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Abstract

The application of contemporary NLP mod-
els for inference over mathematical text re-
mains a critical and under-explored area. While
Vision-Language Models (VLMs) have shown
promise, a significant gap exists in their abil-
ity to perform nuanced, rubric-based assess-
ment of handwritten mathematical arguments,
a task requiring the joint interpretation of vi-
sual, textual, and symbolic modalities. This
paper directly addresses the need for robust
evaluation tasks in this domain. This paper in-
troduces CHECK-MAT, a new benchmark and
methodology for the automated, rubric-based
assessment of handwritten mathematical solu-
tions using Vision-Language Models (VLMs).
Composed of 122 real-world solutions from a
high-stakes national exam, CHECK-MAT eval-
uates the capacity of VLMs to emulate expert
graders by identifying logical flaws and ap-
plying detailed grading rubrics. Our system-
atic evaluation of seven state-of-the-art VLMs
serves as a direct instance of probing the math-
ematical understanding of state-of-the-art mod-
els. We reveal key limitations in their abil-
ity to parse complex notation and align with
human grading rubrics, which we frame as a
challenge in understanding the linguistic analy-
sis of mathematical discourse. Our work con-
tributes a robust benchmark to the NLP com-
munity and offers critical insights for develop-
ing models with more sophisticated mathemat-
ical reasoning capabilities. You can find code
in https://github.com/Karifannaa/Auto-check-
EGE-math.

1 Introduction

The articulation of mathematical arguments is a fun-
damental part of scientific reasoning and commu-
nication. As Large Language Models (LLMs) and
Vision-Language Models (VLMs) become more ca-
pable, their application to understanding and evalu-
ating these arguments is a key area of research in
NLP. However, a significant gap exists in their abil-
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ity to perform inference over complex, multimodal
mathematical text, such as handwritten student so-
lutions. While benchmarks like Fermat (Yuan et al.,
2024) focus on error detection and localization, and
MathCCS (Wu et al., 2024) on systematic error
analysis for feedback, CHECK-MAT addresses a
different, complementary challenge: rubric align-
ment. Our benchmark tests a VLM’s ability to not
just identify flaws, but to map the overall quality of
a complex, multi-step solution onto a granular, offi-
cial scoring rubric, emulating the holistic judgment
of a human grader.

Instead of merely testing a model’s problem-
solving capabilities, our benchmark probes its ca-
pacity for nuanced understanding of human thought
processes, error identification, and adherence to
structured assessment rubrics. This is crucial for
developing Al systems that can genuinely assist in
educational assessment, providing scalable support
for tasks that are currently bottlenecked by man-
ual expert grading. Our work makes the following
contributions:

* We introduce CHECK-MAT, a new public
benchmark that addresses the need for eval-
uation tasks requiring the joint interpretation
of different modalities (handwritten notation,
natural language problems, and equational
rubrics) in mathematical text.

* We provide a comprehensive evaluation of
seven state-of-the-art VLMs, offering a rigor-
ous analysis that directly probes the mathe-
matical understanding of state-of-the-art mod-
els and identifies specific weaknesses, particu-
larly in geometric reasoning.

* We frame the task of rubric-based grading as
a form of linguistic analysis of mathematical
discourse, providing a challenging testbed for
developing models that can follow complex,
human-defined argumentation relations.
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2 Related Work

Our work is situated at the intersection of auto-
mated mathematical assessment, multimodal rea-
soning, and diagnostic evaluation. The field has
evolved significantly from its early reliance on de-
terministic systems to the current exploration of
sophisticated Al models.

2.1 Automated Assessment as an NLP Task

The evolution of automated assessment in mathe-
matics education has been marked by a shift from
answer verification to process analysis. Early sys-
tems, built on Computer Algebra Systems (CAS)
like STACK (Sangwin, 2014), excelled at verify-
ing the symbolic equivalence of a final answer.
However, they were fundamentally “correctness-
focused” and could not evaluate the student’s rea-
soning process.

This limitation spurred the development of
process-focused assessment. This modern
paradigm is embodied in intelligent tutoring sys-
tems and benchmarks such as MathCCS (Wu et al.,
2024), which uses real-world student data for sys-
tematic error analysis as a foundation for gener-
ating pedagogically useful feedback. Our work
directly extends this trajectory by leveraging large
vision-language models (VLMs) to perform diag-
nostic assessment on authentic, handwritten stu-
dent work, posing a new, challenging task for the
mathematical NLP community.

2.2 The Multimodal Challenge of
Handwritten Solutions

Assessing handwritten mathematics is an inherently
multimodal task. A specialized field, Handwritten
Mathematical Expression Recognition (HMER),
has focused on the modular task of transcribing
visual notation into a structured format like LaTeX
(Deng et al., 2017). This is a non-trivial problem
due to the two-dimensional structure of mathemati-
cal expressions and visual ambiguity between sym-
bols.

In parallel, the rise of end-to-end Vision-
Language Models (VLMs) like GPT-40 (OpenAl,
2024) has introduced a more integrated paradigm.
However, studies applying general-purpose VLMs
to grade handwritten assignments have consistently
highlighted the problem of error propagation: in-
accurate Optical Character Recognition (OCR) of
handwriting leads to faulty input for the reason-
ing module, resulting in incorrect grades (Kasneci
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et al., 2023). This suggests that a VLM’s generalist
vision encoder may be less robust for the specific
domain of mathematical notation than a special-
ized HMER model, making this a critical area for
benchmarking.

