An in-depth human study of the mathematical reasoning abilities in Large
Language Models

Carolina Dias-Alexiou, Edison Marrese-Taylor, Yutaka Matsuo
Graduate School of Engineering, The University of Tokyo
{carolina.dias,emarrese,matsuo}@weblab.t.u-tokyo.ac. jp

Abstract

We study the generalization capabilities of
large language models (LLM) through the lens
of mathematical reasoning, asking if these mod-
els can recognize that two structures are the
same even when they do not share the same
nomenclature. We propose a human study to
evaluate if LLMs reproduce proofs that they
have most likely seen during training, but when
the symbols do not match the ones seen. To
test this in a controlled scenario, we look at
proofs in propositional calculus, foundational
for other logic systems, semantically complete
and widely discussed online. We replace the
implication operator (—) with an unrelated, ar-
bitrary symbol (#) and ask experts to evaluate
how the output of a selection of LLMs changes
in terms of compliance, correctness, extensive-
ness and coherence. Our results show that
nearly all our tested models produce lower qual-
ity proofs in this test, in particular open-weights
models, suggesting the abilities of these LLMs
to reason in this context have important limita-
tions.

1 Introduction

Mathematical reasoning is a key aspect of human
intelligence that encompasses pattern recognition
and logical entailment. The development of artifi-
cial intelligence systems capable of tasks such as
solving applied and theoretical mathematical prob-
lems has been a long-standing focus of research in
the fields of machine learning and natural language
processing, dating back to the 1960s (Feigenbaum
and Feldman, 1963; Bobrow, 1964).

Our interest in this topic rises from recent at-
tempts to use language models for theorem prov-
ing by means of ITPs’ programming languages
and databases of theorems with their proofs. Deep
learning models can be trained in one of these many
programming languages, and then used to generate
mathematical proofs. Data sources for neural the-
orem proving in ITPs include interactive learning

environments that interface with ITPs, and datasets
derived from proofs in ITP libraries.

When it comes to mathematical reasoning, and in
particular to the ability of models to understand log-
ical statements, we note that despite the abundance
of studies, previous works generally assume that
only “variables” are the ones not constant through-
out problems. However, we see that in mathematics
different nomenclatures are used in different areas,
as well as in different time periods, to express the
same ideas. Examples of this fact include the use
of D and — to denote implication; Leibniz’s %,
Lagrange’s f’, and Newton’s f notation in differ-
ential calculus; the different notation for the inner
product for physicists (-|-) and for mathematicians
(-,-); prefix f(z) and postfix (z)f notations for
functions; and different notations for the von Neu-
mann generated algebra, such as: W*(-,-) and - V -,
to name a few.

As we attempt to use LLMs to tackle proof gen-
eration tasks, for example using the “informal the-
orem proving” approach (please see §2 for more
details on this), we think researchers and practi-
tioners need to take this fact into consideration.
Furthermore, and in contrast to all these models,
current state-of-the-art models in NLP are trained
on large datasets of text extracted from the web. In
this case, we have limited or no control on the kinds
of expressions and/or operators that the models are
exposed to during training. We can, however, still
assume the models have been exposed mostly to
the standard nomenclature.

Given this scenario, we ask: can these models
recognize that two structures are the same even
if they do not share the same nomenclature? For
example, can models reproduce proofs that they
have most likely seen during training, but when
the symbols do not match the ones seen? If so, to
what extent are these proofs plausible and correct?
In order to answer these questions, we perform
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an in-depth human evaluation to assess the quality
of the output generated by LLMs when prompted
to generate proofs similar to the ones seen during
training but with expressions that use a different
notation.

2 Related Work

Automated Theorem Proving The first proofs
using computers started appearing as early as the
1950s, soon after electronic computers became
available. This played a big role in the development
of the field of automated reasoning, which itself
led to the development of Al. Most of the early
work on computer-assisted proof was devoted to
automated theorem proving (ATP) (Harrison et al.,
2014), in which machines were expected to prove
assertions fully automatically. The increased avail-
ability of interactive time-sharing computer operat-
ing systems in the 1960s allowed the development
of interactive theorem provers (ITPs) in which the
machine and the user work together to produce a
formal proof. While ATPs include proof-search
algorithms to generate whole proofs, ITPs usually
check the validity of human input statements, al-
though they may also include reduced automated
tools.

