Synthetic Proofs with Tool-Integrated Reasoning: Contrastive Alignment
for LLM Mathematics with Lean

Mark Obozov

Research Center of the Artificial Intelligence Institute

Innopolis University
Innopolis, Russia
obozovmark9@gmail . com

Aleksandr Beznosikov
Innopolis University
Innopolis, Russia

Abstract

Modern mathematical reasoning benchmarks
primarily focus on answer finding rather than
proof verification, creating a gap in evaluating
the proving capabilities of large language mod-
els (LLMs). We present a methodology for
generating diverse mathematical proof tasks
using formal tools. Our approach combines
Lean-based synthetic problem generation with
a Tool-Integrated Reasoning (TiR) framework
for partial (sampling-based) proof validation,
and it uses contrastive preference optimization
to align the model’s proof outputs. Experiments
on the Qwen-2.5 family of models demonstrate
meaningful improvements in mathematical rea-
soning, particularly for smaller models. Our
aligned models achieve up to a 57% higher suc-
cess rate than baselines on the MiniF2F bench-
mark (across 0.5B, 1.5B, and 7B parameter
models). These results highlight the potential
of synthetic data and integrated validation for
advancing LLM-based mathematical reason-
ing.

1 Introduction

Mathematical reasoning is a fundamental challenge
for artificial intelligence. Despite significant ad-
vances in large language models (Li et al., 2024;
Yang et al., 2024a; DeepSeek-Al, 2024), achiev-
ing robust proof-solving capabilities comparable
to human mathematicians remains elusive. A core
difficulty lies in the vast search space of proofs:
any given statement can spawn an enormous graph
of conjectures and implications. Exhaustive search
in this space is infeasible — formal proof attempts
like AlphaProof (Hubert et al., 2024) can be compu-
tationally expensive at scale for complex problems.

Recent approaches using LLMs show promise
in their flexibility and reasoning ability. How-
ever, even models that excel at answer-focused
tasks (e.g., the MATH benchmark (Hendrycks
et al., 2021)) often struggle with formal proofs and

Alexander Gasnikov
Innopolis University
Innopolis, Russia

Michael Diskin
HSE University
Moscow, Russia
michael.s.diskin@gmail.com

Serguei Barannikov
Skoltech, CNRS
Moscow, Russia

higher-level mathematical reasoning (Tsoukalas
et al., 2024; Glazer et al., 2024). This gap calls
for methodologies that combine the adaptability of
LLMs with the rigor of structured verification.
The contributions of this paper are as follows:

* Tree-Based Conjecture Generation: A tree-
based algorithm for synthetic conjecture gen-
eration using Lean (de Moura et al., 2015)
to produce diverse, valid mathematical prob-
lems.

* Tool-Integrated Reasoning: A Tool-
Integrated Reasoning (TiR) framework for
partial proof validation that does not require
full formalization of the proofs.

* Contrastive Alignment of Proofs: A con-
trastive preference optimization approach
(SimPO) to align the model’s proof genera-
tion with preferred (correct) solutions.

* New Proof Benchmark Dataset: A synthetic
dataset of 30,000 generated problems and
proofs for benchmarking mathematical rea-
soning in LLMs.

In our pipeline, Lean primarily serves as a gen-
eration and structuring environment: it provides
statements, neighborhood relations, and hints that
scaffold synthesis. Model outputs are informal
proofs. We rely on TiR and an LLM judge as
probabilistic filters at scale; comprehensive for-
mal checking in Lean is used only in a limited way
here and is left to future work.

Our experiments with Qwen-2.5 models (Yang
et al., 2024b) (0.5B-7B parameters) demonstrate
significant improvements in mathematical reason-
ing, particularly for smaller models. These results
highlight the potential of combining structured gen-
eration with flexible validation to advance mathe-
matical reasoning in Al systems.

195

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 195-202
November 9, 2025 ©2025 Association for Computational Linguistics

2 Background

Formal theorem proving has traditionally relied on
search-based methods in proof assistants. Tools
like Lean’s Aesop tactic (Limperg and From, 2023)
and the HyperTree proof search algorithm (Poe-
sia et al., 2024a) can systematically explore proofs
but struggle with the combinatorial explosion of
possibilities in complex problems. More recently,
large language models have been applied to theo-
rem proving (Li et al., 2024; Yang et al., 2024a), but
purely data-driven approaches still face challenges
unless guided by formal structure. Synthetic data
generation has shown promise: for instance, Al-
phaGeometry (Trinh et al., 2024) trained an LLM
on two million procedurally generated geometry
problems, yielding impressive problem-solving per-
formance.