2.3 The Paradigm Shift to Diagnostic
Assessment

The most advanced research in this domain has
shifted from simply assigning a score to perform-
ing diagnostic assessment—identifying the specific
nature of a student’s error. This requires a model
to parse a multi-step solution, compare it to valid
reasoning pathways, and classify deviations into a
meaningful taxonomy of error types.

This paradigm shift is embodied by the recent de-
velopment of specialized benchmarks. The Fermat
benchmark (Yuan et al., 2024) was explicitly de-
signed to evaluate a VLM’s ability to perform error
detection, localization, and correction on handwrit-
ten solutions containing synthetically generated,
human-verified errors. Similarly, the MathCCS
benchmark (Wu et al., 2024) uses real-world stu-
dent data to focus on systematic error analysis as
a foundation for generating pedagogically useful
feedback. The creation of these rigorous bench-
marks signifies a maturation of the field, moving
the central question from "Can the model get the
score right?" to "Can the model identify and ex-
plain the error?" Our work aligns with this trajec-
tory by requiring models to assess solutions against
a multi-point rubric that implicitly requires error
diagnosis.

2.4 Benchmarks for Mathematical Reasoning
in NLP

The performance of any NLP system for mathemat-
ical tasks is capped by the reasoning power of its
underlying models. While text-based benchmarks
like MATH (Hendrycks et al., 2021) and GSM8K
(Cobbe et al., 2021) drove initial progress, they
suffer from issues like data contamination and an
inability to penalize flawed reasoning that leads to
a correct answer.

The need to evaluate reasoning in visual contexts
has led to more robust multimodal benchmarks.
MathVista (Lu et al., 2023) and R2-MultiOmnia
(Ranaldi et al., 2025), for example, provides a com-
prehensive suite of problems requiring the inter-
pretation of charts, diagrams, and figures. The sig-
nificant performance gap between state-of-the-art
models and humans on such benchmarks demon-



strates that visually-grounded mathematical reason-
ing remains a formidable challenge. This provides
essential context for our work, as it establishes a
realistic upper bound on the expected performance
of VLMs on the even more complex task of grad-
ing, which requires not only solving a problem but
diagnosing errors in another agent’s solution.

3 Benchmark Design and Dataset

Our benchmark is designed to evaluate Vision-
Language Models (VLMs) on their ability to assess
handwritten mathematical solutions, a task that re-
quires a deep understanding of both visual infor-
mation and mathematical reasoning. The core of
our benchmark is a unique dataset derived from the
Russian Unified State Exam (EGE), specifically fo-
cusing on the second part of the mathematics exam,
where students provide detailed, handwritten solu-
tions.

3.1 Dataset Sourcing and Characteristics

The dataset comprises 122 problem solutions,
meticulously sourced from the official EGE ex-
pert guide. This guide provides a rich collection of
real student solutions, along with expert-assigned
grades and detailed justifications for those grades.
It is important to note that all handwritten solutions
and the original problem statements are in Russian,
reflecting the source of the data. Each entry in our
dataset includes:

* Scanned Handwritten Solution: An image
of the students complete handwritten solution,
often spanning multiple pages, capturing the
nuances of human handwriting, diagrams, and
mathematical notation.

Problem Statement: The original text of the
mathematical problem, providing context for
the solution.

Expert Grade: The official score assigned by
human experts according to the EGE grading
criteria.

Reference-Based Expert Evaluation: In-
cludes the final score assigned by a human
expert. The assessment is based on a provided
gold-standard solution and a granular grading
rubric, which are available for each task to
ensure a transparent and replicable evaluation
process.
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Table 1: Benchmark breakdown by task type.

Task ID Domain Count Score Range

13 Trigonometric 21 0-2
equations

14 Stereometry 18 0-3

15 Logarithmic 19 0-2
inequalities

16 Financial 17 0-2
mathematics
problems

17 Planimetry 15 0-3

18 Parameterised 16 04
equations

19 Number theory/ 16 04
combinatorics

The dataset was sourced from the official EGE
expert guide, a publicly available resource for train-
ing human graders. All solutions are anonymized
and published for educational purposes, thus no
ethical clearance was required for their use in this
research. The guide does not provide demographic
details such as the number of unique students or
their grade levels. These are authentic solutions
written by students under real high-stakes exam
conditions, providing a realistic and challenging
distribution of writing styles and error types.

The solutions cover a range of mathematical
topics typically found in EGE, including algebra,
geometry, trigonometry, and calculus, ensuring a
diverse set of challenges for the evaluated mod-
els. The handwritten nature of the solutions intro-
duces significant variability in terms of handwriting
styles, penmanship, and layout, requiring robust
VLM capabilities for accurate interpretation.

3.2 Mathematical Domains and Task Types

Each task corresponds to a standard EGE problem
type requiring a written solution with reasoning.
Table 1 provides an overview of the tasks, including
their domain, a brief description, the number of
solution samples in our dataset, and the score range
(points) for each task.

3.3 Grading Criteria and Assessment Focus

The central point of the EGE assessment process
is the clearly defined grading criteria for each task.
These criteria specify how points are awarded or
deducted based on the correctness of the solution
steps, the validity of the reasoning, and the accu-
racy of the final answer. Our benchmark leverages
these criteria as the ground truth for evaluation.
The primary focus is not on whether the model can



solve the problem itself, but rather on its ability to:

* Understand the Solution Flow: Compre-
hend the logical progression of the students
solution, including intermediate steps and
derivations.

Identify Errors: Accurately pinpoint math-
ematical errors, logical flaws, or omissions
within the handwritten solution.

* Apply Grading Rubrics: Assess the identi-
fied errors and correct parts of the solution
against the specific EGE grading criteria to
assign an appropriate score.

