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Abstract

Despite the remarkable capabilities of large lan-
guage models (LLMs) across a range of tasks,
mathematical reasoning remains a challenging
frontier. Motivated by the observation that hu-
mans learn more effectively when prompted not
what to think but how to think, we introduce
BloomWise, a cognitively-inspired prompting
technique designed to enhance LLMs’ per-
formance on mathematical problem solving
while making their solutions more explainable.
BloomWise encourages LLMs to generate so-
lutions - in the form of explanations - by pro-
gressing through a sequence of cognitive op-
erations—from basic (e.g., remembering) to
more advanced reasoning skills (e.g., evaluat-
ing)—mirroring how humans build understand-
ing. The process iterates through these lev-
els, halting early if a convergence criterion
is met: specifically, if two or more consec-
utive levels yield the same answer, the solu-
tion from the earliest such level is output; oth-
erwise, the process continues until all levels
are completed. Through extensive experiments
across five popular math reasoning datasets, we
demonstrate the effectiveness of BloomWise.
We also present comprehensive ablation stud-
ies to analyze the strengths of each component
within our system.

1 Introduction

Mathematical reasoning has long been regarded as
a pinnacle of human intellect—demanding abstrac-
tion, logical structure, and creativity. As LLMs
achieve remarkable fluency in natural language,
empowering them with robust mathematical rea-
soning skills is crucial for scientific and technolog-
ical progress. Yet, mastering the complexity and
nuance of mathematical problem solving remains
a formidable challenge for LLMs, motivating new
approaches.

Numerous research efforts have leveraged in-
context learning (ICL) (Brown et al., 2020) to im-
prove the problem-solving capabilities of LLMs.
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Some of the most widely used techniques involve
encouraging the LLM through prompts to develop a
textual rationale with Chain-of-Thought prompting
(Wei et al., 2022) (CoT) or Python functions with
Program-Aided Language Model (Gao et al., 2022)
and Program-of-Thought prompting (Chen et al.,
2022) (PAL or PoT). Each of these methods comes
with its own strengths and limitations: CoT enables
flexible, sequential narrative-style reasoning but of-
ten struggles with precise numerical computation
(Wei et al., 2022), (Lewkowycz et al., 2022), while
code-based approaches like PoT and PAL offer ac-
curate calculations via Python interpreters but lack
the ability to handle unknown variables.

For this reason, research efforts have pivoted
towards integrating multiple methodologies, aim-
ing to identify the most suitable approach for each
specific problem, while harnessing the collective
strengths of various techniques. One such method,
X of Thoughts (Liu et al., 2023), selects from CoT,
PoT, or EoT (Equations of Thought) depending on
the nature of the problem, applies the selected ap-
proach, and verifies the result (iteratively, until a
correct solution is reached).

Building on the integration of diverse rea-
soning strategies—and aiming for more struc-
tured, human-aligned, and explainable mathemat-
ical problem solving in LLMs—we introduce
BloomWise, a novel cognitively inspired prompt-
ing method. BloomWise guides LLMs to generate
solutions in the form of explanations by method-
ically engaging higher-order cognitive functions
in a hierarchical manner, persisting through the
process until the correct solution is reached via
a convergence criterion: if two consecutive lev-
els yield the same result, the process halts and
outputs the solution from the earliest such level.
The motivation behind this approach is that, while
encouraging LLMs to follow a specific methodol-
ogy or approach can be effective, prompting them
how—rather than what—to think enables more in-
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depth processing.

To demonstrate the effectiveness of our ap-
proach, we conduct extensive experiments on
five popular mathematical reasoning datasets and
achieve consistent improvements. Additionally,
we explore several variants of our method, includ-
ing majority voting among levels, and Program of
Bloom, that combines Bloom prompting with PoT.

The main contributions are:

1. We introduce a novel cognitively-inspired
multi-level prompting method for solving
mathematical (and potentially other types of)
problems based on Bloom’s taxonomy, com-
bining robust reasoning and enhanced explain-
ability. Our code is available to the research
community under the Apache 2.0 license'.

2. We incorporate the idea of early stopping in
prompting, motivated by recent work on dy-
namically adjusting test-time compute during
inference (Snell et al. (2025), Manvi et al.
(2024)): the execution of our method termi-
nates before iterating through all levels of
Bloom’s taxonomy when a correct solution
is reached.

3. We investigate the performance of various
LLMs at each cognitive level of the Bloom
taxonomy for five popular math datasets.

Our results offer valuable insights into the cognitive
skills exhibited by each LLM, as well as the skills
required to solve different types of mathematical
problems. Furthermore, we demonstrate the poten-
tial of muti-level cognitively-inspired prompting
for improving accuracy and enhancing explainabil-
ity.

2 Related Work

As Large Language Models (LLMs) continue to
advance, an array of prompting strategies has
emerged to strengthen their reasoning abilities.
Early progress was made through chain-of-thought
prompting, which encourages step-by-step reason-
ing (Wei et al., 2022), utilizing programming to ad-
dress procedural challenges (Gao et al., 2022; Chen
et al., 2022) and employing zero-shot prompts that
rely on a single guiding sentence to elicit com-
plex responses (Kojima et al., 2022). Furthermore,
the Tree-of-Thoughts approach (Yao et al., 2023)

1 . . .
https://github.com/marilenal123/BloomWise
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navigates through various reasoning pathways and
traverses tree-like structures of reasoning states.
Moreover, X of Thoughts (Liu et al., 2023) selects,
applies and verifies the most suitable among the
techniques of CoT (Chain of Thought), PoT (Pro-
gram of Thought), and EoT (Equations of Thought)
iteratively, until a correct solution is reached.