Aligning LLM outputs with desired solutions of-
ten requires learning from preferences. Reinforce-
ment Learning from Human Feedback (RLHF)
(Ouyang et al., 2022) showed that human feed-
back can effectively steer model behavior, and
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) achieved this without a separate re-
ward model. Recent contrastive approaches led
to the Simple Preference Optimization (SimPO)
(Meng et al., 2024) framework, which introduces
a margin +y to ensure the model scores a preferred
output higher than a dispreferred one by at least
a fixed gap. This margin-based criterion is well-
suited for mathematical proofs, where distinguish-
ing correct reasoning from subtly flawed reason-
ing is essential; alternative preference objectives
and recipes include KTO (Ethayarajh et al., 2024),
LMSI (Huang et al., 2022), ORPO (Hong et al.,
2024), and PPO (Schulman et al., 2017). Another
complementary direction is integrating external
tools into the reasoning loop. Tool-Integrated Rea-
soning (Gou et al., 2023) agents allow an LLM
to call formal solvers or checkers during problem
solving. We build on this idea by using formal
environment checks to partially verify generated
conjectures and proofs without requiring complete
formalization.

Self-improving systems represent another
promising direction, with recent work focusing on
agents that enhance their mathematical capabilities
by autonomously generating and filtering their
own proofs (Lin et al., 2024; Huang et al., 2022;
Poesia et al., 2024b), complemented by intrinsic
motivation algorithms like Minimo (Poesia et al.,

2024b) for exploring infinite action spaces without
predefined goals.

Current evaluation methodologies present signif-
icant limitations; standard benchmarks (Liu et al.,
2024; Hendrycks et al., 2021) typically rely on
answer-matching approaches that fail to validate
reasoning steps, while formal proof benchmarks
such as PutnamBench and MiniF2F (Tsoukalas
et al., 2024; Zheng et al., 2021) offer more rigorous
assessment environments with varying difficulty
distributions — PutnamBench featuring exception-
ally challenging problems and MiniF2F providing a
broader range suitable for evaluating models across
different skill levels — though they still require
bridging the gap between natural language reason-
ing and formal representations.

3 Synthetic Generation

3.1 Lean-Based Generation

We propose a tree-based algorithm to generate new
conjectures from existing ones. The method treats
mathematical statements as nodes in a proof graph
and leverages known proofs to create harder related
problems. Given an initial conjecture X, with a
known proof Y, we perform a random walk of
N steps starting at X, moving to a sequence of
neighboring conjectures in the graph. This pro-
duces a trajectory of intermediate conjectures that
lie progressively further from the root (axioms).
We then reverse this trajectory and prepend the
original proof Y, using Xy as a lemma to derive
a new conjecture. In essence, the algorithm finds
a new target statement that is “beyond” Xy in the
proof tree and constructs a valid proof for it using
Y. Algorithm 1 outlines the procedure.

The choice of neighbor selection in Algorithm 1
is crucial. We consider several strategies, including
Lean hints and tooling (e.g., Lean Copilot (Song
et al., 2024)), a formal environment (Peano (Poesia
et al., 2024b)), and lightweight LLM-based heuris-
tics such as symbol-overlap and predicted diffi-
culty; the walk stops on a fixed budget or when
predicted difficulty saturates.

3.2 Generating New Problems from Solutions

Another strategy for synthesis is to derive new
problems from known solutions. Given a solved
problem P, with solution Sy, we attempt to in-
vert it: generate a new problem P; for which Sy
(or a minimally modified version) serves as a so-
lution. This inverse-problem technique expands

196

Algorithm 1 Synthetic Conjecture Generation
Require: 7' = (V, E), N, Xo,Y > Proof graph,
steps, initial conjecture, and its proof
Ensure: Xg € VandY CV © X and all proof
nodes in V'
Xcurrent < XO
Tirace < {}
fori =1to N do
Xhext < choose a neighbor of Xcyprent >
Xnext S N (Xcurrent)
Tirace < Tirace U {Xnext}
Xcurrent < Xnext
end for
reverse 1i,cc
Tirace < Y U Tirace > Prepend original proof Y/

> Initialize trace

A

L LR

our dataset with challenging new problems while
retaining a valid solution path.

Hlustration. 1If Sy proves u + v > 2y/uv
for u, v >0, then substituting © = a?, v = b? and
adding a constraint (e.g., a+b = 1) yields a variant
inequality where the same proof skeleton applies
with adjusted premises.

