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Abstract

Large Language Models (LLMs) have achieved
considerable success in text-based mathemat-
ical reasoning, yet their potential remains un-
derexplored in the multimodal mathematics do-
main where joint text and image understand-
ing is imperative. A key bottleneck hindering
progress is the scarcity of high-quality, gen-
uinely multimodal benchmarks. To address
this gap, we construct a unified benchmark by
consolidating and curating three public multi-
modal mathematics datasets. We subsequently
propose the UniMath-CoT framework, which
establishes a robust performance baseline by
combining Chain-of-Thought (CoT) principles
with efficient Supervised Fine-Tuning (SFT)
based on Low-Rank Adaptation (LoRA). Fur-
thermore, to bolster the model’s reasoning ro-
bustness, we introduce an innovative verifica-
tion mechanism, AARI (Answer Affirmation
by Re-Inference), which leverages a special-
ized re-inference protocol to have the model
self-scrutinize and validate its initial conclu-
sions. Our comprehensive experiments show
that this integrated strategy substantially boosts
performance, surpassing a wide range of open-
source models and markedly closing the gap
with leading proprietary systems.

1 Introduction

Mathematical reasoning is a cornerstone of human
intelligence. Automating this process, particularly
for problems presented in a multimodal format that
integrates text with diagrams and figures, repre-
sents a significant frontier for artificial intelligence
(Seo et al., 2015). This capability has profound
implications for domains like personalized educa-
tion, scientific discovery, and engineering, where
complex information is often conveyed visually.

The advent of powerful Vision-Language Mod-
els (VLMs), such as GPT-4V, Gemini, and LLaVA
(OpenAI, 2023; Team et al., 2023; Liu et al.,
2024a), has opened new avenues for tackling this
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Figure 1: Performance comparison of our model against
leading proprietary VLMs on Multiple-choice and Cal-
culation problems. "Ours" refers to the Qwen2.5-VL
7B model fine-tuned with UniMath-CoT and enhanced
with AARI.

challenge. These models can, in principle, process
interleaved text and images to produce human-like
reasoning steps, moving beyond the text-only limi-
tations of earlier models (Wei et al., 2022). How-
ever, the landscape of multimodal mathematical
reasoning remains fragmented. Numerous datasets
exist (Lu et al., 2024; Ling et al., 2023; Liu et al.,
2024b; Wang et al., 2024), but they possess dis-
tinct formats, scopes, and a significant number of
instances where the visual component is not essen-
tial for solving the problem. This fragmentation
and lack of a unified, high-quality benchmark im-
pede the rigorous evaluation of VLMs and hinder
progress in the field. To address these challenges
and systematically advance the state of multimodal
mathematical reasoning, this paper makes three
primary contributions:

1. A Unified and Curated Multimodal Math-
ematics Dataset. We construct a new
benchmark by amalgamating three prominent
datasets: MathViTa, MathVision, and CMM-
MATH. We apply a rigorous filtering process
to remove unimodal instances, ensuring that
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every problem is genuinely multimodal. The
resulting dataset serves as a more challeng-
ing and realistic testbed for evaluating VLM
reasoning capabilities.

2. An Effective Reasoning Framework
(UniMath-CoT). We leverage and validate
UniMath-CoT, a structured Chain-of-Thought
approach tailored for the complexities
of joint visual and textual understand-
ing. Implemented via parameter-efficient
fine-tuning (LoRA) (Hu et al., 2021), this
framework guides the model to generate more
coherent and accurate reasoning paths than
conventional methods.

3. A Novel Answer Verification Technique
(AARI). We introduce AARI, a lightweight,
post-hoc strategy to boost model performance.
This technique directs the model to re-evaluate
its predicted answer through a secondary, con-
densed inference pass, acting as a powerful
self-correction mechanism that significantly
reduces errors and improves final accuracy.

Table 1: Distribution of samples by split, source, and
language. Each cell shows the absolute count and its
proportion relative to the split’s total count.

