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Abstract

Retrieval Augmented Generation (RAG) has
advanced Question Answering (QA) by con-
necting Large Language Models (LLMs) to
external knowledge. However, these systems
can still produce answers that are unsupported,
lack clear traceability, or misattribute informa-
tion — a critical issue in the biomedical domain
where accuracy, trust and control are essential.
We introduce TripleCheck, a post-hoc frame-
work that breaks down an LLM’s answer into
factual triples and checks each against both
the retrieved context and a biomedical knowl-
edge graph. By highlighting which statements
are supported, traceable, or correctly attributed,
TripleCheck enables users to spot gaps, un-
supported claims, and misattributions, prompt-
ing more careful follow up. We present the
TripleCheck framework, evaluate it on the Sci-
Fact benchmark, analyze its limitations, and
share preliminary expert feedback. Results
show that TripleCheck provides nuanced in-
sight, potentially supporting greater trust and
safer Al adoption in biomedical applications.

1 Introduction

Large Language Models (LLMs) augmented with
retrieval, commonly referred to as Retrieval Aug-
mented Generation (RAG), have significantly im-
proved question answering (QA) by grounding re-
sponses in external sources. However, despite re-
ducing hallucinations, these systems still exhibit
key failures due to inherent system design con-
straints (Barnett et al., 2024).

In biomedical domains, especially in real-world
industry, RAG is relatively underexplored (Bunnell
et al., 2025; Ng et al., 2025) but distinct challenges
have been pointed out, such as the lack of stan-
dard evaluation, unique ethical risks, and recurring
problems with irrelevant or misleading information
that hamper adoption in a field where both accurate
and traceable information is crucial'. Addition-
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ally, inaccurate or outdated references can com-
promise the quality of generated responses (Amu-
gongo et al., 2025; Gargari and Habibi, 2025).

Human-AlI collaboration research stresses the
need for interaction designs that keep users en-
gaged and aware (Song et al., 2025). Without care-
ful explanation mechanisms, users may become
overreliant on Al systems (Vasconcelos et al., 2023;
Kim et al., 2024; Passi et al., 2024; Zhang et al.,
2020). Paradoxically, conventional explanation
techniques can increase user trust even when the Al
is wrong, elevating the risk of unsubstantiated but
plausible-sounding answers (Bansal et al., 2021;
Gonzélez et al., 2021). This underscores the need
for new approaches that better surface evidence and
improve claim traceability.

To address these gaps and foster appropriate trust
in biomedical QA, we propose a post-hoc verifi-
cation layer that provides fine-grained evidence
assessment. Biomedical fact-checking presents
unique challenges: knowledge is constantly up-
dated, and contextual nuance often determines the
interpretation of evidence (Sosa and Altman, 2022).
Overcoming these issues requires strategies that
support more nuanced, context-aware evaluations.

We introduce TripleCheck, a system-agnostic
post-hoc verification framework that can decom-
pose Al-generated biomedical answers into factual
triples and checks each for support within both
the retrieved context and a large-scale biomedical
knowledge graph that aggregates literature, patents,
and clinical trials among other sources. This dual
approach highlights statements that are supported,
traceable, correctly attributed, and flags gaps such
as misattributions or conflicting evidence from var-
ious sources. This can potentially help users recog-
nize when to be skeptical or seek further evidence
to make their own conclusions. By making the sup-
port and traceability of claims explicit, TripleCheck
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aims to calibrate user trust and promote safe re-
liance on Al answers. Our main contributions are:

* We present TripleCheck, a verification frame-
work for biomedical QA that cross-checks an-
swer claims with both retrieved context and a
large-scale biomedical knowledge graph.

* We evaluate TripleCheck on a scientific claim
verification benchmark (SciFact (Wadden
et al., 2020)), showing robust performance
against supervised and zero shot alternatives
and provides interpretable evidence for each
decision. Our analysis shows it disentangles
both supported and unsupported information
in complex answers.

* We discuss real-world applications and initial
expert feedback, illustrating how TripleCheck
has the potential to improve trust calibration,
transparency, and traceability for workflows
such as literature review and clinical QA.

