Modeling Tactics as Operators: Effect-Grounded Representations for Lean
Theorem Proving

Elisaveta Samoylov

Soroush Vosoughi

Department of Computer Science, Dartmouth College

{elisaveta.v.samoylov.26@dartmouth.edu, Soroush.Vosoughi}@dartmouth.edu

Abstract

Interactive theorem provers (ITPs) such as Lean
expose proof construction as a sequence of tac-
tics applied to proof states. Existing machine
learning approaches typically treat tactics ei-
ther as surface tokens or as labels conditioned
on the current state, eliding their operator-like
semantics. This paper introduces a represen-
tation learning framework in which tactics are
characterized by the changes they induce on
proof states. Using a stepwise Lean proof
corpus, we construct delta contexts—token-
level additions/removals and typed structural
edits—and train simple distributional models
(A-SGNS and CBOW-A) to learn tactic embed-
dings grounded in these state transitions. Ex-
periments on tactic retrieval and operator-style
analogy tests show that A-supervision yields
more interpretable and generalizable embed-
dings than surface-only baselines. Our findings
suggest that capturing the semantics of tactics
requires modeling their state-transformational
effects, rather than relying on distributional co-
occurrence alone.

1 Introduction & Related Work

Interactive theorem provers (ITPs) such as Lean ex-
pose proof construction as a sequence of factics that
transform a proof state, the local context and cur-
rent goal(s), until all goals are discharged. Learn-
ing to select or synthesize tactics has therefore be-
come a central problem in neural theorem proving,
with notable progress in HOL4, HOL Light, and
Coq through systems such as TacticToe, HOList,
and CoqGym (Gauthier et al., 2021; Bansal et al.,
2019; Yang and Deng, 2019). In parallel, LeanDojo
has catalyzed research around Lean by providing
an open, reproducible environment, datasets, and
retrieval-augmented provers (Yang et al., 2023).
Yet, most existing approaches model tactics ei-
ther as labels to be predicted from the current state
or as tokens in tactic sequences, rather than as op-
erators that cause state change. This elides the

essential semantics of tactics, "what they do to the
proof state?,” and can yield brittle representations
tied to surface forms, local names, or co-occurrence
statistics.

Problem formulation. We propose a
representation-learning view in which a tac-
tic, t, is characterized by its effect on the state.
Given triples (Spefores t, Safter) from stepwise
Lean proofs, we learn embeddings that make
E(safter) predictable from FE(Spefore) and an
operator-like embedding e;. Concretely, we use
simple CBOW/skip-gram objectives in which the
delta between state_before and state_after,
i.e., token-level additions/removals and typed edits
such as goal/hypothesis count changes or relation
normalizations, serves as the context of ¢t. This
A-supervision biases the model to encode a tactic
by the modification it induces (e.g., the tactic have
introduces new hypotheses, the tactic nlinarith
often discharges inequality goals, etc) rather than
by memorizing surface patterns.

Proof of concept. This paper is a
proof-of-concept showing that surface-level
distributional patterns that often suffice in
natural-language modeling are inadequate for
theorem proving. Capturing tactic semantics
demands tailored, effect-grounded representations
that model the proof-state transition induced by
each tactic.

We instantiate this idea on the Lean Work-
book corpus (Ying et al., 2024; InternL.M, 2024),
which contains tens of thousands of contest-level
math problems formalized in Lean 4 with natural-
language statements, formal statements, and step-
wise proof states. Our models are deliberately min-
imal: (i) A-SGNS (center = tactic; contexts = pos-
itive A-tokens and typed edits) and (ii) CBOW-
A (contexts — tactic), trained in the spirit of
word2vec (Mikolov et al., 2013a,b). We evaluate
with (a) A — tactic retrieval (does a bag of edits

168

Proceedings of The 3rd Workshop on Mathematical Natural Language Processing (MathNLP 2025), pages 168—175
November 9, 2025 ©2025 Association for Computational Linguistics

identify the tactic?) and (b) an operator analogy
test adapted from translation embeddings (Bordes
et al., 2013): cos(E(Svefore) + €t E(Safier))-

Despite their simplicity, these models learn
meaningful, interpretable tactic embeddings that
reflect operator-like behavior.

