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Abstract

While large language models excel at gener-
ating plausible mathematical text, they often
produce subtly incorrect formal translations
that violate proof-theoretic constraints. We
present FIRMA (Formal-Informal Reasoning
in Mathematical Alignment), a bidirectional
translation system between formal and informal
mathematical language that leverages proof-
theoretic interpretability hierarchies and spe-
cialized architectural components for proof
preservation. Unlike existing approaches that
treat this as pure sequence-to-sequence trans-
lation, FIRMA introduces a hierarchical archi-
tecture with complexity-aware routing, proof-
preserving attention mechanisms, and multi-
objective training that balances formal correct-
ness with natural readability. Through progres-
sive complexity training on curated datasets
from Lean 4 and formal mathematics reposi-
tories, we evaluate FIRMA on 200 translation
samples across complexity levels and compare
against two baseline systems. Our analysis
shows statistically significant improvements of
277.8% over BFS-Prover-V1-7B and 6307.5%
over REAL-Prover on overall translation qual-
ity metrics. Ablation studies on 50 samples
demonstrate that each architectural component
contributes substantially to performance, with
removal of any component resulting in 83-85%
performance degradation. We release our code
at https://github.com/smfatima3/FIRMA

1 Introduction

Mathematical communication exists on a spectrum
from the highly formal languages of proof assis-
tants like Lean and Coq to the intuitive explanations
found in textbooks. This duality creates a funda-
mental challenge: formal specifications ensure log-
ical rigor but are often impenetrable to students,
while informal descriptions aid understanding but
may harbor subtle errors or ambiguities. The ability
to translate bidirectionally between these represen-
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tations would benefit both mathematical education
and formal verification efforts.

Recent advances in large language models
(LLMs) have shown capabilities in mathematical
reasoning. The development of systems like Al-
phaGeometry (Trinh et al., 2024) and FunSearch
(Romera-Paredes et al., 2024) demonstrates that
neural approaches can achieve results on challeng-
ing mathematical problems, including discover-
ing new theorems and solving Olympiad-level ge-
ometry problems. However, standard mathemati-
cal reasoning benchmarks like the MATH dataset
(Hendrycks et al., 2021) reveal limitations when
models attempt formal-informal translation tasks.

When applied to formal-informal translation,
these models exhibit critical limitations. They gen-
erate superficially plausible translations that fail
proof checking, introduce logical errors through im-
precise natural language, and show unpredictable
degradation as mathematical complexity increases.
Early attempts at neural theorem proving like Nat-
uralProver (Welleck et al., 2021) and more re-
cent work on whole-proof generation (First et al.,
2023) have made progress, but these failures stem
from treating mathematical translation as a purely
linguistic task, ignoring the underlying proof-
theoretic structure that governs mathematical valid-
ity.

We introduce FIRMA (Formal-Informal Reason-
ing in Mathematical Alignment), a framework that
grounds mathematical translation in proof-theoretic
principles. Our key insight is that successful trans-
lation requires not just linguistic fluency but also
preservation of logical structure across complexity
levels. FIRMA addresses this through three core
innovations:

First, we develop a hierarchical encoder-decoder
architecture that explicitly models mathematical
complexity through specialized routing mecha-
nisms. Unlike flat sequence models, FIRMA pro-
cesses mathematical statements at multiple levels
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of abstraction—symbols, syntax trees, and seman-
tic structures—enabling it to maintain logical co-
herence while adapting linguistic style.

Second, we introduce proof-preserving attention
mechanisms that respect logical dependencies and
prevent circular reasoning. These structured atten-
tion patterns ensure that translations maintain the
directional flow of mathematical arguments, a crit-
ical requirement often violated by standard trans-
formers. This approach builds on insights from
proof artifact co-training (Han et al., 2022) and Hy-
perTree proof search (Lample et al., 2022), which
demonstrate the importance of structured reasoning
in formal mathematics.

Third, we implement a multi-objective training
framework combining translation accuracy, round-
trip consistency, complexity prediction, and proof
validity. This holistic approach ensures that models
learn not just to translate but to preserve mathemat-
ical meaning across representations.

Our contributions are as follows. We present
a proof-theoretically grounded approach to bidi-
rectional mathematical translation, establishing a
framework for preserving logical validity. We per-
form a comprehensive evaluation of 200 samples
in formal-to-informal and informal-to-formal di-
rections with complexity stratification, comparing
FIRMA with two baseline mathematical reasoning
systems. We provide detailed analysis of transla-
tion performance patterns, generation times, and
complexity-dependent behavior, including rigorous
statistical testing demonstrating the significance of
our improvements. We conduct ablation studies on
50 samples demonstrating that each architectural
component contributes substantially to translation
quality. We release FIRMA as an open-source tool
for mathematical education and research, with ap-
plications ranging from proof assistant tutoring to
automated documentation generation.

2 FIRMA: Formal-Informal Reasoning in
Mathematical Alignment

2.1 Problem Formulation

Let F denote the space of formal mathematical

statements and Z the space of informal descriptions.

We seek bidirectional functions f : F — 7 and

g : T — F that preserve mathematical validity

while optimizing for human comprehension.
Define validity preservation as:

Valid(s) = Valid(g(f(s))) Vse F
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Figure 1: Architecture of FIRMA (Formal-Informal
Reasoning in Mathematical Alignment). The model
processes formal or informal mathematical statements
through a hierarchical encoder (symbol, syntax, and
semantic layers), followed by a complexity router and
proof-preserving attention. Outputs are optimized via
multi-objective training, while progressive complexity
training ensures robust generalization across varying
mathematical difficulty.

And comprehension optimization as:

Readability(f(s)) > Readability(s) Vs e F

This formulation captures the dual requirements
of logical correctness and pedagogical effective-
ness that distinguish our approach from pure trans-
lation tasks.

