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Abstract

The advancement of mobile GUI agents has
opened new opportunities for automating tasks
on mobile devices. Training these agents re-
quires large-scale high-quality data, which is
prohibitively expensive when relying on hu-
man labor. Given the vast population of global
mobile phone users, if automated data collec-
tion from them becomes feasible, the result-
ing data volume and the subsequently trained
mobile agents could reach unprecedented lev-
els. Nevertheless, two major challenges arise:
(1) extracting user instructions without human
intervention and (2) utilizing distributed user
data while preserving privacy. To tackle these
challenges, we propose MobileA3gent, a col-
laborative framework that trains mobile GUI
Agents using self-sourced data from diverse
users. The framework comprises two com-
ponents, each targeting a specific challenge:
(1) Auto-Annotation, which enables the auto-
matic collection of high-quality datasets dur-
ing users’ routine phone usage with minimal
cost. (2) FedVLM-A, which enhances feder-
ated VLM training under non-IID distributions
by incorporating adapted global aggregation
based on both episode-level and step-level vari-
ability. Extensive experiments prove that Mo-
bileA3gent achieves superior performance over
traditional approaches at only 1% of the cost,
highlighting its potential for real-world appli-
cations.

1 Introduction

Mobile GUI agents (Bai et al., 2024; Wang et al.,
2024b,a) have experienced significant advance-
ments, propelled by recent progress in Vision-
Language Models (VLMs). Designed to simu-
late human mobile phone usage behavior, mo-
bile agents can automate complex tasks on mo-
bile phones, saving tremendous human labor and
change everyday lives. Compared to non-agent
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solutions, mobile agents offer significantly better
adaptability and generalizability, enabling them to
effectively handle various mobile environments and
operation scenarios (Zhang et al., 2023).

The training of
mobile agents heav-
ily depends on large-
scale, high-quality
datasets (Chai et al.,
2024; Zhang et al.,
2024c). To build
such datasets, exist-
ing approaches rely
on centralized data
collection followed
by human annota-
tion, resulting in
high costs and lim-
ited scalability. To
achieve large-scale
data acquisition more efficiently, a paradigm shift
(as shown in Figure 1) from centralized to dis-
tributed data collection is necessary, enabling di-
verse users to participate in data contribution. Ad-
ditionally, replacing human annotation with au-
tomatic annotation is crucial for efficiently pro-
cessing the vast amount of collected data, allowing
direct data sourcing from real user interactions.

Our insight is that the frequent and ever-growing
phone usage by users worldwide naturally gener-
ates valuable supervisory information, which can
serve as a rich data source for training mobile
agents. Building on this user-centric insight, we
aim to effectively utilize these distributed data,
while minimizing human involvement in the pro-
cess. However, two technical challenges remain:
1. Although the users’ phone usage provides real-

world trajectories (screenshots and actions), it

is difficult to extract the real intentions (instruc-
tions) behind the actions in natural language;
2. Data collected from one user is both scale-
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Figure 1: Comparing our pro-
posed paradigm with conven-
tional ones. By leveraging
users’ daily phone usage, we
achieve superior scalability
with drastic cost savings.
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limited and privacy-sensitive. The challenge lies

in how to utilize distributed data from diverse

users to boost performance while protecting pri-
vacy.

To tackle these challenges, we propose Mo-
bileA3gent, a collaborative learning framework
that trains mobile agents using automatically col-
lected user data from daily phone interactions
while preserving user privacy. Specifically, Mo-
bileA3gent features two novel techniques.

First, we propose Auto-Annotation, an auto-
mated method for data collection and annotation
that leverages locally deployed VLMs to annotate
user instructions based on interaction trajectories.
The key technical innovation lies in combining
step-wise low-level instruction breakdowns with
episode-wise summarization, allowing even small
local VLMs to better understand the user’s intent.
The step-wise description decomposes complex
user instructions into simpler steps, enabling the
VLM to comprehend and extract information more
accurately. Meanwhile, the episode-wise summa-
rization provides a global perspective on the entire
task, generating a more comprehensive caption of
the user’s ultimate instruction. Compared with hu-
man annotation, Auto-Annotation generates data of
comparable quality with minimal cost requirement.

Second, to effectively utilize decentralized data
from diverse users, we propose FedVLM-A, which
pioneers the integration of Federated Learning (FL)
(Kairouz et al., 2021) and collaborative training of
VLM-based GUI agents, while ensuring rigorous
user privacy protection. We further propose a novel
aggregation method, termed Adapted global ag-
gregation, which accounts for both episode-level
and step-level distributions to handle the two-level
heterogeneity (formulated in Section B) in diverse
users’ data, overcoming the limitations of tradi-
tional one-level aggregation methods (Karimireddy
et al., 2021; McMahan et al., 2017; Hsu et al.,
2019; Reddi et al., 2020). Adapted aggregation
adapts the global aggregation weights using a
weighted sum of episode and step counts for each
client, thereby enhancing the performance of mo-
bile agents trained in non-1ID scenarios.

Extensive experiments on four benchmarks with
10+ models and metrics demonstrate that: (1) Mo-
bileA3gent achieves the best all-around trade-off
across four dimensions, delivering performance
on par with centralized manual approaches at sig-
nificantly lower cost, while also ensuring privacy
and achieving exceptional scalability. (2) Auto-
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Annotation outperforms all annotation baselines in
performance while reducing annotation costs by
99% compared to manual labeling. (3) FedVLM-A
achieves an at least 5% relative improvement over
representative FL baselines in non-IID scenarios.
These promising results underscore the immense
potential of our framework to serve as a novel and
practical paradigm for real-world applications. To
summarize, our contributions are as follows:
1. We formulate the problem of self-sourced data
collection from distributed mobile phone users
and propose Auto-Annotation, an automatic
data collection method, which achieves data
quality comparable to human-annotated data at
a significantly lower cost.
We introduce MobileA3gent, a collaborative
framework for training mobile agents on decen-
tralized user data while preserving privacy. By
incorporating FedVLM-A, we enable federated
training of VLMs and achieve superior perfor-
mance when confronted with heterogeneity.

. We conduct extensive experiments across com-
prehensive benchmarks and metrics. The com-
pelling results highlight the substantial potential
of our approach for real-world applications.

2 Problem Formulation
2.1 Preliminaries

Data Composition. The mobile GUI agent, pow-
ered by a VLM, simulates human users and com-
pletes tasks in a step-wise process. To train the core
VLM, one data episode, denoted as D, comprises
multiple steps, each serving as a basic training unit.
A step consists of three components: a task instruc-
tion 7, a screenshot, and a corresponding action.
The composition of a data episode is defined as:
D = {(T,a;,s:) | i € [1,n]}, where (T, a;,s;)
represents the ¢-th step, with a; and s; denoting the
action and screenshot respectively.

Traditional Approach. Automating mobile
devices poses significant challenges, leading to
a heavy reliance on high-accuracy training data,
which are, at present, almost all annotated by hu-
mans. The traditional paradigm (Li et al., 2024b;
Qin et al., 2025; Hong et al., 2023) thus involves:
(1) manually authored task instructions, followed
by (2) centralized data collection and model train-
ing. As shown in Figure 1, this approach typically
outsources instruction writing to human annotators
using predefined rules or heuristics to promote both
quality and diversity. Each instruction is then ex-
ecuted step-by-step in a controlled environment,



such as an Android simulator, to collect paired
screenshots and actions. To guarantee correctness,
all interactions are manually verified, resulting in
substantial costs and difficulty in scaling.

2.2 Primary Problem

To overcome the high cost and limited scalability of
the traditional paradigm, we introduce a novel dis-
tributed user-centric approach for training mobile
agents. The primary problem we address is: How
to harness private and distributed phone usage
trajectories from diverse users? We further de-
compose the primary problem into two subordinate
problems: (1) How to automatically collect data
from individual users without incurring expensive
human annotation; and (2) How to effectively uti-
lize decentralized data to optimize the agent while
preserving user privacy .

Sub-Problem 1: Automatic Data Annotation
on User Side. During phone interactions, users
spontaneously generate screenshots and actions,
which are assumed to be easily collectible. How-
ever, users do not receive explicit natural language
instructions and only act based on their underlying
intentions, making task annotation necessary. Since
users are generally reluctant to articulate their inten-
tions and such intentions are non-trivial to infer, the
first subordinate problem is: how to automatically
derive user intentions without human intervention,
thereby constructing the training dataset. The ob-
jective is to learn a function f(-) that predicts user
intention 7 *, an approximation of task instruction
T, based on n steps of actions and screenshots

(aj, si), thatis: T* = f({(ai, si) }q) -

Sub-Problem 2: Distributed Training of Mo-
bile GUI Agents. The daily phone usage of an
individual generates a limited dataset, constraining
the agent’s performance trained solely on it. Fortu-
nately, with millions of users worldwide, there is
immense potential to collaboratively train a mobile
agent using their combined data, enabling virtu-
ally unlimited scalability. Nevertheless, directly
sharing user data poses significant privacy risks,
necessitating its use in a distributed manner. There-
fore the second subordinate problem is: how to
conduct privacy-preserving collaborative training
of mobile agents on distributed user data.
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3 Methodology

3.1 Auto-Annotation: Automatic Data
Collection and Annotation from Daily
Phone Usage

Auto-Annotation functions by automatically build-
ing datasets from users’ daily phone usage without
manual effort. Screenshots and actions are directly
recorded from user trajectories. To annotate user in-
structions, the idea is to employ a local annotation
model to progressively decode user intent in a step-
by-step manner, which comprises three stages: (1)
Converting coordinate-based actions into seman-
tically meaningful descriptions; (2) Incrementally
generating low-level instructions to reflect each
discrete operation; (3) Consolidating these atomic
instructions into a high-level instruction for the en-
tire episode. Note: A low-level instruction is a
specific, atomic directive that corresponds to an
individual step, whereas a high-level instruction
represents the overall task objective.

Rule-Based Action Conversion. As indicated
by previous works (Zheng et al., 2024), some
VLMs, such as GPT-4V (202, 2023), are un-
able to effectively identify the location of oper-
ations. Therefore, to make the original actions in-
terpretable to the local annotation model, we adopt
a rule-based technique rather than using models
(Wang et al., 2024a) to transform the action into a
natural language sentence. Specifically, for CLICK
actions, we align the exact click position with a
corresponding interface element based on the ac-
cessibility tree. If the element contains text or in-
vokes a function, we use the associated text or func-
tion name to construct a meaningful action descrip-
tion. For other actions, such as NAVIGATE_HOME,
we slightly adjust the phrasing to improve clarity
and readability. A code snippet is included in Ap-
pendix E.