Split Dataset Language

Chinese English

Train

MathVision 0 (0.0%) 3157 (23.8%)
MathVista 357 (2.7%) 5428 (40.9%)
EduChat-Math 4255 (32.1%) 61 (0.5%)

Total 4612 (34.8%) 8646 (65.2%)

Test

MathVision 0 (0.0%) 187 (18.7%)
MathVista 45 (4.5%) 311 (31.1%)
EduChat-Math 455 (45.5%) 2 (0.2%)

Total 500 (50.0%) 500 (50.0%)

2 Related Works

Multimodal Math Datasets The development of
capable models for mathematical reasoning is in-
trinsically linked to the availability of high-quality
datasets. Early efforts in this domain often fo-
cused on text-based problems, with benchmarks
like GSM8K (Cobbe et al., 2021) and MathQA
(Amini et al., 2019) becoming standard testbeds for
evaluating the reasoning capabilities of LLMs.

The frontier has recently shifted towards multi-
modal problems that require understanding both

text and images. This has led to the creation of sev-
eral key benchmarks. For instance, Geometry3K
(Lu et al., 2021) provides high-school level geom-
etry problems with formally annotated diagrams.
More recently, a new wave of diverse datasets has
emerged, including MathVista (Lu et al., 2024), a
comprehensive benchmark aggregating problems
from 28 different sources; MathViTa (Ling et al.,
2023), which focusing on visual instruction tun-
ing for math; MathVision (Wang et al., 2024), de-
signed to test reasoning-intensive math problems;
and CMM-MATH (Liu et al., 2024b), a benchmark
specifically for Chinese multimodal mathematics.

While these datasets have been invaluable, their
varied formats, scopes, and annotation styles create
a fragmented landscape. This makes it challenging
to perform unified and fair evaluations of different
models. Our work addresses this gap directly by
curating and unifying three of these recent, diverse
datasets into a single, filtered benchmark, ensuring
all instances are genuinely multimodal and provid-
ing a more robust foundation for analysis.

Vision-Language Models (VLMs) The advent
of powerful VLMs, pioneered by models like
LLaVA (Liu et al., 2024a) and further advanced
by open-source models like Qwen-VL (Bai et al.,
2023) and proprietary systems like GPT-4V (Ope-
nAI, 2023) and Gemini (Team et al., 2023), has
enabled end-to-end multimodal reasoning. The
primary challenge has since shifted to effectively
eliciting their latent reasoning abilities.

The foundational technique for this is Chain-
of-Thought (CoT)(Wei et al., 2022) prompting
(Wei et al., 2022), which significantly improves
performance by instructing models to generate
step-by-step solutions. This paradigm has been
extended to the multimodal domain, with meth-
ods like Multimodal-CoT (Zhang et al., 2023) that
prompt the model to integrate information from
both modalities in its reasoning steps. While ef-
fective, these zero-shot prompting methods can be
sensitive to prompt formulation and may not be
optimal for a specific domain. An alternative is
to instill reasoning capabilities through training.
Our UniMath-CoT framework aligns with this di-
rection, employing supervised fine-tuning (SFT)
(Ouyang et al., 2022) to teach the model a special-
ized reasoning structure for multimodal math, aim-
ing for a more robust and replicable performance
than prompting alone.
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Self-Correction and Answer Verification A key
limitation of LLMs, even when using CoT, is their
propensity for making logical or computational
errors within a reasoning chain. To mitigate this,
research has explored methods for self-correction
and answer verification (Lu et al., 2025; Li et al.,
2025). One approach involves training a separate
verifier model to score or judge the correctness of
solutions generated by a primary model (Cobbe
et al., 2021). Another popular direction is self-
refinement, where the model iteratively critiques
and improves its own output based on feedback
(Madaan et al., 2023).

While powerful, these methods can be computa-
tionally expensive, requiring either the training of
an additional model or multiple inference passes.
Our proposed AARI technique is situated within
this line of research but designed for efficiency.
It is a lightweight, single-pass verification step
that prompts the model to perform a final, focused
check on its answer. AARI functions as a post-hoc
self-correction mechanism that improves reliability
without the overhead of multi-step refinement or
external verifiers.

3 Methodology

Our methodology is designed to systematically en-
hance and evaluate the mathematical reasoning
capabilities of Vision-Language Models (VLMs).
It is founded on three core components: a newly
curated benchmark, a fine-tuned reasoning frame-
work, and a novel inference strategy for answer
verification as shown in Figure 2.