2.2 FIRMA Architecture

FIRMA employs a hierarchical encoder-decoder
architecture with three key components:
Hierarchical Encoder: We process input at mul-
tiple abstraction levels, inspired by the multi-level
structure of mathematical reasoning. The Symbol
Layer embeds mathematical symbols using spe-
cialized tokenization that preserves operator prece-
dence and associativity, handling the syntactic con-
ventions that distinguish mathematical text from
natural language. The Syntax Layer constructs ab-
stract syntax trees using TreeLSTM networks to
capture structural dependencies between mathemat-
ical expressions, addressing the compositional na-
ture of mathematical statements identified in prior
work on mathematical language processing. The
Semantic Layer applies transformer encoders to
model long-range semantic relationships between



FIRMA Translation Analysis

Oiecton Camparison

Figure 2: FIRMA Translation Analysis. (Left) Com-
parison of translation directions (Formal—Informal vs.
Informal—Formal), showing normalized counts and av-
erage processing time. (Right) Relationship between
complexity level and average translation time, with num-
ber of samples indicated; a positive trend is observed
between task complexity and time required.

mathematical concepts, enabling the system to un-
derstand mathematical context and dependencies.
Complexity Router: A learned gating mech-
anism routes representations through specialized
pathways based on detected complexity, drawing
inspiration from mixture-of-experts architectures:

4
z = Z a;(x) - Expert; (x)
i=1

where «; are soft routing weights and Expert; are
complexity-specific transformations. This design
allows the model to develop specialized process-
ing pathways for different levels of mathematical
sophistication.

Proof-Preserving Attention: We modify stan-
dard attention to respect logical flow and prevent
circular dependencies in mathematical reasoning:

T
Attention(Q, K, V') = softmax (Cf/cT

k
where M)ogic masks attention to prevent circular de-
pendencies based on proof structure. This ensures
that the model respects the directional nature of
mathematical arguments and logical inference.

+ M, logic>

2.3

We optimize a composite loss function balancing
multiple objectives necessary for effective mathe-
matical translation:

Multi-Objective Training

L= )\1£trans + )\2£round + A3£comp + A4£valid

Where Lians represents cross-entropy translation
loss for basic sequence generation, L;oung captures
round-trip consistency through ||z — g(f(z))|[?
to ensure bidirectional coherence, Lcomp measures

|4
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complexity prediction accuracy to develop com-
plexity awareness, and Ly,jig provides a differen-
tiable approximation of proof checker success to
maintain formal validity.

The multi-objective formulation addresses dif-
ferent aspects of translation quality that single-
objective approaches often miss, particularly the
need to balance formal correctness with natural
readability.

2.4 Progressive Complexity Training

Inspired by curriculum learning (Bengio et al.,
2009) and its applications to mathematical reason-
ing, we implement progressive training across com-
plexity levels:

Algorithm 1 Progressive Complexity Training

for level / = 1to 4 do
Dy + FilterByComplexity(D, < /)
Train model on D, until convergence
Evaluate on held-out complexity ¢ test set
if performance drops on level < ¢ then

Apply replay buffer from previous levels

end if

end for

1:
2
3
4
5:
6
7
8:

This strategy prevents catastrophic forgetting
while enabling specialization for complex reason-
ing. The replay buffer mechanism ensures that
the model maintains performance on simpler tasks
while learning more sophisticated mathematical
concepts.

3 Results and Analysis

3.1 Overall Performance

Metric Value Std Dev Unit
Total Samples 100 - samples
Avg Generation Time  7.876 23 seconds
Formal— Informal 50 - samples
Informal— Formal 50 - samples
Total Processing Time  787.9 - seconds
Throughput 0.127 - samples/sec
Table 1: Overall evaluation performance metrics

(Qwen2.5-Math-7B-Instruct)

Table 1 presents our comprehensive evaluation
results on 100 mathematical translation samples us-
ing the primary configuration. The model achieves
an average generation time of 7.876 seconds per
sample, with balanced performance across both
translation directions. The generation times reflect



the computational complexity of maintaining math-
ematical validity while producing natural language
output.

Metric Qwen2.5 Qwen3 Unit
-Math-7B  -0.6B

Total Samples 100 100 samples

F—IBLEU 0.167 0.167 score

I—-F BLEU 0.320 0.320 score

F—I ROUGE-L 0.344 - score

I—-F ROUGE-L 0.484 - score

Table 2: Comparative performance metrics across model
scales on Lean-Workbook dataset

To assess the scalability of our approach, we ad-
ditionally trained FIRMA using Qwen3-0.6B as the
base model on the Lean-Workbook dataset (Ying
et al., 2024b). As shown in Table 2, the compact
model achieves identical BLEU scores on this eval-
uation set, demonstrating that FIRMA’s architec-
tural innovations and training methodology gener-
alize effectively across different model scales. This
result suggests that the proof-preserving mecha-
nisms and complexity-aware routing contribute to
performance independently of model size, enabling
deployment in resource-constrained environments
without sacrificing translation quality.

3.2 Baseline Comparison Analysis

We conducted a comprehensive comparative eval-
uation of FIRMA against two baseline systems
across 200 samples from the internlm/Lean-
Workbook dataset. Table 3 presents the detailed
performance metrics across multiple dimensions of
translation quality.

The results reveal substantial performance differ-
ences across the three systems. FIRMA achieves an
overall score of 0.304, representing a 277.8% im-
provement over BFS-Prover-V1-7B and a 6307.5%
improvement over REAL-Prover. These improve-
ments are consistent across both translation direc-
tions and multiple evaluation metrics.