Step-Wise Instruction Description. During
this stage, we annotate users’ low-level atomic in-
structions through step-wise description, a novel
technique that decomposes complex user tasks into
multiple steps. Specifically, at each step ¢, the local
annotation model M, referred to as the Descrip-
tor, is prompted to generate an atomic instruction
that reflects the user’s explicit intent, as:

M, TV

where 7;10‘” is the prediction of user intention, serv-
ing as an approximation of the actual low-level in-
struction. s; and A; respectively represent the cur-
rent screenshot and the corresponding converted

Descriptor : (s;, A;)
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Figure 2: System overview of MobileA3gent. During individual users’ daily phone usage, Auto-Annotation
automatically constructs training data through step-wise description and episode-wide summarization. Each user
then participates in FedVLM-A through our training integration. By applying adapted global aggregation, we obtain

the target mobile agent with enhanced capabilities.

action. For the example in Figure 2, the atomic
intent of Scroll Down on the browsing page is
to "explore more articles on plant care". When
combined with rule-based action conversion, the
step-wise description allows the model to focus
on localized context at each interaction, leading
to more accurate and interpretable low-level direc-
tives. This step-by-step procedure also ensures that
the information is more finely processed, facilitat-
ing better high-level summarization in subsequent
stages Details of our prompt templates can be found
in Appendix E.6.

Episode-Wise Intention Summarization. This
stage generates high-level instructions by summa-
rizing the low-level instructions from all steps.
The novelty lies in providing global context en-
riched with step-wise details, enabling the anno-
tation model to effectively extract user intention.
To provide global visual context for the annota-
tion model M, referred to as the Summarizer, we
concatenate all relevant screenshots into a single
image s¢, arranged in chronological order. Note
that this approach (1) allows Summarizer to de-
velop a comprehensive understanding of the entire
task sequence, and (2) eliminates the need for mul-
tiple inferences by performing inference only once.
Finally, we compile the concatenated screenshot s¢
and the list of low-level instructions { 7;°% }"*_, into
a single prompt and feed it into M, to summarize
the user’s overall intention 7" as:

Summarizer : (s¢, {7;°%} ;) Mo, high ()

Since users give no explicit commands, 7" sim-
ulates what they would convey if asking an agent
to perform the same task. Combined with above
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mentioned techniques, episode-wise summariza-
tion produces high-quality instructions comparable
to human annotated data, all while exclusively us-
ing locally deployed VLMs, thereby substantially
reducing costs.

3.2 FedVLM-A: Federated Training of
VLM-Based Mobile Agents with Adapted
Global Aggregation

To facilitate training mobile agents on distributed
data without comprising privacy, we propose
FedVLM-A, a novel collaborative framework
which pioneers the integration of federated learning
with VLMs and improve performance in heteroge-
neous scenarios with Adapted Aggregation.

Integrating VLM Training. We build upon
the highly-starred training framework, ms-swift
(Zhao et al., 2024), and successfully extend it to
support federated VLM training. We ensure the
algorithmic correctness by following the imple-
mentation of federated training frameworks for
Large Language Models (LLMs) (Ye et al., 2024).
To enhance training efficiency and better accom-
modate user-side resource constraints, we incor-
porate Low-Rank Adaptation (LoRA) (Hu et al.,
2021). In our federated setting, K clients (users)
collaborate with a central server to train a global
VLM without directly sharing private data. At
each communication round [, the server broadcasts
the global model M to all participating clients
ug € S', who initialize their local models accord-
ingly: M,E/,MH) = MU | where Mg’o) denotes
the local model at the [-th round and 0-th training
iteration. Each client u then conducts multiple
iterations of stochastic gradient descent (SGD) up-



dates on its local dataset D;.. At each iteration r,
with learning rate 7, the local model is updated as:
(Z’T+1) (laTk

MY — M o MO T s,0), (3)
where /(.) represents the computed loss based on a
data sample (7, s, a).

Adapted Global Aggregation. In this stage,
the server updates global model by aggregating
local models, which is subsequently broadcast to
available clients for the next round. Our innova-
tion lies in adapting the aggregation strategy to
accommodate the two-level structure of datasets
used for training mobile agents, encompassing both
step-level variations and episode-level distributions.
Traditional FL. methods use the sample number of
client as the aggregation weight. This insight has
been proven successful over the past several years
(Li et al., 2019, 2023). However, prior aggregation
methods, such as FedAvgM and FedYogi (McMa-
han et al., 2017; Hsu et al., 2019; Reddi et al.,
2020), which perform well on tasks such as image
classification, overlook the two-level distribution
discussed in Section B. These methods treat all
samples equally, regardless of whether they origi-
nate from the same episode or not, thereby ignoring
structural dependencies.

To address this limitation, we propose a novel
aggregation technique adapting to the new scenario
of MobileA3gent. Within federated training of mo-
bile agents, the data samples can be measured by
both step count ny, and episode count ;. nj*" is
as well as, or even more important as it indicates
how many tasks the agent has learned on. As n;"*
and ny, are measured in different scales, we empiri-
cally set a hyper-parameter A to align them, which
is calculated around the average step length of all
episodes. Then we redefine the sample count as nj;
and reformulate the aggregation weight based on
our adapted sample count 7 ; that is:

i

Shesi D

where wj, denotes the weight for client uy and
S' is the sampled participating clients. This design
smoothly improves upon traditional aggregation
and inherits its convergence property. When A = 0,
it degrades to normal aggregation. Finally, the
global model M is adaptively aggregated as:

ng =g 4+ ng; o wy

MED =% oM. 5)

The adapted aggregation in FedVLM-A balances
both episode and step counts, achieving a better uti-

&3

Table 1: Comparing privacy protection against risks.
FedVLM-A offers strongest protection by addressing
all three identified concerns. In contrast, API-Based
Agent directly transmits user data, while DistRL* stores
all data centrally for training.

Privacy Protection | Eavesdrop ~Abuse Exposure
API-Based Agent X X X
DistRL* v X X
MobileA3gent v v v

lization of decentralized data from heterogeneous
users.

Privacy Analysis. FedVLM-A preserves pri-
vacy by keeping original user data, which may con-
tain sensitive information, on users’ local devices
without transmitting. Through local data reten-
tion, we successfully mitigate the following pri-
vacy risks, shown in Table 1: (1) Eavesdropping
Attack: transmitting models instead of data pre-
vents sensitive data from being intercepted during
transmission; (2) Data Abuse: we reduce the risk
of user data being exploited by data collectors for
unintended purposes. (3) Peer Exposure: we elim-
inate the possibility of user data being accessed
by other participants, as data is not directly shared
between peers.

4 Experiments (More in Appendix C)

4.1 Basic Setups (More Details in Appendix E)

Models, Datasets & Benchmarks. The base
model for most experiments is Qwen2-VL-Instruct-
7B (Wang et al., 2024c). We also compare results
with 10+ representative models, e.g. InternVL2
(Chen et al., 2024b) in Section 4.5. We select
totally three offline agent benchmarks: Android-
Control (Li et al., 2024a), Android in the Wild
(AitW) (Rawles et al., 2023) and GUI Odyssey
(Lu et al., 2024b). These datasets are collected by
crowdsourcing and serve well as a simulation of
real-world mobile data. Additionally, we employ
AndroidWorld (Rawles et al., 2024), a challenging
online benchmark running on Android emulators.

Metrics. Following previous works (Wu et al.,
2024; Sun et al., 2024; Qin et al., 2025), we utilize
three commonly used metrics for GUI agents that
assess the accuracy of action type prediction, coor-
dinate prediction, and step success rate, denoted as
Type, Ground, and SR, respectively. We assess data
quality by measuring the similarity between our
generated instructions and the ground truth from
the original datasets. Metric details are presented
in Section E.3.



Table 2: Multi-dimensional comparison of MobileA3gent with other approaches. With 1% overall cost, Mo-
bileA3gent even surpasses the centralized human-annotated data. * We adjust DistRL to our user-centric setup.
Anno. Cost refers to annotation cost in terms of cents (¢). Colors indicate preferable , moderate and concerning
outcomes. Baseline details are explained in Appendix E.5.

AndroidControl-High

AndroidControl-Low | Anno. | Privacy

Methodology Type Ground SR | Type Ground SR Cost Protect Scalability
Prompting using Open-Ended & Closed-Ended Models
OS-Atlas-7B (Wu et al., 2024) 57.44 5490 29.83 | 73.00 73.37 50.94 - v .
GPT-40 (OpenAl, 2023) 66.17 338 16.69 | 87.03 6.06 31.15 - X ©
Finetuning on Human-Annotated Data
Central-Human (Li et al., 2024a) | 74.41 53.75 50.97 | 97.02 74.66 80.40 10880 4 Very
FedL/VLM (Ye et al., 2024) 68.55 3690 39.79 | 9538 56.30 69.00 Low
Finetuning on Synthetic Data
OS-Genesis (Sun etal., 2024) | 66.15 - 4454|9072 - 7417| ~10*° | V| Limited
Finetuning on Auto-Annotated User data
DistRL* (Wang et al., 2024d) 73.62 51.14 48.58 | 9642 75.13 80.18 152.92 X Very
MobileA3gent 74.66 53.05 57.24|97.17 7698 81.52 ) v High

4.2 Overall Evaluation of MobileA3gent

Baselines. To collect data and train mobile GUI
agents, we compare MobileA3gent against the fol-
lowing baselines: (1) Central-Human (Li et al.,
2024a), the conventional approach that relies on hu-
man annotation and centralized training on a server.
(2) FedLLM/VLM (Ye et al., 2024), which differs
from Central-Human by training in a distributed
manner across client devices. (3) OS-Genesis (Sun
et al., 2024), which automates synthetic data gener-
ation to reduce human effort. (4) DistRL* (Wang
et al., 2024d), an adapted version of the original
method that first collects decentralized user data
and then performs centralized training. During
federated training, we randomly select 30% of
clients in each round to mimic real-world scenar-
ios where users are intermittently offline (Jiang
et al., 2024). We evaluate the models at round 30,
which corresponds to an expected cumulative client
participation of 90%. Notably, the federated meth-
ods undergo fewer training iterations compared to
centralized ones. We also provide prompt-based
baselines, using locally deployed models or closed-
ended models accessed via APISs, for reference.

Results & Analysis. As demonstrated in Table 2,
we evaluate from four dimensions: Performance,
Efficiency, Privacy, and Scalability, and summa-
rize the following key findings: (1) Comparable
performance to Central-Human. As the num-
ber of participating clients and the data volume
increase, the performance of the collaboratively
trained global model via MobileA3gent improves
accordingly. Once the participation exceeds a cer-

tain threshold, users can obtain a highly capable
mobile agent, comparable to or even surpassing
Central-Human at minimal costs. (2) Most ef-
ficient by leveraging daily phone usage. The
per-client annotation cost remains nearly negligi-
ble compared to Central-Human. Although OS-
Genesis also aims to reduce human labor, it first
generates synthetic instructions and then collects
trajectories by employing GPT-4o to perform tasks
in simulators, which still incurs medium-level costs.
In contrast, we directly collect trajectories from
users’ daily phone usage by merely recording inter-
actions, offering the most cost-saving approach for
constructing GUI agent datasets. (3) MobileA3gent
substantially reduces privacy risks, by keeping
data on local devices. The privacy protection level
is comparable to that of locally deployed agents,
while achieving significantly higher performance.
(4) Promising scalability based on worldwide
users. As shown in Figure 7, the mobile user base
is massive and continually expanding, which en-
ables MobileA3gent to achieve much greater scala-
bility compared to other approaches.

