Syntactic Blind Spots: How Misalignment Leads to LLMs’ Mathematical
Errors

Dane Williamson, Yangfeng Ji,Matthew Dwyer
Department of Computer Science
University of Virginia
Charlottesville, VA 22904
{dw3zn, yj3fs, md3cn}@virginia.edu

Abstract

Large Language Models (LLMs) demonstrate
strong mathematical problem-solving abilities
but frequently fail on problems that deviate syn-
tactically from their training distribution. We
identify a systematic failure mode, syntactic
blind spots, in which models misapply fa-
miliar reasoning strategies to problems that are
semantically straightforward but phrased in un-
familiar ways. These errors are not due to gaps
in mathematical competence, but rather reflect
a brittle coupling between surface form and in-
ternal representation. To test this, we rephrase
incorrectly answered questions using syntactic
templates drawn from correct examples. These
rephrasings, which preserve semantics while
reducing structural complexity, often lead to
correct answers. We quantify syntactic com-
plexity using a metric based on Dependency
Locality Theory (DLT), and show that higher
DLT scores are associated with increased fail-
ure rates across multiple datasets. Our findings
suggest that many reasoning errors stem from
structural misalignment rather than conceptual
difficulty, and that syntax-aware interventions
can reveal and mitigate these inductive failures.

1 Introduction

Large Language Models (LLMs) show strong perfor-
mance on mathematical benchmarks like GSM8K,
SVAMP, MultiArith, and ASDiv (Cobbe et al.,
2021; Patel et al., 2021; Roy and Roth, 2015; Miao
et al., 2020), yet they frequently make systematic
errors, often reapplying familiar solution strategies
even when the problem structure changes (Zheng
et al., 2024; Bao et al., 2025; Huang et al., 2025).
These errors reflect an overreliance on surface-
level pattern matching rather than adaptive reason-
ing. We focus on a specific class of such fail-
ures, which we term syntactic misalignment, cases
where LLMs fail because a problem’s phrasing de-
viates structurally from patterns they have learned
to solve, even though the underlying logic remains

1

"The great dragon, Perg, sat high atop mount Farbo, breathing fire upon anything within a distance
of 1000 feet. Polly could throw the gold javelin, the only known weapon that could slay the
dragon, for 3 distance of 400 feet, well within the reach of the dragon’s flames. But when Polly
held the sapphire gemstone, she could throw the javelin three times farther than when not
holding the gemstone. If holding the gemstone, how Far outside of the reach of the dragon's
lames could Polly stand and still hit the dragon with the gold javelin?"

"The great dragon, Perg, sits atop mount Farbo, breathing fire within a 1000-foot radius. Polly can
throw the gold javelin, the only known weapon to defeat the dragon, for a distance of 400 feet,
within the dragon’s flames. However, when Polly holds the sapphire gemstone, she can throw
the javelin three times farther than usual. If holding the gemstone, how far outside the

dragon’s flames can Polly stand and still hit the dragon with the gold javelin?"

Figure 1: Structural rephrasing improves model accu-
racy by reducing syntactic complexity and dependency
length.

Answer: 1200 feet

Answer: 200 feet

unchanged. As shown in Figure 1, rephrasing a
problem to reduce syntactic complexity can often
reverse these failures.

Prior work has documented LLM sensitivity to
superficial variation: word order changes, para-
phrasing, or structural perturbations can all induce
performance drops (Zhang et al., 2024; Srivastava
et al., 2024; Huang et al., 2025). Models sometimes
ignore altered constraints and produce answers con-
sistent with the original phrasing.

We argue that this brittleness arises from a struc-
tural failure mode we call syntactic induction, the
tendency to treat syntactic similarity as a proxy
for problem similarity. This leads models to over-
apply familiar solution templates, even when the
problem logic has changed. Inspired by cogni-
tive science, we draw an analogy to rule-based
overgeneralizations in human learners (Ben-Zeev,
1998; Karmiloff-Smith, 1986), where errors arise
not from lack of competence but from misapplied
procedural regularities.

To study this phenomenon, we develop a
dependency-guided framework for identifying and
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mitigating syntactic induction failures. We use
Dependency Locality Theory (DLT) to quantify
syntactic complexity and rephrase high-complexity
questions using syntactic templates drawn from suc-
cessful examples. This reveals that many reasoning
errors stem not from mathematical difficulty, but
from a mismatch between surface form and learned
problem schemas.

1.1 Contributions

This work makes four contributions:

e Introduces syntactic induction failures as a
structured, recurring error mode in LLM math-
ematical reasoning.

* Bridges LLM error behavior with cognitive sci-
ence, highlighting parallels in schema-driven
failure.

* Proposes a dependency-guided framework
for detecting and rephrasing structurally mis-
aligned problems.

* Demonstrates that rephrasing structurally com-
plex math questions significantly improves
model accuracy across datasets and models.

2 Related Work

LLM Sensitivity to Structural Variation. While
techniques like in-context learning and chain-of-
thought prompting have improved LLM math per-
formance (Brown and Mann, 2020; Weietal., 2022),
models remain brittle under surface-level pertur-
bations. Studies have shown that modifying word
order, phrasing, or structure leads to significant per-
formance drops (Huang et al., 2025; He et al., 2024;
Kang et al., 2024; Zheng et al., 2024; Srivastava
et al., 2024). Even when semantics are preserved,
models often revert to memorized patterns (Zhang
et al., 2024), suggesting an overreliance on surface
form as a proxy for problem identity.