3.1 UniMath Benchmark Construction

A robust evaluation requires a high-quality bench-
mark. To this end, we construct UniMath, a unified
and curated benchmark derived from three recent
and diverse multimodal math datasets: MathVista
(Lu et al., 2024), MathVision (Wang et al., 2024),
and CMM-MATH (Liu et al., 2024b). The con-
struction process involves four critical steps:

1. Schema Unification: All problems from the
source datasets are converted into a standard-
ized JSON format. Each entry contains a
unique ID, the raw question text, an image,
the ground-truth answer, and, where available,
human-annotated reasoning steps. This cre-
ates a consistent data structure for all subse-
quent processing.

2. Answer Normalization: We develop and ap-
ply a rigorous parsing function, ϕ(·), to nor-
malize all answers. This function extracts nu-
merical values, correctly interprets fractions
and percentages, removes units, and standard-
izes multiple-choice options (e.g., converting
‘(A)‘ to ‘A‘). This ensures that evaluation is
based on mathematical correctness, not super-
ficial formatting differences.

3. Genuinely Multimodal Filtering: A key con-
tribution of UniMath is its focus on problems
requiring genuine multimodal reasoning. We
employ a systematic process to filter out in-
stances where the image is redundant or ex-
traneous, ensuring that a correct solution can
only be derived by integrating both visual and
textual information.

4. Problem Type and Scope Curation: To
maintain evaluation clarity and objectivity, we
further refine the benchmark by problem type
and answer scope. Specifically, we only select
two types of problems: multiple-choice ques-
tions and non-multiple-choice problems that
possess a unique, definitive solution. Further-
more, to avoid ambiguity with extremely large
numbers or complex symbolic expressions,
we constrain the answers for all non-multiple-
choice problems to be rational numbers within
the range of [-10,000, 10,000].

The final UniMath benchmark, shaped by this
rigorous curation process, serves as the foundation
for our experiments, providing a challenging and
standardized testbed for multimodal mathematical
reasoning.

3.2 UniMath-CoT Reasoning Framework
To move beyond the limitations of zero-shot
prompting, we propose UniMath-CoT, a framework
for teaching a VLM to generate structured, step-
by-step reasoning for multimodal math problems
through supervised fine-tuning (SFT).

The goal of UniMath-CoT is to train the model to
produce a specific, decomposable reasoning chain
that mirrors an ideal problem-solving process (see
Figure 3). This chain consists of several stages:
(1) Visual Grounding, where key information from
the image is extracted; (2) Problem Formulation,
where visual and textual information are integrated;
(3) Step-by-Step Planning; (4) Execution of the
plan with calculations; and (5) the Final Answer.
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Figure 2: The overall framework of our work, encompassing the entire pipeline from data construction to model
training and inference-verification. We first integrate three public datasets (CMM-Math, MathVista, MATH-Vision)
through standardized alignment to build the unified UniMath benchmark. Subsequently, this benchmark is used to
generate CoT formatted samples for SFT of the base VLM. During inference, the preliminary answer from the SFT
model is passed through our proposed AARI module for re-inference and verification to produce a more reliable
final result.

Figure 3: The structured reasoning generation prompt
template for UniMath-CoT.

Formally, we define a problem instance as a
tuple P = (I,Q), where I represents the im-
age and Q is the corresponding textual question.
The desired output is a coherent reasoning chain
R = (s1, s2, . . . , sn) that culminates in the final
answer A. For training purposes, we concate-
nate these elements into a single target sequence
Y = (s1, . . . , sn, A), which the model must learn
to generate autoregressively.

Our primary objective is to fine-tune a base
Vision-Language Model (VLM), parameterized by
θ, to maximize the conditional likelihood of gener-
ating this ground-truth sequence Y given the prob-
lem instance P . To achieve this in a computation-
ally efficient manner, we employ Low-Rank Adap-
tation (LoRA) for parameter-efficient fine-tuning.

The training process minimizes the standard
cross-entropy loss, which is equivalent to mini-
mizing the negative log-likelihood of the target se-
quence. The loss function, LSFT, over our curated
training dataset Dtrain is formally expressed as the
expectation of this loss across all data samples:

LSFT(θ) = −E(P,Y )∼Dtrain [log pθ(Y |P )] (1)

where the log-likelihood of a single sequence is
decomposed autoregressively as:

log pθ(Y |P ) =

|Y |∑

t=1

log pθ(yt|y<t, P ) (2)
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Algorithm 1 Answer Affirmation by Re-Inference

Require: Image I , question Q, initial answer A,
prompt P , VLMM, mode µ ∈ {t1, t2}