3 Preliminaries: Bloom’s Taxonomy

Bloom’s Taxonomy provides a hierarchical classifi-
cation of thinking according to six levels of cogni-
tive complexity. The original model, introduced in
the 1950s, organizes cognitive processes based on
the following order: remembering, understanding,
applying, analyzing, synthesizing, and evaluating.
The taxonomy is hierarchical, as shown in Fig. 1,
where each level is subsumed by the higher levels.
In 2001, the taxonomy was revised by Anderson
and Krathwohl (2001), resulting in a new sequence:
remembering, understanding, applying, analyzing,
evaluating, and creating. Our work is based on
the revised taxonomy of Anderson and Krathwohl
(2001). The steps used in the Taxonomy are de-

Applying

Understanding

Remembering

Figure 1: Bloom’s Taxonomy (as revised by Anderson
and Krathwohl (2001)).

fined as follows (Forehand et al., 2005):
Remembering: Retrieving, recognizing, and re-
calling relevant knowledge from long-term mem-
ory.

Understanding: Constructing meaning from oral,
written, and graphic messages through interpreting,
exemplifying, classifying, summarizing, inferring,
comparing, and explaining.

Applying: Carrying out or using a procedure
through executing, or implementing.

Analyzing: Breaking material into constituent
parts, determining how the parts relate to one an-
other and to an overall structure or purpose through
differentiating, organizing, and attributing.
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Input problem: Raymond and Samantha are cousins. Raymond was born 6 years before Samantha. Raymond had a

[ son at the age of 23. If Samantha is now 31, how many years ago was Raymond's son born?

]

Okay, let's tackle this problem. We're working at the "Remembering" level, which means I'm going to try and recall facts and procedures | already know to solve this,
rather than doing a lot of complex thinking. First, let's just read the problem carefully and pull out the key facts. | remember that good problem-solving starts with
understanding what's given. We know: Raymond was born 6 years before Samantha. Raymond had a son at age 23. Samantha is currently 31 years old. We want to know
how many years ago Raymond's son was born. Now, I'm trying to remember similar problems I've seen. This feels like a series of simple calculations, not something that
requires a complicated strategy. | remember needing to find Raymond's current age first. Since Raymond was born 6 years before Samantha, and Samantha is 31, | recall
simply subtracting to find Raymond’s age: 31 - 6 = 25. So Raymond is currently 25 years old.

Okay, good. Now, | remember the problem states Raymond had a son at age 23. So, the son was born when Raymond was 23. Since Raymond is now 25, | recall | need to
find the difference between his current age and the age he was when his son was born. That's 25 - 23 = 2.

Therefore, Raymond’s son was born 2 years ago. The final answer is: 2.

Alright, let's tackle this word problem together. We're working on understanding the problem, so we won’t be jumping to solutions right away. We'll focus on what the
problem is telling us and what it's asking us to find. Okay, first sentence: "Raymond and Samantha are cousins." That's good to know, but it doesn't seem directly
relevant to finding our answer. It's background information. We can just keep that in mind. Second sentence: "Raymond was born 6 years before Samantha." This is

important! It establishes a relationship between their ages. If Samantha is a certain age, we can figure out Raymond's age. We can infer that Raymond is older than

Samantha. Third sentence: "Raymond had a son at the age of 23." This is another key piece of information. It tells us when Raymond became a father. We'll need this to
figure out when his son was born. Fourth sentence: "If Samantha is now 31, how many years ago was Raymond's son born?" This is the question! It's asking us to find a
difference in time. Specifically, it wants to know how many years have passed between the son's birth and now. Let’s summarize what we know: Samantha is currently
31 years old. Raymond is 6 years older than Samantha. Raymond had his son when he was 23 years old. Now, let's interpret this. We need to find Raymond’s current age
first. Since he’s 6 years older than Samantha, and Samantha is 31, we can calculate Raymond's age: 31 + 6 = 37. So, Raymond is currently 37 years old. Now we know
Raymond had a son when he was 23, and he's currently 37. To find out how many years ago the son was born, we need to find the difference between Raymond’s current
age and the age he was when his son was born. That's 37 - 23. This is a subtraction problem, and it directly addresses what the question is asking for the number of years
ago the son was born. Let's calculate: 37 - 23 = 14. Therefore, Raymond's son was born 14 years ago. The final answer is: 14