Beyond formatting, deeper failure modes have
been linked to data contamination (Magar and
Schwartz, 2022; Sainz et al., 2023), deductive er-
rors (Ling et al., 2023), and spurious correlations
(Zhou et al., 2024; Bao et al., 2025). Most rel-
evantly, Stechly et al. (2025) show that models
struggle when questions are phrased in unfamiliar
syntactic forms, motivating our focus on syntactic
misalignment.

Cognitive Accounts of Structural Sensitivity.
These observations parallel well-known findings in
cognitive psychology. Chi and et al (1981) distin-
guish between a problem’s surface structure (e.g.,
phrasing, grammar) and its deep structure (underly-
ing logic). Even experienced solvers often rely on
surface cues to access problem schemas (Novick,
1988; Hinsley et al., 1977), which guide solution
strategies. Analogical reasoning studies further
show that surface similarity influences both novice
and expert behavior (Holyoak and Koh, 1987; Ross,
1984).

Our work draws on this perspective, proposing
that LLMs exhibit a similar schema-triggered behav-
ior. We formalize this through syntactic induction:
the tendency to conflate surface-form similarity
with structural equivalence. To quantify this effect,
we adopt Dependency Locality Theory (DLT) (Gib-
son, 1998, 2000) and show that higher DLT scores
are associated with LLM failure. Rephrasing high-
DLT questions often recovers accuracy, supporting
a structural account of reasoning breakdown.

Toward a Taxonomy of Rational Errors. Fi-
nally, our perspective aligns with work on human
error categorization. Rule-based overgeneraliza-
tions (Ben-Zeev, 1998; Ashlock, 2002), where valid
strategies are misapplied in the wrong context, mir-
ror LLM errors under syntactic shift. We argue
that LLMs, like learners, may benefit from struc-
tured taxonomies of failure to guide robustness
interventions (see Appendix Figure 9).

3 Method: Rephrasing for Reducing
Syntactic Misalignment

LLMs often fail when problems are phrased in struc-
turally unfamiliar ways. To diagnose and mitigate
these errors, we quantify syntactic complexity using
Dependency Locality Theory (DLT) and rephrase
structurally complex questions to align with previ-
ously successful examples. This section outlines
the framework.

3.1 Quantifying Syntactic Complexity with
DLT

We define syntactic complexity using a scoring func-
tion based on Dependency Locality Theory (DLT).
For a math word problem, g = (wy,...,wy,), the
total DLT score is the sum of three costs over all
tokens:



n
DLT(q) = Z (Integration(w;) + Storage(w;)
i=1
+ Discourse(w;)) (1)

Given the dependency trees of the sentences in ¢
each component in Equation 1 is defined as follows:

Integration : For a token w;, let h; be its head
token following the dependency tree. The in-
tegration cost is the number of new discourse
referents between them: Integration(w;) =
ij- €lntervening(w;,h;) IReferent (W) where
1Referent(w;) = 1 if w; has POS tag in {NOUN,
PROPN, NUM, VERB}.

Discourse : A token introduces discourse cost
if it adds a new referent: Discourse(w;) =
lReferent (Wi) .

Storage : This is the number of unresolved syntac-
tic expectations at w;, denoted Storage(w;) =
|P;|, where P; is the set of pending predic-
tions.

This formulation enables theoretically-grounded,
systematic scoring of syntactic complexity for each
question based on its dependency parse.

>

Example: "Melissa brushes 12 horses on Monday.’

* Discourse: All content words ("Melissa”,
”brushes”, ’12”, horses”, "Monday”) introduce
discourse referents (PROPN, VERB, NUM,
NOUN), yielding a total cost of 5.

* Integration: “Horses” depends on "’brushes”,
with ”12” intervening. Since 12" is a referent,
it contributes an integration cost of 1.

* Storage: "Melissa” introduces an unresolved
expectation for a verb, resolved by “brushes”.
New expectations (e.g., for an object) are
tracked until resolved.

3.1.1 Normalization

To ensure fair comparison across questions of vary-
ing length and content density, we normalize two
components of the DLT score. Integration cost is
divided by the number of discourse referents, and
peak storage cost is scaled by question length. The
resulting normalized DLT score is:

Sub-Parse of Incorrectly Answered Question

Root: 'spending’ (non-central event) fﬁ
g .

s Umbgan Xy g bedion | bduon  swatieo
Delayed Resolution of ‘spending’

Multiple Intervening Discourse referents between ‘spending’ and building’

Sub-Parse of Correctly Answered Question

Root: 'takes' (central event) -

B
Jaresy 3 i b

referents immediately resolve 'total’

modifiers introduce no referents

Immediate resolution of central verb

‘that starts relative clause - which introduces no discourse referents

resolves with referent 'total’ - with minimum disruption

Sub-Parse of Rephrased Question

by aqr (ndtewsn  vehor (| dun | lestnon
B ¥ 0 i3 ¥ 7

Immediate resolution of referents No intervening referents

Figure 2: Dependency parses illustrating the rephrasing
pipeline. The rephrased version reduces dependency
depth and referential interference, lowering DLT-based
processing cost.