More recently, work on “informal” theorem prov-
ing has presented an alternative medium for the-
orem proving, in which statements and proofs
are written in a mixture of natural language and
symbols used in “standard” mathematics (e.g., in
I&TEX), and are checked for correctness by hu-
mans. Here we find the work of Welleck et al.
(2021) who developed NaturalProofs, a large-scale
dataset of 32k informal mathematical theorems,
definitions, and proofs, and provided a benchmark
for premise selection via retrieval and generation
tasks. Most of the data is taken from websites
like proofwiki . com, and though this enables more
flexibility when proving, the task is approached in
a way similar to I'TPs.

Mathematical Reasoning in LLMs Early works
attempting to study the ability of models to recog-
nize patterns in mathematical expressions focused
on the manipulation of simple expressions using
standard notation. For example, Allamanis et al.
(2017) trained models on datasets in which pairs
of examples contain Boolean logic and arithmetic
expressions which are known to be equivalent. For
example, expressions like c? and (c-c)+ (b—b) are
equivalent. However, expressions with the same

structure, but different variables, such as ¢-(a-a+0b)
and f - (d - d+ e), are not. They showed that such
models were capable of relating non-paired expres-
sions, like a — (b —¢) and b — (a + ¢), as negations
of each other.

Evans et al. (2018) studied the ability of neu-
ral networks to understand logical entailment via
training models on synthetic datasets of logical
statements and their evaluations (True/False). Con-
cretely, they generated datasets of triples of the
form (A, B, A £ B), where A and B are formu-
las of propositional logic, and A F Bis 1 if A
entails B, and 0 otherwise. They concluded that,
from the models available at the time, those with a
tree structure seemed to be better for domains with
unambiguous syntax.

In these works, expressions are generated auto-
matically starting from a set of simple rules plus
a set of arbitrary combinations. This allows to
scale and control the types of expressions that are
shown to the model during training/inference. Later
Cobbe et al. (2021) and Rein et al. (2023) shifted to
a question-answer format using natural language,
with the release of the GSM8K and GPQA datasets,
respectively, while also extending the class of ques-
tions to other areas of mathematics, like calculus
and probability, where the ability to control for the
type of expressions is reduced.

3 Proposed Approach

To study the posed research questions under a con-
trolled scenario, we look at proofs in propositional
calculus, a branch of formal logic that deals with
propositions, which can be true or false, and rela-
tions between propositions, including the construc-
tion of arguments based on them (Wrenn, 2025).
Propositional calculus, also known as zeroth-order
logic, does not deal with quantifiers over non-
logical objects (unlike first-order or higher-order
logic). There are several reasons that we think
make this the ideal scenario for our study: (1) All
the machinery of propositional logic is included in
first-order logic, higher-order logic, and all math-
ematics. In this sense, propositional logic is the
foundation of other logic systems; (2) Propositional
calculus is semantically complete, i.e. any tautol-
ogy (true formulas) can be proved with the formal
axioms and the rules of inference of the system;
(3) Being the subject of common undergraduate
courses, demonstrations in this context have been
widely discussed online (for example, in fora such
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as Math Stack Exchange) so we can reasonably as-
sume that LLMs have been exposed to these types
of proofs, and (4) It is a minimalist setup which al-
lows us to include the entire logical structure in the
prompt, thus reducing the amount of assumptions
needed.

Propositional calculus is typically studied with a
formal system, which contains a formal language
and a deductive system. The language is composed
of a set of well-formed formulas, which are strings
of symbols from an alphabet (composed of propo-
sitional variables and propositional connectives)
formed by a formal grammar (formation rules).
The deductive system, in turn, contains the rules
of inference, a function which takes premises and
returns conclusions. To assess how models general-
ize in this scenario, we compared proofs generated
by these models using “usual” and “unusual” sym-
bols for connectives.