3.3 Generating Rejected Values

For contrastive training, we need not only correct
proofs but also plausible incorrect proofs as coun-
terexamples. We employ three techniques to auto-
matically generate such rejected outputs: (1) use a
smaller or less capable LLM to answer the problem
(weaker models often produce incorrect or subop-
timal solutions); (2) if the main model produces a
correct solution, prompt it to introduce a mistake
into its reasoning (and if it fails to solve the prob-
lem, its failed attempt is used as R); (3) perturb
the proof trajectory from our tree-based genera-
tor (Algorithm 1) to create a flawed solution path.
These methods yield contrastive pairs where ¥,
is a correct proof and y; is a similar but incorrect
attempt.

3.4 Tool-Integrated Validation

We integrate a validation step using external tools
to filter the generated data. Instead of asking the
LLM to produce a fully formal proof, we prompt it
to output a verification function f (e.g., a Python
snippet) that returns 1 if a conjecture holds for
given inputs and O otherwise. We then evaluate
f on N randomly sampled inputs from a domain-
specific environment to statistically test the con-
jecture; this is a sampling-based check and thus

provides no absolute soundness guarantee. Algo-
rithm 2 illustrates this process, which computes the
fraction of inputs for which f returns true.

Algorithm 2 TiR-Based Validation
Require: f:{...} — {1,0}
Require: N > Number of random trials
Require: £ > Input generator environment
Ensure: Empirical success rate of conjecture (frac-
tion of inputs where f returns 1)
success + 0
failure < 0
for:=1to N do
x < £.generate_input()
output <+ f(x)
if output = 1 then
success < success + 1
else
failure «+ failure + 1
end if
: end for
: return

R e A A e

—_ =

success
N

If f(x) = 1 for all N sampled inputs (i.e., a
success rate of 1.0), we consider the conjecture
validated for the sampled domain £; adversarial
counterexamples may still exist (see Limitations).
For example, given the inequality conjecture a® +
b% 4+ c? > ab+ ac+ be, our TiR prompt produces a
function f(a, b, ¢) that computes a? + b? + ¢ and
ab + ac + bc and returns 1 if the inequality holds
(0 otherwise). Running Algorithm 2 on this f with
random numeric inputs quickly confirms the truth
of the conjecture.

4 Training Framework

Using the synthetic data and validation techniques
above, we construct training pairs for contrastive
alignment. For each problem x, we obtain a correct
proof y,, (verified by TiR) and a corresponding
incorrect proof y; (generated via the strategies in
Section 3.3). We then fine-tune the model using
a SimPO-based objective, which encourages the
model to assign higher probability to y,, over y;.

The training loss follows the SimPO formula-

197

tion:

Lsimpo(m9) =

B
— Eywum) {log U(log |y7 log o (yuw|T) —

log - log mo(ule) — 7)} , (D
il

where |y| denotes the length (number of tokens) of
output y. We set 5 = 2.0 (length normalization
against overly short outputs) and v = 0.5 (margin
between preferred and rejected scores) based on
validation experiments. Here § provides a length-
normalization factor for the log-probabilities (pe-
nalizing overly short answers), and v enforces a
minimum margin between the model’s scores for
the preferred and rejected outputs.

5 Experiments

5.1 Setup

We fine-tuned three Qwen-2.5 models (with 0.5B,
1.5B, and 7B parameters) on our synthetic proof
dataset. The SimPO objective (using 8 = 2.0, v =
0.5) was implemented with a modified torchtune
library (torchtune maintainers and contributors,
2024). Each model was trained for 3 epochs on
two A100 80GB GPUs, and we selected the best
checkpoint based on validation performance. Gra-
dient checkpointing and offloading were used to
manage GPU memory during training.

For the synthetic data generation, we employed
both Lean and pure-LLM environments. We also
experimented with the Peano formal environment,
but it produced low-quality conjectures with our
algorithm and was excluded from the final dataset.
Our TiR validation framework was implemented to
handle a variety of mathematical structures (e.g.,
arithmetic, algebra, group theory, graph theory) and
was used primarily to filter out invalid conjectures
or proofs before they were added to the training
data.