> Discourse

> Integration
DLTnorm(Q) = (#

( max Storage )
lql

+ (Z Discourse) 2)

This yields a length-independent complexity mea-
sure. As shown in section 5, higher normalized-
DLT scores correlate with model failure, making
this a reliable predictor of syntactic brittleness.

3.2 Dependency-Guided Rephrasing

To correct syntactic misalignment, we rephrase a
failed question gincorrect t0 resemble a syntactically
similar, correctly answered one gmaich. We identify
Gmatch using the Weisfeiler-Lehman Graph Kernel
(WLK) (Shervashidze et al., 2011):

dmatch = arg ergax WLK(Gincorrect, Gq) 3)
q correct
We then prompt an LLM to rewrite @Gincorrect
to match the structure of gmatch, While preserving
semantics:

q i,ncorrect = M(Gincorrect> match» P) “4)

For example, consider this original question:

”Luke is spending time at the beach building sand-
castles. He eventually notices that. ..”

Its syntactic embedding leads to high DLT cost.

The rephrased version:

”Luke builds a sandcastle with 4 levels, where
each level has half the square footage. . .”

flattens dependencies, reduces referential interfer-
ence, and improves model accuracy.



Rephrasing Prompt

Instruction:

Use the context from the previous example(s) to rephrase the following question:

[incorrect_gquestion] to match the syntactic and grammatical structure of this example
- question: [correct_guestion]

Linus works for a trading company. He buys a mobile device for $20 and sells it for twice
the amount of the original price. If he bought 2 devices last Monday and 4 devices last
Tuesday, how much profit was he able to eam after selling all the mobile devices he bought
last Monday and Tuesday?

[correct_guestion]:

Melissa works as a pet groomer. This week, she has 8 dogs that need to be bathed,

5 cats that need thelr nalls clipped, 3 birds that need thelr wings trimmed, and

12 horses that need to be brushed. If she splits the grooming jobs evenly over the days,
how many animals will she groom each day of the week?

LLM Response
' ' [rephrased_guestion]:
Unus buys moblle devices for $20 each and sells them for twice the orglnal price. He buys

2 devices on Monday and 4 devices on Tuesday. How much profit does he make after
selling all the devices he bought on those two days?

Figure 3: Format of rephrasing prompt. The LLM
is prompted to generate a rephrased variant that more
closely matches the surface structure of the correctly
answered question.

3.3 Procedure Overview

Our pipeline consists of:

1. Query the model; collect incorrect responses

Qincorrect .

2. Parse all questions using spaCy to extract depen-
dency trees.

3. For each g € Qincorrect> find gmaich € Qcorrect Via
WLK similarity.

4. Prompt the LLM with k-shot examples to
rephrase ¢ syntactically in the form of gmach.

We then re-query the model on the rephrased
versions g’ and evaluate whether failures are recov-
ered.

4 Experiment Setup

To assess the impact of syntactic restructuring,
we re-evaluate the LLM on the rephrased variants
G comect- 1T accuracy improves significantly, we
attribute the original failure to a syntactic induction
failure: the model’s inability to generalize over
unfamiliar surface forms despite semantic equiva-
lence.

This evaluation allows us to systematically char-
acterize and quantify a core weakness in LLM
reasoning and establish the importance of syntactic
alignment for mathematical understanding.

This section outlines our experimental framework
for evaluating how syntactic structure influences
LLM reasoning performance. We begin by stat-
ing our research question, (Section 4.1). We then
describe the datasets and preprocessing methods
(Section 4.2). Finally, we provide implementation

STEP 1 LLM Response + Dependency Parsing

B-S-B Bl

Parse Questions into Corresponding

Get the LLM Responses Dependency Graphs

Step 2 Syntactic Matching

tne) =i~ @

Match each incorrect question to the most similar correct one by
comparing dependency graphs

Step 3 Dependency-Guided Rephrasing ]

TR - B

Prompt LLM to rephrase with structural alignment and semantic fidellty

Figure 4: Rephrasing pipeline. An incorrectly answered
question is aligned to a syntactically similar, correctly
answered one via WL Kernel matching. A k-shot prompt
then guides the LLM to generate a syntactically aligned
but semantically identical rephrasing.

details regarding parsing, tree similarity computa-
tion, and model evaluation (Section 4.3).

4.1 Research Questions

This work investigates whether syntactic complex-
ity contributes to reasoning failures in LLMs and
whether syntactic restructuring can mitigate those
failures. Specifically, we ask:

1. How effectively does the proposed DLT-
based complexity framework differentiate
between correctly and incorrectly answered
math questions?

2. To what extent does syntactic rephrasing,
guided by structural similarity to success-
fully answered questions, improve model
accuracy on previously failed examples?

Before evaluating the effects of syntactic rephras-
ing, we first investigate whether syntactic complex-
ity alone can be predictive of model failure. For
each model, we compute DLT complexity scores for
all questions and divide the dataset into two groups:
those answered correctly and those answered incor-
rectly.

To assess whether there is a statistically signif-
icant difference in complexity between the two



groups, we apply Welch’s t-test. This test is appro-
priate when comparing the means of two samples
with potentially unequal variances and sample sizes,
conditions that naturally arise given varying model
accuracies. The resulting ¢-statistic quantifies the
separation between group means relative to their
variances, while the corresponding p-value indi-
cates whether the observed difference is likely to
have occurred by chance.