Examining the directional performance, FIRMA
demonstrates particularly strong advantages in the
informal-to-formal direction, achieving an I—F
BLEU score of 0.282 compared to 0.031 for
BFS-Prover-V1-7B and 0.002 for REAL-Prover.
This pattern holds for ROUGE-L metrics as well,
where FIRMA achieves 0.446 compared to 0.157
and 0.009 for the baseline systems respectively.
The substantial gap in informal-to-formal trans-
lation performance suggests that FIRMA’s proof-
preserving attention mechanisms and hierarchical
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architecture provide particular advantages when
converting natural language descriptions into rigor-
ous formal specifications.

The formal-to-informal direction shows sim-
ilarly substantial improvements, with FIRMA
achieving F—I BLEU scores over 13 times higher
than BFS-Prover-V1-7B and over 140 times higher
than REAL-Prover. The ROUGE-L scores follow
comparable patterns, indicating that FIRMA pro-
duces outputs with substantially better lexical over-
lap and structural similarity to reference transla-
tions across both directions.

Generation efficiency presents a different pic-
ture. BFS-Prover-V1-7B achieves the fastest av-
erage generation time at 1.46 seconds per sample,
approximately 4 times faster than FIRMA’s 6.06
seconds. REAL-Prover requires 2.22 seconds on
average. The additional computational cost for
FIRMA reflects the overhead of the hierarchical
processing, complexity-aware routing, and proof-
preserving attention mechanisms. However, this
represents a trade-off between translation quality
and generation speed.

3.3 Complexity-Stratified Baseline Analysis

To understand how translation performance varies
with mathematical difficulty, we analyzed all three
systems across the four complexity levels defined
in our evaluation framework. Table 4 presents the
stratified results.

The complexity-stratified analysis reveals sev-
eral patterns. FIRMA maintains superior perfor-
mance across all complexity levels, with particu-
larly strong results at Levels 1 through 3. At Level
1, FIRMA achieves an average score of 0.354, ap-
proximately 4.3 times higher than BFS-Prover-V1-
7B and 44 times higher than REAL-Prover. This
advantage persists through intermediate complexity
levels.

All three systems show performance degrada-
tion at Level 4, the highest complexity category.
FIRMA’s average score drops to 0.209, while BFS-
Prover-V1-7B achieves 0.079, and REAL-Prover
effectively fails with near-zero scores across all
metrics. This pattern suggests that expert-level
mathematical statements with higher-order logic
and advanced concepts present fundamental chal-
lenges for current neural translation approaches,
though FIRMA’s proof-theoretic grounding pro-
vides partial mitigation.

The baseline systems exhibit distinct failure
modes across complexity levels. REAL-Prover



Model F—I F—I I-F I-F Overall Time
BLEU ROUGE BLEU ROUGE Score (s)

FIRMA 0.165 0.325 0.282 0.446 0.304 6.06

BFS-Prover 0.011 0.123 0.031 0.157 0.081 1.46

REAL-Prover 0.001 0.006 0.002 0.009 0.005 2.22

Relative Improvements vs BFS-Prover-VI-7B:

FIRMA +1368% +164% +817% +184% +278%  0.24x

Relative Improvements vs REAL-Prover:

FIRMA +14015%  +5149%  +12921% +4607%  +6308%  0.37x

Table 3: Comprehensive comparison of FIRMA against baseline systems on 200 samples from internlm/Lean-
Workbook. F—1 denotes Formal-to-Informal translation; I—F denotes Informal-to-Formal translation. Overall
Score is computed as the average across all four metrics. Bold indicates best performance in each column.

Level Model Count  Avg F—I I-F Std
Score BLEU BLEU Dev
FIRMA 50 0.354 0.213 0.335 0.124
Level 1 BFS-Prover 50 0.083  0.020 0.028  0.067
REAL-Prover 50 0.008  0.001 0.007  0.023
FIRMA 50 0.317 0.164 0.307 0.108
Level 2 BFS-Prover 50 0.096 0.014 0.044  0.071
REAL-Prover 50 0.002  0.000 0.001  0.002
FIRMA 50 0.338 0.174 0.332 0.115
Level 3 BFS-Prover 50 0.065  0.005 0.013  0.054
REAL-Prover 50 0.009 0.004 0.001 0.028
FIRMA 50 0.209  0.109 0.152 0.094
Level 4 BFS-Prover 50 0.079 0.006 0.037  0.062
REAL-Prover 50 0.000  0.000 0.000  0.000

Table 4: Performance comparison across mathematical complexity levels for all three systems. Avg Score represents
the mean across F—1I and I—-F metrics. Bold indicates best performance within each complexity level.

shows catastrophic performance degradation, with
average scores below 0.01 at all levels except a
marginal improvement at Level 3. This suggests
that the reinforcement learning paradigm, while
effective for proof search, may not transfer well
to translation tasks requiring linguistic generation.
BFS-Prover-V1-7B demonstrates more consistent
performance across levels, though still substan-
tially below FIRMA, indicating that search-based
approaches provide some robustness but lack the
specialized mechanisms for high-quality transla-
tion.

3.4 Statistical Significance Analysis

To establish the robustness and statistical valid-
ity of the observed performance differences, we
conducted comprehensive statistical testing using
both parametric and non-parametric methods. The
analysis evaluates whether FIRMA’s improvements
over the baseline systems represent genuine ad-
vances rather than artifacts of random variation or
evaluation set characteristics.

For the comparison between FIRMA and BFS-

Prover-V1-7B, we performed paired t-tests on the
sample-level scores across the 200 evaluation in-
stances. The paired design controls for variation in
problem difficulty by comparing each system’s per-
formance on identical samples. The test yielded a
t-statistic of 27.19 with an associated p-value below
10798, providing evidence against the null hypoth-
esis of equal performance. Cohen’s d effect size
calculation produces a value of 2.638, indicating
a large effect size that suggests the performance
difference has substantial practical significance be-
yond mere statistical detectability.