Ensure: Final answer A∗

1: if µ = t1 then ▷ Multiple-Choice
2: O = {O1, . . . , Ok}
3: for i = 1, . . . , k do
4: P ← “Is ‘Oi’ correct for Q given I?”
5: ifM(P ) = “Correct” then
6: return Oi

7: return Fallback(O)
8: else if µ = t2 then ▷ Calculation
9: A+ ← ∅

10: for j = 1, . . . , N do
11: P ← “Is ‘Aj’ correct for Q given I?”
12: ifM(P ) = “Correct” then
13: A+ ← A+ ∪ {Aj}
14: if |A+| > 0 then
15: return argmaxA∈A+ #{ i : Ai = A }
16: else
17: return Fallback(A)

This training paradigm compels the model not
only to predict the final answer but also to articulate
the underlying step-by-step derivation. By optimiz-
ing the entire reasoning path, this process endows
the model with a specialized and robust capability
for structured, multimodal problem-solving.

3.3 Answer Affirmation by Re-Inference
Even with a strong reasoning framework, VLMs
can produce fallacious conclusions from otherwise
sound reasoning chains. To address this, we in-
troduce a novel lightweight inference technique:
AARI, which is a two-stage process designed to
verify and self-correct the model’s initial conclu-
sion.

Stage 1: Candidate Generation Given a prob-
lem P = (I,Q), the fine-tuned model first gener-
ates a candidate solution, which includes the rea-
soning chain R1 and a preliminary answer A1. This
is the standard generative process:

(R1, A1) = argmax
R,A

Pθ(R,A|I,Q) (3)

Stage 2: Affirmation via Re-Inference Next,
instead of immediately accepting A1, we formu-
late a new verification prompt, P ′, which contains
the original problem, the generated reasoning, and
the candidate answer: P ′ = (I,Q,R1, A1). We

then task the model with assessing the validity of
A1 given R1. Let V be a latent variable represent-
ing the affirmation of the answer, where V = 1
signifies correctness and V = 0 signifies an error.
The model implicitly computes the posterior prob-
ability Pθ(V = 1|P ′). The final answer, Af , is
determined by this affirmation step:

Af =

{
A1 if pθ(V = 1|P ′) > 0.5

A2 otherwise
(4)

where A2 = argmaxA pθ(A|P ′, V = 0). In prac-
tice, this is implemented by prompting the model
with a question like, "Based on the provided rea-
soning, is the answer ’A1’ correct? Re-examine the
steps and confirm." If the model’s response is affir-
mative, we accept A1. If it is negative, we prompt
it to provide the corrected answer, A2. This re-
inference step forces the model to perform a final,
focused consistency check, effectively reducing un-
forced errors without requiring external verifiers or
complex iterative refinement.

4 Experiments

4.1 Experimental Setup
We conduct a comprehensive set of experiments
to evaluate our proposed framework. All evalua-
tions are performed on our newly constructed Uni-
Math benchmark, which covers a diverse range
of multimodal mathematics problems. The pri-
mary goals are to (1) assess the individual contri-
butions of the UniMath-CoT fine-tuning strategy
and the AARI inference mechanism through abla-
tion studies, and (2) compare our final model’s per-
formance against state-of-the-art open-source and
proprietary baselines. Our implementation is built
upon PyTorch 2.11+. We leverage the Transform-
ers library (v4.53+) for handling the underlying
Vision-Language Models. To manage the signifi-
cant computational requirements of fine-tuning, we
employ DeepSpeed (Rajbhandari et al., 2020) for
distributed training and memory optimization. For
our parameter-efficient fine-tuning approach, we
use LoRA with 64 lora rank, which is implemented
with the bitsandbytes library (v0.42). The de-
velopment environment requires Python 3.11 and
CUDA 12.6. All fine-tuning experiments were con-
ducted on a server equipped with NVIDIA A100
80GB GPUs, a 32-core AMD EPYC processor,
and 128GB of DDR4 memory. This configuration
supported a per-device batch size of 8 during the
LoRA fine-tuning process.
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Table 2: Comprehensive benchmark on the UniMath dataset. We first establish a zero-shot performance leaderboard
across proprietary and open-source models (<10B). We then conduct a detailed ablation study on the top-performing
open-source model, Qwen2.5-VL, demonstrating the progressive performance gains from Chain-of-Thought (CoT),
a standard SFT (LoRA), and finally our AARI method. Our approach, highlighted in gray and marked with a star
(⋆), achieves state-of-the-art results among its peers, rivaling top proprietary systems.