This analysis allows us to test the hypothesis that
higher syntactic complexity, independent of seman-
tic content, is associated with increased model error.
A significant result would suggest that DLT com-
plexity serves as a useful predictor of LLM failure,
motivating our subsequent rephrasing intervention.

We report the results of this comparison in sub-
section 5.1 and interpret its implications in subsec-
tion 6.1.

4.2 Datasets and Pre-processing

We evaluate five open-source LLMs, LLaMA,
Mistral, Qwen, Gemma, and Granite, in a zero-
shot setting on four established math benchmarks:
GSMSK, SVAMP, MultiArith, and ASDiv (Tou-
vron et al., 2023; Jiang and et al, 2023; Yang et al.,
2024; Team et al., 2024; Mishra and et al, 2024).
These datasets span diverse reasoning skills and
syntactic forms, from simple arithmetic (GSM8K,
MultiArith) to structurally perturbed (SVAMP) and
linguistically varied (ASDiv) problems.

To analyze syntactic structure, we parse each
question using the spaCy NLP toolkit (Honnibal
and Montani, 2017), yielding dependency trees that
capture syntactic relations. Let Tiycorrect denote the
tree of an incorrectly answered question, and Tcorrect
the set of trees from correctly answered ones.

4.3 Implementation Details

Dependency parsing and tree similarity computa-
tions are implemented using spaCy and nltk. We
use Hugging Face implementations of all LLMs. !
All experiments are conducted on NVIDIA RTX
2080 GPUs.

5 Experimental Results

We first test whether surface-level syntactic com-
plexity predicts model failure. We then assess
whether syntactic restructuring can recover accu-
racy on previously incorrect questions.

'See Appendix Table 4 for model and hyperparameter
details.

Dataset Model Correct Mean Incorrect Mean A DLT
Gemma 22.90 25.71 +2.81*
Granite 22.17 25.43 +3.27¢
GSMSK LLaMA 23.53 28.10 +4.57*
Mistral 22.98 26.21 +3.23*
Qwen 23.86 29.01 +5.15*
Gemma 17.34 18.70 +1.36*
Granite 16.95 18.58 +1.62*
SVAMP LLaMA 17.60 18.88 +1.28*
Mistral 17.42 18.60 +1.18*
Qwen 17.80 18.57 +0.78
Gemma 17.24 17.29 +0.05
Granite 17.39 17.11 -0.28
MultiArith LLaMA 17.25 17.15 -0.10
Mistral 17.36 16.98 -0.38
Qwen 17.19 19.26 +2.07*
Gemma 16.70 16.87 +0.17
Granite 16.10 17.37 +1.27*
ASDiv LLaMA 16.39 18.43 +2.04*
Mistral 16.17 17.84 +1.67*
Qwen 16.70 17.58 +0.88
Table 1: Mean DLT complexity scores for correctly

and incorrectly answered questions across datasets and
models. A DLT is the difference. Bolded values with *
indicate statistically significant differences (p < 0.01,
Welch’s ¢-test).?

5.1 Syntactic Complexity of Incorrect
Questions

Table 1 reports the mean normalized DLT com-
plexity scores on both sets of questions. GSM8K
exhibits unanimously higher syntactic complexity
scores on incorrectly answered questions across all
models, with Welch’s p < 0.01 in every case (full
test statistics are provided in the supplementary ma-
terial). On SVAMP, all deltas are positive, with four
reaching statistical significance. MultiArith and
ASDiv show weaker or inconsistent trends, with
smaller or statistically insignificant differences.

5.2 Accuracy Gains from Rephrasing

We define performance improvement in terms of
the change in accuracy after rephrasing, denoted by
AA. Let Qora denote the full set of questions, and
Qlomect € Qincorrect Tepresent the set of previously
incorrect questions that are now answered correctly
after rephrasing. We compute:

| Qéorrect |

AA = —— 5
|Qt0tal| ( )

Final model accuracy is then updated as:

New Accuracy(A) (6)
= Original Accuracy(A4p) + AA @)

2See Appendix Figure 5 for supporting visualizations.



Model GSMSK SVAMP MultiArith ASDiv

Ao AA A #Recovered Ao AA A #Recovered Ao AA A #Recovered Ao AA A #Recovered
Gemma-7B  37.76  8.26 46.02 109 61.71 7.14 68.85 50 77.62 476 8238 20 59.61  9.11 68.72 210
Granite-7B 24.03 11.68 35.71 154 4443 11.86 56.29 83 50.00 15.48 65.48 65 64.08 9.68 73.75 223
LLaMA-8B 7544 7.81 83.25 103 79.86  4.00 83.86 28 9476  3.57 98.33 15 8143 5.08 86.51 117
Mistral-7B 48.29 1145 59.74 151 6329 829 7157 58 70.71 1452 85.24 61 4725 12,10 5935 279
Qwen-7B 84.53 432 88.86 57 9243 143 93.86 10 97.14 048 97.62 2 91.76  1.82 93.58 42

Table 2: Accuracy improvements and number of recovered answers from syntactic restructuring across GSM8K,
SVAMP, MultiArith, and ASDiv. Ay is baseline accuracy, AA is improvement after rephrasing, A is final accuracy,
and #Recovered denotes incorrect answers corrected by rephrasing.