We evaluated our aligned models on the MiniF2F
test benchmark, which consists of formal math
problems disjoint from those used in training.
Since our model outputs are informal proofs (not di-
rectly checkable by an automatic theorem prover),
we employed a separate judge model to assess so-
lution correctness. Specifically, we used a 32B dis-
tilled model (DeepSeek-R1-32B-Qwen-Distilled)
as an automated verifier: given a problem and our
model’s solution, it decides whether the solution is

Model Size Aligned Baseline
Qwen-2.5 0.5B 0.22 0.14
Qwen-2.5 1.5B 0.37 0.29
Qwen-2.5 7B 0.53 0.47

Table 1: MiniF2F judge-accepted pass rate (0-1).

“Aligned”: SimPO-trained on our synthetic pairs; “Base-
line”: original pretrained model. Higher is better. Veri-
fier: DeepSeek-R1-32B-Qwen-Distilled. Scope: single
family (Qwen-2.5).

correct (binary accept/reject). We report the judge-
accepted pass rate in [0, 1] averaged over MiniF2F
and compare it to the base model’s success rate
(baseline).

5.2 Results and Discussion

Our alignment approach markedly improved the
models’ problem-solving success rates. Table 1
summarizes each model’s performance versus its
unaligned baseline.

The results reveal several insights:

¢ Consistent Gains: Across all model sizes,
our aligned models outperform their baselines.
The smallest model (0.5B) enjoys the largest
relative gain (about +57% relative improve-
ment).

* Scaling Effects: The benefit of synthetic train-
ing persists as model size grows, though the
relative improvement is more pronounced for
smaller models. This suggests that smaller
models gain proportionally more from our ad-
ditional training data and alignment.

* Validation Efficacy: The TiR filtering ap-
pears effective in removing invalid proofs
from the training corpus, which helps ensure
the model learns from mostly correct and ver-
ifiable examples.

6 Scope and External Validity

Our empirical scope is intentionally narrow (Qwen-
2.5, MiniF2F) to isolate pipeline effects. The com-
ponents of our method (problem synthesis, TiR fil-
tering, contrastive alignment) are model-agnostic;
we expect transfer across families with two practi-
cal considerations: (i) evaluation — complement-
ing the LLM judge with selective formal checking
on representative subsets; (ii) domain coverage —
extending £ and validators beyond algebra/number

198

theory (e.g., geometry and graphs require domain-
specific generators and metamorphic tests).

7 Conclusion

Our study demonstrates that combining synthetic
proof generation with partial formal validation can
substantially bolster an LLM’s mathematical rea-
soning abilities. In particular, training on generated
conjecture—proof pairs (with contrastive alignment)
enabled even relatively small models to solve sig-
nificantly more formal problems. This work rep-
resents a step toward Al systems that can not only
generate and verify mathematical proofs but also
gradually improve their own reasoning strategies.

To support reproducibility and accelerate
progress in mathematical reasoning research, we
will release our complete synthetic dataset of
30,000 problems and the Tool-Integrated Reason-
ing framework under open-source licenses. This
includes the tree-based generation algorithms, val-
idation mechanisms, and alignment methodology
described in this paper.

In future work, we plan to enhance the synthetic
generation process with chain-of-thought prompt-
ing to further improve conjecture quality, extend
our framework to other domains such as geome-
try (which may require specialized validation tech-
niques), strengthen the integration between LLM
reasoning and formal verification (improving the
TiR framework), and investigate more efficient
training strategies to scale to larger models.

8 Limitations

1. Sampling-based validation. TiR offers high-
precision but only sampling-based guarantees:
a conjecture that passes /V random trials in £
may still be false (adversarial cases are possi-
ble).

2. Domain coverage. The synthetic set is
skewed toward algebra/number theory; ge-
ometry, analysis, and combinatorics require
domain-specific generators and validators that
we do not cover here.

3. LLM judge bias. Evaluation relies on an
automated LLM judge (binary accept/reject).
Despite high spot-check agreement, residual
bias may affect absolute scores.

4. Empirical scope. Experiments intentionally
target one model family (Qwen-2.5) and one

benchmark (MiniF2F) to isolate pipeline ef-
fects; cross-family/benchmark validation is
left for follow-up work.

9 Acknowledgements

The study was supported by the Ministry of Eco-
nomic Development of the Russian Federation
(agreement No. 139-10-2025-034 dd. 19.06.2025,
IGK 000000C313925P4D0002)

199

References

Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. 2015. The
Lean theorem prover (system description). In Au-
tomated Deduction — CADE-25, volume 9195 of
Lecture Notes in Computer Science, pages 378-388.
Springer.