We use a standard proof system usually referred
to as a Hilbert system. This is a deductive system
that generates theorems from axioms (tautologies
taken as starting point for further reasoning) and
modus ponens. Modus ponens can be summarized
as: If P implies Q and P is known to be true, one
can conclude that Q must also be true. It is gen-
erally expressed as {P — @, P} F @, where
the turnstile symbol () denotes derivability, i.e.
there is a formal derivation of a theorem from the
axioms. As for connectives, we limit it to the log-
ical and (M), logical or (V), the negation operator
(—), and the implication operator (—). For the ax-
ioms, we use a common set of 14 axioms used in
undergraduate courses, shown in Figure 1.

For our study, we propose to replace the impli-
cation operator (—) with an unrelated, arbitrary
symbol (#). In order to produce a significant per-
turbation in the input token distribution, we specifi-
cally select the unicode representation of the sym-
bol (U+2660) for the replacement. Alternative re-
placements are left for future work. We select two
common theorems from propositional calculus ex-
tracted from Rossegger (2019), as shown in Figure
2 and test models in two different scenarios, as
follows.

Full Context (FC) Our first evaluation scheme
is intended to simulate a noisy retrieval step prior
to the proof generation. Concretely, we offer the
model the complete set of axioms together with the
selected rule of inference, modus ponens. Thus, in
this scenario, we can also test the model’s ability

Axioms

AxD: (¢ A ) = @)
(Ax2): (¢ A ) = ¥)
(Ax3): (¢ = (¥ = (¢ A Y)))
(Ax4): (¢ = (¢ V)
(Ax5): (¢ = (P V )
Ax6): (¢ = x) = (¥ = x) = (V) = X))
AxT): (¢ = (¥ — ¢))
(Ax8): ((¢ = (¥ = x)) = ((¢ = ¥) = (¢ = X))
(Ax9): ((¢ = ¥) = ((¢ = ~¥) = ~9))
(Ax 10) : (m¢p — (¢ — @)
(Ax11): (¢ V ~¢)
(Ax12): ((¢ A —9) = ¥)
(Ax13): ((¢ = (b A =9)) = =)
(Ax 14) : (mm¢ — ¢)
MP): {P - Q,P}Q

Figure 1: Portion of the prompt provided to the LLMs
showing the content of the full context provided, namely,
the axioms and rules of inference we allow the models
to use.

to identify and retrieve only the axioms that are
needed to prove the selected theorem.

Selected Context (SC) We assume that the rel-
evant axioms for the requested proof have already
been selected by an oracle, and we offer only these
axioms and rule of inference to the model input.
For each question, we manually select the axioms
required (Axioms 6, 7, 10 for Question A; Axioms
7, 8 for Question B). In practice, we reassign iden-
tifier numbers to them, always starting from 1, to
avoid ambiguity.

A key point of our study is to ensure that the
generated proofs are checked by mathematicians.
Previous work has stressed the need to rely on ex-
perts for evaluation of theorem proving systems,
including the work of Welleck et al. (2022), who
carried on an in-depth annotation where an expert
annotator is presented with the theorem, proof-so-
far, and a generated next-step. Frieder et al. (2023)
also highlight that human evaluation of advanced
mathematics that approaches research level is ex-
pensive and requires experts. The evaluation of the
output of the language model for their work was
performed by the authors, who are all mathemati-
cians.

To perform the evaluation, we concretely rely on
a volunteer (one of the authors of this paper) who
has a Master’s degree in mathematics. We design
an annotation interface where for each case, we
show the annotator the exact input fed to the model,
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Question: Prove that
F((=PVQ) = (P — Q)
Answer:

(=P = (P =Q) = (Q—>(P—=Q)) —
(=PVQ)—=(P—Q))) (Ax6)
(=P = (P - Q)) (Ax10)
(@—= (P —=Q) = ((=PVQ)—=(P—=Q))
(Q— (P —Q)) (A7
(=PVQ)— (P—Q)) 3,4MP

Question B

Question: Prove that

1,2 MP

{P—Q),(Q@— R} (P—R)
Answer:

(P — Q) (hyp)
(Q = R) (hyp)
(@ > R) = (P —(Q — R))) (AxT7)
(P—(Q — R)) 2,3MP
(P=(Q—=R)) = ((P—=Q)—= (P —>R))
(P—>Q)— (P—R)) 45MP
(P—R) 1,6 MP

(Ax 8)

Figure 2: Details of the question (top: Question A,
bottom: Question B) utilized for our study, also showing
a possible proof which we allow our annotators to see.

as well as the output generated by it. Below, we list
the tasks that we require our annotator to perform.