Motivation and expected benefits. Two gaps
motivate A-supervision: (i) Generalization. State-
only classifiers and sequence models must implic-
itly infer a tactic’s effect as their representations of-
ten entangle names and pretty-print idiosyncrasies.
By centering supervision on structural edits (e.g.,
added hypotheses, reduced goal lists, relation flips),
A-aware representations should transfer across the-
orems and libraries, complementing retrieval-based
systems such as LeanDojo (Yang et al., 2023). (ii)
Interpretability and modularity. Operator-style em-
beddings provide concrete semantics. In other
words, they predict how a state should move in
embedding space under ¢, enabling tactic-family
clustering, edit-level probing, and straightforward
integration into search controllers that prefer tactics
moving states toward a solved region.

Novelty relative to prior work. Prior systems
typically (a) learn tactic selection from the current
state, (b) predict the next tactic from tactic
sequences, or (c) fine-tune LLMs end-to-end
to emit Lean scripts (Gauthier et al., 2021;
Bansal et al., 2019; Yang and Deng, 2019; Yang
et al., 2023). In contrast, we elevate the srate
transition to the supervisory signal: the label
for a tactic is its observed effect. This yields
compact, interpretable embeddings that are
immediately useful for tactic ranking and are
natural starting points for stronger operator models.

By reframing tactics as operators on proof states
and demonstrating that even bag-of-edits supervi-
sion suffices to obtain useful embeddings, this work
offers a lightweight, interpretable bridge between
ITP state representations and neural models, com-
plementary to environment-heavy frameworks and
retrieval-augmented provers (Yang et al., 2023).

2 Methodology

2.1 A brief primer on Lean and proof states

Lean is an ITP based on dependent type theory. A
proof proceeds by repeatedly applying tactics that
transform a proof state, which consists of (i) a local
context of named hypotheses and (ii) a (multi)set

of goals to be proved. In Lean’s pretty printer, the
turnstile symbol |- separates the context from the
current goal.

Examples of Lean code can be found in Ap-
pendix B.

2.2 Dataset and supervision triples

We use a stepwise Lean proof corpus (Lean Work-
book), which provides, for each proof step, a triple
(Sbefores ©, Safter), Where t is the head tactic ap-
plied to transform the pretty-printed proof state
Sbefore 1NtO Sufer. Each record also includes a
proof_id (the theorem/proof identifier). The lines
are sorted such that their order corresponds to their
position within the proof. We operate on a 25.2k-
step slice for the experiments reported in this paper.

Our central idea is to treat the tactic ¢ not merely
as a label but as an operator whose semantics are
expressed by the change from spefore tO Safter- TO
that end, we introduce A-contexts which track the
various changes in the state of the proof.

In the following sections, we outline the prepro-
cessing steps, the construction of the A-contexts,
and the construction of the two distributional mod-
els (A-SGNS and CBOW-A).

2.3 Preprocessing and canonicalization

Lean states are textual pretty-prints. To make edits
comparable across problems, we process the Lean
code in following steps in order to produce the delta
contexts :

* Tokenization. We split on Lean tokens and math-
ematical operators (including unicode) such as -,
<S> M E L4 L= ().

¢ Alpha-renaming. In order to prevent name leak-
age, We anonymize local variable and hypothesis
names (e.g., a, b, c, h, ha, hb, ...) to
placeholders (_x1,_x2,_hl,_h2,...).

¢ Formatting normalization. We normalize
whitespace and numeric formats.

¢ Goal/context split. We detect the first - and
treat the tokens to its left as context and to its
right as goal; if no goal remains, we append a
marker NO_GOALS.

* Multi-goal states. If a state contains multiple
goals, we use the union of their tokens. Set-level
pooling keeps the representation permutation-
invariant.

2.4 Delta construction: tokens and typed edits

The first A-construction is token-level and consid-
ers the change in token-count in the context before

169

and after the tactic. For each pair (Spefore, Safter)s
we compute foken-level deltas for each token w:

A (U)) = Countsaﬁer (U)) - Countsbefore (w) : (1)

We keep only the positive token deltas and emit a
context symbol TOK_w for each net added token w,
repeated |A(w)| times. To inject weak structure,
we add ryped edit indicators extracted by simple
regex rules:

* Hypothesis count change: A_ADD_HYP /
A_REM_HYP based on the changes in counts of
name : type hypothesis pairs in the context.

* Goal change: A_GOAL_SOLVED if F dis-
appears; otherwise A_GOALS_+k/-k for de-
tected changes.