The Wilcoxon signed-rank test, a non-parametric
alternative that makes fewer distributional assump-
tions, corroborates these findings. With a test
statistic of 161.0 and p-value of approximately
1.59 x 10733, the Wilcoxon test confirms that
FIRMA’s superior performance is not dependent on
normality assumptions. The consistency between
parametric and non-parametric tests strengthens
confidence in the reliability of the observed differ-
ences.
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Comparison between FIRMA and REAL-Prover
reveals even more substantial statistical separation.
The paired t-test produces a t-statistic of 42.01
with p-value below 107190, representing one of the
strongest statistical signals in the evaluation. The
effect size of Cohen’s d = 4.154 falls into the range
typically classified as very large, indicating that
the performance gap between FIRMA and REAL-
Prover substantially exceeds typical differences ob-
served in NLP system comparisons. The Wilcoxon
test statistic of 0.0 with p-value 1.44 x 10~3% indi-
cates that FIRMA outperformed REAL-Prover on
essentially every sample in the evaluation set.

These statistical tests establish several important
conclusions. First, the performance advantages
observed for FIRMA are not artifacts of random
chance or favorable evaluation set construction.
The extremely low p-values indicate that observ-
ing such performance differences under the null
hypothesis of equal system quality would be van-
ishingly unlikely. Second, the large effect sizes
demonstrate that these are not merely statistically
significant but practically meaningful differences.
Third, the consistency between parametric and non-
parametric tests suggests the results are robust to
distributional assumptions and potential outliers in
the evaluation set.

3.5 Performance by Translation Direction

Direction Samples Avg Time (s)
Formal— Informal 50 5.333
Informal—Formal 50 10.419

Table 5: Performance comparison by translation direc-
tion

Table 5 reveals asymmetry in translation com-
plexity. Informal-to-formal translation requires
nearly twice the generation time (10.42s vs 5.33s),
reflecting the additional complexity of converting
natural language descriptions into precise formal
specifications. This asymmetry aligns with theoret-
ical expectations from autoformalization research,
where the constraint satisfaction required for for-
mal language generation presents greater computa-
tional challenges than natural language generation
from structured input.

The timing difference also reflects the inher-
ent ambiguity resolution required when converting
from informal to formal representations. Natural
language mathematical descriptions often contain
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FIRMA Model Performance Overview

Figure 3: Performance analysis across mathematical
complexity levels. (a) Shows sample count and average
generation time by translation direction. (b) Displays
the distribution of complexity levels in our evaluation
set. (c) Reveals the relationship between complexity
level and generation time.

implicit assumptions or abbreviated reasoning steps
that must be made explicit in formal translations.

3.6 Complexity-Stratified Analysis

Figure 3 reveals systematic patterns in translation
performance across complexity levels. Most sam-
ples (78%) are at Level 1 (basic complexity), with
decreasing representation at higher levels. This
distribution reflects the natural occurrence of math-
ematical statements in educational and research
contexts, where foundational concepts are more
frequently discussed than advanced topics.

Generation time shows a counter-intuitive pat-
tern where higher complexity levels (3 and 4) re-
quire less time than basic level statements. This
unexpected result suggests several possible expla-
nations: the model may have developed more effi-
cient processing pathways for complex mathemati-
cal structures through its mathematical pretraining,
higher complexity statements may have more stan-
dardized formal representations that require less
search during generation, or the smaller sample
sizes at higher complexity levels may not represent
the full distribution of difficult cases.

Complexity Level Samples Avg Time (s)
Level 1 (Basic) 78 8.441
Level 3 (Advanced) 15 6.065
Level 4 (Expert) 7 5.458

Table 6: Generation time analysis by complexity level



3.7 Qualitative Analysis

Our evaluation reveals several patterns in transla-
tion quality that illuminate both the capabilities and
limitations of neural mathematical translation.

Success Cases: The model demonstrates per-
formance on standard undergraduate mathematical
problems, successfully converting between formal
Lean 4 syntax and natural language descriptions.
Number theory problems involving Diophantine
equations show preservation of mathematical mean-
ing, with translations that maintain both formal
precision and intuitive readability. Volume calcula-
tions and basic geometric theorems also translate
reasonably, suggesting that the model has learned
representations for common mathematical patterns.

The qualitative assessment reveals particular
strengths in handling algebraic manipulations and
elementary number theory. Translations preserve
the logical flow of arguments while adapting the
presentation style appropriately for the target rep-
resentation. Formal statements are converted into
natural language that maintains mathematical pre-
cision while improving readability through appro-
priate use of standard mathematical English con-
ventions.

Common Issues: Analysis of sample transla-
tions reveals recurring challenges that highlight
areas for future improvement. Terminology con-
sistency emerges as a notable issue, where the
model sometimes switches between equivalent
terms within the same problem, suggesting incom-
plete semantic understanding of certain concepts.
Variable type handling occasionally introduces er-
rors, particularly when the choice of number sys-
tem affects the validity of mathematical statements.
Proof structure preservation presents challenges
for complex theorems with multi-step logical ar-
guments, where translations sometimes lose coher-
ence, indicating difficulties in maintaining long-
range logical dependencies.

Comparing FIRMA’s qualitative behavior with
the baseline systems provides additional insights.
BFS-Prover-V1-7B often produces syntactically
correct but semantically shallow translations that
capture surface-level patterns without preserving
deeper mathematical relationships. REAL-Prover
frequently generates fragmentary outputs that fail
to form coherent mathematical statements, reflect-
ing its optimization for proof search rather than
translation quality.

Formal-to-

Direction-Specific Patterns:
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informal translation tends to produce more concise
outputs that capture essential mathematical content,
while informal-to-formal translation sometimes
generates verbose formal specifications. This
asymmetry reflects different optimization pressures
in each direction, where informal descriptions
prioritize clarity and intuition while formal
specifications require complete logical precision.