4.3 Data Quality and Training Evaluation of
Auto-Annotation

Offline Benchmark. As shown in Table 3 and Ta-
ble 5, we summarize the following key findings,
(1) Match or surpass Human-Annotation. Our
method achieves performance comparable to hu-
man annotation when trained on datasets of equal
size. Notably, as the data scale increases, our
method surpasses human annotation, highlighting
the effectiveness of MobileA3gent and its strong
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Figure 3: Data quality evaluation across comprehensive metrics. Auto-Annotation outperforms all other baselines
and achieve comparable quality to Human-Annotation with a nearly 80% similarity.

potential for real-world deployment. (2) Across
multiple datasets, our approach consistently out-
performs all annotation baselines, underscoring
the robustness and general effectiveness of Auto-
Annotation. (3) Drastic cost reductions with min-
imal accuracy loss. Combined with the cost statis-
tics in Table 8, By leveraging improved backends
such as VLLM, we achieve up to a 99.9% cost re-
duction with less than a 2% decrease in high-level
accuracy. Importantly, even as the dataset size
scales up, the cost remains negligible compared
to human labor.

Comparing Methods on AndroidWorld
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Figure 4: (1) Auto-Annotation achieves the best
overall performance. (2) Despite being trained
solely on the AndroidControl dataset, the models
are able to successfully complete online tasks
in a previously unseen environment. This result
demonstrates that agents trained with our frame-
work possess strong generalization capabilities
across unseen tasks and applications. Additional
evaluations of generalization performance are
provided in Appendix C.4 with Table 6 and 7.

Data Quality. As shown in Figure 3, (1) Auto-
Annotation exhibits the best performance across
both text-based and embedding-based metrics,
providing strong evidence for the effectiveness of
our hierarchical method. (2) A similarity score of
nearly 80% to ground truth further demonstrates the
practical utility of generated instructions on mo-
bile devices, indicating their potential as a viable
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Comparison of Federated Algorithms in Heterogeneous Settings
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Figure 5: Comparison between FedVLM-A and 7 base-
lines on non-IID splits of AndroidControl. FedVLM-A
achieves SOTA performance on average. Transparent
bars indicate average scores over skewed scenarios only.

substitute for human-written ones. (3) Visual-Sense
delivers competitive data quality using primarily vi-
sual signals, suggesting that even stronger results
may be achieved by integrating Auto-Annotation
with enhanced visual understanding.

4.4 Training Evaluation of FedVLM-A

Baselines & Splits. We further conduct exper-
iments under non-IID settings to verify the per-
formance of FedVLM-A and investigate the het-
erogeneity issue formulated in Section B. We in-
clude seven representative FL baselines, such as
FedProx (Li et al., 2020), FedYogi (Reddi et al.,
2020). To eliminate any potential influence from
Auto-Annotation, we use the original dataset in this
section. Specifically, we sample 1,000 episodes
from AndroidControl with uniformly distributed
step lengths and create four distinct splits to sim-
ulate diverse distribution scenarios. Both the Step
Skew and IID splits assign 100 episodes to each
client. In the Step Skew scenario, clients have an
equal number of episodes but varying numbers of
steps, whereas in Episode Skew, the opposite holds.
The Both Skew scenario features skewed values for
both levels. For baseline Local, we evaluate using
the O-th client, which, in certain subsets (e.g., Both
Skew), undergoes a number of iterations compara-
ble to FL baselines.

Results. Figure 5 presents the radar chart of
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in Appendix Figure 9.

all baselines across the four splits, along with the
average scores for all scenarios and for the three
non-IID subsets. The results reveal the following:
(1) Non-IID distributions negatively impact the per-
formance of the global model, underscoring that
data heterogeneity is of critical importance in
training distributed mobile agents. (2) FedVLM-
A with adapted aggregation achieves robust perfor-
mance under non-IID settings, outperforming all
other baselines by at least 5% in relative improve-
ment. (3) Federated training significantly outper-
forms local training, validating the benefit of multi-
user collaboration. (4) Overall, the results confirm
the existence of the two-level heterogeneity high-
lighted in Section B, posing a new challenge for
the federated learning community.

4.5 Ablation Experiments on Various Models

Setups. We conduct ablation experiments to as-
sess the performance, annotation cost, and time
requirements of different base models within Mo-
bileA3gent. Three configurations are evaluated
by varying the choice of annotation and train-
ing models, where a combination x+y represents
using model x for annotation and model y for
training mobile GUI agents. Our model suite in-
cludes conversational VLMs such as Phi_3.5 (Ab-
din et al., 2024), grounding-oriented base mod-
els like SeeClick (Cheng et al., 2024) and widely
adopted API-based models including GPT-40/-
Mini (OpenAl, 2023). In the plots, icons with light
transparency denote models tuned using human an-
notations, whereas solid icons represent models
using Auto-Annotation. The horizontal axis reflects
annotation cost, measured via the Pt backend when
applicable, or approximated by model size other-
wise. For human-labeled icons, whose actual costs
are prohibitively high, we use the same cost num-
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bers for visualization purposes.

Results. As shown in Figure 6, 9 and Table 8,
different models exhibit varying trade-offs between
performance and cost. We conclude the follow-
ing observations: (1) Across all base models, our
method achieves consistent improvement over
human-annotated baselines with significant cost
savings. (2) The choice of annotation and train-
ing models introduces flexible performance—cost
trade-offs, allowing practitioners to tailor config-
urations to specific deployment constraints. (3)
Within a given VLM family, an increase in pa-
rameter numbers generally correlates with higher
performance and greater computational demand.
While across model types, this correlation does
not always hold-e.g., Yi-VL-6B incurs lower costs
and performs worse than InterVL2-2B, despite hav-
ing more parameters. (4) Qwen2-VL-2B-Instruct
(blue circles) achieves the best balance between
performance and annotation cost, making it the
most cost-effective option in our study.

5 Conclusion

To overcome the scalability and efficiency limita-
tions of traditional mobile agent paradigm, we em-
phasize the necessity of transitioning from central-
ized to distributed user-centric data collection, and
from human to automatic annotation. To achieve
this, we propose MobileA3gent, a framework that
collaboratively trains mobile GUI agents using self-
sourced data from diverse users. Specifically, we
introduce Auto-Annotation, an efficient approach
for generating high-quality datasets from routine
phone usage at minimal cost. Additionally, we
present FedVLM-A, a federated VLM training
framework with adapted global aggregation to han-
dle mobile data heterogeneity. Extensive experi-
ments on four benchmarks with 10+ models and



metrics validate the effectiveness of MobileA3gent.
The promising results highlight the scalability and
practicality of our user-centric paradigm, offering
a privacy-preserving and cost-efficient solution for
training large-scale mobile agent.

Limitations

Despite the novelty and promising results of our
work, potential limitations remain: (1) Due to
device capacity, we are currently unable to con-
duct experiments on actual user mobile phones,
as most mobile phone devices lack the neces-
sary resources to hold mainstream models. How-
ever, an increasing number of studies are focusing
on developing lightweight models specifically de-
signed for mobile environments (Christianos et al.,
2024; Papoudakis et al., 2025). MobileA3gent
is model-agnostic and can seamlessly incorporate
these smaller, more efficient VLMs, thereby facili-
tating practical deployment in resource-constrained
settings. Also, as shown in Figure 9, we com-
pare models of varying sizes. The results indicate
that even compact models—such as InternVL2-1B
and Qwen2-2B—can achieve competitive perfor-
mance with as few as 1,000 training episodes. This
demonstrates the scalability and effectiveness of
our framework across different model sizes and ar-
chitectures. While larger models like Qwen2-VL-
7B-Instruct demand more computational resources,
the overall annotation cost remains substantially
lower than manual labeling, making our approach
cost-effective even at scale. Although real-device
experiments remain future work, our findings vali-
date the effectiveness of the framework in resource-
constrained settings.
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A Related Work

A.1 Development of Current Mobile GUI
Agents

The advent of VLMs (Zhang et al., 2024b; Pa-
poudakis et al., 2025; Christianos et al., 2024;
Liu et al., 2025a) has marked a significant shift
in phone automation, enabling more dynamic,
context-aware, and sophisticated interactions with
mobile devices (Liu et al., 2025b). Research on
mobile agents has progressed through key mile-
stones, with models becoming more proficient at
interpreting multi-modal data, understanding user
intent, and autonomously executing complex tasks.
VLM-based mobile agents typically follow two ap-
proaches: (1) Prompt Engineering (Zhang et al.,
2023; Lee et al., 2024; Lu et al., 2024d; Chen

Mobile User Growth and Media Consul
Global Mobile Phone Users over Time

mption Trends

Daily Time Spent on Different Media Types

Users (Billion)

50 N
Time per Day (Minute)

Figure 7: Trends in mobile user statistics. The increas-
ing number of mobile users and their rising daily usage
provide a sufficient data foundation for our approach.

et al., 2024a), where pre-trained models are guided
by carefully designed prompts, and (2) Training-
Based Methods (Hong et al., 2023; Cheng et al.,
2024), where VLMs are further optimized using
large-scale mobile datasets. While training-based
methods offer higher potential and generalizability
by improving the VLM through fine-tuning, they
require a large amount of training data, which can
be very costly.

A.2 Efforts in Building Datasets for Mobile
GUI Agents

Acquiring training trajectories for mobile agents
presents significant challenges.  Existing ap-
proaches are often reliant on manual curation,
making data collection both costly and inefficient.
Some works have explored the possibility of au-
tomatically constructing datasets using VLMs or
Application Programming Interfaces (APIs) (Wang
et al., 2021; Lai et al., 2024). But these approaches
either halfway to completing the datasets or depend
on pre-defined tasks.

OS-Genesis (Sun et al., 2024), the most ad-
vanced in this area, proposes reverse task synthesis
to eliminate the need for pre-defined instructions.
However, this method still requires an agent to
execute synthetic tasks in a simulated mobile envi-
ronment, to obtain the corresponding screenshots
and actions. This process does not guarantee the
accuracy of executed actions, while also incurs ad-
ditional computational and resource costs.

In contrast, we propose collecting real-world
data from mobile users. This approach offers both
(1) unlimited data scale, given the billions of mo-
bile users worldwide, and (2) ground truth accuracy,
as the data is directly generated through human ex-
ecution.



B Detailed Problem Formulation

In this section, we first briefly elaborate on several
key concepts, including the definition of mobile
agents, to supplement Section 2.2. We then formu-
late our federated learning setup, with particular
emphasis on the novel heterogeneity introduced by
the inherent nature of mobile agent trajectories.

