul As, teptat al Răspunsului: Prezintă răspunsul final cu un scor doar de ’0’ sau ’1’, unde ’0’ semnifică o solut,ie
gres, ită, iar ’1’ semnifică o solut,ie corectă. Nu include nicio altă informat,ie sau explicat,ii suplimentare în răspuns.

Problema de matematică este:
{question}.

Solut,ia corectă din baremul de corectare este:
{true}.

Te rog să evaluezi solut,ia studentului cu precizie pentru a asigura o evaluare exactă s, i corectă."""
},
{
"role": "user", "content": "Solut,ia studentului este {prediction}. Furnizează un doar scor de ’0’ sau ’1’, unde ’0’ semnifică o
solut,ie gres, ită, iar ’1’ semnifică o solut,ie corectă. Bazează-t,i evaluarea pe criteriile de evaluare furnizate si pe solut,ia corecta
din barem.",
}

Table 8: Romanian judge prompt.

108



{
"role": "system",
"content": """Assume the role of a math teacher responsible for evaluating student responses for a math problem against the
provided correct solutions. Solutions may include proofs, exact values, multiple-choice answers, or numerical approximations.

## Evaluation Criteria:
1. **Mathematical Equivalence**: Evaluate answers based on mathematical equivalence, not just numerical accuracy.
Check if different algebraic or symbolic expressions are equivalent. Ensure that there are equivalences such as \(
\frac{\sqrt{6}-\sqrt{2}}{2} \) being equivalent to \( \sqrt{2 - \sqrt{3}} \).
2. **Scoring**: Assign a score of ’1’ for any answer that matches or is equivalent to the provided solution, whether it is an
exact value, a choice label (e.g., A, B, C), or a correctly rounded numerical approximation. Assign a score of ’0’ for incorrect
answers. Do not provide any explanatory feedback.
3. **Handling Multiple Choices**: If the solution provided is a choice (e.g., A, B, C, D, E, F) and the student identifies this
choice correctly, treat it as correct. If the solution is an exact value and the student provides the corresponding choice that
reflects this value correctly according to the problem’s context, also treat it as correct.
4. **Numerical Equivalence**: Treat numerical answers as equivalent if they are correct to at least two decimal places
or more, depending on the precision provided in the solution. For instance, both 0.913 and 0.91 should be accepted if the
solution is accurate within two decimal places.
5. **Symbolic and Algebraic Identities**: Recognize and accept equivalent algebraic forms, such as \( \sin^2(x) + \cos^2(x)
= 1 \) or \( e^{i\pi} + 1 = 0 \), as correct.
6. **Trigonometric and Logarithmic Forms**: Accept equivalent trigonometric and logarithmic expressions, acknowledging
identities and transformations that might alter the form but not the value.
7. **Mathematical Proofs**: Evaluate mathematical proofs based on correctness and logic, not style or form. Ensure proofs
are complete and correct, even if presented differently from the provided solution.
## Expected Output Format: Present your final answer with a score of ’0’ or ’1’ only, where ’0’ signifies an incorrect solution,
and ’1’ signifies a correct solution. Do not include any additional information or feedback in your response.

The math problem is:
{question}.

The correct solution from the answer key is:
{true}.

Please evaluate the student’s response with precision to ensure accurate and fair grading."""
},
{
"role": "user",
"content": "The student answer is prediction. Provide a score of ’0’ or ’1’ only, where ’0’ signifies an incorrect solution, and
’1’ signifies a correct solution. Base your evaluation on the provided evaluation criteria and the correct solution from the
answer key.",
}

Table 9: English judge prompt.
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RoMath-Baccalaureate

deepseek-ai/deepseek-math-7b-instruct
Problem Statement: Să se calculeze modulul numărului complex

√
3 + i.

Solution: 2
Generated Solution: Pentru a calcula modulul unui număr complex, folosim formula |z| =

√
a2 + b2 , unde z = a + bi.

În cazul nostru, a =
√

3 s, i b = 1.
Aplicând formula, obt,inem:

|z| =
√

(
√
3)2 + 12 =

√
3 + 1 =

√
4 = 2.