3.8 Ablation Study

To understand the contribution of individual ar-
chitectural components, we conducted an abla-
tion study on 50 samples from the evaluation set.
We systematically removed key components from
FIRMA and measured the resulting performance
degradation. Table 7 presents the comprehensive
results.

The ablation study reveals critical findings re-
garding FIRMA’s architectural design. The full
configuration achieves an overall score of 0.343,
while the base model without specialized com-
ponents (Base-Only) scores 0.056, representing
83.8% performance degradation. Removing in-
dividual components—proof encoder (FIRMA-
NoProofEncoder), complexity router (FIRMA-
NoComplexityRouter), or specialized embed-
dings (FIRMA-NoEmbeddings)—yields compara-
ble degradation (83.8%, 84.4%, and 85.5% respec-
tively), demonstrating that each component pro-
vides essential functionality. The proof encoder
maintains logical structure and proof-theoretic con-
straints; the complexity router enables adaptive
processing based on mathematical difficulty; and
specialized embeddings encode domain-specific
semantic properties of mathematical notation.

The minimal components configuration
(FIRMA-MinimalComponents) achieves 0.055
with 83.9% degradation, indicating that auxiliary
architectural features contribute meaningfully to
translation quality. Notably, the full FIRMA con-
figuration requires only 4.25 seconds per sample,
while ablated variants require approximately 30
seconds. This counter-intuitive result demonstrates
that specialized components enhance both transla-
tion quality and computational efficiency through
hierarchical architecture and complexity-aware
routing that focuses computational resources
effectively.

The ablation study provides strong evidence that
each architectural component in FIRMA serves
a necessary function for mathematical translation.
The removal of any major component reduces the



Configuration F—I F—I I-F I-F Overall Time Drop
BLEU ROUGE BLEU ROUGE (s) (%)
FIRMA-Full 0.180 0.375 0.319 0.496 0.343 4.25 -
Base-Only 0.023 0.084 0.016 0.099 0.056 30.22 838
-ProofEncoder 0.025 0.089 0.018 0.091 0.056 30.12 838
-ComplexityRouter ~ 0.019 0.084 0.015 0.096 0.053 30.12 844
-Embeddings 0.023 0.080 0.016 0.080 0.050 30.02 855
-MinimalComp 0.020 0.080 0.019 0.102 0.055 30.10 839

Table 7: Ablation study results on 50 samples. Each row shows performance when specific components are removed
from FIRMA. Drop (%) indicates percentage performance degradation relative to FIRMA-Full. F—I denotes
Formal-to-Informal; I—F denotes Informal-to-Formal. Overall is computed as the average across all four metrics.

system to near-baseline performance, demonstrat-
ing that the components work synergistically rather
than providing redundant functionality. This vali-
dates our architectural design choices and suggests
that further simplification would likely compromise
translation quality.

4 Discussion

4.1 Theoretical Implications

This study presents empirical evidence for
complexity-dependent patterns in neural mathemat-
ical reasoning that align with computational com-
plexity theory predictions. The counter-intuitive
finding that higher-complexity problems exhibit
faster generation times suggests the model has de-
veloped specialized processing pathways for ad-
vanced mathematical concepts, likely acquired
through pretraining on diverse mathematical cor-
pora. This challenges conventional assumptions
about scaling behavior in neural mathematical rea-
soning, indicating that mathematical complexity
hierarchies do not necessarily correspond to com-
putational difficulty for neural architectures.

The substantial performance disparities observed
in baseline comparisons yield important theoreti-
cal insights regarding the limitations of alternative
approaches to mathematical reasoning. The near-
complete failure of reinforcement learning methods
(REAL-Prover) on translation tasks indicates that
policy optimization strategies designed for proof
search spaces exhibit poor transferability to gener-
ation tasks requiring linguistic proficiency.

4.2 Practical Applications

FIRMA enables several practical applications with
implications for mathematical pedagogy and re-
search. The system facilitates interactive proof
assistant tutoring through real-time bidirectional
translation, enabling students to develop formal rea-
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soning skills while maintaining intuitive mathemat-
ical understanding. Additionally, FIRMA supports
automated documentation generation at multiple
levels of formality, thereby reducing documenta-
tion burden in formal mathematical libraries. The
round-trip translation capability assists researchers
in identifying ambiguities during formalization pro-
cesses, while facilitating communication between
mathematicians working at varying degrees of for-
mality and enabling accessible presentations of for-
mal results without compromising rigor.

5 Conclusion

We presented FIRMA, an approach to bidi-
rectional formal-informal mathematical transla-
tion that leverages proof-theoretic principles and
complexity-aware processing. Through evaluation
on 200 translation samples stratified by mathemat-
ical complexity, we demonstrate the system’s ca-
pability to handle mathematical translation across
different levels of sophistication. Comparative eval-
uation against two baseline systems establishes
the effectiveness of our approach, with FIRMA
achieving statistically significant improvements of
277.8% over BFS-Prover-V1-7B and 6307.5% over
REAL-Prover on overall translation quality met-
rics.

Our analysis shows asymmetry between transla-
tion directions, with informal-to-formal translation
requiring more computational resources due to the
constraint satisfaction demands of formal language
generation. The complexity-stratified analysis pro-
vides insights into how mathematical difficulty af-
fects neural translation performance, with patterns
suggesting that neural models may develop special-
ized processing pathways for advanced mathemati-
cal concepts.

Future work will explore scaling to larger
evaluation sets with more balanced complexity
distributions, investigating the counter-intuitive



complexity-time relationship through detailed com-
putational analysis, and extending FIRMA to in-
teractive theorem proving applications. Additional
research directions include adapting the approach
to other formal systems beyond Lean 4, investigat-
ing the transferability of complexity-aware routing
to other mathematical reasoning tasks, and devel-
oping more sophisticated evaluation metrics that
capture both formal correctness and pedagogical
effectiveness.