This emphasis on assessment rather than
problem-solving distinguishes our benchmark from
many existing math-focused datasets and provides
a more realistic evaluation of Al potential in educa-
tional grading scenarios.

4 Experimental Setup

To evaluate the performance of Vision-Language
Models on our EGE-Math Solutions Assessment
Benchmark, we conducted experiments with seven
different state-of-the-art models. The evaluation
was structured around three distinct procedures, or
"modes", designed to assess the models’ capabili-
ties under different levels of contextual information.
This required a meticulous data curation process
where a specific version of the dataset was prepared
for each mode.

4.1 Evaluated Models

We selected a diverse set of VLMs to cover a range
of architectures and capabilities:

* Arcee Al Spotlight: A model from Arcee Al,
accessed via OpenRouter. (Arcee.ai, 2025)
Google Gemini 2.0 Flash: Google’s VLM,
known for its multimodal capabilities (Team
et al., 2023).

Google Gemini 2.0 Flash Lite: A lighter
version of Google Gemini 2.0 Flash.

Google Gemini 2.5 Flash Preview: A pre-
view version of Google’s next-generation
VLM.

Google Gemini 2.5 Flash Preview:thinking:
A variant of Google’s Gemini 2.5 Flash Pre-
view with enhanced reasoning abilities.
OpenAl 04-mini: A model from OpenAl, a
smaller, more efficient version of their flag-
ship models. (OpenAl, 2025)
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* Qwen 2.5 VL 32B: A large Vision-Language
Model from Alibaba Cloud, accessed via
OpenRouter (Bai et al., 2025).

We selected a diverse set of VLMs to cover a
range of architectures and providers. The inclusion
of multiple models from the Google Gemini fam-
ily allows for a direct comparison of performance
trade-offs within a single model lineage, evaluating
the impact of model size and specialized tuning
(e.g., the "thinking’ variant) on this nuanced task.

Each model was prompted to analyze the hand-
written solution image and provide an assessment
based on the EGE grading criteria. The output
format was standardized to facilitate automated
comparison with expert grades.

4.2 Evaluation Procedure and Data Curation

To thoroughly test the model’s understanding and
reasoning, we designed and prepared data for three
evaluation modes. This approach allows for a gran-
ular analysis of how additional context influences
the models’ assessment performance.

e Mode 1: Without Answer. In this mode,
the model receives only the handwritten so-
lution image and the problem statement. To
facilitate this, we prepared a baseline dataset
where each entry consisted of a pre-processed
image and the problem text. The image pre-
processing involved standardizing dimensions
and resolution to ensure consistent input qual-
ity across all experiments. This mode assesses
the model’s ability to assign a grade based
solely on the provided content and its internal
understanding of the EGE grading rubric.

Mode 2: With Answer. For this mode, the
model receives the handwritten solution, the
problem statement, and the correct final nu-
merical answer. To enable this, the baseline
dataset was augmented by appending the cor-
rect final answer for each of the 122 problems,
sourced from official EGE materials. This
mode assesses whether the model can lever-
age the correct outcome to better identify er-
rors or confirm the correctness of the student’s
solution steps.

Mode 3: With True Solution. This is the
most informative mode, where the model is
given the handwritten solution, the problem
statement, and a complete, correct reference



solution. The dataset for this mode was fur-
ther enriched with a transcribed, step-by-step
"gold standard" solution from the EGE expert
guide. This allows us to evaluate the model’s
ability to compare the student’s approach with
a known correct method and identify devia-
tions or errors more precisely.

4.3 Prompt Templates and Score Extraction
Methodology

For each evaluation, the models were provided with
specific prompt templates tailored to the task and
evaluation mode. These templates included the
problem description, the student’s handwritten so-
lution (as an image), and the relevant grading crite-
ria. For the With Answer and With True Solution
modes, the correct answer or reference solution
was also incorporated into the prompt. The models
were instructed to output their assessment in the
structured format, including the analysis of the so-
lution, the final score, and the justification for that
score. This structured output facilitated automated
extraction of the assigned scores for quantitative
analysis. The full prompt templates used for all
evaluation modes are available in the project’s pub-
lic repository.

5 Results

Our evaluation of seven Vision-Language Models
across three distinct evaluation modes provides in-
sights into their capabilities in assessing handwrit-
ten mathematical solutions.
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We report three complementary metrics:

Metrics

Accuracy (Exact Match:) Percentage of cases
where the predicted score exactly matches the ex-
pected score:

Exact Matches
Total Evaluations

Accuracy = x 100%.

Quality Score: Normalized closeness between
predicted and expected scores:

_ |Spred - Strue‘)
Smax ’

where Spmax € {2,3,4} is the task-specific maxi-
mum.

Quality Score = 100% x (1

Average Score Distance:

. BN
Avg. Distance = " Z}’Spred,i - Strue,i}-
1=
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5.2 Performance Analysis

As can be seen from Table 2, OpenAl 04-mini
consistently demonstrates the highest performance
across all evaluation modes, achieving the best Ac-
curacy (56.56% with Answer) and Quality Score
(78.17% with Answer), and the lowest Average
Score Distance (0.60 with Answer). This suggests
that OpenAl's model possesses superior capabil-
ities in understanding handwritten solutions and
applying grading criteria compared to other evalu-
ated models.