Deci, modulul numărului complex
√
3 + i este 2.

Răspuns: 2 .

OpenLLM-Ro/RoLlama3-8b-Instruct
Problem Statement: Să se demonstreze că vectorii u⃗ = −2⃗i + 3⃗j s, i v⃗ = 3⃗i + 2⃗j sunt perpendiculari.
Solution: Din a⃗ · b⃗ = −2 · 3 + 3 · 2 = 0 ⇒ a⃗ ⊥ b⃗
Generated Solution: Pentru a demonstra că vectorii u⃗ = −2⃗i + 3⃗j s, i v⃗ = 3⃗i + 2⃗j sunt perpendiculari, trebuie să arătăm că produsul lor punct este egal cu 0.
Produsul punct al celor doi vectori u⃗ s, i v⃗ este dat de:
u⃗ · v⃗ = (−2⃗i + 3⃗j) · (3⃗i + 2⃗j)
Acum, putem calcula produsul punct:
u⃗ · v⃗ = (−2)(3) + (3)(2) = −6 + 6 = 0
Deoarece produsul punct al celor doi vectori este egal cu 0, vectorii u⃗ s, i v⃗ sunt perpendiculari.

RoMath-Competitions

deepseek-ai/deepseek-math-7b-instruct
Problem Statement: Într-o clasă sunt 22 de elevi, dintre care 12 sunt fete. Să se determine în câte moduri se poate alege un comitet al clasei format din 3 fete s, i 2 băiet,i.
Solution: Numărul băiet,ilor este 22 − 10 = 12. Fetele pot fi alese în C3

12 = 220 moduri. Băiet,ii pot fi ales, i în C2
10 = 45 moduri. Comitetul format din 3 fete s, i 2 băiet,i dintre cei

22 de elevi ai clasei poate fi format în C3
12 · C2

10 = 9900 moduri.
Generated Solution: Pentru a rezolva această problemă, trebuie să utilizăm formula combinării. Combinarea este o modalitate de a alege un set de elemente dintr-o mult,ime mai mare, fără
a uita la ordinea elementelor.
În acest caz, trebuie să alegem 3 fete din 12 s, i 2 băiet,i din 10 (deoarece 22 - 12 = 10).
Formula combinării este:

C(n, k) =
n!

k!(n − k)!

unde n este numărul total de elemente, k este numărul de elemente ce trebuie alese, iar ""!"" semnifică factorialul unui număr.
Pentru a calcula numărul de moduri în care putem alege 3 fete din 12, aplicăm formula:

C(12, 3) =
12!

3!(12 − 3)!
=

12!

3!9!
=

12 × 11 × 10

3 × 2 × 1
= 220

Pentru a calcula numărul de moduri în care putem alege 2 băiet,i din 10, aplicăm formula:

C(10, 2) =
10!

2!(10 − 2)!
=

10!

2!8!
=

10 × 9

2 × 1
= 45

Pentru a calcula numărul total de moduri în care putem forma comitetul, înmult,im cele două rezultate:

220 × 45 = 9900

Deci, există 9900 de moduri în care se poate forma comitetul.

Răspunsul final este 9900 .

OpenLLM-Ro/RoLlama3-8b-Instruct
Problem Statement: Un grădinar a plantat într-una dintre grădinile pe care le îngrijes, te parcele cu tufe de trandafir din soiuri distincte, astfel încât fiecare parcelă cont,ine trandafiri dintr-un
alt soi. Într-o zi are de realizat un aranjament floral din aces, ti trandafiri. Analizează tufele s, i procedează în felul următor: din prima parcelă taie trei trandafiri, din cea de a doua taie de două
ori mai mult,i decât din prima s, .a.m.d., tăind dintr-o parcelă de două ori mai mult,i trandafiri decât din parcela precedentă. Care este numărul minim de trandafiri pe care trebuie să-1 aibă
parcela a IX-a pentru a putea fi folosită la realizarea aranjamentului floral?
Solution: Parcela a IX a trebuie să aibă cel put,in: 3 · 28 = 3 · 256 = 768
Generated Solution: Să notăm numărul de trandafiri din fiecare parcelă ca P1, P2, P3,..., P9. Conform problemei, numărul de trandafiri din fiecare parcelă este dat de:
P1 = 3
P2 = 2 * P1 = 2 * 3 = 6
P3 = 2 * P2 = 2 * 6 = 12
P4 = 2 * P3 = 2 * 12 = 24
P5 = 2 * P4 = 2 * 24 = 48
P6 = 2 * P5 = 2 * 48 = 96
P7 = 2 * P6 = 2 * 96 = 192
P8 = 2 * P7 = 2 * 192 = 384
P9 = 2 * P8 = 2 * 384 = 768
Deci, numărul minim de trandafiri din parcela a IX-a este 768.