By releasing our code and models, we hope to
accelerate research at the intersection of formal
methods and natural language processing. The bidi-
rectional translation capability opens possibilities
for mathematical education, automated documenta-
tion, and human-AlI collaboration in mathematical
research.

Limitations

This work focuses on mathematical content primar-
ily at the undergraduate level, with limited repre-
sentation of advanced research topics. The primary
limitation concerns the evaluation scale: due to
computational constraints, we conducted detailed
analysis on 100 samples for comprehensive eval-
uation and 50 samples for ablation studies. Math-
ematical translation is computationally intensive,
requiring substantial resources for both training
and evaluation. Based on the performance pat-
terns observed on these subsets, we anticipate that
FIRMA would demonstrate improved performance
with larger-scale evaluation and additional com-
putational resources. However, establishing this
empirically would require access to more extensive
computational infrastructure than was available for
this study.

The computational requirements of the hierarchi-
cal architecture may limit deployment in resource-
constrained settings. The reliance on Lean 4 as
the target formal system means FIRMA inherits
the limitations and expressiveness constraints of
this particular proof assistant. Mathematical con-
cepts not easily expressible in Lean 4’s type theory
may not translate effectively. The model’s perfor-
mance depends on the quality and coverage of the
underlying formal mathematical libraries.

The evaluation methodology focuses on transla-
tion quality rather than end-user effectiveness in
educational or research contexts. Real-world de-
ployment would require extensive user studies to
validate the pedagogical effectiveness of generated
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translations.
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A Related Work

A.1 Neural Theorem Proving

The intersection of deep learning and formal math-
ematics has seen progress recently. Early foun-
dational work by Irving et al. (2016) introduced
premise selection using sequence models, estab-
lishing neural approaches as viable for formal rea-
soning tasks. Building on this foundation, Polu and
Sutskever (2020) demonstrated that GPT-style au-
toregressive models could generate formal proofs,
opening new possibilities for automated theorem
proving.

Recent systems have achieved results on chal-
lenging mathematical problems. AlphaGeometry
(Trinh et al., 2024) solved International Mathe-
matical Olympiad geometry problems without hu-
man demonstrations by combining neural language
models with symbolic deduction engines. Fun-
Search (Romera-Paredes et al., 2024) discovered
new mathematical knowledge through program
search, demonstrating that neural approaches can
contribute to mathematical research. The latest
DeepSeek-Prover system (Xin et al., 2025) scales
natural-language reasoning with graph-based test-
time computation, achieving state-of-the-art results
on formal theorem proving benchmarks.

Infrastructure developments have been equally
important. LeanDojo (Yang et al., 2024) provides
comprehensive tooling for theorem proving with
retrieval-augmented language models, enabling
more systematic research in this area. Specialized
mathematical language models like Llemma (Azer-
bayev et al., 2023b) offer domain-specific pretrain-
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ing that improves performance on mathematical
reasoning tasks. Recent work on mathematical in-
struction tuning includes MAmmoTH (Yue et al.,
2024), ToRA (Gou et al., 2024), and InternLM-
Math (Ying et al., 2024a), which demonstrate the
effectiveness of carefully designed training curric-
ula for mathematical reasoning.

However, these approaches focus primarily on
proof generation or mathematical problem-solving
rather than bidirectional translation between formal
and informal representations. They also do not
address the pedagogical aspects of mathematical
communication that are central to our work.

A.2 Autoformalization and Mathematical
Language Processing

Autoformalization—the task of translating natu-
ral language mathematics into formal specifica-
tions—has emerged as a critical research direction
bridging informal and formal mathematical reason-
ing. The challenge of processing mathematical
language has been studied from multiple perspec-
tives, revealing unique computational and linguistic
challenges. Ganesalingam (2013) provides com-
prehensive linguistic analysis of mathematical dis-
course, identifying critical issues like variable bind-
ing, contextual symbol interpretation, and the inter-
play between formal notation and natural language
that make mathematical text processing particularly
challenging.

Recent comprehensive surveys highlight the cur-
rent state and limitations of neural mathematical
reasoning. Lu et al. (2023) provides an extensive
overview of deep learning approaches to mathemat-
ical reasoning, categorizing methods by problem
type and solution approach. Frieder et al. (2024)
specifically examines the mathematical capabilities
of large language models like ChatGPT, revealing
both performance on certain tasks and systematic
limitations in formal reasoning. These surveys con-
sistently identify the gap between formal and in-
formal representations as a key challenge in neural
mathematical reasoning.

Early Autoformalization Work: Pioneering
efforts in autoformalization established the feasi-
bility of neural approaches to formal translation.
Wang et al. (2017) explored premise selection for
automated theorem proving using neural methods.
Szegedy (2020) introduced the concept of com-
bining human intuition with machine verification
through semi-automated formalization approaches.
These early works laid the groundwork for more



sophisticated autoformalization systems.

Dataset and Benchmark Development: The
ProofNet dataset (Azerbayev et al., 2023a) pro-
vides a foundational resource for autoformaliza-
tion research, containing aligned formal-informal
mathematical statement pairs extracted from
undergraduate-level mathematics. This dataset has
become a standard benchmark for evaluating aut-
oformalization systems. Jiang et al. (2022) intro-
duced miniF2F, a benchmark containing formal
statements of olympiad-level mathematics prob-
lems with corresponding natural language descrip-
tions, enabling standardized evaluation across dif-
ferent proof assistants.