Alright, let's tackle this word problem together. We're working at the Applying level today, which means we'll focus on using procedures we already know to solve this. We
won’t be creating a new solution, just applying existing knowledge. Okay, so the problem gives us a few pieces of information. Let's write those down to keep things
organized: 1) Raymond is 6 years older than Samantha. 2) Raymond had a son at age 23. 3) Samantha is currently 31 years old.4) We want to know how many years ago
Raymond's son was born. The key here is to break this down into smaller steps. We need to figure out Raymond's current age first. Since Raymond is 6 years older than
Samantha, and Samantha is 31, we can simply add 6 to Samantha\u2019s age to find Raymond’s age. So, 31 + 6 = 37. Raymond is currently 37 years old. Now we know
Raymond had his son when he was 23. We also know Raymond is now 37. To find out how many years ago his son was born, we need to find the difference between his

current age and the age he was when his son was born. That means we need to subtract: 37 - 23 = 14. Therefore, Raymond's son was born 14 years ago.
The final answer is: 14
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Figure 2: Overview of BloomWise Early Stop algorithm. The math problem is shown on top, followed by the
output at each Bloom taxonomy level (blue box, orange and gray box). Input prompts are not shown, please refer to
Appendix A. The model generates responses corresponding to the first 2 levels of Bloom’s taxonomy (blue and
orange boxes, Remembering and Understanding respectively). Since there is no consensus between the two, it
generates an answer corresponding to the next level (Applying, gray box). Now, there is consensus between the 2
consecutive levels (Understanding and Applying), so the process halts and the response corresponding to the earliest

such level (Understanding) is returned.

Evaluating: Making judgments based on criteria
and standards through checking and critiquing.
Creating: Putting elements together to form a co-
herent or functional whole; reorganizing elements
into a new pattern or structure through generating,
planning, or producing.

4 BloomWise Early Stop (BLES)

Our goal is to develop a generalized problem solv-
ing framework that iterates through prompts, each
corresponding to a level of Bloom’s taxonomy, un-
til the correct solution is reached. Next, we de-
scribe the overall framework and introduce each
module in detail.

4.1 The Framework

In this framework, the system progresses through
the levels of Bloom’s taxonomy in sequence for a
given problem. At each level, the LLM is provided
with the problem along with a prompt specifically
designed for that level. The model then generates a
response—an explanatory solution. In case of con-
sensus between two consecutive levels’ numerical
results, the process concludes successfully at the

36

earliest of the two levels, and no further levels are
explored. Otherwise, the process continues to the
next level until either consensus is reached or all
levels have been exhausted. The overall pipeline is
described in Algorithm 1 and an overview of the
framework can be found in Figure 2.

4.2 Prompts

We designed prompts corresponding to each level
of Bloom’s Taxonomy:

Remembering: The model is prompted to solve
the problem by retrieving, recognizing, and recall-
ing relevant math facts, formulas, definitions, simi-
lar problems or the exact same problem from mem-

ory.

Understanding: The model is prompted to solve
the problem by constructing meaning from the
problem statement and relevant math concepts and
demonstrate the thinking process by interpreting,
exemplifying, classifying, summarizing, inferring,
comparing, and explaining the concepts involved
and what the problem is asking for.

Applying: The model is prompted to solve the



Algorithm 1 BloomWise Early Stop (BLES)
Input: ¢
results < []
for level in levels do
res < Reasoning(level_prompt, i)
Append res to results
if |results| > 2 and results[—1]
results[—2] then
break
end if
9: end for
10: if there exists k such that results[k]
results(k + 1] then
return results[min{k
results[k + 1]}]
else
return results[—1] © If no convergence,
return the last result
. end if

A AN o e

[ BN

11 . results[k]

12:
13:

problem by carrying out or using a known proce-
dure.

Analyzing: The model is prompted to solve the
problem by breaking it into parts, determining how
the parts relate to one another, and identifying pat-
terns or relationships.

Evaluating: The model is prompted to solve the
problem by making judgments about different ap-
proaches or potential solutions.

Creating: The model is prompted to solve the
problem by putting together elements to form a
new solution strategy or structure.

Our prompts are zero-shot.

The detailed prompts are shown in Tables 7 and 6
in Appendix A. Examples of outputs can be found
in Appendix B.

4.3 Convergence

The verification module determines the correctness
of a solution based on a convergence criterion. For
each problem, the framework progresses through
the levels of Bloom’s taxonomy in sequence. At
each level, the LLM is given the problem along
with a prompt tailored for that specific cognitive
level, and generates an explanatory solution. After
each level, the numerical result is compared with
this from the previous level. If two consecutive lev-
els yield the same result, this consensus is taken as
sufficient evidence of correctness, and the process
halts at the earliest such level.
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4.4 Iteration and Early Stopping

For each problem, the LLM is guided by prompts
crafted to align with the respective levels of
Bloom’s taxonomy. The model continues this pro-
cess until it produces a correct solution or all levels
have been explored. This approach operates on
the premise that prompts associated with higher
taxonomy levels encourage the LLM to engage
with the problem more deeply than those at lower
levels. Moreover, if a correct solution is obtained
at a lower level, it suggests that more advanced
cognitive effort is unnecessary for that particular
problem, making early termination of the process
a logical choice. This procedure is illustrated in
Figure 2.

4.5 BloomWise Majority Voting (BLM)

As an alternative to early stopping, we also ex-
plored an approach where the final output is de-
termined by a majority vote of the outputs corre-
sponding to all levels of Bloom’s taxonomy. This
strategy utilizes the collective reasoning of mul-
tiple cognitive stages. For a given question g,
each reasoning stage s € S of Bloom’s taxonomy
produces a numerical result R,(q). The majority
vote approach selects the final answer as the value
that occurs most frequently among these outputs.
Rmajomy (¢) € 0,1 compared to the gold label. We
define the accuracy under the majority vote setting
for N questions as:

1 .
Accmajority = N Z R(Q)a (D
q

where

R(Q) = Rmajority(Q)-

The majority vote setting represents a consensus-
based approach where the model aims to solve a
given problem based on the most frequent results
from the methods employed. In cases where there
is a tie (i.e., two or more answers have the same
highest frequency), the first encountered answer
among those with the highest frequency is chosen.