B.1 Supplemental Preliminaries

Step-Wise User Phone Usage. Typically, the pro-
cess of one user interacting with a mobile device is
formulated as follows. Initially, there is a screen-
shot of the interface, denoted as s;. The user aims
to complete a task, denoted as 7 in natural lan-
guage, which requires n steps. Given any screen-
shot s;, where i € [1,n], the user performs an
action a;, causing the interface to transition from
S; 10 Sj41:

(6)

Once the last action a,, is performed, the interface
reaches the final screenshot s, 1, finishing the task
T with n + 1 screenshots and n actions in total.
Functionality of Mobile Agents. The mobile
agent, with the core being a VLM denoted as M,,,,
simulates a human user in a step-wise process for
task completion. It operates sequentially when
applied to tasks. Given a natural language task
T requiring n steps, at each step ¢, the primary
function of the mobile agent is to predict the next
action a; required to complete 7, based on the

a
User: s; — Si+1 -

K
. 1
H}\llnF(M) = E ZE(t,s,a)NP(k)
k=1

where ¢ : T x & x A — R, denotes the loss
function, e.g. cross-entropy. P;kx) Sx.A 1s the dis-
tribution over 7 x S x A. T, S, and A represent
task, screenshot, and action spaces, respectively.
We assume that the distributions P#CX) sx . differ
across clients, which is a common scenario in FL.
To the best of our knowledge, we are the first to
apply federated learning into the training of mobile
agents.

B.3 New Heterogeneity

Two-Level Distribution. Directly applying fed-
erated learning to mobile GUI agents introduces
a new form of data heterogeneity. Unlike conven-
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current screenshot s; and contextual information;
that is:

Mobile Agent: (T, s;) Mom, a; . (7)

B.2 Federated Learning Setup

Reasons for Distributed Training. The duration
of daily mobile phone usage is inherently limited
for an individual, resulting in a relatively small
dataset collected on a single user’s device. This
small-scale dataset constrains the performance of
the mobile agent trained on it. Fortunately, with
millions of mobile users worldwide, there exists
a vast opportunity to incentivize users to collabo-
rate and collectively train a mobile agent M, using
their combined data. Following the scaling law (Ka-
plan et al., 2020), leveraging multiple users’ data
enables virtually unlimited scalability and yields
promising results. However, directly sharing or
merging data generated from users’ daily phone
usage poses significant privacy risks. So the local
data can only be utilized in a distributed manner.

Federated Learning. To address this challenge,
we adopt federated learning, which effectively
mitigates privacy concerns by keeping data
on local devices, and develop a collaborative
training framework FedVLM-A for mobile
GUI agents. Given the local model M} and
a data sample (¢,s,a) from Dy, the objective
of FedVLM-A is to optimize the global model
M,, based on these local datasets; that is:

[Z(./\/lk; t,s, a)] . ®

TXSXA

tional FL scenarios where data are modeled as flat
collections of independent samples, mobile interac-
tion data inherently follow a hierarchical structure:
they are collected episode by episode, with each
episode consisting of sequential steps governed by
a fixed task instruction. As a result, the underly-
ing data distribution operates on two distinct levels.
We refer to this structure as the Two-Level Distri-
bution.

Level 1 (Intra-episode): Within episode j for
user k, the task instruction T(*.9) leads to a se-
quence of F'(%J) steps. Since the task is constant

within the j-th episode, the episode’s data distribu-

)

tion simplifies to Pgi 1+ Level 2 (Inter-episode):
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Figure 8: Scaling law analysis on Android Control dataset with different training strategies. All models show a

growing tendency with increased data size.

Across episodes, different tasks 7%7) follow a dis-

tribution Pf(pk). Thus, the overall data distribution
on client £ is defined as:

E(k)

2

pkd)

(k)
PT SxA

XSXA ’ P’}k) (T(k’j)) )]

where E(*) is the number of episodes on client k.
This two-level distribution captures richer, hierar-
chical patterns and introduces more severe skew
than the one-level heterogeneity in traditional fed-
erated learning.

Simplified Focus: Episode Length. To study
the above mentioned new heterogeneity in a
tractable way, we simplify P:(Fk) to reflect only the
distribution of episode lengths F'(*.J ). That is, we
consider how many steps each episode contains,
rather than the task content itself. Ignoring this
episode length heterogeneity can lead to mislead-
ing assumptions and subsequent degraded perfor-
mance. For example, two clients might each have
10 episodes of shopping-related tasks. However, if
one client’s episodes are short and concise while
the other’s are long and repetitive, their training
data contribute differently to the global model. This
results in biased updates despite seemingly equal
numbers of episodes. Moreover, even if step-length
distributions are balanced, clients may differ in to-
tal episode count or task diversity, still causing
skewed contributions.

To address this, we propose an adapted aggrega-
tion strategy in Section 3.2 that explicitly accounts
for heterogeneity in episode step length, going be-
yond standard sample-count-based methods in tra-
ditional federated learning.
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C Additional Experiments & Results

C.1 Continual Ablation Experiments on
Various Models and Data Sizes

Setups. We further present our experiments, fol-
lowing Section 4.5. We conduct an ablation exper-
iment on training data size to investigate whether
the scaling law (Kaplan et al., 2020) holds for our
automatically generated data. Using the Android-
Control dataset, we train models that differ only in
the size of their training data. For MobileA3gent,
we fix the number of clients at 10 and test differ-
ent participation rates, specifically 30% and 90%.
We also provide more comprehensive ablation on
different model combinations in Figure 9. Both
high-level and low-level settings are evaluated with
Type, Ground and SR metrics. Details about our
model suite are provided in Section E.4.

Results. As shown in Figure 8, the performance
of all tested models improves as the training data
size increases, indicating that our generated data
also follows the scaling law. We also observe a
sharp performance increase when training from 100
and 1,000 episodes. No saturation is observed in
our experiments; however it can be inferred that the
performance of all models grows more slowly once
the data size reaches a certain threshold. Moreover,
when comparing high-level and low-level training
settings, the latter converges faster, due to its sim-
plicity and less room for improvement

From Figure 9, (1) we further demonstrate that
Auto-Annotation is an effective method for annotat-
ing user instructions. The generated data exhibits
strong utility and can be scaled up significantly at
minimal cost compared to manual labeling. (2)
Increasing the data scale benefits the Ground met-
ric the most, as it captures the most critical aspect
that VLMs need to learn from training data—the
grounding ability. Specifically, Auto-Annotation
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Table 3: Training evaluation on AndroidControl and GUI Odyssey with more results in Table 4. We compare
our method against various baselines. Auto-Annotation achieves superior results across all methods, and shows
substantial improvement over Human-Annotation with significant cost savings.

Methodology AndroidControl-High AndroidControl-Low GUI Odyssey
Type  Ground SR Type Ground SR Type Ground SR
Qwen2-VL-7B-Instruct 28.61 0.00 1.94 | 71.09 2.19 6.41 2.87 2.94 0.51
GPT-40 66.17 3.38 16.69 | 87.03 6.06 31.15 | 37.50 14.17 5.36
OS-Atlas-7B-Pro (Wu et al., 2024) | 57.44 5490 29.83 | 73.00 73.37 50.94 | 60.42 39.74 2696
Human-Annotation 75.41 53775 5097 | 97.02 74.66 80.48 | 7885 6492 5522
Action-Origin 65.28 3.18 9.84 | 94.19 3.56 26.68 | 6236 1332  14.33
Visual-Sense (Zhang et al., 2024a) | 77.50 61.13  57.37 | 97.47 8142 8554 | 81.53 67.66 59.49
Self-Instruct (Wang et al., 2023) 75.86 5728 5395 | 9747 8197 8525 | 8280 60.27 55.16
Chain-of-Thought 7794 5696 5589 | 97.17 83.20 85.39 | 7437 50.80 49.33
Auto-Annotation 77.50 62.67 58.12 | 98.06 83.29 86.29 | 81.72 69.51  60.57

achieves up to an 82.8% improvement over Human-
Annotation for InternVL2-1B.

C.2 Auto-Annotation with Different Data
Sizes

We present detailed experiments comparing Auto-
Annotation with various baselines under two dis-
tinct data sizes. Human-Annotation serves as the
upper bound.

Comparison with Human-Annotation. When
the training data size is equal, our method achieves
comparable performance on many evaluation met-
rics, with less than a 2% drop—for example, SR on
both AndroidControl-High and AndroidControl-
Low—while reducing annotation costs by over
99%. Moreover, as the data size scales up, our
method surpasses Human-Annotation with ease,
while still maintaining minimal cost.

Comparison with Other Baselines. Auto-
Annotation maintain consistent superiority other
baselines across all metrics and data sizes, mak-
ing it the most effective choice for annotating user
instructions.

C.3 Auto-Annotation on AitW Dataset

Setups. The AitW dataset consists of five subsets:
General, Install, GoogleApps, Single, and Web-
Shopping. For each subset of AitW, we sample
1,000 episodes for training and 100 for evaluation.
The overall performance is the average of the five
subsets. For the validation metric, we omit valida-
tion samples that consist of click actions with no
corresponding unit. These samples are too easy to
predict in our setting and show no meaningful dif-
ference between different models. We only present
high-level accuracy due to the absence of low-level
instructions in the original dataset.
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Results. As shown in Table 5, we can conclude
the following: (1) Apart from AndroidControl and
GUI Odyssey, our method still achieves compara-
ble results with Human-Annotation and outperform
it by a large margin as the data size increases. (2)
Our method performs extremely well on the Single
subset. We attribute this result to the short aver-
age step length for episodes in Single, which leads
to more accurate reconstruction of the high-level
instructions.

C.4 Out-of-Domain Evaluation with
Generalization Analysis

Setups. To evaluate the performance of Mo-
bileA3gent in out-of-domain scenarios, we conduct
two experiments on the AndroidControl and GUI
Odyssey datasets. For AndroidControl, we ran-
domly sample 100 episodes from each of the three
unseen test splits: App-Unseen, Task-Unseen, and
Category-Unseen, based on the dataset’s sub-splits.
The number 100 is chosen to match the test sample
size used in Section 4.3. For GUI Odyssey, we
similarly sample 100 episodes from each unseen
test split: App-Unseen, Task-Unseen, and Device-
Unseen. Note that the original GUI Odyssey
datasets include overlapping samples across splits;
therefore, we select test episodes that do not over-
lap with either the training samples or with each
other.

Results. As shown in Tables 6 and 7, (1) mo-
bile agents trained on our automatically generated
data exhibit strong generalizability across various
settings. The results demonstrate the effective-
ness of our approach and further validate the util-
ity of our auto-annotated data, which is derived
solely from screenshots and actions. (2) Addition-
ally, we observe that the Category-Unseen sub-



Table 4: In-depth evaluation of Auto-Annotation under equal data size on AndroidControl. In this setup, Human-
Annotation serves as the upper bound due to its access to gold instructions. Auto-Annotation outperforms other
baselines trained on model-annotated data and achieves comparable performance to Human-Annotation on several

metrics-such as high-level SR-with drastic cost saving.