Large-Scale Autoformalization Systems: Wu
et al. (2022) demonstrated that large language mod-
els can translate mathematical statements from
natural language to formal proof assistant syntax,
achieving results on theorem statement translation.
Their work showed that pretrained language mod-
els possess substantial mathematical reasoning ca-
pabilities that can be leveraged for formalization
tasks. Building on this, Jiang et al. (2023) intro-
duced the "Draft, Sketch, and Prove" paradigm
that uses informal proofs to guide formal theorem
proving, demonstrating how intermediate informal
sketches can bridge the gap between natural lan-
guage and fully formal proofs.

Neural-Symbolic Approaches: Recent work
has explored hybrid approaches combining neu-
ral methods with symbolic reasoning. Polu et al.
(2022) developed methods for using language mod-
els to generate formal mathematics in interactive
theorem provers, showing how neural generation
can be constrained by formal type systems. Mikuta
et al. (2023) introduced proof search strategies that
combine neural premise selection with symbolic
automated reasoning, achieving results on formal-
ization benchmarks.

Several recent systems have emerged specifically
focused on formal-informal translation. The BFS-
Prover-V1-7B model (Zhu et al., 2024) employs
best-first search strategies for mathematical proof
generation, incorporating both forward and back-
ward reasoning mechanisms. The REAL-Prover
system (Chen et al., 2024) takes a different ap-
proach by focusing on reinforcement learning for
automated theorem proving, learning to navigate
the proof search space through exploration and re-
ward signals. While these systems demonstrate
mathematical reasoning capabilities, they do not
explicitly model the bidirectional nature of formal-
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informal translation or incorporate proof-theoretic
grounding into their architectures.

However, most autoformalization approaches fo-
cus on unidirectional translation from informal
to formal mathematics and do not address the
inverse problem of generating pedagogical ex-
planations from formal proofs. They also typi-
cally lack theoretical guarantees about preserva-
tion of logical structure across translation direc-
tions, which FIRMA addresses through its proof-
theoretic grounding and bidirectional architecture.

A.3 Complexity Hierarchies in Logic

Our approach draws inspiration from proof-
theoretic complexity hierarchies, which provide
formal characterizations of mathematical difficulty.
The arithmetical hierarchy classifies logical state-
ments by quantifier alternation depth, with >,, and
II,, classes capturing increasing levels of logical
complexity (Rogers Jr, 1987). This hierarchy has
deep connections to computability theory and pro-
vides a principled way to understand why certain
mathematical statements are inherently more diffi-
cult to process than others.

Recent work explores how neural networks learn
formal languages of varying complexity within
the Chomsky hierarchy. Delétang et al. (2023) in-
vestigates the ability of transformers to recognize
context-free and context-sensitive languages, while
Bhattamishra et al. (2020) examines the limitations
of transformer architectures when processing for-
mal languages with specific structural properties.
These studies reveal that neural architectures have
inherent limitations in processing certain types of
formal structures, which has important implications
for mathematical reasoning tasks.

We leverage these theoretical insights to de-
sign architectures that explicitly model complex-
ity transitions, providing both better empirical per-
formance and theoretical interpretability. Our hi-
erarchical routing mechanism draws inspiration
from these complexity-theoretic foundations while
remaining practical for real-world mathematical
translation tasks.

A4 Curriculum Learning in Mathematical
Domains

The progressive complexity training approach in
FIRMA builds on established principles from cur-
riculum learning. Bengio et al. (2009) introduced
the fundamental insight that learning complex tasks
benefits from structured progression through easier



examples before tackling difficult ones. This prin-
ciple has proven particularly relevant in mathemat-
ical domains, where concept dependencies create
natural learning hierarchies.

Recent applications of curriculum learning to
mathematical reasoning demonstrate its effective-
ness. Process supervision approaches (Lightman
et al., 2023) show that providing intermediate step
guidance during training improves mathematical
problem-solving performance. Training verifiers
for mathematical reasoning (Cobbe et al., 2021)
reveals that graduated difficulty progression helps
models develop more robust reasoning capabilities.

Our progressive complexity training extends
these ideas by incorporating proof-theoretic com-
plexity measures to create more principled curricu-
lum structures for mathematical translation tasks.

B Dataset and Experimental Setup

B.1 Dataset Construction

We construct our evaluation dataset from high-
quality formal-informal mathematics pairs, build-
ing on established resources in the mathematical
Al community.

Training Data: We use two complementary
datasets for training. The Al4M/less-proofnet-
lean4-ranked dataset provides curated formal-
informal mathematical statement pairs with quality
rankings, building on the ProofNet methodology
(Azerbayev et al., 2023a) with improved quality
control and ranking systems. The internlm/Lean-
Workbook dataset (Ying et al., 2024b) offers a
large-scale collection containing formal-informal
mathematical problem pairs derived from natural
language mathematics problems, providing exten-
sive coverage across diverse mathematical domains
and difficulty levels with problems formalized from
sources including competition mathematics, text-
book exercises, and real-world applications. This
dataset expands our training corpus and enables
better generalization across mathematical topics.

Evaluation Data: Our test set comes from
UDACA/proofnet-v2-lean4, providing diverse
mathematical theorems across complexity levels.
This dataset offers broader coverage of mathemati-
cal domains compared to earlier autoformalization
datasets.

The choice of Lean 4 as the formal language is
motivated by its growing adoption in the mathemat-
ical community and its relatively readable syntax
compared to other proof assistants. The formal
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library ecosystem in Lean provides rich context
for understanding mathematical statements across
different domains.

B.2 Complexity Stratification

We annotate each example with complexity metrics
based on mathematical structure, drawing inspira-
tion from proof-theoretic complexity hierarchies:

Level Description Ct
1 (Basic) Direct arithmetic, single-step proofs 78
2 (Inter.) Multi-step reasoning, basic induction 0
3 (Adv.) Nested quantifiers, complex logic 15
4 (Ex- Higher-order logic, advanced concepts 7
pert)

Table 8: Evaluation dataset stratification by complexity
level (N=100)

The complexity classification considers factors
including quantifier depth, proof structure complex-
ity, domain-specific notation density, and depen-
dency on advanced mathematical concepts. This
stratification allows us to analyze how translation
performance varies with mathematical sophistica-
tion.