This formulation quantifies the overall gain at-
tributable to syntactic restructuring, allowing us to
isolate its impact.

Table 2 reports the accuracy improvements and
the number of recovered answers from syntactic
restructuring. All models improve on GSM8K
and SVAMP, with lower-performing models (e.g.,
Gemma, Granite) showing the greatest relative
gains. Improvements are less consistent on Mul-
tiArith and ASDiv, where most models already
achieve high baseline accuracy or rephrasing yields
fewer recoveries.

We observe that syntactic restructuring is most
impactful on datasets with more narrative or struc-
turally varied question phrasing (e.g., GSMS8K,
SVAMP), suggesting that syntactic mismatch con-
tributes to model failures in these settings. Recov-
ery counts ranged from 2 (Qwen on MultiArith)
to 210 (Gemma on ASDiv), with rephrasing im-
proving accuracy by as much as 15.5 % (Granite
on MultiArith).

These findings provide strong empirical support
for our hypothesis that LLMs fail on syntactically
unfamiliar problems, and that rephrasing toward
familiar structures mitigates these errors.

6 Further Analysis

The section provides further analysis regarding how
syntactic structure influences LLM reasoning behav-
ior. Itexamines four key dimensions: First, we show
that elevated syntactic complexity, measured using
DLT, predicts failure on narrative math tasks. Sec-
ond, we demonstrate that rephrasing these complex
questions into syntactically familiar forms improves
model accuracy, supporting an interpretation of fail-
ure as schema misalignment. Third, we analyze
these errors in light of cognitive theory, arguing that
LLMs overapply familiar strategies to structurally
novel inputs, a form-function misalignment. Finally,
we outline implications for robustness and general-
ization, proposing syntax-aware interventions and
cognitively grounded training approaches.

6.1 Syntactic Complexity Predicts Failure on
Narrative Math Tasks

The results from Table 1 show that syntactic com-
plexity, as measured by DLT scores, is positively
associated with model failures, particularly on
GSMS8K and SVAMP. On GSMSK, all five LLMs
exhibit statistically significant increases in com-
plexity on incorrectly answered questions. On
SVAMP, all deltas are positive, though only four
reach statistical significance. For ASDiv, all mod-
els again show positive deltas, with three of them
statistically significant. In contrast, the pattern is
weaker on MultiArith, where only two of the five
models show positive deltas and just one achieves
significance. These results support the hypothesis
that LLMs are sensitive to structural features of
problem statements, especially on narrative-heavy
datasets like GSM8K and SVAMP. By contrast,
MultiArith’s more uniform, low-complexity phras-
ing likely shifts the source of failure away from
syntactic burden and toward reasoning depth.

These findings are consistent with the previously
outlined phenomenon of synfactic induction, in
which models perform worse on problems that devi-
ate from familiar surface forms. In our experiments,
LLMs consistently exhibited higher failure rates on
syntactically complex questions, particularly when
those forms differed structurally from common pat-
terns. This suggests that model predictions are
sensitive to surface structure, and that unfamiliar
phrasing can impair accuracy even when underlying
reasoning demands remain constant.

From a cognitive perspective, these errors reflect
a failure in structural fluency. The DLT framework
quantifies this fluency as a function of integration
cost, storage cost, and discourse load. Elevated
scores among failure cases suggest that LLMs, like
human solvers, are vulnerable to breakdowns in pro-
cessing when these syntactic burdens accumulate
beyond an internalized threshold.



6.2 Rephrasing as Schema Alignment

Table 2 demonstrates that rephrasing structurally
complex questions into syntactically familiar forms
yields substantial accuracy improvements. This
pattern is most pronounced on GSM8K and SVAMP,
particularly among lower-performing models such
as Gemma and Granite. While high-performing
models like LLaMA and Qwen show smaller deltas,
they also exhibit measurable gains, supporting the
interpretation that rephrasing facilitates access to
familiar problem-solving patterns across models.

These improvements reinforce the interpretation
of failure as a schema alignment problem. Accord-
ing to prior work in cognitive psychology, solvers
often rely on surface cues to activate latent problem
schemas. When surface form is misaligned with
internal expectations, reasoning may fail despite
latent competence. Rephrasing appears to bridge
this gap, effectively priming models to recognize
the underlying problem structure.

The consistency of this effect across architectures
suggests that the phenomenon is not model-specific
but a general feature of current LLM design.

6.3 Syntax Cues the Wrong Strategy:
Evidence of Form-Function Misalignment

Our findings reflect a consistent pattern: models
often fail when questions are phrased in structurally
unfamiliar ways, even if the underlying reasoning
task remains the same. This aligns with cognitive
accounts of human error, such as those described
by Ben-Zeev (1998), in which solvers misapply
familiar procedures to novel input formats.

While LLMs are not rule-based agents in the
human sense, our results suggest that they similarly
rely on surface-level cues to guide problem-solving
behavior. When syntactic structure deviates from
familiar patterns, models are more likely to generate
incorrect responses, even when they demonstrate
competence on simpler or canonical formulations
of the same task.