Dataset CoT PoT XoT BloomWise EarlyStop (BLES) BloomWise Majority Voting (BLM)
GSMSK 939 882 936 94.2 94.9
SVAMP 934 92.0 933 95.1 95.0
GPT-40-mini Algebra 950 833 959 95.9 96.4
GSM-hard 522 71.6 54.7 56.0 559
aime24 100 33 100 13.3 13.3
GSMSK 945 90.0 93.6 95.3 95.7
SVAMP 92.8 942 948 95.0 94.9
LLaMA 3.1 70B  Algebra 959 719 964 96.4 98.2
GSM-hard 460 66.5 69.9 47.5 48.8
aime24 233 67 167 20.0 23.3
GSMBK 79.2 562 789 87.9 89.9
SVAMP 84.0 658 83.6 90.6 92.3
LLaMA 3.1 8B Algebra 81.5 527 793 91.0 92.8
GSM-hard 27.5 424 27.1 35.0 36.3
aime24 33 67 33 6.7 6.7
GSMSK 947 865 91.6 95.5 96.3
SVAMP 946 927 942 96.5 96.2
Gemma3 27B Algebra 98.6 70.7 964 98.6 99.1
GSM-hard 613 656 69.2 62.0 63.1
aime24 133 33 6.6 23.3 20.0

Table 1: Solution accuracy across various models and math reasoning datasets. Best performer is shown in bold,
and second best is underlined. Our methods (BLES and BLM) are zero-shot while the baselines (CoT, PoT, and

XoT) few-shot.

5 Experiments

5.1 Experimental Setting

Dataset # Samples
GSMB8K (Cobbe et al., 2021) 1,319
SVAMP (Patel et al., 2021) 1,000
Algebra (He-Yueya et al., 2023) 222
GSM-hard (Gao et al., 2022) 1,319
AIME24 (MAA, 2024) 30

Table 2: Statistics of the datasets we used

Datasets We conduct our experiments on a di-
verse collection of five math reasoning datasets,
each covering different challenging problem
types: GSM8K, SVAMP, Algebra, GSM-hard and
AIME24. The GSM-hard dataset is a modified
version of GSM8K, where small numerical values
have been replaced with larger ones to introduce
greater computational difficulty. The details of the
statistics of the datasets can be found in Table 2.

Models For our experiments, we query gpt-4o-
mini 2, Llama3.1 8b/70b (Grattafiori et al., 2024)
and Gemma3 27b (Team et al., 2025).

5.2 Comparison to state-of-the-art

In Table 1, we report solution accuracy across the
five math datasets for the four LLMs we tested.
We consider three prompting methods as baselines,

2https://openai.com

38

namely CoT (Wei et al., 2022), PoT (Chen et al.,
2022) and XoT (Liu et al., 2023) (all in the 8-shot
setting used in Liu et al. (2023)), and compare with
BloomWise Early Stop (BLES) and BloomWise
Majority Voting (BLM) (both in zero-shot setting).
Overall, averaged over all datasets and models,
BLM is the top performer, achieving 70.5% accu-
racy, followed by BLES at 69.8%, XoT at 67.5%,
CoT at 66.8%, and PoT at 60.8%. These results un-
derscore the potential of Bloom-Inspired methods
in zero-shot settings.

5.2.1 Performance per task

BLM is the top performer across almost all datasets,
followed closely by BLES, while CoT and XoT
achieve comparable performance. More specifi-
cally, for GSM8K, BLM achieves 94.2, BLES 93.2,
CoT 90.6, XoT 89.4, and PoT 80.2. For SVAMP,
the scores are 94.6 for BLM, 94.3 for BLES, 91.2
for CoT, 91.5 for XoT, and 86.2 for PoT. In Algebra,
BLM achieves 96.6, BLES 95.5, CoT 92.8, XoT
92.0, and PoT 71.2. In AIME, which is the most
demanding in terms of difficulty, BLM and BLES
both achieve 15.8, followed by CoT at 12.5, XoT
at 9.2, and PoT at 5.0. For GSM-hard, the most
challenging dataset in terms of calculation diffi-
culty, methods employing Python programming
excel, with PoT being the top performer at 61.5,
followed by XoT at 55.2, BLM at 51.1, BLES at
50.1, and CoT at 46.7. These results position our
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Model Remembering Understanding Applying Analyzing Evaluating Creating
GPT-40-mini 79.3 80.1 80.3 80.7 79.2 79.6
Llama 3.1 70b 76.6 76.4 77.3 75.9 73.7 72.6
Llama 3.1 8b 63.2 64.2 63.4 63.3 60.4 59.1
Gemma 3 27b 81.0 57.7 83.3 83.2 81.6 79.7

Table 3: Aggregated scores (%) per model for each Bloom’s taxonomy level across all datasets (n = 3,890).

method as the best performer on problems requir-
ing thoughtful reasoning, while methods involv-
ing programming excel specifically in calculation-
intensive tasks.