Model / Method Problem Type Language Overall

Multiple-choice Calculation Chinese English Accuracy (%)

Proprietary Models (Zero-shot)
GPT-5 (OpenAI, 2024) 51.5 36.7 43.5 44.7 44.1
Gemini-2.5 Pro (Reid and Team, 2024) 49.0 33.4 40.1 42.3 41.2
Claude-4.1 Opus (Anthropic, 2024) 47.2 31.8 38.8 40.2 39.5
GPT-4o (OpenAI, 2023) 44.1 26.3 33.0 37.4 35.2

Open-Source Models (Zero-shot)
InternVL3 8B (Chen et al., 2024) 29.1 13.1 21.3 20.9 21.1
Ú + CoT Prompting 35.0 19.8 28.1 26.7 27.4
Ô + SFT (LoRA) 36.5 21.9 29.5 28.9 29.2
Qwen2.5-VL 7B (Bai et al., 2024) 30.5 13.7 23.8 20.4 22.1
Ú + CoT Prompting 35.3 19.5 28.2 26.6 27.4
Ô + SFT (LoRA) 37.2 21.5 31.4 30.9 31.2
DeepSeek-VL 7B (DeepSeek, 2024) 28.8 11.7 20.9 19.7 20.3
Ú + CoT Prompting 34.8 19.2 28.0 25.9 27.0
Ô + SFT (LoRA) 35.8 20.4 28.3 27.9 28.1

Our Method (Based on Qwen2.5-VL 7B)
Ç + UniMath-CoT with SFT (LoRA) 39.6 26.8 34.5 31.9 33.2
⋆ + AARI 45.9 32.3 40.2 38.0 39.1

4.2 Evaluation Metric
Our primary evaluation metric is Accuracy, de-
fined as the percentage of correctly solved prob-
lems. An answer is considered correct if the
model’s prediction, after applying a normaliza-
tion function ϕ(·), exactly matches the normalized
ground-truth answer. Formally, for a test set Dtest,
accuracy is defined as:

Accuracy =
1

|Dtest|

|Dtest|∑

i=1

I(ϕ(Âi) = ϕ(Ai)) (5)

where Âi is the predicted answer, Ai is the ground-
truth answer, and I(·) is the indicator function.

4.3 Results and Analysis
Overall Performance As shown in Table 2,
our full approach that combining the UniMath-
CoT fine-tuning with the AARI inference strategy,
achieves a final accuracy of 39.1%. This result es-
tablishes a new state-of-the-art among open-source
models on this challenging task. Notably, our
model significantly surpasses the powerful propri-
etary model GPT-4o (35.2%) and becomes highly
competitive with Claude-4.1 Opus (39.5%).
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Figure 4: Performance of different model versions under
varying maximum new token lengths.

The Impact of Each Component To isolate the
contributions of our proposed methods, we con-
ducted a detailed ablation study. We evaluated the
effectiveness of our fine-tuning framework. Start-
ing from a standard SFT Qwen2.5-VL 7B model
which achieves 31.2% accuracy, employing our
UniMath-CoT framework boosts the performance
to 33.2%, which validates that our specialized ap-
proach of training on structured, decomposable
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Figure 5: Qualitative Comparison of Model Outputs on a Sample Problem.

reasoning paths is more effective than generic in-
struction tuning. We also assessed the impact of our
inference strategy. Applying AARI on top of the
UniMath-CoT model elevates the accuracy from
33.2% to 39.1%. This represents a remarkable
+5.9% increase, which corresponds to a 17.8% rel-
ative error reduction, underscoring the efficacy of
the self-verification mechanism. The benefits of
AARI are robust and consistent across all problem
categories, boosting accuracy on multiple-choice
(+6.3%) and calculation (+5.5%) problems, as de-
tailed in Table 2. This demonstrates that AARI is a
broadly applicable technique that enhances model
reliability.

Effect of Generation Length We also inves-
tigated the impact of the maximum generation
length (Max New Tokens) on performance. Fig-
ure 4 reveals two key findings. First, the per-
formance hierarchy remains consistent across all
token lengths, with the base model being outper-
formed by UniMath-CoT, which is in turn outper-
formed by the full model with AARI. This visually
confirms our ablation results. Second, all model
variants achieve their peak performance around
1024 max new tokens, suggesting this length pro-

vides an optimal balance between allowing for com-
plete reasoning and avoiding excessive, potentially
noisy, output.