DeepSeek-Al. 2024. DeepSeek-V3 technical report.
arXiv preprint arXiv:2412.19437.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. KTO: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego
Chicharro, Evan Chen, Alex Gunning, and et al.
2024. FrontierMath: A benchmark for evaluating ad-
vanced mathematical reasoning in Al. arXiv preprint
arXiv:2411.04872.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, and et al. 2023. ToRA:
A tool-integrated reasoning agent for mathematical
problem solving. arXiv preprint arXiv:2309.17452.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, and et al. 2021. Mea-
suring mathematical problem solving with the MATH
dataset. In Neural Information Processing Systems
(NeurlPS) Datasets and Benchmarks Track.

Jiwoo Hong, Noah Lee, and James Thorne. 2024.
ORPO: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and et al. 2022. Large
language models can self-improve. arXiv preprint
arXiv:2210.11610.

Thomas Hubert, Rishi Mehta, Laurent Sartran, and
Google DeepMind Team. 2024. Al achieves silver-
medal standard solving International Mathematical
Olympiad problems. Nature. News & Views.

Jia Li, Edward Shan, Xuefeng Wu, Yifei Ma, Rohan
Murty, Himanshu Arora, and et al. 2024. Numina-
Math: Al Mathematical Olympiad Progress Prize.

Jannis Limperg and Asta Halkjer From. 2023. Aesop:
White-box best-first proof search for Lean. In Pro-
ceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP
'23).

Haohan Lin, Zhiging Sun, Yiming Yang, and Sean
Welleck. 2024. Lean-STaR: Learning to in-
terleave thinking and proving. arXiv preprint
arXiv:2407.10040.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong
Duan, Zhiwei Fei, Fengzhe Zhou, and et al. 2024.
MathBench: Evaluating the theory and application
proficiency of LLMs with a hierarchical mathematics
benchmark. arXiv preprint arXiv:2405.12209.

Yu Meng, Mengzhou Xia, and Danqi Chen.
2024. SimPO: Simple preference optimiza-
tion with a reference-free reward. arXiv preprint
arXiv:2405.14734.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, and et al. 2022.
Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155.

Gabriel Poesia, David Broman, Nick Haber, and Noah D.
Goodman. 2024a. HyperTree proof search for neural
theorem proving. arXiv preprint arXiv:2205.11491.

Gabriel Poesia, David Broman, Nick Haber, and
Noah D. Goodman. 2024b. Learning formal math-
ematics from intrinsic motivation. arXiv preprint
arXiv:2407.00695.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language

model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar.
2024. Towards large language models as copi-
lots for theorem proving in Lean. arXiv preprint
arXiv:2404.12534.

torchtune maintainers and contributors. 2024. torchtune:
PyTorch’s finetuning library.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and
Thang Luong. 2024. Solving Olympiad geometry
without human demonstrations. Nature, 625:476—
482.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy
Xin, Michelle Ding, Michael Jennings, and et al.
2024. PutnamBench: Evaluating neural theorem-
provers on the Putnam Mathematical Competition.
arXiv preprint arXiv:2407.11214.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, and et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, and et al. 2024b. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. miniF2F: A cross-system benchmark for for-
mal Olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

200

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1038/d41586-024-02441-2
https://doi.org/10.1038/d41586-024-02441-2
https://doi.org/10.1038/d41586-024-02441-2
https://github.com/project-numina/aimo-progress-prize
https://github.com/project-numina/aimo-progress-prize
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3573105.3575671
https://github.com/pytorch/torchtune
https://github.com/pytorch/torchtune
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5

A Examples of generated conjectures

Here are a few examples of generated problems
with our algorithms.

InternLLM step generator was strong in algebra
problems generation with algorithm 1.

Basic problem

For a,b,c > 0 and a + b+ ¢ = 1 prove that
1+ 12abc > 4(ab + be + ac)

We got a new problem and proof to it, which
further on the G than starting one:

New problem

14 12ab(1 —a —b) > 4(ab+ b(1 — a —
b)+ (1 —a—"b)a)

B GeoGen and AlphaGeometry synthetic

In our methods, we did not touch geometrical prob-
lems as they require slightly different approaches.
Also, formalization of geometrical problems to
Lean-like languages is a quite complicated task.
Knowing this, we consider different approach to
synthetical geometric task generation. We analyzed
AlphaGeometry framework and examined its prob-
lems:

1. AlphaGeometry can’t solve problems that re-
quire non-trivial additional constructions. For in-
stance, median doubling.