* First, we ask the annotators if the output of
the model contains a proof.

* We present the steps of a correct proof and ask
the annotators to judge if each step appears in
the output of the model. Additionally, if the
step invokes an axiom or rule of inference, we
ask them to do the following.

— If the step invokes an axiom, we ask to
check if variables were substituted cor-
rectly.

— If the step uses a rule of inference, we ask
to check if the rule is properly invoked.

— We ask the annotator to judge whether
the step contributes to the proof in the
sense that it stirs the overall flow of the
proof in the right direction towards con-
clusion.

* With respect to the clarity of the overall text,

we ask the annotators to rate the output on a
scale of 0 to 4 via the following labels: “Very
Incoherent, Incoherent, Neither Coherent nor
Incoherent, Coherent, Very Coherent”.

* In order to evaluate the compliance to the task,
we ask whether the proof attempts to use in-
formation other than the necessary elements
that were provided to the model as input. Con-
cretely, we ask the annotators to indicate if the
proof uses an additional axiom, if this axiom
was provided in the input, and if it uses an
additional rule of inference, or an additional
hypothesis.

* Finally, we also allow the annotators to freely
provide us specific feedback by highlighting
spans of the model output that calls their at-
tention, to which they can add free-text com-
ments.

The above questions were designed to incorpo-
rate most, if not all, aspects that one would take into
consideration when grading the same questions in
an exam.

4 Results

For this study, we consider the following mod-
els: (1) API-based LLMs, including ChatGPT (gpt-
3.5-turbo-0125) (Brockman et al., 2023), Claude
3 Opus (claude-3-opus-20240229) (Anthropic,
2023), (2) Open-weights models, including Llama
3 (Meta-Llama-3-8B-Instruct) (Grattafiori and the
Llama 3 Team, 2024; Al@Meta, 2024), Llama
3.1 (Llama-3.1-8B-Instruct) (Int) and Gemma 2
(gemma-2-9b-it) (Team, 2024). The latter models
are obtained from HuggingFace, and quantized to
4-bits (Dettmers et al., 2023) to fit our GPU mem-
ory. For each input, we obtain 3 outputs from each
model using a different random seed. We computed
the following metrics to summarize model behavior
and measure performance.

* Percentage of times the model generated out-
put that contains a proof and where the model
did not utilize a hypothesis, axiom, or rule of
inference other than those provided. We con-
sider this a measure of the model compliance
with our instruction (Compliance).

* Percentage of steps from the gold standard
proof that appear in the generated proof, i.e.,
to what extent the model used the needed ax-
ioms and modus ponens (Extensiveness).
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Model Ctx. Compliance Extensiveness Correctness Flow Clarity
— o — — o — o - N

GPT-3.5-turb SC 66.67% 83.33% 62.38% 49.52% 30.00% 6.67% 33.33% 20.00% 2.67 2.33

U0 R 5000%  100%  36.19% 30.48% 10.00% 6.67% 26.67% 16.67% 3.00 2.60

Claude 3 O SC 100% 100% 95.24% 93.14% 86.67% 72.00% 93.33% 84.00% 3.83 3.40

aude VP pC 100% 83.33% 85.71% 75.71% 66.67% 33.33% 80.00% 50.00% 3.67 3.00
Gemma 2 (9B) SC 0.00% 0.00% 11.90% 0.00% 0.00% 0.00% 3.33% 0.00% 4.00 -
emma FC 0.00% 0.00% 16.67% 0.00% 0.00% 0.00% 3.33% 0.00% 4.00 -

Llama 3 (8B) SC 50.00% 66.67% 49.52% 41.43% 3.33% 333% 16.67% 6.67% 1.83 1.80

FC 3333% 83.33% 3571% 21.90% 10.00% 3.33% 13.33% 0.00% 2.17 1.60

Llama 3.1 (8B) SC 3333% 100% 42.38% 40.95% 0.00% 333% 6.67% 6.67% 1.17 1.17

’ FC 66.67% 50.00% 32.38% 24.29% 3.33% 0.00% 6.67% 6.67% 2.00 1.50

Table 1: Summary of the results of our human evaluation study, where Ctx. is short for context. Bold numbers
indicate the best score for each pair of (—, #) prompts for a given model, and we underline the best score across

the FC and SC scenarios for each model.