Among other models, Google Gemini 2.0 Flash
also shows strong performance, particularly in the
With Answer and With True Solution modes,
indicating its ability to effectively leverage addi-
tional context. Models like Arcee Al Spotlight
and Qwen 2.5 VL 32B exhibit lower accuracy and
higher score distances, suggesting that while they
can process the visual input, their mathematical
reasoning and grading alignment are less precise.
The thinking variant of Google Gemini 2.5 Flash
Preview, despite its higher cost and longer aver-
age time, does not consistently outperform its non-
thinking counterpart, raising questions about the
efficacy of its enhanced reasoning capabilities for
this specific task.

To illustrate the models’ reasoning process, con-
sider a solution for a parameterised equation (Task
18), which an expert graded as 2 out of 4 points.
The student correctly found all potential roots but
made a mistake when combining the final intervals,
omitting a valid range. OpenAl o4-mini correctly
identified this as a computational error deserving 2
points, aligning with the rubric. In contrast, Qwen
2.5 VL 32B failed to spot the missing interval and
incorrectly assigned a perfect score of 4, demon-
strating a lack of attention to detail. A full analy-
sis of a representative example is provided in Ap-
pendix B.

A detailed breakdown of performance by task
type, illustrated in Figure 1, reveals significant vari-
ations. It is evident that algebraic tasks (13 and
15) are handled more effectively by most mod-
els. In contrast, both geometry categories (14 —
stereometry, 17 — planimetry) consistently yield
poorer agreement with human graders. We hy-
pothesise that current VLMs still struggle to map
free-hand diagrams onto the rigorous spatial rea-
soning chains required by the EGE rubric. The
full per-task scores for all models can be found in
repository.



Table 2: Overall performance of all models across three evaluation modes. The best result for each combination of
mode and metric is shown in bold, and the second best result is underlined.

Model Provider Mode Acc. (%) | Qual. (%) | Dist. [ Cost ($) | Time (s)
Arcee Al Spotlight Arcee Al (via OpenRouter) Without Answer 27.87 64.48 | 1.04 0.01 8.80
With Answer 26.23 63.18 | 1.09 0.01 6.99
With True Solution 25.41 59.22 | 1.16 0.01 6.98
Google Gemini 2.0 Flash Google Without Answer 36.89 71.04 | 0.84 0.14 4.56
With Answer 47.54 74.04 | 0.75 0.14 4.82
With True Solution 46.72 75.82 | 0.71 0.21 3.13
Google Gemini 2.0 Flash Lite Google Without Answer 31.97 64.96 | 1.00 0.04 3.08
With Answer 35.25 67.83 | 0.90 0.04 3.13
With True Solution 38.52 70.22 | 0.84 0.04 3.09
Google Gemini 2.5 Flash Preview Google Without Answer 44.26 71.04 | 0.81 0.32 16.08
With Answer 40.98 70.49 | 0.82 0.30 14.92
With True Solution 45.90 71.35 | 0.79 0.34 11.67
Google Gemini 2.5 Flash Google Without Answer 40.16 64.30 | 1.05 0.60 39.48
Preview:thinking
With Answer 42.62 66.44 | 0.99 0.62 39.98
With True Solution 43.44 65.92 | 0.99 0.78 47.59
OpenAl 04-mini OpenAl Without Answer 55.74 75.55 | 0.66 2.18 39.62
With Answer 56.56 78.17 | 0.60 2.02 32.94
With True Solution 54.10 76.16 | 0.66 2.28 58.47
Qwen 2.5 VL 32B Alibaba Cloud (via OpenRouter) Without Answer 31.15 62.09 | 1.09 0.46 22.97
With Answer 30.33 61.95 | 1.08 0.46 23.27
With True Solution 43.44 70.49 | 0.81 0.63 27.55

5.3 Impact of Evaluation Modes

One of the most interesting findings is the varied
impact of the evaluation modes on model perfor-
mance. For some models, providing additional con-
text (correct answer or true solution) significantly
improved their performance. For instance, Google
Gemini 2.0 Flash showed a notable increase in
Accuracy when provided with the correct answer
(from 36.89% to 47.54%). This suggests that these
models can effectively leverage external informa-
tion to refine their assessment, indicating a capac-
ity for conditional reasoning. However, this im-
provement was not universal; Arcee Al Spotlight,
for example, saw a slight decrease in performance
with additional context, which might indicate is-
sues with how it integrates or prioritizes external
information versus its internal analysis of the hand-
written solution.

The With True Solution mode, while providing
the most comprehensive context, did not consis-
tently lead to the best performance across all mod-
els. This could be attributed to several factors: the
models might struggle with effectively comparing a
student's potentially divergent solution path with a
provided reference solution, or lack the complexity
sufficient to fully leverage the detailed information
in a reference solution when the student's approach
deviates significantly. This highlights a crucial
area for future research: developing VLMs that
can perform robust comparative analysis between
a student's solution and a reference, even when the
two solution paths differ.
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6 Limitations

Our evaluation provides a unique perspective on
VLM capabilities in a real-world assessment sce-
nario. The results highlight a substantial gap
between current model performance and human
expert-level grading, with the highest accuracy at
56.56%. This indicates ample room for improve-
ment in nuanced mathematical reasoning and the
precise application of grading rubrics.

Several factors contribute to these performance
limitations and pave the way for future research:

* Visual Interpretation and Error Propaga-
tion: The diversity in student handwriting,
penmanship, and layout poses a significant
challenge for accurate visual interpretation.
This often leads to error propagation, where
inaccuracies in the initial visual recognition
are passed downstream to the reasoning mod-
ule, causing incorrect assessments. Future
work could explore hybrid approaches, com-
bining general VLM perception with special-
ized Handwritten Mathematical Expression
Recognition (HMER) models to mitigate this
issue.