That even high-performing models benefit from
syntactic restructuring indicates that many failures
are not due to limitations in arithmetic ability per se,
but rather in applying the right strategy under struc-
tural variation. This points to a challenge beyond
learning correct computations: models must also
determine how and when to apply learned behav-
iors, a process that appears sensitive to variations
in syntactic form.

6.4 Toward Syntax-Aware Generalization

These results carry several implications for improv-
ing LLM robustness and interpretability. First, they
emphasize the importance of training or prompting
models to abstract beyond surface form. Sensitiv-
ity to syntactic variation can limit generalization,
even in domains where the underlying reasoning is
sound.

Second, our analysis highlights the potential
of syntax-aware interventions. By measuring
DLT complexity and selectively rephrasing high-
complexity inputs, systems could anticipate and mit-
igate failure without retraining. This suggests a role
for lightweight, dynamic preprocessing pipelines
in real-world deployments.

Finally, our findings suggest promising directions
for future research (1) Syntactic curriculum learn-
ing: Gradually exposing models to varied syntactic
structures during training to improve generaliza-
tion under structural variation. (2) Schema-guided
error analysis: Building error taxonomies based
on syntactic mismatches to inform evaluation and
debugging.

Overall, our analysis suggests that syntactic in-
duction is a significant source of LLLM failure in
math reasoning tasks. By quantifying structural
complexity and aligning input form with successful
patterns, we can better anticipate and mitigate a
subset of reasoning errors rooted in input formula-
tion.

Crucially, our findings suggest that syntactic
complexity is not merely correlated with failure but
may play a mediating role in model performance
on structurally complex inputs. This highlights
structurally guided rephrasing as a lightweight and
scalable strategy for recovering from such errors,
without modifying model weights or requiring ad-
ditional supervision.

7 Conclusion

This work investigated how syntactic structure influ-
ences the reasoning behavior of LLMs on mathemat-
ical problems. Across four benchmarks: GSMS8K,
SVAMP, MultiArith, and ASDiv, we found that
LLMs systematically fail on syntactically complex
inputs, despite their semantic simplicity. These
failures were reliably predicted by elevated Depen-
dency Locality Theory (DLT) scores and mitigated
through targeted syntactic rephrasing.

Our findings demonstrate that many reasoning
errors stem not from a lack of mathematical compe-



tence, but from syntactic induction failures,
a tendency to misapply known solution strategies
when surface structure deviates from training priors.
Rephrasing misaligned questions into syntactically
familiar forms improved accuracy across all models,
with gains particularly notable in lower-performing
systems like Gemma and Granite. This supports the
view, rooted in cognitive science, that schema acti-
vation in both humans and LLMs is highly sensitive
to surface cues.

By framing these errors within a rule-based taxon-
omy and formalizing complexity through DLT, we
offer a structured explanation for inductive failure
in LLMs. Rather than viewing mistakes as isolated
or stochastic, we show they are predictable, syntax-
sensitive, and recoverable through lightweight in-
terventions.

Future Directions This work opens several di-
rections for enhancing LLM robustness and inter-
pretability. We highlight:

* Syntactic diagnostic tools: To identify
schema misalignment based on DLT complex-
ity or parse structure.

e Structure-aware input representations:
Leveraging dependency graphs or program-
matic abstractions to make problem structure
more accessible.

¢ Failure-aware training curricula: Introduc-
ing controlled syntactic variation to encourage
generalization beyond form-driven heuristics.

While our experiments focus on mathematical
benchmarks, the implications are broader. Syn-
tactic induction failures may underlie reasoning
brittleness across domains. Addressing these fail-
ures offers a path toward LLMs that reason more
like human experts: flexibly, structurally, and with
awareness of when form does, and does not, align
with function.

8 Ethics Statement

Our experiments were conducted on publicly avail-
able mathematical reasoning datasets, which do
not contain sensitive personal data or pose iden-
tifiable risks to individuals or groups. The work
does not involve human subjects or data collection.
No known ethical risks were introduced, and all
referenced work is properly cited and respected
under academic norms.

9 Limitations

This study focuses on mathematical word problems
and may not generalize to other domains. We eval-
uate only final-answer accuracy, without analyzing
intermediate reasoning.
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A Appendix

A.1 DLT Rephrasing Algorithm (Proposed)

This subsection outlines a proposed procedure
for preemptively identifying syntactically complex
math word problems and evaluating the impact of
rephrasing. While this algorithm was not executed
in the main paper due to time constraints, it was
designed to support future ablation studies. The
pipeline filters questions based on elevated DLT
complexity, applies dependency-guided rephrasing,
and evaluates accuracy before and after restructur-
ing. This formalization supports reproducibility
and highlights a possible direction for proactive
syntax-aware model evaluation.