5.2.2 Performance per model

While BLES and BLM generally achieve the
highest performance, the best-performing method
varies by model. For GPT-40-mini, BLM is the top
performer with 71.1, followed by BLES at 70.9,
XoT at 69.5, CoT at 68.9, and PoT at 67.7. For
LLaMA 3.1 70B, XoT achieves the highest score
with 74.3, followed by BLM at 72.2, BLES at 70.8,
CoT at 70.5, and PoT at 67.1. For LLaMA 3.1
8B, BLM leads with 63.6, followed by BLES at
62.2, CoT at 55.1, XoT at 54.4, and PoT at 44.8.
For Gemma3 27B, BLES is the top performer with
75.2, followed by BLM at 74.9, CoT at 72.5, XoT
at 71.6, and PoT at 63.8.

5.3 Trade-offs Between BLM and BLES

While the top-performing variant varies depend-
ing on the model and dataset—meaning there is no
universal winner between BLM and BLES—BLM
achieves the best overall performance. Nonethe-
less, BLES presents a compelling alternative when
computational efficiency is a priority. Unlike BLM,
which requires generating responses for all levels
of Bloom’s Taxonomy, BLES terminates the rea-
soning process as soon as convergence is detected,
reducing the number of generated outputs and thus
lowering computational cost.

6 Ablation studies and Improved
Handling of computations

The analysis of the results will be structured along
two axes. The first concerns the study of the results
by Bloom taxonomy level. The second focuses on
closing the performance gap between BloomWise
and Program-aided Techniques (eg PoT, XoT) on
challenging datasets from a computational point of
view.
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6.1 Performance at each cognitive level

For this analysis, we executed the prompts corre-
sponding to each of the levels of the taxonomy
(without early stopping). A problem might be cor-
rectly solved in more than one levels.

6.1.1 LLMs and cognitive abilities

In Table 3, we show the percentage (%) of cor-
rectly solved problems per Bloom’s level for the
LLMs tested. From this table, we can draw several
conclusions about the cognitive skills demonstrated
by the LLMs:

Performance consistency across levels varies sig-
nificantly among models : GPT-40-mini demon-
strates homogeneous performance, with scores
ranging narrowly between 79.2% (Evaluating) and
80.7% (Analyzing), indicating a consistent abil-
ity to tackle tasks at any level of cognitive com-
plexity. In contrast, Llama3.1 8b’s performance,
for instance, ranges from 59.1 to 64.2. Addition-
ally, Gemma 3 27b achieves peak performance in
procedural tasks (Applying: 83.3%; Analyzing:
83.2%) and factual recall (Remembering: 81.0%)
and performs poorly in Understanding (57.7%).
This might be an indication of a critical weakness
in conceptual comprehension despite procedural
proficiency, probably implying limited training on
such tasks.

Model scale substantially improves overall capa-
bility : The Llama 3.1 70B model outperforms
its 8B counterpart by an average margin greater
than 10.0% across all levels, confirming parameter
count as a key performance factor.

The best performing level is Applying : Al-
though the best performing level is not the same
across models, Applying is generally the top per-
former. This behavior is expected due to exten-
sive training on similar methods such as Chain of
Thought.

All models exhibit declining performance at
higher taxonomy levels : all models’ perfor-



Dataset | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating
GSMSK 90.0 82.7 90.8 91.1 88.2 88.0
SVAMP 91.1 88.7 90.4 90.2 90.0 87.7
Algebra 83.1 79.0 923 92.1 91.2 90.8
GSM-hard 48.0 41.8 49.1 48.4 454 44.7
AIME 8.4 8.4 12.5 12.5 10.0 10.0

Table 4: Aggregated scores (%) per dataset for each Bloom’s taxonomy level across all models.

mance drops in Evaluating and Creating. This
universal trend confirms that these skills remain
challenging for the LLMs in mathematical domains,
irrespective of scale or architecture. This is prob-
ably due to both the inherent difficulty of these
cognitive processes and limited training on such
tasks.

6.1.2 Problem type and cognitive depth

Table 4 presents the scores for each dataset and
Bloom’s taxonomy level. Several trends and in-
sights emerge from these results.

Performance Across Datasets : The models
achieve the highest performance on the GSM8K
and SVAMP datasets, consistently scoring above
87% across all Bloom’s taxonomy levels. This in-
dicates that current LLMs are highly proficient in
standard grade-school math, regardless of the spe-
cific cognitive skill being assessed. Performance
on the Algebra dataset is also strong, with scores
ranging from 79.0% to 92.3%, showing that models
handle symbolic and procedural tasks well but with
slightly more variation than GSM8K or SVAMP.
In contrast, GSM-hard and AIME represent a stark
drop in accuracy, with all Bloom level scores for
GSM-hard in the 41.8% to 49.1% range, and for
AIME in the 8.4% to 12.5% range. These results
highlight that state-of-the-art LLMs still struggle
substantially with high-complexity, olympiad-style
and challenging in terms of calculations problems.