* Percentage of steps that appear in the gener-
ated proof and were correctly applied. In other
words, the steps that are correct (Correctness).

» Percentage of steps that appear in the output
providing an expression which is a step to-
wards finalizing the proof, even if it was not
correctly deduced (Flow).

» Average clarity score reported for the overall
text output from a given model (Clarity).

Table 1 summarizes the results of our evaluation.
With the exception of Compliance, all metrics show
a similar trend of decrease in model performance
when the questions are perturbed with #. The same
is also true when we compare the Full Context to
the Selected Context. Most interestingly, the score
for Flow was always higher than the Correctness,
indicating that models tend to recall or retrieve
parts of the right answer from memory, even if they
cannot follow the correct sequence of logical steps.

We also observe that not only Compliance did
not follow the decrease trend seen for other metrics,
but also that most models showed an increase in
this metric when prompted with the arbitrary sym-
bol. In fact, this variation in Compliance appears
to strongly correlate with our #-based replacement
scenario. Overall, the average compliance with the
original symbol (—) is 43.85%, which compares
unfavorably against 71.89% for our replacement
scenario (#). We note that such a significant gap
is not evident when looking at performance dif-
ferences due to variations in context, where we
observe an average Compliance of 60.22% for SC
and 63.39% for FC. Since invoking facts outside of

the givens in the prompt is a big factor in how we
compute the Compliance criteria, we believe this
counterintuitive increase in value can be at least
partially explained by the changes in the semantics
induced by our symbol replacement. Intuitively,
the semantic similarity between these expressions
and the examples seen during training should be
lower, making it more unlikely for the model to
retrieve relevant content seen during training, even
if not useful for the proof.

The model with the best performance across all
measures was Claude 3 Opus. Like for most mod-
els, its Extensiveness measure was subject to a
decrease when one compares the easiest scenario
(SC with —) to the hardest scenario (FC with &),
but its lowest value (75.71%) was still higher than
the highest Extensiveness measure of any other
model. However, it did experience a sharp decrease
in both Correctness (from 86.67% to 33.33%) and
Flow (from 93.33% to 50.00%), with the first be-
ing the largest difference in performance of any
metric for any model. As table 1 shows, there is
also a big difference in performance between the
API-based LLMs and the Open-weights models.
The Gemma 2 model refused to provide a proof in
most cases, as it can be seeing by its Compliance
measure, making it impossible to draw conclusions
about its abilities. We think these results suggests
open-weights models are significantly behind APIs,
which is well-aligned with performance measured
in popular automatic benchmarks.

To delve further into the data, we split the Clar-
ity into intervals, as seen in Table 3, and looked at
the other metrics’ behavior in each range (here we
excluded the cases in which the model did not pro-
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Scenario A

Model Metric
—~tod SCtoFC
Compliance 33.33% 0.00%
Extensiveness  -9.29% -22.62%
Correctness -13.33%  -10.00%
Flow -11.67% -5.00%
GPT-3.5-turbo  ExtraHyp -25.00% 8.33%
ExtraAxiom 0.00% 83.33%
ExtraROI -41.67% 8.33%
Clarity -0.38 0.32
Compliance -9.09% -8.33%
Extensiveness  -6.84% -13.57%
Correctness -25.76%  -30.00%
Flow 21.21%  -24.09%
Claude 3 Opus  ExtraHyp 0.00% 0.00%
ExtraAxiom 27.27% 25.00%
ExtraROI 0.00% 0.00%
Clarity -0.57 -0.3
Compliance 0.00% 0.00%
Extensiveness  -14.29% 2.38%
Correctness 0.00% 0.00%
Flow -3.33% 0.00%
Gemma 2 (9B) ExtraHyp -41.67% 8.33%
ExtraAxiom 0.00% 0.00%
ExtraROI -8.33% -8.33%
Clarity -4 0
Compliance 33.33% 0.00%
Extensiveness -10.95%  -16.67%
Correctness -3.33% 3.33%
Flow -11.67% -5.00%
Llama 3 (8B)  ExtraHyp -25.00% 8.33%
ExtraAxiom -16.67% 83.33%
ExtraROI -33.33% 0.00%
Clarity -0.3 0.09
Compliance 25.00% -8.33%
Extensiveness  -4.76% -13.33%
Correctness 0.00% 0.00%
Flow 0.00% 0.00%
Llama 3.1 (8B) ExtraHyp -25.00% -8.33%
ExtraAxiom 16.67% 83.33%
ExtraROI -8.33% 8.33%
Clarity -0.25 0.58