¢ Relation flips: The A_REL_GE_TO_LE,
A_REL_LE_TO_GE when the goal changes di-
rection.

e Operator counts: A_ADD/REM_SYM_o for
UE{Ar *y /y +)) :7 S; Z}

The final delta context for a step is the multiset

C = {TOK_w : A(w)>0}
U {typed edit indicators}

Appendix A walks through a worked example
illustrating the procedures in Sections 2.3 and 2.4.

2.5 Models

We learn three lightweight distributional models
using only the delta contexts C and tactic heads t.
Let e, € R? denote the embedding of token/tactic
x.

A-SGNS (tactic — delta). We train a skip-gram
with negative sampling where the center word is

the tactic head TACTIC t, and each ¢ € C isa
context word. The per-pair loss is
lsons(t,c) = —logo(e] ec)
— > logo(—e/e) (2
c—~P,

with negatives ¢~ drawn from a unigram distribu-
tion raised to the 3 /4 power. This objective encour-
ages the tactic vector e; to co-occur with the added
tokens and typed edits it tends to induce.

CBOW-A (delta — tactic). We train a CBOW
model that averages the context embeddings and
predicts the tactic:

1
= Y e 3)
’C‘ ceC
ECBOW(C) t) = — log a(éget)
— Z logo(—ése,-). (4)
t—~P,

with negatives ¢t~ sampled from the tactic fre-
quency distribution.

Sequence-only baseline (no state). For com-
parison, we train a skip-gram model over factic
sequences within each proof (window size w),
ignoring states entirely (the standard tactic co-
occurrence baseline).

2.6 State embeddings and the
operator-analogy test

To probe operator-like behavior without a paramet-
ric state encoder, we define a simple bag-of-tokens
state embedding using the learned table:

1
v(s) = ok (5)] Z ETOK_w-)

wetok(s)

We then test the analogy by checking whether
U(Sbefore) + €¢ aligns with v(syfer) in the learned
space. This mirrors translation tests in distribu-
tional semantics and knowledge-graph embeddings,
but here the translation vector is the tactic embed-
ding.

2.7 Training protocol and hyperparameters

We split data by proof_id into train/validation/test
with ratios 80/10/10 to avoid leakage across steps
of the same proof. To mitigate tactic imbalance
(e.g., the tactics simp and have are very frequent),
we cap training steps per tactic at a maximum K
(we use K = 5000). The validation/test are left
untouched. Unless otherwise stated, we use the
following settings (chosen for stability and speed):

* Dimensions: d = 256 for A-SGNS and
CBOW-A; d = 128 for the sequence base-
line.

* Negative sampling: 15 negatives per pos-
itive for A-SGNS and CBOW-A; 10 for
the sequence baseline; negatives drawn from
unigram®/4,

170

* Optimization: learning rate 0.03; gradi-
ent clipping at norm 5.0; 15 epochs (A-
SGNS/CBOW-A and sequence baseline).

* Windows: sequence baseline window w = 4.

3 Experiments and Results

Our goal is to verify the central hypothesis that
a tactic is defined by its effect on the proof state.
To attribute performance to specific sources of sig-
nal and to rule out alternative explanations (e.g.,
sequence co-occurrence or name leakage), we run
three ablations that toggle which A-features are vis-
ible to the model: (1) Tokens-only — contexts con-
tain only added surface tokens (TOK_w). This tests
whether surface additions alone suffice to identify
tactics. (2) Typed-only — contexts contain only
typed structural edits (AADD_HYP, AGOAL_SOLVED,
relation flips, operator-count changes). This tests
whether structural signals alone are sufficient. (3)
Full — both tokens and typed edits. This tests com-
plementarity and the necessity of structural cues
for best performance.

We evaluate two A-aware models (A-SGNS and
CBOW-A) and a sequence-only SGNS baseline (no
states) in order to separate state-change supervision
from tactic co-occurrence.

3.1 Controls against leakage and
distributional artifacts

All ablations share the same proof-level split and
test cardinalities, so differences reflect the avail-
ability of A-features rather than label-set changes
or sample-size effects. Local-name anonymization
and pretty-print canonicalization further reduce the
chance of learning from spurious surface cues (e.g.,
hypothesis names). Together, these controls sup-
port the conclusion that the observed gains derive
from modeling state change.