Dataset difficulty and patterns : For the easier
datasets from a reasoning perspective—GSMS8K,

SVAMP, Algebra, and GSM-hard—models achieve
their highest accuracy on Applying and Analyz-
ing tasks, indicating strong proficiency with strate-
gies that closely resemble techniques heavily em-
phasized during training, such as chain-of-thought
(CoT) reasoning. Scores for Remembering are also
high, suggesting that even pure recall is often suffi-
cient for such problems, but these scores generally
do not surpass those for Applying or Analyzing. In
contrast, performance consistently dips for Under-
standing, which emerges as the weakest category in
these datasets, and declines moderately for Evaluat-
ing and Creating, though these higher-order skills
often still outperform Understanding.

For the more difficult dataset, AIME, Remember-
ing and Understanding are the lowest-performing
categories, while Applying and Analyzing remain
the strongest. Notably, for these challenging prob-
lems, Evaluating and Creating sometimes yield bet-
ter results than lower-order skills (Remembering,
Understanding), suggesting that as difficulty and
unfamiliarity increase, deeper reasoning may be
required for success.

6.2 Program of Bloom

In order to reduce errors in calculations, we incor-
porated Python code into our framework. More
specifically, we used the same approaches (BLES
and BLM) but modified the prompts to request
answers in the form of Python code, which was
then safely executed. For the sake of simplic-
ity for this analysis, we only report the results
concerning Gemma3 2.7B. On the GSM-Hard

Dataset ‘ BLES ‘ BLM ‘ Program of BLES | Program of BLM
GSMSK 95.5 | 96.3 92.0 91.5
SVAMP 96.5 | 96.2 94.1 93.9
Algebra 98.6 | 99.1 89.6 88.3
GSM-hard | 62.0 | 63.1 65.0 65.3
aime 233 | 20.0 20.0 233

Table 5: Comparison between Program of Bloom and BloomWise-Results for Gemma3 27B
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dataset—the most challenging in terms of calcu-
lations—accuracy improved slightly, with gains
of 3% for BLES and 2.2% for BLM. However,
for the remaining datasets, accuracy was consid-
erably lower—or, in the case of AIME, equiva-
lent—compared to the performance achieved with
BloomWise (BLES and BLM). Results can be
found in Table 5. A possible explanation for the
reduced performance of this variant is that the
prompts are not be well-suited to generating an-
swers in code format. The strict structure required
for executable code can limit the model’s ability
to follow the intended prompting, whereas textual
rationales provide more flexibility and are often
better aligned with the task structure.

7 Conclusion

We propose BloomWise, a problem-solving frame-
work that uses prompts inspired by the levels
of Bloom’s Taxonomy to reach the correct solu-
tion. We introduce three variants of our method:
EarlyStop (BLES), which halts the process if a
solution is deemed as correct based on a conver-
gence criterion, preventing progression to higher
levels of the taxonomy; Majority Voting (BLM),
where the final solution is determined by a con-
sensus across the outputs; and Program of Bloom,
similar to BLES and BLM but requiring the an-
swer in the form of Python code. Experiments
conducted on five math reasoning datasets demon-
strated the efficiency of our method, showcasing
not only accuracy-exceeding the state of the art
methods- but also providing valuable insights into
the cognitive abilities of LLMs. Among the vari-
ants, BLM achieved the highest accuracy, while
BLES prioritized computational efficiency. The
Program of Bloom variant achieved the best accu-
racy only on the GSM-hard dataset, while it per-
formed the lowest on the rest of the datasets.

Our findings highlight the promise of
cognitively-grounded  prompting  strategies
for enhancing LLM performance in zero-shot
settings. In future work, we plan to extend
BloomWise to additional domains beyond math
reasoning, exploring its generalizability and
broader applicability.

Limitations

We acknowledge that, although our method
achieves top performance on most datasets, it strug-
gles with problems that require complex computa-
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tions. Additionally, while our evaluation focused
on mathematics to enable a more targeted analy-
sis, applying our framework to a broader range of
tasks would further validate its generalizability and
practical utility.
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Bloom’s Level

Prompt

Remembering

Understanding

Applying

Analyzing

Evaluating

Creating

You are at the Remembering level. Solve the problem by retrieving, recognizing, and
recalling relevant math facts, formulas, definitions, similar problems or the exact same
problem from memory. Clearly express what information or problems you recall that is
relevant to solving this specific problem.

You are at the Understanding level. Solve the problem by constructing meaning from
the problem statement and relevant math concepts. Show your thinking by interpreting,
exemplifying, classifying, summarizing, inferring, comparing, and explaining the con-
cepts involved and what the problem is asking for.

You are at the Applying level. Solve the problem by carrying out or using a known
procedure. Clearly show how to apply this procedure to this specific problem step by
step.

You are at the Analyzing level. Solve the problem by breaking it into parts, determining
how the parts relate to one another, and identifying patterns or relationships. Show your
thought process by differentiating, organizing, and attributing relationships between the
math elements.

You are at the Evaluating level. Solve the problem by making judgments about different
approaches or potential solutions. Express your thought process by checking, critiquing,
and explaining why one approach or answer is better or more appropriate than others.
You are at the Creating level. Solve the problem by putting together elements to form a
new solution strategy or structure. Show your thinking as you generate, plan, or produce
a novel approach to this problem.

Table 6: Bloom’s level Specific Prompts

System Prompt

You are a tutor. Solve the given math problem in class using only cognitive skills associated with the
specified Bloom’s level. Explicitly express your thought process out loud as you solve it, so the student
can follow your reasoning.