Table 10: Qualitative examples of correct zero-shot predictions for RoMath-Baccalaureate and RoMath-
Competitions.
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RoMath-Baccalaureate

deepseek-ai/deepseek-math-7b-instruct
Problem Statement: Să se rezolve în mult,imea numerelor reale ecuat,ia 2x = 4x .
Solution: x=0
Generated Solution: Pentru a rezolva ecuat,ia 2x = 4x , putem scrie 4x ca (22)x , adică 22x .
Astfel, ecuat,ia devine 2x = 22x .
Prin urmare, putem scrie x = 2x.
Împărt,ind ambii membri ai ecuat,iei cu x, obt,inem 1 = 2.
Această ecuat,ie nu are solut,ii în mult,imea numerelor reale, deoarece 1 nu este egal cu 2.
Deci, ecuat,ia 2x = 4x nu are solut,ii în mult,imea numerelor reale.

Răspuns: Nu are solut,ii

OpenLLM-Ro/RoLlama3-8b-Instruct

Problem Statement: Să se calculeze determinantul

∣∣∣∣∣∣

1 3 5
7 9 11
2 4 6

∣∣∣∣∣∣
.

Solution: 0
Generated Solution: Pentru a calcula determinantul matricei date, putem folosi metoda de expansiune prin rânduri. Să calculăm determinantul:∣∣∣∣∣∣

1 3 5
7 9 11
2 4 6

∣∣∣∣∣∣
În primul rând, putem elimina primul rând s, i primul element din al doilea rând:∣∣∣∣

9 11
2 4

∣∣∣∣
Acum, putem calcula determinantul matricei 2x2 rămase:∣∣∣∣

9 11
2 4

∣∣∣∣ = 9 · 4 − 11 · 2 = 36 − 22 = 14

Deci, determinantul matricei date este 14.

RoMath-Competitions

deepseek-ai/deepseek-math-7b-instruct

Problem Statement: Într-un plan, raportat la reperul ortogonal de axe de coordonate (xxOy) se dau punctele: A(0; 6); B(5; 4); C(−1; 4). Pentru a = 5 să se scrie ecuat,ia medianei
corespunzătoare laturii BC.

Solution: Determină coordonatele mijlocului lui [BC] notat cu M : xM = 5−1
2

= 2, yM = 4+4
2

= 4 ⇔ M(2, 4) Ecuat,ia dreptei (AM):

∣∣∣∣∣∣

x y 1
0 6 1
2 4 1

∣∣∣∣∣∣
= 0 ⇒ AM :

x + y − 6 = 0.
Generated Solution: Pentru a scrie ecuat,ia medianei corespunzătoare laturii BC, trebuie să găsim mijlocul segmentului BC, notat M.
Mijlocul unui segment este dat de media aritmetică a coordonatelor punctelor de capăt ale segmentului. Astfel, coordonatele punctului M sunt:
M(xM; yM) = ((xB + xC) / 2; (yB + yC) / 2)
M(-1 + 5 / 2; 4 + 4 / 2) = M(2; 4)
Mediana AM este dreapta care unes, te punctul A cu mijlocul M al segmentului BC.
Ecuat,ia unei drepte în plan, cunoscând coordonatele a două puncte A(x1; y1) s, i B(x2; y2), este: (y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)
Aplicând formula pentru mediana AM, avem: (y - 6) / (4 - 6) = (x - 0) / (2 - 0)
Simplificând, obt,inem: (y - 6) / (-2) = x / 2
Ecuat,ia medianei AM este: y - 6 = -2x sau 2x + y - 6 = 0
Pentru a = 5, ecuat,ia medianei corespunzătoare laturii BC este: 2x + y - 6 = 0