3.2 A —tactic retrieval

We report test-set Mean Reciprocal Rank
(MRR) and Recall@k for both A-SGNS (cen-
ter=tactic, contexts=A-tokens) and CBOW-A
(contexts—tactic). Table 1 shows the results.
CBOW-A shows clear complementarity: Full
outperforms Tokens-only and Typed-only (MRR
0.085 vs. 0.068/0.037), a ~25% relative gain
over Tokens-only, indicating that typed edits
add non-redundant information beyond surface
additions. Typed-only retains non-trivial accuracy
(MRR 0.037), implying structural cues are

necessary but not sufficient. Tokens-only captures
surface regularities (rewrites, symbol traces) but
misses generalization afforded by typed edits. On
A-SGNS, Tokens-only > Full suggests skip-gram
with a shared table is sensitive to heterogeneous
context types. Simple gating or reweighting of
typed cues likely will help when using SGNS.

A-SGNS CBOW-A

Ablation MRR R@1 R@5 R@10 MRR R@] R@5 R@10

Full 0.032 0.017 0.047 0.054 0.085 0.058 0.116 0.144
Tokens 0.039 0.021 0.056 0.069 0.068 0.051 0.085 0.095

Typed 0.009 0.004 0.009 0.012 0.037 0.012 0.053 0.086

Table 1: Test A — tactic retrieval. Higher is better.

3.3 Operator behavior

We test whether v(Spefore) + €+ aligns with v(Safer)
in the learned space (cosine and rank among after-
states). Table 2 shows these results. Typed edits im-
prove alignment when combined with tokens: Full
surpasses Tokens-only (cosine 0.67 vs. 0.62; rank
422.3 vs. 429.2, lower is better). Under Typed-only,
the analogy metric is not meaningful because state
embeddings v(-) aggregate TOK_w vectors that are
untrained in that ablation (cosine ~ 0, rank =~ 1 by
construction).

Ablation Avg Cosine Avg Rank (lower)) N
Full 0.67 422.3 2590
Tokens-only 0.62 429.2 2590
Typed-only 0.00 10t 2590
Table 2: Operator-analogy for ~ A-SGNS:

cosine (U(Sbefore) + e, U(Saﬂer)) and rank of the
true after-state among test after-states.

3.4 Sequence-only baseline (control)

A tactic-sequence SGNS achieves next-tactic MRR
= 0.081 on N=525 bigrams. While this is a dif-
ferent prediction target, it serves as a control: co-
occurrence alone does not explain A — tactic per-
formance, and the best CBOW-A MRR is achieved
on a strictly harder task that conditions on state
edits rather than neighboring tactics.

3.5 Structure of tactic embeddings

Figure 1 visualizes 2D UMAP projections of the
256-dimensional tactic embeddings learned under

171

the Full setting for CBOW-A (Fig 1a), A-SGNS
(Fig 1b), and the sequence-only baseline (Fig 1c).

These UMAP projections show that the CBOW-
A and A-SGNS spaces exhibit visually separable
clusters, consistent with effect-grounded organiza-
tion of tactics. By contrast, the sequence-only base-
line forms a diffuse, nearly isotropic cloud with
no obvious cluster structure under the same pro-
jection. These observations support our claim that
co-occurrence—only objectives, which can work
well in natural-language settings, do not induce
discriminative tactic representations in Lean to the
same extent as A-aware training.

4 Discussion and Conclusion

This paper introduced a representation-learning
perspective in which tactics are modeled as op-
erators defined by their effects on proof states.
By leveraging A-supervision—token-level addi-
tions/removals and typed structural edits—we
trained lightweight CBOW and skip-gram models
that learn embeddings grounded in state transitions.
Our experiments demonstrated that these embed-
dings capture tactic semantics more robustly than
surface-only or sequence-based baselines. Typed
edits, in particular, provided complementary in-
formation that improved generalization and inter-
pretability, enabling operator-style behaviors such
as tactic-family clustering and state-translation
analogies.

Beyond empirical gains, the central contribution
lies in showing that surface-level distributional reg-
ularities, often sufficient in natural language model-
ing, are inadequate for theorem proving. Capturing
the semantics of tactics requires effect-grounded
representations that model the transformations they
induce. While our models are deliberately minimal,
they establish a lightweight, interpretable bridge
between symbolic proof states and neural methods,
complementary to large-scale LLM fine-tuning and
retrieval-augmented provers. These findings moti-
vate future work on scaling A-supervision to larger
datasets, enriching structural edits, and integrating
operator embeddings into end-to-end proof search
systems.