Algorithm 1 DLT-Guided Rephrasing and Accu-
racy Evaluation

Require: Dataset D = {(qi,ai)}f\i , of questions
and answers
Require: Normalized DLT complexity scoring
function DLT(g)
Require: Rephrasing function Rephrase(q)
Require: Evaluation function Accuracy(Q, A)
1. Compute scores: {s; = DLT(ql-)}l.'\i1
2: Set threshold 7 as the 75th percentile of {s;}
3: Define Z)complex ={(qi.a;) | si 27}
4: For each (g;,a;) in Deomplex, compute g; =
Rephrase(q;)
Evaluate original accuracy:

AccCorig = Accuracy ({g;}, {a;})
Evaluate rephrased accuracy:
Accreph = Accuracy ({g}}, {a;})

7: Compute improvement: A = ACCreph — ACCorig
8: return 7, A

A.2 DLT Complexity Statistical Significance

This section provides full statistical results and
supporting visualizations for the DLT complexity
gaps reported in Table 1 of the main paper. The
table below contains Welch’s ¢-statistics and p-
values for each dataset—model pair. Following the
table, we include full boxplots of DLT scores by
outcome (correct vs. incorrect) across all models
and datasets. These visualizations offer a more
detailed view of score distributions, variance, and
effect sizes.
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Table 3: Welch’s z-test results comparing DLT complex-
ity for correctly vs. incorrectly answered questions.

ASDiv
t-stat.  p-val.

-0.66 0.51
-529 < 0.0001
-5.92 < 0.0001
-6.47 < 0.0001
-1.76 0.08

GSMSK
t-stat.  p-val.

-6.97 < 0.0001
-6.22 < 0.0001
-7.44 < 0.0001
-6.83 < 0.0001
-6.66 < 0.0001

MultiArith
t-stat.  p-val.

-0.18  0.86
1.16  0.249
028  0.861
1.58  0.116
-2.52 0.0275

SVAMP
t-stat. p-val.

-3.94 < 0.0001
-4.87 < 0.0001
-2.94  0.0037
-3.42  0.0007
-1.13 0.2649

Model

Gemma
Granite
LLaMA
Mistral
Qwen

A.3 Manual Evaluation of Rephrased

Questions

To assess the quality and effectiveness of our syn-
tactic rephrasing method, we conducted a manual
evaluation. We selected 10 representative (original,
rephrased) question pairs sampled from GSM8K,
SVAMP, MultiArith, and ASDiv. Each pair was
reviewed by an annotator along three criteria:

* Semantic Match: Does the rephrased version
preserve the original problem’s meaning?

e Structural Simplification: Does the
rephrased version reduce syntactic complexity
(e.g., fewer clauses, flatter dependencies)?

* Answered Correctly: Did the model orig-
inally answer incorrectly but succeed after
rephrasing?

All 10 examples were rated as preserving seman-
tic fidelity while simplifying structure, and all were
answered correctly by the model post-rephrasing.
These results reinforce the claim that syntactic
restructuring can reduce complexity while main-
taining problem intent, allowing models to succeed
on previously failed inputs.

Table 5 summarizes the outcomes for each eval-
uated example.

A.4 LLM Evaluation Framework

This section lists the models and decoding parame-
ters used in our experiments. Table 4 provides full
details for both the math QA models and the rephras-
ing model. All math questions were evaluated in
a zero-shot setting using greedy decoding (temper-
ature = 0, no sampling). For rephrasing, we used
LLaMA-3 with mild sampling settings to introduce
syntactic variation while preserving semantic intent.
These parameters were fixed across all datasets to
ensure consistency and reproducibility.
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Figure 5: DLT complexity scores by model outcome
(correct vs. incorrect) across five LLMs on GSMS8K. In
each subplot, incorrectly answered questions (orange)
exhibit higher mean complexity and greater variance than
correct ones (green). Welch’s t-statistics and p-values
confirm these differences are statistically significant.

A.5 Cognitive Psychology: Rational Errors

To contextualize our findings within broader theo-
ries of reasoning failure, we draw on insights from
cognitive psychology and mathematical pedagogy.
Specifically, we reference the work of Ben-Zeev
(1998), who frames many student errors in math-
ematics not as random mistakes, but as rational
errors. systematic overgeneralizations of otherwise
valid strategies.

Figure 9 illustrates this framework. The top panel
shows a classic subtraction mistake: subtracting
each digit in place-value order without accounting
for borrowing. This type of mistake is not due to
irrationality but reflects a learner’s internalization of
an overly simplified rule. The bottom panel presents
a taxonomy of inductive failure modes, such as
syntactic induction and semantic induction, which
describe how solvers may misapply surface-level
patterns or real-world analogies inappropriately.

These mechanisms are highly relevant to our
analysis of LLM behavior. Our experiments show

DLT Complexity Scores Across Models on
ASDiv

66, p = 0.5099 T =5.29,p = 0.0000

2w
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Figure 6: DLT complexity scores by model outcome
(correct vs. incorrect) across five LLMs on ASDiv.

that LLMs often fail on syntactically novel questions
not because they lack competence, but because
they overapply strategies learned from structurally
familiar formsm precisely the type of error Ben-
Zeev characterizes as rational. In particular, what
we term syntactic induction failures in LLMs
echoes this cognitive framing, highlighting deep
parallels between human and model error patterns.

We include these diagrams to situate our findings
in a well-established theory of rule-based reasoning
errors and to support our claim that LLM failures
are often structured, interpretable, and attributable
to form-function misalignment rather than arbitrary
noise.
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Figure 7: DLT complexity scores by model outcome
(correct vs. incorrect) across five LLMs on Multiarith.
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Figure 8: DLT complexity scores by model outcome
(correct vs. incorrect) across five LLMs on SVAMP.