Bloom’s level specific prompt

Problem: problem

Provide the final numerical answer at the end in the format: "The final answer is:"

Table 7: System Prompt

Problem

A candle melts by 2 centimeters every hour that it burns. How many centimeters shorter will a candle
be after burning from 1:00 PM to 5:00 PM?

Table 8: Problem Statement
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Level

Solution

Remembering

Okay, let’s tackle this problem together. We’re working at the Remembering level,
which means we’re going to rely on things we already know: facts, definitions,
and maybe similar problems we’ve seen before. We’re not going to do a lot of
complex thinking right now. First, let’s read the problem carefully: A candle
melts by 2 centimeters every hour that it burns. How many centimeters shorter
will a candle be after burning from 1:00 PM to 5:00 PM? Okay, what do I
remember about solving problems like this? I remember that when we have a
rate, something happening per unit of time and a duration of time, we can find the
total change by multiplying. That’s a key fact! I remember doing problems like
If a car travels 60 miles per hour for 2 hours, how far does it travel?: That feels
similar. Now, let’s identify what we know. The problem tells us the candle melts
at a rate of 2 centimeters per hour. That’s our rate. Next, we need to figure out
how long the candle is burning. It burns from 1:00 PM to 5:00 PM. I remember
how to figure out time differences. I can count the hours: 1 PM to 2 PM is 1 hour,
2 PM to 3 PM is another hour, 3 PM to 4 PM is another, and 4 PM to 5 PM is the
last hour. That’s a total of 4 hours. Alternatively, I remember I can just subtract
the start time from the end time: 5 - 1 = 4. So, the candle burns for 4 hours. Now
I recall the multiplication fact we discussed earlier. Rate times time equals total
change. We have a rate of 2 centimeters per hour, and a time of 4 hours. So, we
multiply: 2 centimeters/hour * 4 hours. The hours cancel out, leaving us with
centimeters. 2 * 4 = 8. Therefore, the candle will be 8 centimeters shorter. The
final answer is: 8

Table 9: Example of a response corresponding to Remembering Level

44




Level

Solution

Understanding

Okay, let’s tackle this problem together. We’re working at the Understanding
level, which means we need to show we get what’s happening in the problem,
not just jump to a calculation. So, I'm going to talk through my thinking as I
go. First, let’s interpret the problem. What’s the problem telling us? It’s telling
us about a candle and how it changes over time. Specifically, it says the candle
gets shorter. That’s important, it’s decreasing in length. The rate of change is
key: it melts 2 centimeters every hour. That’s a consistent rate, a rule we can use.
Now, let’s summarize what we need to find out. The problem asks: How many
centimeters shorter will a candle be? This means we need to find the total amount
the candle decreases in length. Let’s exemplify with a simpler case. If the candle
burned for just one hour, how much shorter would it be? The problem tells us 2
centimeters. If it burned for two hours, it would be 2 + 2 = 4 centimeters shorter.
See? We’re just repeatedly applying that 2 cm/hour rule. Okay, now let’s get
back to the original problem. We need to figure out how many hours the candle
is burning. The candle burns from 1:00 PM to 5:00 PM. Let’s infer the number
of hours. We can count it out: 1 PM to 2 PM is one hour, 2 PM to 3 PM is
another hour, 3 PM to 4 PM is another, and 4 PM to 5 PM is the last hour. That’s
a total of 4 hours. Now we can compare this to our simpler example. We know it
melts 2 cm per hour. We now know it burns for 4 hours. So, it’s like adding 2
cm four times. Finally, let’s explain how to calculate the total change in length.
We’ll multiply the rate of melting (2 cm/hour) by the number of hours it burns (4
hours). That’s 2 cm/hour * 4 hours. So, 2 multiplied by 4 is 8. Therefore, the
candle will be 8 centimeters shorter. The final answer is: 8

Table 10: Example of a response corresponding to Understanding Level
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Level

Solution

Applying

Alright, let’s tackle this problem together. We’re working at the *Applying’ level,
which means we need to use a procedure we already know to solve this. In this
case, the procedure is understanding rate and using multiplication. First, let’s
identify what we know. We know the candle melts at a rate of 2 centimeters per
hour. That’s our key piece of information. Next, we need to figure out how long
the candle is burning. The problem tells us it burns from 1:00 PM to 5:00 PM.
Let’s count the hours: 1:00 PM to 2:00 PM is one hour, 2:00 PM to 3:00 PM
is another hour, 3:00 PM to 4:00 PM is another hour, and 4:00 PM to 5:00 PM
is the final hour. So, that’s a total of 4 hours. Now we can apply the procedure.
We know the rate (2 cm/hour) and the time (4 hours). To find the total change
in length, we multiply the rate by the time. So, we’ll do: 2 centimeters/hour
* 4 hours. The "hour’ units cancel out, leaving us with centimeters. 2 * 4 = 8.
Therefore, the candle will be 8 centimeters shorter. The final answer is: 8

Table 11: Example of a response corresponding to Applying Level
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Level