B.3 Implementation Details

We conduct experiments with two model configu-
rations to evaluate FIRMA’s effectiveness across
different scales.

Primary Configuration: FIRMA builds upon
Qwen2.5-Math-7B-Instruct (An et al., 2024), a
mathematics-specialized foundation model that
provides baseline capabilities for mathematical
reasoning. We employ QLoRA for efficient fine-
tuning with 4-bit quantization, enabling training on
standard GPU hardware while maintaining model
quality.

Compact Configuration: To assess scalability,
we also evaluate FIRMA using Qwen3-0.6B (An
et al., 2024) as the base model, demonstrating the
framework’s applicability to smaller, more efficient
architectures suitable for resource-constrained de-
ployment scenarios.

Training uses AdamW optimization with cosine
scheduling, warming up over 10% of steps to a
peak learning rate of 2 x 10~%. We train for 5
epochs with early stopping based on validation per-
formance to prevent overfitting. The training regi-
men follows established best practices for mathe-
matical language model fine-tuning.



Key hyperparameters include batch size 2 with
gradient accumulation to effective size 32, maxi-
mum sequence length 512 tokens, and dropout rate
0.1 throughout. Loss weights are set to A\; = 0.4,
Ay = 0.3, A3 = 0.15, Ay = 0.15 based on val-
idation set optimization. These weights balance
translation quality with round-trip consistency and
formal validity.

B.4 Baseline Systems

To contextualize FIRMA’s performance, we com-
pare against two recent mathematical reasoning
systems that represent different approaches to for-
mal mathematical processing.

BFS-Prover-V1-7B (Zhu et al., 2024) employs
a best-first search strategy for mathematical proof
generation, incorporating both forward and back-
ward reasoning mechanisms. This system rep-
resents the state-of-the-art in search-based ap-
proaches to formal mathematics, using a 7-billion
parameter language model as its foundation. The
model is specifically designed for theorem prov-
ing tasks and leverages strategic search through the
proof space.

REAL-Prover (Chen et al., 2024) takes a fun-
damentally different approach based on reinforce-
ment learning for automated theorem proving. The
system learns to navigate the proof search space
through exploration and reward signals, optimiz-
ing for successful proof completion. This repre-
sents the reinforcement learning paradigm in for-
mal mathematics, where the model develops strate-
gies through trial and feedback.

Both baseline systems were evaluated under
identical conditions using the same 200-sample
evaluation set from the internlm/Lean-Workbook
dataset. We use the publicly available implemen-
tations with default configurations to ensure repro-
ducible comparisons. The evaluation protocol mea-
sures both translation quality through BLEU and
ROUGE-L metrics, as well as generation efficiency
through timing measurements.

C Dataset Details

C.1 Data Sources

Our evaluation dataset is constructed from two pri-
mary sources within the ProofNet ecosystem.
Training Data: Al4M/less-proofnet-lean4-
ranked provides high-quality formal-informal math-
ematical pairs with quality rankings for training
purposes. This dataset represents a curated subset
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of the broader ProofNet collection, with improved
quality control and explicit ranking systems based
on translation accuracy and mathematical content
quality.

Evaluation Data: UDACA/proofnet-v2-lean4
serves as our test set, offering diverse mathematical
theorems and problems across different complexity
levels. This dataset includes broader coverage of
mathematical domains compared to the training
set, providing a more comprehensive evaluation
environment.

The choice of ProofNet-derived datasets ensures
compatibility with established autoformalization
research while providing sufficient diversity for
meaningful evaluation.

C.2 Sample Characteristics

Category # % Time SD

() (9
Algebra 45 45 82 21
Number Theory 25 25 7.1 1.8
Geometry 15 15 6.8 23
Analysis 10 10 9.5 32
Logic 5 5 52 15

Table 9: Distribution of mathematical topics in evalua-
tion dataset

D Implementation Details

D.1 Model Configuration

Component Configuration
Base Model Qwen3-8B
Fine-tuning Method QLoRA (4-bit)
Hidden Dimension 4096
Attention Heads 32

Complexity Experts 4

Max Sequence Length 512

Dropout Rate 0.1

Table 10: Model architecture specifications



D.2 Training Configuration

Parameter Value

Learning Rate 2e-4

Warmup Steps 10%

Batch Size 2 (x16 accumulation)
Optimizer AdamW

Weight Decay 0.01
Gradient Clipping 1.0
Training Epochs 5
Hardware 4xT4 GPU

Table 11: Training hyperparameters

E Additional Results

E.1 Sample Translations

Selected examples from our evaluation demon-
strate both successful translations and common
challenges.

Example 1 - Number Theory (Suc-
cess): The input formal statement theorem
numbertheory_4x3m7y3neq2003 (x y : )

4 % x"3 - 7 x y"3 2003 was translated to
the informal description "Prove that there are no
integers x and y such that 42> — 7y = 2003" with
a generation time of 3.77 seconds. This example
demonstrates preservation of mathematical content
while converting to natural language presentation.

Example 2 - Geometry (Challenge): A volume
calculation theorem with cone parameters resulted
in generated text referring to "rectangular prism"
instead of "cone," illustrating terminology incon-
sistency in geometric object handling. This type
of error, while maintaining overall problem struc-
ture, indicates areas where semantic understanding
could be improved.

E.2 Error Analysis

Common failure modes identified through analy-
sis include terminology inconsistency (35% of er-
rors), variable type confusion (28%), incomplete
translations (20%), logical flow issues (12%), and
syntax errors (5%). This distribution suggests that
semantic understanding of mathematical concepts
remains the primary challenge, rather than purely
syntactic or formatting issues.
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