Methodology AndroidControl-High ‘ AndroidControl-Low GUI Odyssey
Type Ground SR Type Ground SR Type  Ground SR
Qwen2-VL-7B-Instruct 28.61 0.00 1.94 | 71.09 2.19 6.41 2.87 2.94 0.51
GPT-40 (OpenAl, 2023) 66.17 3.38 16.69 | 87.03 6.06 31.15 | 3750 14.17 5.36
0OS-Atlas-7B-Pro (Wu et al., 2024) 5744 5490 2983 | 73.00 73.37 5094 | 60.42 39.74  26.96
Data Size = 5,000 Data Size = 3,000
Human-Annotation (Li et al., 2024a) | 79.14  66.56  61.70 \ 97.62 8147 8599 | 8439 75.63 67.01
Action-Origin 65.28 3.18 9.84 | 94.19 3.56 26.68 | 6236 1332  14.33
Visual-Sense (Zhang et al., 2024a) 7749 61.13 5737 | 9747 8142 8554 | 81.53 67.66 59.49
Self-Instruct (Wang et al., 2023) 7586 5728 5395|9747 8197 8525 | 82.80 60.27 55.16
Chain-of-Thought 7794 5696 5589 | 97.17 83.20 85.39 | 7437 50.80 49.33
Auto-Annotation 7749 62.67 58.12 | 98.06 83.29 86.29 | 81.72 69.51 60.57
Data Size = 1,000
Human-Annotation (Li et al., 2024a) | 7541 5375 5097 | 97.02 74.66 80.48 | 78.85 6492 55.22
Action-Origin 65.28 2.85 10.58 | 90.61 1.14 28.46 | 54.52 5.38 7.52
Visual-Sense (Zhang et al., 2024a) 73.62 51.14 4858 | 9642 7425  80.18 | 76.62 5443  46.50
Self-Instruct (Wang et al., 2023) 7243 4899 4754 | 96.87 7240 78.69 | 77.07 5133 4522
Chain-of-Thought 72.58 4848 4724 | 97.02 74.53 80.18 | 76.56 5340  46.37
Auto-Annotation 7422 5244 4948 | 9747 7513 8048 | 77.58 59.74 50.64

Table 5: Evaluation of Auto-Annotation across different subsets of AitW dataset. Our methods achieve consistent
superior performance compared to Human-Annotation at a very low cost. -S denotes a simplified version which

removes the step-wise description.

Methodology Size  General Install GoogleApps Single WebShopping Overall
Zero-Shot - 15.90 5.20 15.08 28.38 11.41 15.19
Human-Annotation 1000 35.04 54.50 46.65 55.46 39.82 46.29
Auto-Annotation-S 1000 36.24 52.47 44.13 53.41 40.34 45.32
Auto-Annotation 1000 36.92 53.23 37.43 52.84 39.65 44.01
Auto-Annotation-S 5000 36.24 59.19 47.21 62.45 39.43 48.90
Auto-Annotation 5000 37.26 57.29 47.49 72.05 45.14 51.85

set yields relatively lower accuracy compared to
other evaluation subsets, indicating a higher level
of difficulty. (3) For GUI Odyssey, we note that
Human-Annotation achieves relatively higher per-
formance than in other experiments, suggesting
that this dataset may pose greater challenges for
generalization.

C.5 Efficiency Evaluation across Inference
Backends

Setups. To further investigate whether the anno-
tation cost using our method can be reduced and
whether the memory requirements can be mini-
mized with current efficient inference backends,
such as vLLM (Kwon et al., 2023) and LMDeploy
(Contributors, 2023), we conduct additional exper-
iments to assess efficiency by computing model
costs and memory usage on different backends.
API-based costs are assessed using the OpenAl’s
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library tiktoken ! to count input and output tokens
via Auto-Annotation. The price per million to-
kens is also included. Moreover, we approximate
the API cost for the Qwen2-VL family by using
the pricing of Qwen-VL-Plus, as the server does
not provide APIs for Qwen2-VL-7B-Instruct or
Qwen2-VL-2B-Instruct. For the InternVL2 fam-
ily, since the model server offers free trial access,
we denote the cost as "Free". Note: the annota-
tion costs are computed using Auto-Annotation-S,
which removes the step-wise process for fair com-
parison across models. For reference, using vLLM,
Auto-Annotation incurs around 2 times the cost of
Auto-Annotation-S.

Results. As shown in Table 8, models exhibit
explicitly different behaviors across backends. In
general, most models reduce costs when using effi-
cient backends. For example, InternVL2-2B saves

"https://github.com/openai/tiktoken
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Table 6: Out-of-domain evaluation on AndroidControl. We compare Auto-Annotation with baselines on three
out-of-domain test subsplits. Our method achieve consistent improvement over Human-Annotation with minimal

annotation cost.

App-Unseen Task-Unseen Category-Unseen
Methodology Type Ground SR Type Ground SR Type Ground SR
Human-Annotation (Li et al., 2024a) | 65.79  57.02  47.74 | 78.65 67.83 6098 | 70.31 51.07 47.03
Action-Origin 56.48 5.92 9.90 | 64.21 0.99 12.75 | 60.16 1.88 7.81
Visual-Sense (Zhang et al., 2024a) 7045 64.14 5459 | 82.64 69.76 64.98 | 69.69 61.54 5438
Self-Instruct (Wang et al., 2023) 72.63 64.06 56.04 | 84.18 67.12 64.06 | 69.84 5945  53.75
Chain-of-Thought 71.03 5833 5197 | 82.64 6842 6421 | 71.09 5922 5547
Auto-Annotation 7220 65.00 56.04 | 83.72 6897 6513 | 7297 61.06 56.25

Table 7: Out-of-domain evaluation on GUI Odyssey. We compare Auto-Annotation with baselines on four evaluation
subsets. Our method achieve consistent improvement over Human-Annotation with minimal annotation cost.

Methodology App-Unseen Task-Unseen Device-Unseen
Type Ground SR Type Ground SR Type Ground SR

Human-Annotation (Li et al., 2024a) | 78.76  59.23  51.85 | 76.74  61.89 49.29 | 79.96 6142 53.02
Action-Origin 61.54 9.94 11.35 | 6256 1122 11.63 | 61.84 11.86 12.52
Visual-Sense (Zhang et al., 2024a) 7749 5440 4847 | 7532 60.64 47.88 | 81.50 63.36 5598
Self-Instruct (Wang et al., 2023) 78.00 4933 4522 | 7696  56.75 46.58 | 82.24 5772 5240
Chain-of-Thought 7736 53.81 4821 | 77.24 56.71 46.53 | 8231 5798  53.08
Auto-Annotation 77.87 63.03 53.76 | 77.64 65.76  52.68 | 82.49 67.56 58.82

annotation costs by more than half when leveraging
LMDeploy. However, for smaller models, using
an efficient backend does not necessarily lead to
improvements. We attribute this to the fact that
running vVLLM on an RTX 4090 causes the model
to occupy the entire GPU memory, which is 5 to 10
times the original memory usage of PyTorch. This
increase in memory consumption does bring out
improvement inference speed but fails to offset the
additional memory demand. Since our annotation
cost, as formulated in Equation E.3, considers both
time and memory usage, the overall cost does not
necessarily decrease. Additionally, APIs remain
a viable option since they eliminate the need for
local deployment, while offering highly compet-
itive pricing. However, using APIs comes at the
sacrifice of privacy as shown in Table 1.

C.6 Accuracy Comparison across Different
Actions

Following the evaluation protocol described in Sec-
tion 4.1, we compute the accuracy for each action
type defined in the AndroidControl action space,
as detailed in Table 9.

As illustrated in Figure 10, the accuracy varies
significantly across different action types. Notably,
the COMPLETE, TYPE, and OPEN_APP actions achieve
relatively high accuracy. This can be attributed to
the fact that these actions primarily depend on lan-
guage understanding rather than visual grounding.
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Given that current VLMs are more proficient in han-
dling language-based tasks, these actions are easier
to infer correctly. In contrast, NAVIGATE_BACK and
WAIT exhibit the lowest accuracy. We hypothesize
that this is mainly due to their limited representa-
tion in the training set, as they constitute only a
small portion of the total training data. Addition-
ally, NAVIGATE_BACK often requires the model to
correct previous errors or perform implicit reason-
ing based on prior steps, which is challenging for
VLMs lacking explicit reasoning capabilities.

It is also worth noting that the 7Type metric differs
fundamentally from the SR metric. The Type metric
only requires correctly identifying the action type,
without evaluating parameters such as coordinates
or input content. In contrast, SR considers an ac-
tion correct only if all its arguments are predicted
accurately. This distinction is especially significant
for coordinate-based actions like CLICK, which re-
quire precise location predictions to be considered
successful under the SR metric. This additional
complexity makes it more challenging for models
to achieve high accuracy on such actions.

D Discussions and Future Directions

D.1 Discussions

Analysis of Resources on a Mobile Device. To
investigate the minimal resource requirements,
we conduct additional experiments to determine



Table 8: Comparison of annotation costs per 1,000 samples, using different inference backends across various base
models. Results demonstrate that employing efficient backends, such as vVLLM and LMDeploy, can further reduce
inference time and memory usage, ultimately lowering the annotation cost of our approach. The generation time

and memory usage are averaged over three runs.

Annotation Cost (¢) Generation Time (s) | Memory Usage (MB)

Annotation Model vLLM or vLLM or vLLM or

PyTorch LMDeploy API | PyTorch LMDeploy PyTorch LMDeploy
Human | 10880 | 56300 | -
GPT-40-Mini - - 14.8 5061 -
GPT-40 - - 247.92 6858 -
Qwen2-VL-2B-Instruct 6.14 8.42 <21.15 1577 1180 12046 22083
Qwen2-VL-7B-Instruct | 16.77 9.87 <21.15 2005 1374 25881 22224
InternVL2-1B 2.58 11.09 Free 2000 1662 3985 20645
InternVL2-2B 16.04 7.23 Free 1698 1038 29235 21548
InternVL2-8B 23.18 - Free 2245 - 31960 -
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Figure 10: High-level SR across different action types within the action space of AndroidControl. The width of
the pillars corresponds to the number of data samples in the evaluation test set; thus, the area reflects the weighted

average performance.

whether small VLMs or models based on APIs can
achieve similar effectiveness. The results in Sec-
tion 4.5 show that even an 1B VLM can deliver
competitive performance. Models based on APIs
can also be used, though they come with the risk of
privacy leakage, which we leave for future work.

Real-World Applicability Analysis. We will
address the real-world applicability three-folds.
First, as shown in Section 4.4, each user only needs
to provide a small amount of data, and not all of
it is sensitive, resulting in minimal or no privacy
risks. Second, the benefits far outweigh the costs
and risks. We assume that the server incentivizes
participation by offering free use of the global agent
in exchange for access to user data. Users can gain
access to a highly capable mobile agent that saves
them both time and efforts. Finally, by incorpo-
rating federated learning, user data is processed
locally, alleviating most privacy concerns.
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D.2 Future Directions

As mentioned above, we have shown the promising
results achieved by MobileA3gent. However, this
is not the end as there are still emerging challenges
and interesting directions that are worth exploring
in this direction.

Privacy Preservation. Training on user data
inevitably raises privacy concerns. While federated
learning helps mitigate privacy leakage by keeping
private data on the client side and transmitting only
LoRA adapters, potential privacy issues remain.
Models with substantial sizes are prone to memo-
rization of their training data (Yu et al., 2024; Wang
et al., 2024e). Similar to large LL.Ms, recent stud-
ies (Caldarella et al., 2024; Jayaraman et al., 2024)
reveal that VLMs also inadvertently memorize and
potentially expose sensitive information. Dejavu
memorization (Jayaraman et al., 2024) proposes a
novel measurement for memorization by quantify-
ing the fraction of ground-truth objects in an image
that can be predicted from its text description in



a training image-text pair. Mobile agents rely on
VLMs to perceive the interface and make decisions.
Therefore, training directly on user data may lead
to leakage of sensitive information. This issue can
be addressed by implementing differential privacy
(DP), which, however, remains underexplored in
the context of VLMs and mobile agent training.