Solution

Analyzing

Alright class, let’s tackle this candle problem. We’re working on analyzing today,
which means we need to break this problem down into its pieces and see how
they connect. Don’t just jump to a calculation, let’s understand what’s happening
first. Okay, what information are we given? We know the candle melts at a rate
2 centimeters per hour. That’s important. That’s our key relationship. We also
know a time period: from 1:00 PM to 5:00 PM. Now, let’s differentiate. We have
a change in length (how much shorter the candle gets) and a change in time (the
duration it burns). Our rate connects these two. Melting rate is essentially change
in length divided by change in time. Let’s organize this. We need to figure out
the total change in time. How many hours are there between 1:00 PM and 5:00
PM? Let’s see: 1:00 to 2:00 is one hour, 2:00 to 3:00 is another, 3:00 to 4:00,
and 4:00 to 5:00. That’s four hours. So our change in time is 4 hours. Now, let’s
attribute the relationship. We know the candle melts 2 centimeters for every hour.
That ’for every’ signals a multiplicative relationship. We can set up a sort of
proportion, even though we don’t need to formally write it out as one. If it melts
2 cm in 1 hour, then in 4 hours, it will melt, well, four times as much, right? So,
we are multiplying the rate of melting (2 cm/hour) by the number of hours (4
hours). This will give us the total change in length. 2 cm/hour * 4 hours = 8 cm.
Therefore, the candle will be 8 centimeters shorter. The final answer is: 8

Table 12: Example of a response corresponding to Analyzing Level
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Level

Solution

Evaluating

Okay, let’s tackle this candle problem. We’re at the ’Evaluating’ level today,
which means we’re not just doing the math, but thinking about how we’re doing
it and whether our approach makes sense. First, let’s quickly identify what the
problem is asking. It wants to know the total amount the candle shrinks after
burning for a certain period. Seems straightforward. Now, a really quick, almost
automatic thought might be to just multiply 2 centimeters (the melt rate) by 5
(because 5 PM is 5 hours after 1 PM). That would give us an answer, and it’s a
common way to approach rate problems. Let’s hold that thought 2 x 5 = 10. But,
let’s evaluate that. Does that just automatically feel right? Yes, it seems logical,
but we should always double-check our assumptions. The problem clearly states
the candle melts every hour it burns. We need to make sure we’ve correctly
calculated the number of hours. Looking at the times, 1:00 PM to 5:00 PM. Let’s
think through it. 1 PM to 2 PM is one hour. 2 PM to 3 PM is another. 3 PM
to 4 PM, and 4 PM to 5 PM. That’s four hours, not five. So, that initial quick
calculation of multiplying by 5 was incorrect. That’s a good example of why
evaluating is important! We caught a potential mistake. Okay, so let’s revisit. We
have a melt rate of 2 cm/hour and a burn time of 4 hours. Now, multiplying 2
cm/hour by 4 hours seems much more solid. Let’s think about units too, which
is a good evaluating habit. Centimeters per hour * hours- the hours cancel out,
leaving us with just centimeters. That makes sense- we want an answer in length!
So, 2 * 4 = 8. Let’s quickly critique again. Does 8 centimeters seem reasonable?
If a candle melts 2cm an hour, and burns for four hours, 8cm seems perfectly
plausible. It’s a manageable number, not ridiculously large or small. Therefore,
after burning from 1:00 PM to 5:00 PM, the candle will be 8 centimeters shorter.
The final answer is: 8

Table 13: Example of a response corresponding to Evaluating Level
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Level

Solution

Creating

Okay, let’s tackle this candle problem! Now, we’re aiming for the Creating level
of Bloom’s Taxonomy, which means we aren’t just recalling facts or applying
a formula directly. We need to build a solution. I want to think beyond just
hours times melt rate. While that is part of it, let’s see if we can frame this in
a slightly more robust way, maybe thinking about how we represent time and
change. First, let’s identify what we know. We know the candle melts at a
constant rate: 2 centimeters per hour. That’s our core piece of information. We
also know the start and end times: 1:00 PM and 5:00 PM. Now, usually, we ’d
jump to subtraction, right? 5 minus 1 is 4. But let’s pause and think... what is
subtraction actually doing in this context? It’s finding the difference between two
points in time. That difference represents the duration of burning. So, instead
of immediately calculating 5-1, let’s explicitly define a variable. Let’s say ’t’
represents the burning time in hours. We can create a little formula for ’t’: t =
End Time - Start Time. Okay, that’s a bit abstract for this problem, honestly, but
it’s getting us to think about the components. Now we can plug in our numbers:
t =5:00 PM - 1:00 PM = 4 hours. See? We didn’t just know to subtract; we
defined the subtraction as a way to calculate the burning time. That’s a small step
towards creating a more generalized approach. Now, we know the burning time,
and we know the melt rate. Let’s create another relationship. Let 'L’ represent
the total length the candle melts. We can say: L = Burning Time * Melt Rate, L
=t * 2 cm/hour. Again, this seems obvious, but we’re building the logic from
first principles, which is what ’Creating’ is about. Now, we can substitute the
value of 't we found earlier:LL = 4 hours * 2 cm/hour = 8 cm. So, the candle
will be 8 centimeters shorter. We didn’t just apply a formula; we constructed
the formulas to represent the relationships in the problem. That’s the difference
between applying and creating. We could have just done 5-1=4, then 4*2=8, but
this way we ’ve explicitly broken down why we 're doing each step. The final
answer is: 8

Table 14: Example of a response corresponding to Creating Level
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