Table 2: Difference in model performance, measured
by our introduced metrics, when the model is presented
with the perturbed input versus the original symbol (de-
noted as “— to #”), and when the model is presented
with the Selected Context versus the Full Context (de-
noted as “SC to FC”). Values in green denote an in-
crease in performance and values in red denote a de-
crease in performance.

vide a proof). We can see that models like Claude
3 Opus and Gemma 2 were more consistent in the
clarity of their outputs. Although we cannot guaran-
tee that the gold standard proof is the only possible
proof, we can see from Table 3 that Correctness
and Flow align well with the clarity score, i.e., they
all decrease as the clarity decreases. This indicates
that as the model struggles to complete the proof,
the output becomes more convoluted and difficult
to understand.

Model Clar. Ext. Corr. Flow
0~1 60.00% 60.00% 0.00%
I~2  57.14% 0.00%  0.00%
GPT-3.5-tubo 3 300% 000%  8.00%
34 49.64%  1625%  33.75%
23 60.00% 20.00% 20.00%
Claude30pus 5 4 g344%  6636% 79.09%
Gemma2 (9B) 3~4 3429% 000%  8.00%
1~2  4143% 333%  0.00%
Llama3 (8B)  2~3 3385% 4.62%  7.69%
34 67.62% 1333%  40.00%
0~1 2000% 000% 5.00%
1~2  3750% 0.00%  2.50%
Llama3.18B) 5 3 4549, 444%  1333%
3~d 2571%  0.00%  0.00%

Table 3: Summary of our results grouping by Clarity
value bins, where Clar., Ext. and Corr. are short for
Clarity, Extensiveness and Correctness, respectively.

To better understand the impact of the different
scenarios on models, we compute the difference in
model performance when the model is presented
with the perturbed input versus the original symbol
and when the model is presented with the Selected
Context versus the Full Context. For this study, in
addition to the metrics introduced before, we also
compute:

* The percentage of times the model uses a hy-
pothesis that was not necessary (ExtraHyp),
as per our proof of reference.

* The percentage of times the model uses an
axiom that was not necessary (ExtraAxiom),
as per our proof of reference.

* The percentage of times the model uses a rule
of inference that was not provided in the input
(ExtraROI).

Table 2 summarizes these findings. The introduc-
tion of a perturbation in the input had a bigger
impact on Clarity than the change in context for
all models. Looking at “— to #” for both Llama
models and ChatGPT, — has a higher percentage of
steps, but also more unnecessary steps. The symbol
replacement seems to be curbing all types of steps.
For ChatGPT, we noticed that there is a bigger drop
in Extensiveness for “SC to FC” than “— to #”,
but the drop in Correctness and Flow is smaller
for “SC to FC” than “— to #”. This suggests that
ChatGPT struggles to retrieve the necessary axioms
from the givens, but the change in context does not
seem to significantly impact its Correctness. For
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Claude, both changes seem equally challenging,
with the change in context having slightly bigger
impact on Extensiveness, Correctness, and Flow.
Claude 3 Opus was the only model to have a de-
crease across all metrics for both differences.

There are three different types of steps that could
appear in our studied proof: Hypotheses, Axioms,
and Rules of Inference. With that in mind, we split
each of our metrics into these three cases and sum-
marize the results on Table 4. We noticed that mod-
els tend to be better at manipulating axioms than
at listing hypotheses or applying rules of inference.
In particular, both Llama models struggled with
rules of inference (ROIs), with no Extensiveness
value being higher than 25% and all Correctness
values being 0%. For these two models we also
noticed that while mistakes on substitution (Cor-
rectness) seem to lead to fewer contributions to
the final proof (low Flow), mistakes on rules of
inference still lead to contributions. We think this
indicates that these models use rule of inference to
justify steps they “know” are needed, even though
the rule never correctly justifies said step.