Efficiency. To collaboratively train a global mo-
bile agent on distributed user data, each user needs
to locally train a small-sized VLM and commu-
nicate with the central server. However, limited
computation resources and communication chan-
nels on mobile devices may hinder the feasibility
of deployment. With the recent advancement of
LLMs and diffusion models and their integration
into federated learning systems (Zhou et al., 2021),
numerous approaches have been proposed to alle-
viate computational and communication overheads
(Ding and Hu, 2024). On the other hand, the prolif-
eration of smaller VLMs has significantly enhanced
efficiency. For instance, AppVLM (Papoudakis
et al., 2025) specifically targets app control tasks
with a lightweight architecture, facilitating rapid
and cost-efficient inference for real-time execution.

Reinforcement Learning. Although our current
framework does not yet incorporate reinforcement
learning, we identify it as a promising future di-
rection. In a federated mobile agent setting, user
feedback can serve as a critical reward signal, en-
abling agents to adjust their decision-making poli-
cies dynamically. Future work will need to tackle
challenges inherent to integrating reinforcement
learning into a federated environment, such as han-
dling heterogeneous feedback, ensuring robust and
stable learning under variable network conditions,
and preserving user privacy. We believe that ex-
ploring these issues will pave the way for more
adaptive and user-centric mobile agents, ultimately
enhancing both their responsiveness and overall
utility.

E Experimental Details

E.1 Benchmark Details

To provide a comprehensive evaluation, we select
four widely used mobile agent benchmarks from
prior works (Wu et al., 2024; Sun et al., 2024;
Zhang et al., 2024d), covering both offline and
online settings.

Offline Benchmarks. In offline benchmarks,
agents are evaluated using static screenshots and
instructions under a step-wise evaluation protocol
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in a fixed order. Notably, even if an agent fails at
a prior step that would normally prevent it from
reaching the current step, the current step is still
included in the evaluation. Offline benchmarks are
favored in the GUI agent community due to their
ease of quantification and deployment. We employ
three widely accepted benchmarks from Google?
and OpenGVLab?.

¢ AndroidControl (AC) (Li et al., 2024a), evalu-
ates agents’ planning and action-execution ca-
pabilities in mobile environments. This bench-
mark provides two task types: (1) high-level
tasks, where the agent must autonomously plan
and execute multi-step actions; and (2) low-
level tasks, where the agent is required to
execute pre-defined, human-annotated actions
which is more specific, at each step. During
low-level tasks, both a low-level instruction and
its corresponding high-level instruction are in-
cluded. We conduct experiments in both set-
tings for a comprehensive assessment. A data
example is provided in Figure 11 to further clar-
ify the difference between high-level and low-
level instructions.

Android in the Wild (AitW) (Rawles et al.,
2023), is a large-scale dataset annotated with
instructional operations and screenshot-based
icon detection, including element-level annota-
tions generated using a pretrained IconNet. The
AitW dataset comprises five subsets: General,
Install, GoogleApps, Single, and WebShopping.
GUI Odyssey (Lu et al., 2024b), focuses on
cross-app navigation tasks in mobile environ-
ments, featuring an average of over 15 steps per
task, which is notably longer than in Android-
Control. The tasks cover diverse navigation
scenarios, and within each scenario, multiple
instructions are generated based on predefined
templates.
Online Benchmark. In contrast to offline bench-
marks, online benchmarks prioritize realism and
practical applicability. Agents are required to per-
form dynamic, interactive tasks in online simula-
tion environments. And they continue attempting
the task until reaching a predefined maximum step
length. This setup may lead to some back-and-
forth or repetitive behaviors as agents explore and
recover from errors.

¢ AndroidWorld (AW) (Rawles et al., 2024), is

2https://github.com/google—research/
google-research
Shttps://github.com/OpenGVLab
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Figure 11: Episode example from Android Control dataset. The high-level task is "Open the Zoho Meet app and
view the scheduled meetings". Instructions in grey indicate ground truth from the original dataset, while those in
green are predictions generated by Auto-Annotation. Our generated data sample achieves quality comparable to

human-annotated ground truth.

an online environment designed for developing
and benchmarking autonomous agents using a
Pixel 6 phone simulator as the testbed. It com-
prises 116 tasks spanning 20 mobile apps, with
dynamic task variations generated through ran-
domized parameters. This dataset is particularly
well-suited for evaluating agents’ adaptability
and planning abilities on mobile devices.

Our experimental setups for the offline datasets
follow those in Wu et al. (2024), while the setups
for the online benchmark adhere to the original
implementation.

E.2 Data Details

Data Composition. To offer a clearer understand-
ing of the structure of mobile training datasets and
the composition of a data episode, we present a rep-
resentative example in Figure 11. As shown, each
episode consists of: (1) A high-level instruction, ex-
pressed as a natural language sentence describing
the task to be accomplished; (2) A sequence of low-

level instructions, detailing the fine-grained tasks
required for the current screenshot; notably, such
annotations are only available in the AndroidCon-
trol dataset; (3) A series of screenshots captured
from the start to the end of the task; and (4) A cor-
responding list of actions, aligned with the number
of screenshots, indicating what the user does to
progress to the next screenshot. All actions belong
to an action space containing 7-9 options.

Action Space. Considering the action space
used in OS-Atlas and the original AndroidCon-
trol paper, we define nine action types for An-
droidControl. Notably, two of these action types,
Navigate_Home and Long_Press, appear only
rarely. For GUI Odyssey, one more action type
Press_Recent is defined as press the recent but-
ton to switch between different apps as most tasks
are cross-app. For the AitW dataset, we define
seven action types. The corresponding actions and
their descriptions are provided in Tables 9 and 11,
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Table 9: Action space for AndroidControl.

Action Type Attribute  Description
Basic Actions
CLICK (x,y) Click at a specific point on the screen using the coordinates.
TYPE text Type the text in the current input field or search bar.
SCROLL direction Scroll in a specific direction (one of "up’, ’"down’, ’left’, or ’right’).
Custom Actions
LONG_PRESS (x,y) Long press at a specific point on the screen using the coordinates.
NAVIGATE_BACK - Return to the previous page or undo an action.
NAVIGATE_HOME - Return to the home page.
OPEN_APP app_name  Open an app with the specified name.
WAIT - Pause for a moment before proceeding with the next action.
COMPLETE - Indicate that the task is finished.
Table 10: Action space for GUI Odyssey.
Action Type Attribute  Description
Basic Actions
CLICK (x,y) Click at a specific point on the screen using the coordinates.
TYPE text Type the text in the current input field or search bar.
SCROLL direction  Scroll in a specific direction (one of "up’, ’”down’, ’left’, or ‘right’).
Custom Actions
LONG_PRESS Long press at a specific point on the screen using the coordinates.

(x,y)
NAVIGATE_BACK -
NAVIGATE_HOME
PRESS_RECENT
WAIT
COMPLETE

Return to the previous page or undo an action.

Return to the home page.

Press "Recent’ to switch between recently used applications.
Pause for a moment before proceeding with the next action.
Indicate that the task is finished.

with any additional parameters indicated as Zar-
get. In AitW, we decompose the original Press
action into three distinct actions: Navigate_Home,
Navigate_Back, and Press_Enter, aligning the
action space with that of AndroidControl. Addi-
tionally, we derive the Scroll action from the orig-
inal dual-point action.

Splits. Regarding training and testing splits, for
AndroidControl, we adopt the original splits pro-
vided in the paper®. Specifically, we sample 5,000
episodes for training and 100 episodes for each test
subsplit, i.e., IID, App-Unseen, Task-Unseen, and
Category-Unseen. Unless otherwise specified, our
results (except for the generalization experiments
reported in Section C.4) are evaluated based on the
1ID subsplit. For each subset of AitW, we sample
1,000 episodes for training and 100 for evaluation.

E.3 Metrics Details

Efficiency Metrics. We also compare the anno-
tation costs across methods to assess efficiency.
The cost of a single human-annotated sample is
derived from a Refuel-Al technical report. The
costs for model-annotated samples are estimated

4https ://console.cloud.google.com/storage/
browser/gresearch/android_control
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by calculating the average GPU usage during gen-

eration, given by: Anno. Cost = (£5¢) x Time x
Memoryy,. . .
Memorype. ? where Price is the GPU rent per hour,

approximately $0.2857 for one RTX 4090 GPU we
use. Memoryy;,, and Memoryr,,,; represent the av-
erage occupied GPU memory and the total memory
of the system, respectively. Time is the generation
duration measured in seconds. All cost numbers
are presented in terms of cents (¢).

Offline Metrics. To facilitate fair comparisons
across all baseline methods, we standardize the
evaluation metrics for all action types. For each
step, we provide three metrics: Type, Ground and
SR. Continual on the description in Section 4.1, we
further detail on how an action is determined as
correct for SR.

* For coordinate-related actions, e.g. Click, the
agents generate both the action type and the
position coordinates. Since the ground-truth
bounding box is not always available, we mea-
sure the performance by computing the dis-
tance between the predicted coordinates and the
ground-truth coordinates. Following Bai et al.
(2024), we deem the coordinates correct if they
fall within a distance equivalent to 14% screen


https://www.refuel.ai/blog-posts/llm-labeling-technical-report
https://console.cloud.google.com/storage/browser/gresearch/android_control
https://console.cloud.google.com/storage/browser/gresearch/android_control

Table 11: Action space for Android in the Wild.

Action Type Attribute  Description
Basic Actions
CLICK x,y) Click at a specific point on the screen using the coordinates.
TYPE text Type the text in the current input field or search bar.
SCROLL direction  Scroll in a specific direction (one of "up’, ’down’, ’left’, or 'right’).

Custom Actions

NAVIGATE_BACK -
NAVIGATE_HOME -
PRESS_ENTER -
COMPLETE -
IMPOSSIBLE -

Return to the previous page or undo an action.
Return to the home page.

Press the *Enter’ button.

Indicate that the task is finished.

Indicate that the task is infeasible.

width from the ground truth.

* For type-based actions (e.g., TYPE, OPEN_APP),
we compute the F1 score between the predicted
text and the ground truth. A prediction is con-
sidered correct if the F1 score exceeds 0.5.

* For SCROLL actions, the direction argument (i.e.,
UP, DOWN, LEFT, or RIGHT) must precisely match
the ground truth.

* For all other actions (e.g., PRESS_BACK), the
prediction must exactly match the ground truth
to be considered correct.

Online Metrics. The evaluation is conducted in
screenshot-only mode. To mitigate potential inter-
ference from network instability and environmental
factors, the results are measured three times. The
primary metric is the episode-wise task success
rate, a more rigorous measurement compared to
the step-wise success rate (SR) in offline mode, as
en episode is considered successful only when all
constituent steps are performed correctly, i.e. SR =
100% for a task to be successful.