OpenLLM-Ro/RoLlama3-8b-Instruct
Problem Statement: În raport cu un reper cartezian xOy, considerăm un purice P care sare doar în puncte având ambele coordonate întregi. La o săritură, puricele se deplasează doar pe
verticală sau pe orizontală. După o săritură nu este obligatoriu să schimbe direct,ia de deplasare, dar respectă următoarea regulă: sare 3 unităt,i, apoi 2 unităt,i, 3 unităt,i, 2 unităti etc. De
exemplu, dacă M se află init,ial în punctul (1, 2), la prima mutare ar putea fi în punctul (1, 5), iar apoi în (1, 7) dacă păstrează direct,ia, sau în ( 3,5 ), dacă îs, i schimbă direct,ia. Dacă P se
află init,ial în origine, demonstrat,i că poate ajunge în punctul (2013, 0).
Solution: Puricele se poate deplasa doar orizontal, astfel: după două sărituri ajunge în punctul (5, 0), după patru ajunge în (10, 0) s, i, tot as,a, după 804 sărituri ajunge în (2010, 0). La
următoarea săritură va ajunge în (2013, 0).
Generated Solution: Pentru a demonstra că puricele poate ajunge în punctul (2013, 0), vom arăta că poate ajunge în orice punct cu coordonate întregi prin repetarea ciclului de deplasare.
Să notăm deplasarea verticală ca v s, i deplasarea orizontală ca h. Ciclul de deplasare este dat de secvent,a (v, h, v, h, v, h, . . . ), unde v = 3 s, i h = 2. Aceasta înseamnă că puricele
se deplasează în sus 3 unităt,i, apoi în dreapta 2 unităt,i, apoi în sus 3 unităt,i, apoi în dreapta 2 unităt,i, s, i as,a mai departe.
Acum, să luăm în considerare punctul (2013, 0). Deoarece puricele poate sări doar în puncte cu coordonate întregi, trebuie să găsim o secvent,ă de deplasări care să conducă la acest punct.
Putem observa că ciclul de deplasare dat poate fi repetat de 2013 ori pentru a ajunge la punctul (2013, 0).
Pentru a vedea acest lucru, să luăm în considerare deplasările necesare pentru a ajunge la punctul (2013, 0) din origine:
1. Deplasare verticală de 3 unităt,i (de la (0, 0) la (0, 3)).
2. Deplasare orizontală de 2 unităt,i (de la (0, 3) la (2, 3)).
3. Deplasare verticală de 3 unităt,i (de la (2, 3) la (2, 6)).
4. Deplasare orizontală de 2 unităt,i (de la (2, 6) la (4, 6)).
5. Deplasare verticală de 3 unităt,i (de la (4, 6) la (4, 9)).
6. Deplasare orizontală de 2 unităt,i (de la (4, 9) la (6, 9)).
7. Deplasare verticală de 3 unităt,i (de la (6, 9) la (6, 12)).
8. Deplasare orizontală de 2 unităt,i (de la (6, 12) la (8, 12)).
9. Deplasare verticală de 3 unităt,i (de la (8, 12) la (8, 15)).
10. Deplasare orizontală de 2 unităt,i (de la (8, 15) la (10, 15)).
Putem continua acest proces până când ajungem la punctul (2013, 0). Deoarece ciclul de deplasare poate fi repetat de 2013 ori, puricele poate ajunge în punctul (2013, 0) după
efectuarea ciclului de deplasare de 2013 ori.

Table 11: Qualitative examples of incorrect zero-shot predictions for RoMath-Baccalaureate and RoMath-
Competitions.
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