We also observed that Gemma 2 never attempted
to use an axiom (all values are 0%), and its best
performance was on Extensiveness for hypotheses.
ChatGPT had the biggest gap on Extensiveness
for axioms (SC vs FC), and on the Full Context
scenario, it always made mistakes on substitution.
Claude 3 Opus was slightly worse at applying ROIs
than making substitutions on easiest scenario (SC
with —), but it did much worse at substitution than
on ROIs on the hardest scenario (FC with &#). Its
only use of unnecessary steps was on the hardest
scenario and it used extra axioms.

We also analyze the spans highlighted by the
annotators, alongside the comments left by them
on each location. We collected a total of 304 an-
notations derived from highlighted spans, out of
which, 170 were unique. We note that more than
99% of these comments denote errors made my the
model, often related to the questions that were pre-
sented to the annotators. Based on this insight, we
use this information to empirically estimate ‘“when’
models tend to make their first mistake as they gen-
erate the requested proof. Concretely, we compute
the position in terms of number of characters, nor-
malized by answer length, of the start of the spans
highlighted by the annotator. These relative posi-
tions are then averaged for all the answers for each
model.

As shown in Table 5, we see models tend to

>

make their first mistake relatively early in their gen-
eration, which is true even for the more advanced
black-box models. The table also shows how dif-
ferently each model behaves in terms of verbosity,
where we see models Llama 3 and 3.1 generat-
ing answers that are up to 3,000 characters long,
while API-based models like GPT-3.5 and Claude
3 Opus are significantly more concise. The rela-
tively lower value shown by Gemma is due to the
model often not generating an actual proof, which
artificially brings this number down. Compared to
our gold standard proofs, which contain 478 and
452 characters, these results show that models tend
to favor verbosity instead of precision when gen-
erating these kinds of proofs without specialized
prompts.

Finally, we analyze the content of the annota-
tions for each of the highlighted spans. We think
these may provide additional insights on the nature
of the mistakes by the models. In order to per-
form this analysis, we encode the annotations with
Sentence-BERT (Reimers and Gurevych, 2019),
via the all-MiniLM-L6-v2 model, using the Sen-
tenceTransformers' package. We then perform
clustering using k-means via its scikit-learn im-
plementation (Pedregosa et al., 2011). We compute
clusters varying parameter k, the number of clus-
ters, with k = 1, ..., 15, and select the top 3 results
as based on silhouette scores (Rousseeuw, 1987).
Finally, we visually analyze these best results by
performing PCA on the embedded annotation com-
ments, and plotting them on a 2D chart, coloring
the examples by cluster. We find the that k = 7
offers meaningful results, highlighting four distinct
behaviors models often engage in the following
cluster, which here we represent by the instance
closest to the centroid: (Cluster 0) “Inability to
recognize the Unicode symbol used to replace the
implication operator”, (Cluster 1) “Does not fol-
low from Axiom”, (Cluster 3) “Substitution Issue”,
(Cluster 5) “Incorrect usage of modus ponens”.

Discussion It is known that if we have a theo-
rem in propositional calculus, then it has arbitrarily
many proofs. One cannot even guarantee there is
a unique “minimal length” proof. Hence, one may
question our comparison of model outputs against
a fix proof. However, since we study changes, we
need a baselines to compare against. This also
makes it easier to evaluate the output systemati-
cally and consistently. We also note that if we