Deep Reasoning and Rubric Alignment:
Assessing complex solutions requires deep
symbolic and logical reasoning, especially for
non-standard solution paths or subtle errors.
Models often struggle to translate qualitative
grading criteria into quantitative scores, some-
times misinterpreting the severity of an error
or failing to identify all relevant mistakes.



Model Comparison by Task (Accuracy %)

Task 13

—&— Gemini 2.5 Preview:thinking
Gemini 2.5 Flash Preview
—e— Gemini 2.0 Flash

=&— Gemini 2.0 Flash Lite
OpenAl 04-mini

Qwen 2.5 VL 32B
Arcee Al Spotlight

Figure 1: Radar chart showing model Accuracy (%) in
the With True Solution mode across all seven task types.
The outer edge represents a perfect score. This visual-
ization highlights the models’ strengths and weaknesses
on different mathematical domains.

e Dataset and Fine-Tuning: The current
benchmark utilizes 122 solutions. A larger,
more diverse dataset would enable more com-
prehensive evaluation. Furthermore, our study
primarily relies on zero-shot prompting; fine-
tuning VLMs on this specific assessment task
could significantly improve their performance
and alignment with the specific curriculum
and rubrics.

Contextual Reasoning: While some models
effectively use additional context (like a cor-
rect answer), others struggle to integrate this
information. This highlights a need for more
robust mechanisms for conditional reasoning
and information fusion in VLMs.

Monolingual and Cultural Focus: The
dataset is exclusively in Russian and sourced
from a single national curriculum (the Rus-
sian EGE). Educational practices and reason-
ing styles can have cultural specificities. The
performance of VLMs may vary on similar
benchmarks from different linguistic and edu-
cational contexts. Future work could involve
extending CHECK-MAT to other languages
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and curricula.

Explainability and Future Directions: The
transparency and interpretability of the mod-
els’ reasoning processes remain a challenge.
Developing more explainable Al is crucial for
building trust and utility in educational assess-
ment tools. Future work could also explore
interactive assessment scenarios or adapt the
benchmark to other global curricula to test for
generalization.

6.1 Implications for Mathematical NLP

Our findings have direct implications for the Math-
ematical NLP community. The CHECK-MAT
benchmark provides a challenging new evaluation
task for researchers. The systematic failures we ob-
served, particularly in geometric reasoning, high-
light a critical area for future work: developing
multimodal models that can better understand the
interplay between visual diagrams and symbolic
reasoning. This aligns with the need for techniques
for the joint interpretation of different modalities
present in mathematical text. Furthermore, the dif-
ficulty models had in applying rubrics points to
the need for new neuro-symbolic architectures or
fine-tuning strategies to better capture the argumen-
tation relations in the context of mathematical text.
This work serves as a call for a deeper focus on
these complex, multimodal reasoning challenges.

6.2 Cost and Efficiency

Beyond performance, our study also sheds light
on the practical considerations of deploying such
models for automated assessment. The signifi-
cant variation in total cost and average evalua-
tion time across models (e.g., OpenAl o4-mini
being considerably more expensive and slower
than Google Gemini 2.0 Flash Lite) highlights a
trade-off between performance and operational ef-
ficiency. For large-scale deployment in educational
settings, cost-effectiveness and speed are critical
factors that need to be balanced against grading
accuracy. Larger frontier models (e.g. OpenAl 03
or Google gemini-2.5-pro) were not included in
this benchmark due to computational and budgetary
constraints; their evaluation remains future work.

6.3 Future Directions in Knowledge-Intensive
Reasoning

Our work highlights several key challenges for the
future of knowledge-intensive reasoning. The pri-
mary difficulty for current VLMs lies in the robust



fusion of perceptual data (handwriting) with a sym-
bolic knowledge base (the grading rubric). The
CHECK-MAT benchmark serves as a tool to mea-
sure progress in this area. We advocate for future
research into hybrid neuro-symbolic architectures
and methods that improve the explainability of the
model’s reasoning process, ensuring that their ap-
plication of knowledge is both accurate and trans-
parent.

7 Conclusion

In conclusion, this paper introduced CHECK-MAT,
anovel benchmark designed to probe the mathemat-
ical understanding of Vision-Language Models on
the complex, multimodal task of grading handwrit-
ten solutions. Our findings demonstrate that while
state-of-the-art VLMs can perform this complex
task to some degree, they exhibit significant weak-
nesses in applying the required domain knowledge,
particularly for geometric reasoning. This research
contributes a valuable diagnostic tool for evaluating
models on mathematical discourse and multimodal
reasoning. We hope CHECK-MAT will spur the
development of the next generation of models that
can better handle the joint interpretation of visual,
symbolic, and natural language, a key challenge
for the field of Mathematical NLP.

8 License

The source code and dataset for this research are
available under the MIT License. This permissive
license allows for reuse, modification, and distri-
bution, both in academic and commercial settings,
provided that the original copyright and license
notice are included.
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A Per-Task Performance Data
This appendix provides the detailed per-task scores for a selection of the evaluated models.

Table 3: Per-task scores — openai_o4-mini.

[ Task [ Examples [ Accuracy [ Average Score [ Expected Score [ Cost ]
13 21 47.6% 1.48 0.95 $0.4259
14 18 27.8% 1.72 1.28 $0.3465
15 19 63.2% 1.68 1.11 $0.3115
16 17 82.4% 1.24 1.29 $0.2957
17 15 33.3% 1.20 1.20 $0.2560
18 16 68.8% 2.12 2.38 $0.3543
19 16 56.2% 1.75 2.06 $0.2879

Table 4: Per-task scores — qwen-2.5-v1-32b.