Limitations

Our study is a proof-of-concept with several limi-
tations. First, we restrict ourselves to a relatively
small subset of the Lean Workbook corpus, leav-
ing open whether results scale to larger, more di-

CBOW

Dim 2

T T T T T T T
=5.0 =2.5 0.0 2.5 5.0 7.5 10.0 12.5
Dim 1

(a) CBOW

Dim 1

(b) SGNS

SEQ

14 |

12 {

Dim 2

10 1

(c) SEQ baseline

Figure 1: UMAP visualizations of the 256-dimensional
embeddings for CBOW, SGNS, and SEQ (sequence-
only baseline) under the Full setting.

verse mathematical domains. Second, our mod-
els are intentionally minimal and ignore contex-
tual subtleties such as multi-tactic interactions,
proof search heuristics, or long-range dependencies.
Third, the A-contexts rely on simple tokenization
and regex-based typed edits, which may omit more
nuanced structural information (e.g., type-class res-
olution or meta-variable instantiation). Finally, we
evaluate on proxy tasks such as retrieval and anal-

172

ogy, which, while informative, are not substitutes
for downstream proof success. Addressing these
limitations will require richer state encodings, inte-
gration with stronger search strategies, and broader
evaluation benchmarks.

Ethical considerations

This work focuses on mathematical theorem prov-
ing in Lean and does not involve human subjects,
sensitive data, or societal risks.

Acknowledgment

This work was partially supported by student re-
search awards from the Neukom Institute for Com-
putational Science, the Lovelace Research Pro-
gram, and the Leslie Center at Dartmouth College.

References

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian
Szegedy, and Stewart Wilcox. 2019. HOList: An en-
vironment for machine learning of higher order logic
theorem proving. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
454-463. PMLR.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ra-
mana Kumar, and Michael Norrish. 2021. Tactictoe:
Learning to prove with tactics. Journal of Automated
Reasoning, 65(2):257-286.

InternLM. 2024. Lean workbook (and lean work-
book plus) dataset. https://huggingface.co/
datasets/internlm/Lean-Workbook. Hugging
Face dataset card; reports ~57k Lean Workbook and
~83k Lean Workbook Plus problems.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed represen-
tations of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26.

Kaiyu Yang and Jia Deng. 2019. Learning to prove
theorems via interacting with proof assistants. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 6984—6994.
PMLR.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. 2023. Leandojo:
Theorem proving with retrieval-augmented language
models. In NeurlPS 2023 Track on Datasets and
Benchmarks. Paper available at NeurIPS Datasets
and Benchmarks.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,
Dahua Lin, and Kai Chen. 2024. Lean workbook:
A large-scale lean problem set formalized from
natural language math problems. arXiv preprint
arXiv:2406.03847.

173

https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.neurips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
https://proceedings.neurips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
https://doi.org/10.1007/s10817-020-09580-x
https://doi.org/10.1007/s10817-020-09580-x
https://huggingface.co/datasets/internlm/Lean-Workbook
https://huggingface.co/datasets/internlm/Lean-Workbook
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://proceedings.mlr.press/v97/yang19a.html
https://proceedings.mlr.press/v97/yang19a.html
https://leandojo.org
https://leandojo.org
https://leandojo.org
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847

A Worked Example: Building a
A-Context

We illustrate Sections 2.3-2.4 by reconstructing the
A-context for the proof step:

State-Before
abc: R

ha : 0<a hb : 0<b hec: O0<c
habczgopkb*c:.l3 h:a4?:|—b4+c4:1
a b C 9
= > =
ErD R
Tactic
have h1 := sqg_nonneg (a"2 - 1)
State-After
abc: R
ha : 0<a hb : 0<b he : 0<ec
habc : axbxc=1 h: a*+b*+ct=1
h1 : 0<(a?—1)?
a® b o 9
= > =
R

Step 1: Tokenization (Sec. 2.3). We split on
Lean/Unicode symbols and mathematical operators
and on identifiers. The subphrase

h1 : 0 < (a® —1)?
18 tokenized as
[h17 o Oa Sa () av Aa 27 e]-7)a A) 2}

Step 2: Alpha-renaming / canonicalization
(Sec. 2.3). Local variable and hypothesis names
are anonymized to prevent name leakage:

_x2
_h6

a — _xl b
c —~ _x3 hi
ha,hb,hc,habc,h — _hl..._hb

H
—>

Thus the added hypothesis pretty-prints canoni-
cally as
_he 1 0< (Lxl? —1)%

Step 3: Formatting normalization (Sec. 2.3).
We normalize whitespace and numeric formats;
there is no effect on the symbol sequence above.