Data Quality Metrics. Based on the well es-
tablished literature in NLP community. We use
similarity of generated instruction to the ground
truth as an indication of data quality. We adopt
both text-based metrics which directly computed
based on the two sentences and embedding-based
metrics.

* BLEU (Bilingual Evaluation Understudy) is a
precision-based metric that evaluates text simi-
larity by comparing n-grams between generated
and reference texts (Papineni et al., 2002).

* ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) is a recall-based metric
that computes overlapping n-grams, word se-
quences, and the longest common subsequences
(Lin, 2004). The ROUGE family includes
ROUGE-1, ROUGE-2, and ROUGE-L, each
providing measures for precision, recall, and

the F1-score.

* TF-IDF (Term Frequency-Inverse Document
Frequency) is a statistical measure that evalu-
ates word importance in a document relative to
a corpus by balancing term frequency and in-
verse document frequency (Salton and Buckley,
1988).

e METEOR (Metric for Evaluation of Transla-
tion with Explicit ORdering) is a metric that
evaluates text similarity by aligning unigrams
between generated and reference texts using ex-
act, stem, synonym, and paraphrase matches.
Unlike BLEU, METEOR incorporates both pre-
cision and recall, along with a fragmentation
penalty to account for word order, resulting in
higher correlation with human judgments at the
sentence level (Banerjee and Lavie, 2005).

* Embedding Similarity which use embedding
models to embed the sentences first and calcu-
lates the cosine similarity between two embed-
ding vectors. We select two SOTA embedding
models with the most downloads on the Hug-
ging Face websites, jina-v3> and mxbai-v1°.

E.4 Model Details

We employ three categories of models in our ex-
periments: VLMs with conversational capability,
base models specialized for GUI tasks with en-
hanced grounding ability, and API-based closed-
ended models.

* Chat Models. We select widely used VLMs
from prior and contemporary works (Bai et al.,
2024; Sun et al., 2024). Specifically, we in-

5https://huggingface.co/jinaai/
jina-embeddings-v3

6https://huggingface.co/mixedbread—ai/
mxbai-embed-1large-v1i
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clude the Qwen2-VL family (2B7, 7B®) (Wang
et al., 2024c), InternVL2 family (1B?, 2B'°,
4B!!, 8B!?) (Chen et al., 2024b), DeepSeek-VL-
7B-Chat'? (Lu et al., 2024a), Phi-3.5-Vision-
Instruct'* from Microsoft (Abdin et al., 2024),
Ovis2-4B'3 from AIDC-AI (Lu et al., 2024c),
and Yi-VL-6B'®, an early model from 01-Al.
GUI Base Models. We adopt SeeClick!’
(Cheng et al., 2024), which is continually pre-
trained on Qwen-VL-7B with additional ground-
ing datasets from ScreenSpot (Cheng et al.,
2024). We also utilize OS-Atlas-4B'® and OS-
Atlas-7B!® (Wu et al., 2024), which are trained
on InternVL2-4B and Qwen2-VL-7B-Instruct,
respectively. These models lack conversational
capabilities and are therefore unsuitable for an-
notation.

API-Based Models. GPT-40 and GPT-40-Mini
(OpenAl, 2023) are widely used vision models
provided by OpenAl. These models are signif-
icantly more cost-effective than GPT-4V and
are frequently utilized in researches. Due to
their closed-source and API-only nature, they
do not support supervised fine-tuning within our
framework and are exclusively used as annota-
tion models.

E.5 Baseline Details

Overall Baselines for Training Mobile GUI

Agents. In Section 4.2, we compare existing ap-

proaches for data collection and mobile agent train-
ing. In this section, we provide further elaboration

and details on these baselines.

7https://huggingface.co/Qwen/

Qwen2-VL-2B-Instruct

8https://huggingface.co/Quen/

Qwen2-VL-2B-Instruct

9https://huggingface.

InternVL2-1B

10https://huggingface.

InternVL2-2B

"https://huggingface.

InternVL2-4B

Zhttps://huggingface.

InternVL2-8B

13https://huggingface.

deepseek-v1-7b-chat

14https://huggingface.

5-vision-instruct

Bhttps://huggingface.
Yhttps://huggingface.
17https://huggingface.
18https://huggingface.

0S-Atlas-Base-4B

19https://huggingface.

0S-Atlas-Base-7B

co/0OpenGVLab/
co/OpenGVLab/
co/OpenGVLab/
co/0OpenGVLab/
co/deepseek-ai/
co/microsoft/Phi-3.
co/AIDC-AI/Ovis2-4B
co/@1-ai/Yi-VL-6B
co/cckevinn/SeeClick

co/0S-Copilot/

co/0S-Copilot/
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« Human-Annotated Data. Most conventional

approaches fall into this category, which in-
volves first employing crowdsourcing to col-
lect and annotate data, followed by training
mobile GUI agents. Depending on the train-
ing paradigm—centralized or federated—this
category can be further divided into two base-
lines: Central-Human and FedLLM/VLM. To
the best of our knowledge, no prior work has
explored training federated VLMs. Therefore,
we extend the existing FedLLM framework to
the FedVLM setting while retaining the name
FedLLM for consistency and comparison.
Synthetic Data. This approach (Sun et al.,
2024; Su et al., 2025) leverages VLMs to gener-
ate synthetic instructions, either based on seed
task-driven instructions annotated by humans
or through reverse task synthesis. These syn-
thetic instructions are subsequently executed in
simulators, by either powerful models such as
GPT-40 or by humans, to collect full interaction
trajectories. OS-Genesis (Sun et al., 2024) is
a representative example of this category. Al-
though these methods substantially reduce hu-
man labor, they still heavily rely on powerful
API-based models and extensive simulator exe-
cution, which can become costly at scale.

Due to the unavailability of the original train-
ing data, we are unable to directly evaluate OS-
Genesis within our setting. Instead, we refer-
ence reported results from the original paper.
For cost estimation, we measure the cost of gen-
erating a single data sample using GPT-40 in
our setup and extrapolate it to 1,000 samples
(the dataset size used in OS-Genesis), yielding
the ~ 102 cost estimates presented in Table 2.
DistRL*. DistRL (Wang et al., 2024d) proposes
a scalable and asynchronous architecture for
data acquisition from multiple simulators in a
distributed manner, coupled with centralized re-
inforced agent training. The framework also
introduces techniques to compensate for poten-
tial performance degradation caused by asyn-
chrony. We adapt this method to our user-based
setting by collecting auto-annotated data in a
distributed manner using the Auto-Annotation
mechanism and training the model centrally.
We refer to this adapted baseline as DistRL*.
The key distinction between MobileA3gent and
DistRL* lies in the training paradigm, and the
latter raises greater privacy concerns due to the
exposure of user data to both peers and the
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server during centralized training.

Annotation Baselines. We compare five base-
lines for annotating user instructions based on avail-
able information, including screenshots and action
sequences.

* Action-Origin, directly concatenates the origi-
nal formatted actions into a text string without
any inference, representing the simplest method
for retrieving user instructions in natural lan-
guage.

* Visual-Sense, (Zhang et al., 2024a) leverages
the visual perception capabilities of the an-
notation VLM to understand the screenshots
recorded during task execution. Specifically,
we concatenate the sequence of screenshots into
one image and feed it into the annotation model
for one-shot inference.

* Self-Instruct, (Wang et al., 2023) is originally
proposed for synthetic data generation using
LLMs. We adapt it to infer user intentions from
action sequences. In our implementation, all
actions are provided simultaneously to the an-
notation model, which predicts the instruction
in a single pass.

* Chain-of-Thought, (Berkovitch et al., 2024)
guides the annotation model (e.g., GPT-40)
through a step-by-step reasoning process to ana-
lyze the task trajectory. At each step, the model
predicts the current intention based on all prior
information, and the final instruction is deter-
mined after the entire task sequence is com-
pleted. It is important to note that, although
named "Chain-of-Thought," this method is de-
rived from Berkovitch et al. (2024), which fo-
cuses on identifying user intentions in GUI
tasks, rather than from the original CoT prompt-
ing paper (Wei et al., 2022).

¢« Human-Anneotation, uses human-annotated
gold instructions from the dataset, serving as
the upper-bound reference. However, with in-
creasing data scale, methods based on automatic
annotation, including ours, can not only achieve
comparable or even superior performance, but
also substantially reduce annotation costs.

Federated Learning Baselines. We integrate
seven representative federated learning algorithms,
following the implementations provided in Open-
FedLLM (Ye et al., 2024). These include Fe-
dAvg (McMabhan et al., 2017), FedProx (Li et al.,
2020), SCAFFOLD (Karimireddy et al., 2020), Fe-
dAvgM (Hsu et al., 2019), FedAdagrad, FedYogi,
and FedAdam (Reddi et al., 2020).

* Local Update. FedAvg is the foundational al-
gorithm upon which many subsequent methods
are built. FedProx and SCAFFOLD extend Fe-
dAvg by incorporating local model correction
mechanisms to mitigate the effects of data het-
erogeneity.

* Global Aggregation. In contrast, FedAvgM,
FedAdagrad, FedYogi, and FedAdam introduce
server-side momentum techniques to stabilize
global model updates.

* Local Training. Additionally, we include a lo-
cal training baseline, where a model is trained
solely on a single client’s dataset without collab-
oration. This serves as a reference to highlight
the benefits of participating in federated learn-
ing.

E.6 Training and Generation Details

Training Setups. The models are trained over 10
rounds, with each round processing one-tenth of
the total dataset. This setup ensures that, in ex-
pectation, each data sample is seen approximately
once throughout the training process.

In the IID federated learning setting, data sam-
ples are uniformly distributed across 10 or more
clients. In each round, 30% of clients are randomly
selected to perform local training and participate in
global aggregation. Analogous to centralized train-
ing, each selected client processes one-tenth of its
local data during that round. Therefore, training
for 10 rounds yields an expected 30% overall client
participation. To simulate higher participation (e.g.,
90%), we extend training to 30 rounds. While in
non-IID setting (e.g., experiments in Section 4.4),
the data samples are distributed according to the
specific scenario.

For experiments investigating the effect of
dataset size and scaling, we start with an initial
pool of 5,000 data samples. Subsets of smaller
sizes are created by selecting the first X samples
from this pool to form datasets of size X. This ap-
proach guarantees that datasets with larger sample
sizes always encompass those with fewer samples,
ensuring consistency and comparability across ex-
periments.

Training Framework. We build upon the
highly-starred training framework, ms-swift (Zhao
et al., 2024) 2°, and extend it into a repository ca-
pable of training federated VLMs. Our extension
follows the implementation of federated training

Ohttps://github.com/modelscope/ms-swift
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Table 12: Key training parameters regarding FL, LoRA, and quantization.