2. Directed angles make it possible to solve really
generalized problems.

3. Projective theorems (Pascal theorem, Pappus’s
theorem, etc.), usually can’t be solved.

4. There is no numerical package that could help
to calculate geometrical problems in coordinates.
Knowing these facts, we used a slightly modified
version of GeoGen which included Humpy and
Dumpy points and created several configurations to
this algorithm. Then, we applied Qwen2.5 to trans-
late problems to AlphaGeometry language. Finally,
we searched for the solution with AlphaGeometry.
With this algorithm pairs problem/solution might
be conducted. Let’s consider examples of gener-
ated problems:

While we were able to generate some qualita-
tive geometrical problems with this algorithm, this
framework is computationally heavy, so we do not
highlight any alignment experiments related to the
geometrical data.

Figure 1: GeoGen example problem 1

C Real effects of small changes in
evaluation

We examined the following question: Can we pro-
duce new evaluation sets by applying small changes
to the questions similar to noise? For instance,
given a simple task:

Original problem

On a circle, there are 2n points: n red and
n blue. A red frog starts on one of the
red points, and a blue frog starts on one of
the blue points. Each minute, the red frog
jumps clockwise to the next red point, and
simultaneously, the blue frog jumps coun-
terclockwise to the next blue point. Prove
that for any initial positions of the frogs, it
is always possible to draw a line such that
the frogs are on opposite sides of the line at
all times.

Problem (With changes)

On a circle, there are 2n points: n red and
n blue. A red turtle starts on one of the
red points, and a blue turtle starts on one of
the blue points. Each second, the red turtle
hops clockwise to the next red point, and
simultaneously, the blue turtle hops coun-
terclockwise to the next blue point. Prove
that for any initial positions of the turtles,
it is always possible to draw a line such that
the turtles are on opposite sides of the line
at all times.

With recent works there was an active attention
to such mechanism as a potential way to produce
new evaluation frameworks. In our work we show

201

that such changes are inefficient. Changes of the
results from table 1 are bounded within [—1, +1].
Therefore, such a method of creating extra evalua-
tion data is not really working and affecting LLM
reasoning abilities.

D Examples of TiR validation function

In this section we provide a few examples of func-
tions that were generated during the TiR conjecture
validation procedure.

Conjecture 1 (Inequality) a® + b + ¢
ab+ ac+ be

2 o _

def f(a, b, c):
Evaluates the conjecture a*2 + b*2 +
c*2 >= ab + ac + bc.

Args:
a, b, c: Real numbers.
Returns:
1 if the conjecture holds, ©
otherwise.
lhs = ax*2 + b**x2 + c**2
rhs = axb + a*c + bx*c
if lhs >= rhs:
return 1
else:
return 0

non

Define the function f (this is a
placeholder; define actual f
based on the conjecture)

For example, assume f(x) = x (
identity function for simplicity

in testing)

def f(z):
return z # Identity function

Check if f(x + f(y))

FOF(x) +y) = x + f(y)

if f(x + f(y)) == f(x) + y:

return 1 # First condition

= f(x) +y or

holds
elif f(f(x) + y) == x + f(y):
return 1 # Second condition
holds
else:
return @ # Neither condition
holds

Conjecture 3 (Graph theory). There is a node
in a planar graph with degree less than 5.

Conjecture 2 (Functional equation), IMO 2024
A function f : Q — Q is called aquaesulian if the
following property holds: for every x,y € Q,

flx+f(y)=flx)+y or
f(f(@)+y)=z+ fly). @

Show that there exists an integer c¢ such that for
any aquaesulian function f, there are at most ¢
different rational numbers of the form f(r)+ f(—r)
for some rational number r, and find the smallest
possible value of c.

from fractions import Fraction

def aquaesulian_validator(x, y):

A validator for an aquaesulian
function. This function will
return 1 if the conjecture

holds for the given x and y, and @
otherwise.

Args:
x: Rational number (Fraction)
y: Rational number (Fraction)

Returns:
1 if conjecture holds, 0

def f(graph):

Validator function for the
conjecture: in a planar graph,
there exists at least one node

with degree less than 5.

Parameters:
graph (dict): A dictionary
representing the graph as an
adjacency list.
Each key is a node

, and the
value is a
list of its
neighbors.

Returns:
1 if there is a node with degree
less than 5, @ otherwise.
Iterate over each node and check
its degree
for node, neighbors in graph.items()

if len(neighbors) < 5:
return 1 # Conjecture holds
there exists a node
with degree < 5

return @ # Conjecture does not hold
no node with degree < 5

otherwise.

202