'github.com/UKPLab/sentence-transformers
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Hypotheses Axioms Rules of Inference
Model Cxt. Ext. ExtraHyp Ext. Corr. Flow ExtraAxiom Ext. Corr. Flow ExtraROI
- 6 = A& - e - A - N L) - & = & - 6 = b
GPT-3.5-turb SC 83% 67% 17% 17% T12% 69% 42% 14% 25% 14% 17% 0% 42% 28% 17% 0% 42% 28% 33% 0%
27O EC 67% 100% 50% 0% 22% 6% 0% 0% 8% 0% 83% 100% 44% 31% 17% 11% 44% 31% 50% 0%
Claude 3 Opus SC 100% 100% 0% 0% 92% 100% 92% 73% 92% 80% 0% 0% 94% 83% 83% 70% 94% 83% 0% 0%
PUSEC 100% 100% 0% 0% 75% 69% 44% 17% 75% 36% 0%  50% 83% 67% 83% 42% 83% 61% 0% 0%
Gemma 2 (9B) SC 67% 0% 33% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 0% 0% 0% 6% 0% 17% 0%
FC 100% 0% 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 0% 0% 0% 6% 0% 0% 0%
Llama 3 (8B) SC 67% 33% 17% 0% 67% 83% 8% 8% 17% 8% 0% 0% 25% 6% 0% 0% 17% 6% 33% 17%
: FC 50% 33% 33% 0% 56% 42% 19% 8% 14% 0% 100% 67% 14% 0% 0% 0% 14% 0% 50% 0%
Llama 3.1 (8B) SC 67% 0% 50% 0% 64% 86% 0% 8% 8% 6% 0% 0% 6% 6% 0% 0% 6% 6% 33% 0%
' FC 100% 0% 17% 17% 19% 50% 6% 0% 0% 0% 67% 100% 22% 11% 0% 0% 14% 11% 17% 33%

Table 4: Results disaggregated for different categories: Hypotheses, Axioms,

and Rules of Inference. For the sake

of presentation, values in this table are rounded to the closest integer.

Model Answer Len. Rel. Ann. Loc.

GPT-3.5 turbo 1,310 4 500 15.573 % (10.34)
Claude 3 Opus 1,577 £+ 594 14.126 % (10.18)
Gemma 2 (9B) 890 443 28.247 % (11.90)
LLama 3 (8B) 2,181 £ 751 17.549 % (09.70)
Llama 3.1 (8B) 3,747 £5,024 33.592 % (21.69)

Table 5: Average length of model answers (Answer
Len.), in characters, with their respective standard de-
viations, and average relative location of the comments
left by the annotators (denoted as Rel. Ann. Loc.),
normalized be answer length. For the latter, numbers in
parenthesis show the standard deviation.

0.4 Clusters
.

0.2

oo s wN e o

-0.2

-0.4

Figure 3: Clusters of annotations related to model be-
havior recognized as a mistake by our annotators.

had access to the training data, we could ensure
we use the same proof used during training as our
gold standard, but this is difficult or impossible
in practice. To try to minimize this issue, we em-
ploy mathematicians to evaluate, which allow us to
also collect comments about any conflict that could
arise from this assumption. Finally, we would like
to note that, ultimately, the difficulty of the model
to follow the steps of the gold standard correlates
with the decrease of overall clarity of the output.

5 Conclusions

This paper studies the generalization capabilities
of LLM through the lens of mathematical reason-
ing. We perform an in-depth human evaluation
of the output of LLMs when they are prompted
to produce basic proofs in propositional calculus,
comparing their answers when we replace the im-
plication operator (—) with an unrelated, arbitrary
symbol (#). Our results show that nearly all our
tested models produce lower quality proofs in this
test, in particular open-weights models, suggesting
the abilities of these LLMs to reason in this con-
text have important limitations. For future work
we would like to extend this study to incorporate
more proofs, models, and multiple annotators. We
would also like to analyze how models react to
other input perturbations, for example using other
replacement symbols, and/or alternative represen-
tations for them.

Limitations

While our study may provide valuable insights into
the mathematical reasoning abilities of large lan-
guage models, it is subject to several limitations.
First, our analysis is constrained to a finite and
small set of tasks, which do not capture the full
breadth of mathematical reasoning scenarios. Sec-
ond, human evaluation, while essential for assess-
ing nuanced reasoning steps, is inherently subjec-
tive and may introduce variability in judgments.
We would like to improve on this in future work by
working with multiple annotators. Third, the mod-
els examined represent a snapshot of current archi-
tectures and training paradigms. Finally, our study
focuses on English-language prompts leaving open
questions about performance across languages.
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