2 Related Work

Scientific Claim Verification Automated fact-
checking has progressed from general domains
such as political news to specialized areas like
biomedicine. Datasets like FEVER (Thorne
et al., 2018) supported claim verification against
Wikipedia, while SciFact (Wadden et al., 2020)
introduced the challenge of verifying scientific
claims using abstracts, spurring advances in both
evidence retrieval and claim classification. SciFact-
Open (Wadden and et al., 2022) broadened this to
open-domain settings with over 500,000 abstracts,
revealing that scientific evidence is often partial or
ambiguous. Other resources have stressed the im-
portance of explainability and evidence alignment
for biomedical fact-checking (Kotonya and Toni,
2020; Sarrouti et al., 2021; Saakyan et al., 2021;
Kumar et al., 2025).

Beyond traditional claim verification, recent
efforts leverage knowledge graphs (KGs) to re-
duce factual errors, especially given their ability to
systematically map relationships among biomed-
ical entities. Notably, recent benchmarks (Lin
et al., 2024) challenge AI agents to cross-verify
KG-derived facts against the literature, revealing
that even advanced LLMs often struggle with
this task. Among KG-based approaches, Med-
GraphRAG (Wu et al., 2024) takes a fundamen-
tally different approach by integrating a knowledge
graph directly into the retrieval and generation pro-
cess, aiming to produce answers that are verified
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at generation time. In contrast, TripleCheck acts
as a post-hoc verification layer: it operates on the
output of any generative QA system, requiring no
modification or re-training, but instead adding an
extra verification step to independently assess claim
validity. This distinction means TripleCheck can
complement methods like MedGraphRAG by pro-
viding an additional safety net.

Other methods propose post-generation claim
checking, such as extracting claims from model
outputs for KG validation (Guan et al., 2024), or
hallucination detection using structured entailment
checking over generated answer triples (Sansford
et al., 2024). Howeyver, these works either do not
leverage an external KG for cross-checking (as
in (Sansford et al., 2024)), or they lack a user-
facing explanation component (as in (Guan et al.,
2024)). In contrast, TripleCheck not only com-
bines text entailment and KG validation in a dual-
evidence approach, but is also designed with user-
understandability and interaction in mind.

Our approach builds on these directions by
proposing a zero-shot, post-hoc verification layer
that can be added on top of any generative QA sys-
tem. We uniquely leverage a large-scale biomedical
KG to robustly cross-validate atomic answer triples,
inspired by recent work in open-domain QA and
fact-checking (Li et al., 2025; Kamoi et al., 2023).
Importantly, TripleCheck preserves the LLM’s orig-
inal answer, instead surfacing supporting or contra-
dictory evidence for each claim so users can make
informed, nuanced judgment — an essential feature
in the evolving and often ambiguous landscape of
biomedical research.

Trust Calibration and Explainable QA Inter-
faces Trust calibration — the process by which
user trust aligns with the true reliability of an Al
system — has emerged as a critical factor in med-
ical Al adoption (Sakamoto et al., 2024). Effec-
tive calibration can improve decision accuracy, yet
achieving it remains challenging, as trust depends
on perceived understandability, technical compe-
tence, and system reliability (Darvish et al., 2024).
Inadequate calibration, whether overtrust or under-
trust, can lead to unsafe outcomes in high-stakes
biomedical environments.

There is a growing consensus that Al systems
in these domains must support user understanding
and oversight through explainable interfaces (Liang
and Sonntag, 2025). For example, Li et al. (2024)
describe an LLM-assisted QA system with ex-
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Figure 1: Overview of the TripleCheck pipeline. Given a user question and an answer from a RAG system,
TripleCheck extracts atomic triples from the answer (and context) and verifies each one through two channels:
(1) alignment with the retrieved context (documents or passages) and (2) cross-checking against a biomedical
knowledge graph. Each triple is then labeled as supported, unsupported, or contradicted based on both evidence
sources. This claim-level verification can be presented to the user as an interactive interface that highlights which
parts of the answer are trustworthy and which require caution.

plicit KG integration for user control, while oth-
ers caution that some explanations can inadver-
tently increase overtrust, even when the system is
wrong (Gonzélez et al., 2021; Bansal et al., 2021;
Vasconcelos et al., 2023).

Effective interfaces feature interactivity, en-
abling users to explore not only the answer, but why
and how it was produced. This approach helps fos-
ter appropriate skepticism and engagement (Rudin
et al., 2022; Lai et al., 2023). In the biomedical
domain, recent work by Huang et al. (2024) shows
that providing multi-hop, interpretable rationales in
a drug repurposing model, improved clinicians’ ac-
curacy, confidence, and decision efficiency, under-
scoring the value of transparent, actionable expla-
nations. Similarly, tools such as claim verification
with evidence trails (e.g., using SHAP) improve
decisions, though risk overreliance without careful
design (Liang and Sonntag, 2025).