Task Examples Accuracy Average Score Expected Score Cost

13 21 42.9% 1.62 0.95 $0.1095
14 18 22.2% 2.17 1.28 $0.0999
15 19 52.6% 1.58 1.11 $0.0875
16 17 70.6 % 1.41 1.29 $0.0783
17 15 33.3% 1.73 1.20 $0.0753
18 16 37.5% 2.75 2.38 $0.0970
19 16 43.8% 2.06 2.06 $0.0868

Table 5: Per-task scores — arcee-ai_spotlight.

Task Examples Accuracy Average Score Expected Score Cost

13 21 28.6% 0.95 0.95 < $0.01
14 18 11.1% 2.72 1.28 < $0.01
15 19 21.1% 0.74 1.11 < $0.01
16 17 47.1% 1.47 1.29 < $0.01
17 15 13.3% 2.67 1.20 < $0.01
18 16 18.8% 2.12 2.38 < $0.01
19 16 37.5% 2.62 2.06 < $0.01

Table 6: Per-task scores — gemini-2.5-flash-preview.

Task Examples Accuracy Average Score Expected Score Cost

13 21 42.9% 1.48 0.95 $0.0493
14 18 38.9% 1.00 1.28 $0.0616
15 19 47.4% 1.79 1.11 $0.0401
16 17 47.1% 1.41 1.29 $0.0419
17 15 46.7% 0.73 1.20 $0.0387
18 16 43.8% 1.81 2.38 $0.0713
19 15 60.0% 1.40 2.13 $0.0414

Table 7: Per-task scores — gemini-2.5-flash-preview_thinking.

Task Examples Accuracy Average Score Expected Score Cost

13 21 66.7 % 1.57 0.95 $0.1096
14 18 22.2% 1.33 1.28 $0.1043
15 19 31.6% 1.21 1.11 $0.0998
16 17 58.8% 1.53 1.29 $0.0964
17 15 26.7% 0.73 1.20 $0.0908
18 16 43.8% 2.50 2.38 $0.1037
19 16 50.0% 2.44 2.06 $0.1787

B Representative Example Analysis

This appendix provides a detailed analysis of a representative example from our benchmark to illustrate
the evaluation process and the typical performance patterns of the models.
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Table 8: Per-task scores — gemini-2.0-flash-001.

Task Examples Accuracy Average Score Expected Score Cost

13 21 61.9% 1.48 0.95 $0.0295
14 18 33.3% 1.61 1.28 $0.0284
15 19 42.1% 1.42 1.11 $0.0276
16 17 58.8% 1.47 1.29 $0.0270
17 15 40.0% 0.93 1.20 $0.0254
18 16 37.5% 2.50 2.38 $0.0286
19 16 43.8% 2.31 2.06 $0.0392

Table 9: Per-task scores — gemini-2.0-flash-1ite-001.

Task Examples Accuracy Average Score Expected Score Cost

13 21 57.1% 1.38 0.95 $0.0059
14 18 22.2% 1.50 1.28 $0.0056
15 19 31.6% 1.26 1.11 $0.0052
16 17 52.9% 1.29 1.29 $0.0051
17 15 40.0% 0.87 1.20 $0.0048
18 16 25.0% 2.62 2.38 $0.0054
19 16 37.5% 2.06 2.06 $0.0049

B.1 Analysis of Solution 18.3.3
B.1.1 Problem Statement

Find all values of parameter a for which the equation has exactly three distinct roots:

V32 +2ax+1=2>+ax+1

B.1.2 Official Grading Criteria (Task 18)

* 4 points: A well-reasoned, correct solution is provided.

* 3 points: A set of parameter values is obtained that differs from the correct set only by the inclu-

sion/exclusion of boundary points.

* 2 points: A correct interval of parameter values is obtained (possibly with incorrect boundary points),
OR an incorrect answer is obtained due to a computational error, but all logical steps are correct.

* 1 point: The roots of the equation are found, and the problem is correctly reduced to investigating

these roots under the given condition(s).

* 0 points: The solution does not meet any of the criteria above.

B.1.3 Visual Materials

Figure 2 shows the student’s handwritten solution, and Figure 3 shows the official correct solution provided

in the EGE expert guide.
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Figure 2: Student’s handwritten solution for problem 18.3.3. The expert-assigned score is 2.
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Figure 3: Official correct solution for problem 18.3.
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B.2 Model Assessment Results

The table 10 summarizes the scores assigned by different models in the With True Solution mode. The
expected score was 2.

Table 10: Model scores for solution 18.3.3.

Model Assigned Score | Expected Result
OpenAl 04-mini 2 2 Correct
Qwen 2.5 VL 32B 4 2 Overestimated
Google Gemini 2.0 Flash 2 2 Correct
Google Gemini 2.0 Flash Lite 2 2 Correct
Google Gemini 2.5 Flash Preview 2 2 Correct
Google Gemini 2.5 Flash Preview Thinking 2 2 Correct
Arcee-Al Spotlight 0 2 Underestimated

B.2.1 Key Observations

* High Accuracy of Most Models: The majority of the models (5 out of 7) successfully handled the
task, assigning the correct score of 2. This group included OpenAl 04-mini and all the tested models
from the Google Gemini family.

* Divergent Errors: Two models evaluated the solution incorrectly, and their errors were opposites.
Qwen 2.5 VL 32B significantly overestimated the score (4), while Arcee-Al Spotlight failed to

produce a final answer: it became stuck in a loop of writing out equations, which resulted in a score
of (0).