Model Params Max Temp Top-p Sample
LLaMA-3 8B 8192 0.0 1.0 False
Mistral 7B 8192 0.0 1.0 False
Qwen2.5 7B 8192 0.0 1.0 False
Gemma 7B 8192 0.0 1.0 False
Granite 7B 8192 0.0 1.0 False

(a) Math QA models and decoding hyperparameters. All
models use greedy decoding (temperature = 0, no sampling).

Max
8192

Params

8B

Temp Top-p Sample
0.1 0.9

Rephrasing Model
LLaMA-3

True

(b) Rephrasing model used for syntactic restructuring.

Table 4: LLMs used in experiments.

go\{rect Incorrect
13 23

‘2_7 Y
6 24

Figure 9: Correct borrowing (left) vs. a common sub-
traction mistake (right). Students without instruction on
borrowing often overgeneralize the principle of subtract-
ing smaller from larger numbers.
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Dataset

Model

Original Question

Rephrased Question

Semantic
Match

Simplified

Answered
Correctly

GSMBK

LLaMA-8B

A company pays each of its employees
$600 in a month. The company has a
policy of increasing the salaries of each
of its employees by 10% of the initial
salary every year for those who’ve stayed
in the company for five years. If Sylvie
just clocked 5 years in the company last
December, what’s her annual salary after
three more years of service?

A company pays its employees $600 per
month. The company has a policy of
increasing salaries by 10% of the initial
salary every year for employees who
have stayed with the company for five
years. Sylvie just completed five years
of service last December. What is her
annual salary after three more years of
service?

v’

v’

N

MultiArith

Mistral-7B

Roger had 68 dollars. If he spent 47
bucks on a new game, how many 7 dollar
toys could he buy with the money he had
left?

Roger has 68 dollars. He spends 47
dollars on a new game. How many 7-
dollar toys can he buy with the money
he has left?

ASDiv

Qwen2.5-7B

Andrew’s 4 friends decided to bring food
as well. If each of them brought 4 slices
of pizza, how many slices of pizza do
they have in total?

Andrew’s 4 friends decide to bring food
as well. They each bring 4 slices of pizza.
How many slices of pizza do they have
in total?

GSMBK

Gemma-7B

Brandon’s iPhone is four times as old
as Ben’s iPhone. Ben’s iPhone is two
times older than Suzy’s iPhone. If Suzy’s
iPhone is 1 year old, how old is Brandon’s
iPhone?

Brandon’s iPhone is four times as old as
Ben’s iPhone. Ben’s iPhone is two times
older than Suzy’s iPhone, which is 1 year
old. How old is Brandon’s iPhone?

SVAMP

Granite-7B

Edward spent $6 to buy 2 books each
book costing him the same amount of
money. Now he has $12. How much did
each book cost?

Edward spent $6 to buy 2 books, each
costing the same amount. Now he has
$12. How much did each book cost?

SVAMP

Granite-7B

Billy sells DVDs. He has 8 customers on
Tuesday. His first 3 customers buy one
DVD each. His next 2 customers buy 2
DVDs each. His last 3 customers don’t
buy any DVDs. How many DVDs did
Billy sell on Tuesday?

Billy sells DVDs to 8 customers on Tues-
day. His first 3 customers buy one DVD
each, and his next 2 customers buy 2
DVDs each. His last 3 customers don’t
buy any DVDs. How many DVDs does
Billy sell on Tuesday?

ASDiv

Mistral-7B

It’s Rachel’s birthday. Her parents
wanted her to have fun so they went
to the circus that happened to be in town
that day. Upon arriving at the circus,
they went to the ticket booth and asked
how much each ticket cost. If each ticket
costs $44.00 and they bought 7 tickets,
how much money did they spend on tick-
ets?

Rachel’s parents take her to the circus
on her birthday. They buy 7 tickets, each
costing $44.00. How much money do
they spend on tickets?

MultiArith

Qwen-7B

Will invited 9 friends to a birthday party,
but 4 couldn’t come. If he wanted to buy
enough cupcakes so each person could
have exactly 8, how many should he buy?

Will invites 9 friends to a birthday party,
but4 can’t come. If he wants to give each
person 8 cupcakes, how many cupcakes
should he buy?

GSMBK

LLaMA-8B

Jerome had 4 friends who came to visit
him on a certain day. The first friend
pressed on the doorbell 20 times be-
fore Jerome opened, the second friend
pressed on the doorbell 1/4 times more
than Jerome’s first friend. The third
friend pressed on the doorbell 10 times
more than the fourth friend. If the fourth
friend pressed on the doorbell 60 times,
how many doorbell rings did the door-
bell make?

Jerome has 4 friends visiting him, and
the first friend rang the doorbell 20 times
before Jerome opened it. The second
friend rang the doorbell 1/4 times more
than the first friend, the third friend rang
it 10 times more than the fourth friend,
and the fourth friend rang it 60 times.
How many times did the doorbell ring in
total?

GSMBK

LLaMA-8B

Jam has three boxes full of pencils and
2 loose pencils which give a total of 26
pencils. If her sister, Meg, has 46 pencils,
how many boxes do Jam and Meg need
to store all their pencils?

Jam has three boxes of pencils and 2
loose pencils, which together total 26
pencils. Her sister, Meg, has 46 pencils.
How many boxes do Jam and Meg need
to store all their pencils?

Table 5: Manual evaluation of rephrased questions. A checkmark indicates success for each criterion.
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