Comprehensive Performance Profile To pro-
vide a more holistic, multi-dimensional view of
our model’s capabilities, we present a comparative
radar chart in Figure 6. This chart visualizes the
trade-offs between model size, inference speed, and
performance on different sub-tasks (Chinese, En-
glish, Multiple-choice, Calculation) for our model
and the baselines.

The chart clearly illustrates the well-rounded and
highly efficient profile of our approach. Compared
to its base model, Qwen2.5-VL 7B, our model
shows a significantly larger and more balanced per-
formance polygon. This expansion across all accu-
racy axes: Chinese, English, Multiple-choice, and
Calculation, visually confirms that the gains from
UniMath-CoT and AARI are comprehensive and
not limited to a single domain.

When compared against leading proprietary
models, our model demonstrates remarkable com-
petitiveness despite its significantly smaller param-
eter size. For instance, while models like GPT-
5 and Gemini-2.5 Pro exhibit the largest perfor-
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mance polygons overall, our 7B model achieves an
accuracy profile that is notably competitive with,
and in some areas superior to, much larger models
like GPT-4o. This highlights the efficiency of our
approach: we have successfully closed a substantial
portion of the performance gap with state-of-the-art
systems while operating at a fraction of the compu-
tational scale. The radar chart thus underscores our
primary contribution: a clear and effective method-
ology for developing highly capable and efficient
open-source models for complex multimodal rea-
soning.

Qualitative Analysis To showcase the differ-
ences in multi-step reasoning, Figure 5 provides
a qualitative comparison of different models on a
geometry problem that requires robust spatial in-
terpretation. As shown, the base model fails due
to a misinterpretation of geometric relations, while
the UniMath-CoT model, despite an initial flawed
step, successfully self-corrects to find the correct
solution (Wei et al., 2022). This comparison high-
lights the critical role of structured reasoning and
verification mechanisms, like those in the CoT and
AARI models, in achieving reliable and accurate
mathematical problem-solving.
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Figure 6: Multi-dimensional performance radar chart
comparison. (All accuracy scores are multiplied by 2;
parameter sizes for proprietary models are estimates.)

5 Conclusion and Limitation

In this work, we addressed key obstacles in mul-
timodal mathematical reasoning, namely bench-
mark fragmentation and the need for robust verifi-
cation. We introduced a tripartite contribution: (1)
UniMath, a unified and rigorously curated bench-
mark for genuinely multimodal math problems;
(2) UniMath-CoT, a fine-tuning framework that
teaches structured reasoning; and (3) AARI, a
novel, lightweight inference-time strategy for an-
swer verification. Our experiments validate the
power of this integrated approach. Our 7B model,
enhanced by UniMath-CoT and AARI, achieves
39.1% accuracy on the UniMath benchmark, set-
ting a new state-of-the-art for open-source models
and outperforming strong proprietary systems like
GPT-4o. A key finding is the remarkable effec-
tiveness of AARI, which alone contributes a 5.9 %
improvement, drastically reducing errors through
its efficient self-verification mechanism.

Our work provides a clear roadmap for building
powerful, open-source reasoning systems that rival
proprietary models. Crucially, AARI demonstrates
that inference-time self-correction is a highly ef-
fective strategy for boosting model factuality and
reliability, a principle with strong potential for gen-
eralization beyond mathematics to other complex
domains. Future work can extend this foundation
by exploring iterative self-correction mechanisms
and expanding the UniMath benchmark to new
modalities like video-based challenges.

Ethics Statement
Our work leverages Large Language Models
(LLMs) for complex mathematical problem-
solving, specifically geometric reasoning, rather
than direct text generation. While this application
domain typically presents fewer immediate ethical
concerns related to content generation biases, it is
crucial to acknowledge the broader ethical land-
scape of LLM usage. Recent investigations have in-
dicated that advanced prompting techniques, such
as Chain-of-Thought (CoT) prompting, may inad-
vertently introduce or amplify ethical biases within
LLM reasoning processes, even in non-generative
tasks (Shaikh et al., 2023). Therefore, future work
will involve a thorough examination of potential
biases that might emerge from our method’s re-
liance on CoT and answer affirmation techniques,
ensuring fairness and robustness in mathematical
reasoning applications.
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