¢ Distinct Failure Modes: The errors highlight very different failure modes. One model overestimated
the score, while the other failed to complete the task entirely. This points to unique flaws in the logic
of each model rather than a shared, systematic bias.

B.3 Full Model Responses and Prompt (Translated to English)
B.3.1 Prompt Used for Evaluation (With True Solution)

Analyze the solution of task 18

(an equation, inequality, or system thereof with a parameter) and evaluate it according to the criteria.

Task

{task description}

Assessment criteria for task 18

* 4 points: A correct answer is obtained with justification.

* 3 points: A set of parameter values is obtained through correct reasoning, differing from the
required set only by the exclusion of boundary points or the inclusion of points not belonging to
the answer.

* 2 points: An interval of the set of parameter values is obtained through correct reasoning, possibly
including boundary points, OR an incorrect answer is obtained due to a computational error, but
all steps of the solution are correctly performed.

* 1 point: The roots of the equation are found, and the problem is correctly reduced to the
investigation of these roots under the given condition(s).

* @ points: The solution does not meet any of the criteria listed above.
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IMPORTANT: Assessment Principles

Evaluate the solution STRICTLY according to the criteria.

Pay attention to mathematical correctness, not the presentation.

Compare the student’s solution with the correct solution provided as a reference.

Check if the student has correctly performed all key steps of the solution.

If the student used a different approach, evaluate its correctness and compliance with the criteria.
Problems with parameters allow for various solution methods: algebraic, geometric, functional.

Pay SPECIAL ATTENTION to the correctness of handling boundary points and the completeness of
considering all cases.

When assessing for 3 points: check that the difference from the correct answer is ONLY in the
boundary points, not in the main intervals.

For a geometric approach: check the correctness of the interpretation and the justification of
all geometric statements.

IMPORTANT: Instructions for working with the correct solution and the student’s
solution

You are provided with:

1.

2.

The correct solution to the task - use it as a reference for comparison.

The student’s solution - this is what you must evaluate.

During the analysis:

Compare each step of the student’s solution with the corresponding step of the correct solution.
Note all deviations and errors.
Check if the intermediate and final results match.

Pay special attention to the handling of boundary points and the completeness of considering all
cases.

Instructions for checking the solution of a problem with a parameter

1.

2.

3.

4.

Check the solution method:

e Correctness of the chosen approach (algebraic, geometric, functional).
e Correctness of applying formulas and theorems.
e Completeness of considering all cases.

Check mathematical correctness:

* Correctness of algebraic transformations.

e Correctness of working with inequalities.

e Correctness of finding the domain of permissible values (0DZ).
Check the handling of boundary points:

e Correctness of determining the boundary points.

* Correctness of including/excluding boundary points in the answer.

For a geometric approach, check:

e Correctness of the geometric interpretation of the conditions.
e Justification of all geometric statements.
e Completeness of the analysis of all possible relative positions of geometric objects.
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CRITICALLY IMPORTANT: Immediately compare the student’s answers with the correct
ones!
e FIRST AND FOREMOST, check if the student’s answer matches the correct answer.

e If the student’s answer is INCORRECT, this MUST be taken into account in the assessment.

e Even if all transformations are performed correctly, but the answer is wrong due to a
non-computational error - this must affect the score.

* Do not forget to note all discrepancies between the student’s answer and the correct answer.

IMPORTANT: Distinguish between computational and conceptual errors
e Computational errors: errors in arithmetic operations, simplifying expressions, calculating values.

e Conceptual errors: incorrect application of formulas, wrong solution method, errors in
understanding the properties of the parameter.

If a student made only computational errors, but the solution method is correct - this may correspond
to the 2-point criterion. If a student made conceptual errors - this usually corresponds to a lower
score criterion.

Assessment Examples

Example 1 (score: 4 points) The solution is complete and justified. All values of the parameter
for which the system has exactly two solutions are found correctly. All cases are considered, and
boundary points are analyzed correctly.

Example 2 (score: 3 points) All stages are present in the solution. Through correct reasoning, a
set of parameter values is obtained that differs from the required set only by the exclusion of boundary
points or the inclusion of points not belonging to the answer. For example, the answer obtained is
(—2,2) instead of [—2,2] or [-2,—1)U(—1,1)U(1,2] instead of [-2,—-1)U(-1,1)U[L1,2].

Example 3 (score: 2 points) The solution is logical, all steps are present, but a computational
error was made when solving the inequality, which led to an incorrect answer. Or, through correct
reasoning, an interval of the set of parameter values was obtained, possibly including boundary points,
but not all possible cases were considered.

Example 4 (score: 1 point) The roots of the equation are found in the solution, and the problem
is correctly reduced to the investigation of these roots under the condition z® + ax + 1 >0, but the
further investigation is incorrect or absent.

Example 5 (score: @ points) The solution contains fundamental errors in understanding the problem
or in mathematical reasoning. For example, the roots of the original equation are found incorrectly,
or the condition of the problem is misinterpreted.

IMPORTANT: Instructions for working with multiple images
If the solution (correct or student’s) is presented in several images:

1. Consider all images as a single solution.
2. Analyze them in sequential order.

3. Take into account information from all images when assessing.

Response Format
Structure your response as follows:

Analysis of the solution [Detailed analysis indicating correct steps and errors]

Comparison with the correct solution [Comparison of the student’s approach with the reference
solution, indicating key differences]

Final score [Score: X points]

IMPORTANT: The "Final score” section MUST be formatted EXACTLY in this format: "Final score” -
heading. "[Score: X points]” - where X is a number @, 1, 2, 3, or 4. DO NOT CHANGE this format and do
not add any other text to it!