Step 4: Goal/context split (Sec. 2.3). We split at
the first -. The new hypothesis belongs to the con-
text (left of -); the goal (right of) is unchanged in
this step. There are no multiple-goal peculiarities
here (multi-goal pooling is unnecessary).

Step 5: Token-level deltas (Sec. 2.4). Let
A(w) = countafier(w) — countpefore(w). The only
positive deltas arise from inserting the hypothesis
line _h6 : 0 < (_x12—1)2. The multiset of added
tokens (with multiplicities) is:

_h6x1 le (xl _X1X1
AX2 2x2 _x1 1x1)xl

X1 Oxl

Step 6: Typed edit indicators (Sec. 2.4).
based structural edits are as follows:

Regex-

(one hypothesis added)
(a minus sign added)
(a < added)

Anpp_vp
Appp_svM_-
Appp_swm_<

There is no A_GOAL_SOLVED and no relation flip
(£4>>) in this step.

Step 7: Final A-context C' (Sec. 2.4). The train-

ing context is the multiset:

{ TOK__h6, TOK_:, TOK_0,
TOK_ <, TOK_(, TOK__x1, TOK_*,
TOK_2, TOK_*, TOK_2, TOK_-,
TOK_1, TOK_) }

U { Apoo_nyps Aaop_sym_-,
Appp_swm_< }

(Repeated TOK_" and TOK_2 indicate multiplic-
ity.)

B Examples

Table B1 shows sample lean proofs with different
number of tactics. Table B2 shows examples of
State-Before, Tactic, State-After triples from the
Lean Work-book Corpus.

174

Proof # Tactics

1 norm_num [ha, hb, hc, habc, h]
have h1 := sqg_nonneg (a"2 - 1)
have h2 := sqg_nonneg (b"2 - ¢"2)
nlinarith

2 rintro a b ¢ <h1, h2, h3, h4, h5, h6)
nlinarith [sg_nonneg (a - b), sg_nonneg (b - ¢), sg_nonneg (c - a)]

3 push_neg
refine’ (1, 1, <by norm_num, by norm_num), by norm_num)

4 push_neg
refine’ €1, 2, 3, by norm_num)
5 simp [Int.ModEq]
omega
Table B1: Sample proofs. Each line is one tactic.

State-Before Tactic State-After

Xyz:Z ring no goals

FE2+1D)*@y2+1)*@Z2+

=

xX+y+2)2

-2(Xy+yz+zx)

+(Xy+yz+zx)2

-2Xyz(X+y+2)

+x2y222+1

abc: R norm_num [ha, hb, hc, habc, h] abc:R

ha:0<a ha:0<a

hb: 0<b hb:0< b

hc:0< ¢ hc:0< ¢

habc:axbxc=1 habc:axbxc=1

h:a*+bt+ct=1 h:a*+0 4+t =1

3 8 3 8

}—a/(l—a)—gbg{gi—b)-l— [2§a3/(1_a8)+b3/(1_

¢f(1—)z = b%) + /(1 - &)

abc: R have h1 := sq_nonneg (a*2 - 1) abc: R

ha:0<a ha:0<a

hb:0<b hb:0<b

hc:0<c¢ hc:0< ¢

habc:axbxc=1 habc:axbxc=1

h:g4+b4+c4:1 h:a*+bt4+ct=1

. 2 2

- gSGB/(1708)+b3/(1* hl QOS((L —1)

b8)+63/(1—08) - §§a3/(1—a8)+b3/(1—
b + /(1 - &)

abc: R have h2 := sq_nonneg (b*2 - c*2) abc:R

ha:0<a ha: 0 < a

hb: 0 < hb: 0 < b

hc:0< ¢ hc: 0 < ¢

habc:axbxc=1 habc:axbxc=1

h:at4+bt4+ct=1 h:a*+0i4+ct=1

hl:0< (a® —1)? hl:OS(aQ—lf
h2:0 < (b = ?)?

-2 <@ /1-ah) /0~

9) s)
B + /(1 — &) F g <a’/(1=a®)+b/(1-

b*) +c*/(1 = cf)

abc: R nlinarith no goals
ha:0<a

hb: 0 < b

hc:0 < ¢

habc:axbxc=1

h:a+0"+c' =1

h1:0§(a2—122
h2:0 < (b —¢%)?

- §§a3/(17a8)+b3/(17
b3+ /(1 =)

Table B2: Sample sentences (before, tactic, after) from the Before-Tactic-After dataset.

175