Parameter Value \ Parameter Value
Federated Learning

number-of-rounds 30 number-of-clients 10

number-of-clients-sampled 3 ratio A 3,5,7,9
LoRA Configuration

lora-rank 8 lora-alpha 32

lora-dropout 0.05 max-sequence-length 4096, 2048

Optimization

learning-rate 5x107° batch-size 1

optimizer adamw_torch gradient-accumulation-steps 4

weight-decay 0.1 adam-betal 0.9

adam-beta2 0.95 adam-epsilon 1x10°8

Ir-scheduler cosine warmup-ratio 0.03
Quantization Settings

bnb-4bit-compute-dtype torch.bfloat16 bnb-4bit-quant-type nf4

bnb-4bit-use-double-quant true load-in-4bit false

load-in-8bit false device-number 2

framework for Large Language Models (LLMs)
(Ye et al., 2024). We apply Low-Rank Adaptation
(LoRA) (Hu et al., 2021) to improve efficiency.

Training Parameters. As shown in Table 12,
we include all key parameters for reproducibil-
ity. For max-sequence-length, we choose 4096 for
Qwen2-VL family and 2048 for InternVL2 fam-
ily. The hyperparameter for various federated algo-
rithms are set as: FedYogi (Reddi et al., 2020) em-
ploys momentum factors (51 = 0.9, B2 = 0.999)
with learning rate 7 = 10~ and stabilization con-
stant 7 = 1076, FedAvgM (Hsu et al., 2019) uses
0.9/0.1 ratio for historical/current model interpo-
lation. FedProx (Li et al., 2020) applies proximal
regularization with = 0.2 through |jw — w!||?
penalty terms. SCAFFOLD (Karimireddy et al.,
2020) configurations maintain server learning rate
ns = 1.0 with client momentum compensation,
while FedAdam and FedAdagrad (Reddi et al.,
2020) share base parameters (f; = 0.9,8; =
0.999) with adaptive learning rate scaling. All al-
gorithms expose tunable coefficients through the
framework’s unified parameter interface.

Templates. We provide all of our prompt tem-
plates used in generating instructions and train-
ing. Specifically, generation prompts for Auto-
Annotation are in Figures 12, 13; generation prompt
for Visual-Sense is provided in Figure 14 with
Chain-of-Thought in Figure 15; training prompts
are shown in Figure 16, 17 and 18 for all three
offline datasets respectively.
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Prompt 1: Step-Wise Description

A user is performing a fask on a mobile phone, progressing through multiple
steps to complete the task.

Each step involves an interface shown in the provided screenshot, and an
action performed to move on to the next step.

Based on the screenshot and the user’s action, infer the specific goal
the user is trying to accomplish at this step in the task.

You need to associate the action with the key information in the screenshot
and output your predicted goal.

## Example

- User Action: Scroll down

if the screenshot shows the browsing page for purchasing shoes,
- Your Output: Swipe up for more product details about shoes

- User Action: Click (101,314)
if the UI element at this coordinate is an article titled "cooking"
- Your Output: Click on the article titled "cooking"

- User Action: Check status: successful
- Your Output: Check if the task is finished

- User Action: Open App: Plantum
if the action is open app, return the same
- Your Output: Open App: Plantum

- User Action: Wait for response
if the action is wait, return none
- Your Output: None

## Answer Format

Only output the predicted goal. Be specific with the input screenshot.

Keep your response concise and capture the important things, focusing on
key details like the app name, email address, search terms, item name, and title.

## User Action
{converted action A; }

## Your Output
The user is trying to:

Figure 12: Prompt template for the Descriptor to generate low-level instruction 7;!° based on the converted action
A; and screenshot s; at the i-th step .
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Prompt 2: Episode-Wise Summarization within Auto-Annotation

A user is performing a high-level task on a mobile phone, progressing through
multiple low-level steps to complete the task.

Each step involves an interface, and a low-level action performed to move on
to the next step.

The full sequence of user actions is provided in the History section.
The task is not known. Now based on the history provided, describe the
mobile user’s high-level task when performing these actions.

## History
{ low-level instruction 7'1107“” }
{ low-level instruction 7'21"“’ }

{ low-level instruction ’7;{0“’ }

## Answer Format

Keep your output concise and clear, as if the user were explaining the task to
someone else in one sentence.

Include key details like the app name, individual name, email address, search
terms, item name, and title.

## Your Output
The user is trying to:

Figure 13: Prompt template for the Summarizer to generate high-level instruction 779" based on the list of
low-level instructions and the concatenated screenshot s.. .
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Prompt 3: Episode-Wise Summarization with Visual-Sense

A user is performing a high-level task on a mobile phone, progressing through
multiple low-level steps to complete the task.

Each step involves an interface, and a low-level action performed to move on
to the next step.

A single image that shows all the screenshots concatenated horizon-
tally is provided.

The task is not known. Now based on this concatenated screenshot, describe
the mobile user’s high-level task when performing these actions.

## Answer Format

Keep your output concise and clear, as if the user were explaining the task to
someone else in one sentence.

Include key details like the app name, individual name, email address, search
terms, item name, and title.

## Your Output
The user is trying to:

Figure 14: Prompt template for Visual-Sense to generate high-level instruction 79" based on the list of converted
actions and the concatenated screenshot s .
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Prompt 4: Step-Wise Description with Chain-of-Thought

A user is performing a high-level task on a mobile phone, progressing through
multiple low-level steps to complete the task.

Each step involves an interface, and a low-level action performed to move on
to the next step.

The previous task descriptions for each step are provided in the His-
tory section, and the user’s final action is provided in the User Action section.
You need to think step by step and analyze the input sequence to deduce the
user’s underlying objective that prompted these actions.

Utilize the screenshot of the final step to gain insights into the user’s intentions,
focusing on elements highlighted or implicated by the actions.

Your goal is to describe the ultimate intention the user is aiming to achieve.

## History
{ low-level instruction ’7'11"“’ }
{ low-level instruction 7'21‘”” }

{ low-level instruction 7,1 }

## User Action
{converted action A; }

## Answer Format

Keep your output concise and clear, as if the user were explaining the task to
someone else in one sentence.

Include key details like the app name, individual name, email address, search
terms, item name, and title.

## Your Output
The user is trying to:

Figure 15: Prompt template for Chain-of-Thought to generate instruction step-by-step and finally obtain the
high-level instruction.
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Prompt 5: Common Prompt for Training

You are a foundational action model capable of automating tasks across
various digital environments, including desktop systems like Windows,
macOS, and Linux, as well as mobile platforms such as Android and iOS. You
also excel in web browser environments. You will interact with digital devices
in a human-like manner: by reading screenshots, analyzing them, and taking
appropriate actions.

Your expertise covers two types of digital tasks:

* Grounding: Given a screenshot and a description, you assist users in
locating elements mentioned. Sometimes, you must infer which elements
best fit the description when they aren’t explicitly stated.

* Executable Language Grounding: With a screenshot and task instruction,
your goal is to determine the executable actions needed to complete the
task.

You are now operating in Executable Language Grounding mode. Your goal is
to help users accomplish tasks by suggesting executable actions that best fit
their needs. Your skill set includes both basic and custom actions:

1. Basic Actions

Basic actions are standardized and available across all platforms. They
provide essential functionality and are defined with a specific format, ensuring
consistency and reliability.

* Basic Action 1: CLICK
— purpose: Click at the specified position.
— format: CLICK <point>[[x-axis, y-axis]]</point>
— example usage: CLICK <point>[[101, 872]]1</point>
e Basic Action 2: TYPE

— purpose: Enter specified text at the designated location.
— format: TYPE [input text]
— example usage: TYPE [Shanghai shopping mall]

* Basic Action 3: SCROLL
— purpose: Scroll in the specified direction.
— format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
— example usage: SCROLL [UP]

Figure 16: Prompt template for the common part shared between different datasets during training of federated
mobile agents within MobileA3gent. The full training prompt is the combination of the common part and the custom
part.
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Prompt 6: Custom Prompt for Training on AndroidControl

2. Custom Actions

Custom actions are unique to each users platform and environment. They allow
for flexibility and adaptability, enabling the model to support new and unseen
actions defined by users. These actions extend the functionality of the ba-
sic set, making the model more versatile and capable of handling specific tasks.

e Custom Action 1: LONG_PRESS
— purpose: Long press at the specified position.
— format: LONG_PRESS <point>[[x-axis, y-axis]]</point>
— example usage: LONG_PRESS <point>[[272, 341]1</point>
¢ Custom Action 2: NAVIGATE_BACK
— purpose: Press a back button to navigate to the previous screen.
— format: NAVIGATE_BACK
— example usage: NAVIGATE _BACK
e Custom Action 3: NAVIGATE_ HOME
— purpose: Press a home button to navigate to the home page.
— format: NAVIGATE _HOME
— example usage: NAVIGATE_HOME
* Custom Action 4: OPEN_APP
— purpose: Open the specified application.
— format: OPEN_APP [app_name]
— example usage: OPEN_APP [Google Chrome]
* Custom Action 5: WAIT
— purpose: Wait for the screen to load.
— format: WAIT
— example usage: WAIT
* Custom Action 6: COMPLETE
— purpose: Indicate the task is finished.
— format: COMPLETE
— example usage: COMPLETE
In most cases, task instructions are high-level and abstract. Carefully read the
instruction and action history, then perform reasoning to determine the most
appropriate next action. Ensure you strictly generate two sections: Thoughts
and Actions.

Thoughts: Clearly outline your reasoning process for current step.
Actions: Specify the actual actions you will take based on your reasoning.

Your current task instruction, action history, and associated screenshot are as
follows:

Screenshot: <image>

Task: {high-level instruction 779"}

You need to: {low-level instruction 7?"“’}

History: {history of 7;°}

Figure 17: Custom prompt template for training mobile GUI agents on AndroidControl.
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Prompt 7: Custom Prompt for Training on GUI Odyssey

Custom actions are unique to each user§ platform and environment. They
allow for flexibility and adaptability, enabling the model to support new and
unseen actions defined by users. These actions extend the functionality of the
basic set, making the model more versatile and capable of handling specific
tasks.
¢ Custom Action 1: LONG_PRESS
— purpose: Long press at the specified position.
— format: LONG_PRESS <point>[[x-axis, y-axis]]</point>
— example usage: LONG_PRESS <point>[[272, 341]1</point>
e Custom Action 2: NAVIGATE _BACK
— purpose: Press a back button to navigate to the previous screen.
— format: NAVIGATE_BACK
— example usage: NAVIGATE _BACK
* Custom Action 3: NAVIGATE_HOME
— purpose: Press a home button to navigate to the home page.
— format: NAVIGATE_HOME
— example usage: NAVIGATE_HOME
* Custom Action 4: PRESS_RECENT
— purpose: Press the recent button to view or switch between recently
used applications.
— format: PRESS_RECENT
— example usage: PRESS_RECENT
* Custom Action 5: WAIT
— purpose: Wait for the screen to load.
— format: WAIT
— example usage: WAIT
* Custom Action 6: COMPLETE
— purpose: Indicate the task is finished.
— format: COMPLETE
— example usage: COMPLETE
In most cases, task instructions are high-level and abstract. Carefully read the
instruction and action history, then perform reasoning to determine the most
appropriate next action. Ensure you strictly generate one section: Actions.

Actions: Specify the actual actions you will take based on your reasoning.
Your current task instruction, action history, and associated screenshot are as
follows:

Screenshot: <image>

Task: {high-level instruction 779"}

Figure 18: Custom prompt template for training mobile GUI agents on GUI Odyssey.
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