Justification of the score [Detailed justification in accordance with the criteria]

Recommendations (if applicable) [Recommendations for correcting errors]
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B.3.2 Response from OpenAI o4-mini (Score: 2 - Correct)

Analysis of the solution
1. The student wrote down an equivalent system:
e a) the equation after squaring;
* b) the condition that the expression under the root is non-negative.

2. Found the roots of the original equation: =0, z=1-a, * =-1-a.

3. Analyzed the condition 22+ azx+1>0 for these values of x:

e for x =0, the condition is always met;
e for x = 1-a, from the inequality, they obtained a < 2;
e for x = -1-a, they obtained a > -2.

4. Concluded that for three distinct roots, it is necessary that -2<a <2 and a# 1, a # -1.

5. However, in the final answer, the student wrote a € (-1;1) U (1;2], thus completely omitting the
interval [-2;-1).

Error: when combining the resulting intervals and excluding the boundary points, the student discarded
the left part [-2;-1) for a purely computational/descriptive reason. All key steps (finding roots,
conditions on a, accounting for exclusions) were performed correctly, but the answer contains an
inaccuracy.

Comparison with the correct solution
Reference answer: a € [-2;-1) U (-1;1) U (1;2].

The student obtained the same intermediate boundaries -2 and 2, and correctly excluded a = 41, but
missed the part [-2;-1) in the final answer. Therefore, the method is correct, but a computational
(descriptive) slip in combining the results led to an incomplete answer.

Final score
[Score: 2 points]

Justification of the score
According to the criteria:

e All key steps of the solution (finding roots, domain of permissible values, conditions on the
parameter, exclusion of boundary values) were performed correctly.

* The final answer is incorrect due to a computational/descriptive error when combining the intervals.

* The approach is mathematically correct, but the result is inaccurate.

This corresponds to the 2-point criterion: "An interval of the set of parameter values is obtained
through correct reasoning, possibly including/excluding boundary points, but the overall answer is

incorrect due to a computational error.”

Recommendations
* Be more careful when combining intervals and check that no sections have been dropped.

e After obtaining the conditions on the parameter, explicitly write down all three ’pieces’ and only
then combine them, excluding the single points.

B.3.3 Response from Qwen 2.5 VL 32B (Score: 4 - Overestimated)

Analysis of the solution
Step 1: Forming the system of equations The student correctly understands that for the initial
equation /3x2 + 2ax + 1 =72 +ax + 1, two conditions must be met:

1. 22+ ax+1>0 (since the square root is defined only for non-negative values).

2. 322 +2azx+ 1= (2® +ax+1)? (the main equation).
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This approach is correct, and the student correctly transforms the equation:
32 + 2az + 1 = z* + 2a2® + (a® + 2)2° + 2az + 1.
Then, they combine like terms and obtain:
z* 4 2az” + (a*-1)2” = 0.
Next, the student correctly factorizes this equation:
2% (2% + 2az + (a*-1)) = 0.
From this, they find the roots:
=0 and z°+ 2az+ (a’-1) =0.
For the quadratic equation z” + 2ax + (a®-1) =0, the student finds the roots:
r=-a+1 and z=-a-1.

Thus, the student correctly finds three roots: x =0, x =-a+ 1, and =z = -a-1.

Step 2: Analysis of the conditions for distinct roots The student recognizes that for the
equation to have three distinct roots, these roots must be different. They check the cases where the
roots coincide:

1. =0 and x =-a+ 1: This is possible if ~-a+1=0=a=1.
2. x=0 and x = -a-1: This is possible if -a-1=0=a = -1.

3. z=-a+1 and x = -a-1: This is possible if -a+ 1 = -a-1, but this is impossible as it leads to
a contradiction.

Step 3: Verifying the condition 224+ax+1>0 The student checks the condition z2+az+1> 0
for each root:

1. For =0: 2°+ax+1=1>0 is always met.

2. For z =-a+1: 22 +ar+1=(-a+1)?+a(-a+1)+1=0a*2a+1-a>+a+1=-a+2. This is
non-negative if -a4+2>0=a < 2.

3. For z =-a-1: 2® +azx+1 = (-a-1)®> +a(-a-1) +1 = a® + 2a + 1-a*-a+1 = a+2. This is non-negative
if a+2>0=a>-2.

Step 4: Combining the conditions The student correctly combines all the obtained conditions:
* a#1 and a # -1 (for distinct roots).
e <2 and a > -2 (to satisfy the condition 22 +az+1 >0).

Thus, the student obtains:
a€[-2,-1)U(-1,1)U(1,2].

Comparison with the correct solution
The correct solution and the student’s solution completely coincide in the answer:

a€[-2,-1)U(-1,1)U(1,2].
The student correctly performed all the key steps:
1. Transforming the original equation.
2. Finding the roots.
3. Analyzing the conditions for distinct roots.
4. Verifying the condition 22 +axr+1 > 0.

5. Combining all the obtained conditions.

Final score
[Score: 4 points]
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Justification of the score

The student justifiably obtained the correct answer by correctly performing all the key steps of the
solution. All intermediate results are correct, the boundary points are handled correctly, and all
possible cases are considered. The solution method fully complies with the mathematical requirements
of the problem, and the answer completely matches the correct solution.

Recommendations

The student’s solution contains no errors and requires no corrections. However, the student could
improve the presentation by making it more detailed and structured, so that readers can better follow
their reasoning. For example, they could explain in more detail why the roots coincide when a =1 or
a = -1, and why these values are excluded from the answer.

94