While we do not fully explore the possibilities
of building a sophisticated user interface in this
work, TripleCheck is explicitly designed to pro-
vide users with the information needed to calibrate
trust and promote informed oversight. By break-
ing down answers into checkable factual units, la-
beling each as supported, unsupported, or contra-
dicted, and surfacing the underlying evidence from
literature or knowledge graphs, TripleCheck of-
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fers fine-grained transparency. This enables users
to scrutinize each claim with an appropriate level
of skepticism or confidence, in line with findings
within Human Computer Interaction (HCI) that
emphasize user control as fundamental for trust
calibration in Al (Passi et al., 2024).

3 Methodology: Post-hoc Claim
Verification with TripleCheck

System Overview TripleCheck acts as a post-
processor for a standard RAG pipeline. Suppose a
user poses a question and the QA system produces
an answer along with retrieved documents or pas-
sages as context. TripleCheck takes this answer and
its supporting context as input, and performs three
main steps: (1) Triple Extraction, (2) Evidence
Alignment, and (3) Triple Classification. The out-
put is a set of annotated triples derived from the
answer, each marked with whether it is supported
by the context and/or by the external knowledge
graph along with any additional evidence surfaced.
Figure 1 illustrates this workflow. As TripleCheck
is system-agnostic and never alters the original an-
swers, it can be flexibly added to any QA workflow
to provide a second layer of verification.

Triple Extraction The first step breaks each an-
swer into factual triples of the form (Subject, Pred-



icate, Object). For example: from “A deficiency
of vitamin B12 increases blood levels of homocys-
teine, which is a risk factor for heart disease,” we
extract (vitamin B12 deficiency, increases, homo-
cysteine levels) and (homocysteine, is a risk factor
for, heart disease), each treated as an independent
claim.

Our method follows recent approaches that com-
bine large language models (LLMs) with post-hoc
canonicalization of biomedical entities and rela-
tions (Zhang and Soh, 2024). It integrates two
main strategies:

* LLM-based parsing: We prompt an LLM
(GPT-4.1) with instructions (found in the ap-
pendix in Table 4, section A.2) to decom-
pose the answer into concise factoid triples
((Subject, Predicate, Object)). The
prompt is designed to focus on biomedical re-
lations relevant to our KG and domain, and to
avoid redundancy or overly broad statements.
This captures implicit facts missed by more
rigid parsers.

* NER and RE: In parallel, a pipeline for
Named Entity Recognition (NER) and Rela-
tion Extraction (RE) identifies key biomedi-
cal entities (e.g., genes, chemicals, diseases)
and the relations between them, restricted to a
predefined ontology (e.g., “downregulates” ,
“upregulates”, etc) present in our KG.

Candidate triples from both methods are merged,
with further processing to expand abbreviations
(e.g., “TNF” — “Tumor Necrosis Factor”) and link
entities to KG identifiers. Triples referencing novel
or out-of-ontology entities are excluded from KG
validation using relations, but retained for textual
entailment-based checking. To reduce spurious
alignments that could arise during the linking pro-
cess, an LLM module screens for semantic consis-
tency of the final triples to the system answer. The
output is a set of cleaned, distinct factual triples
asserted by the answer (see Table 1).

Contextual Evidence Alignment To measure
the alignment between the answer and the con-
text, TripleCheck evaluates whether each extracted
triple is supported or refuted by the retrieved con-
text. The triple extraction pipeline is also applied
to the context documents, yielding sets of context
triples for creating a similar structured comparison
between claim and context as done by Sansford
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Original Claim

Extracted Triples

phatic filariasis.

Albendazole is used to treat lym-

(Albendazole, treats, Lymphatic fi-
lariasis)

DMRT1 is a sex-determining gene
that is epigenetically regulated by
the MHM region.

(DMRT]1, associated with, sex de-
termination)
(MHM region, regulates , DMRT1)

presses RhoA in response to SRC

Leukemia associated Rho gua-
nine nucleotide-exchange factor re-

(Rho guanine nucleotide exchange
factor, inhibits, RhoA)
(SRC activation, induces, Rho gua-

activation. nine nucleotide exchange factor)

Table 1: Original claims and their extracted triples. Re-
lations and entities are additionally mapped to valid
entities and relation types present in our KG.

et al. (2024). For each answer triple, we attempt
different matching strategies:

* Direct Support: If the context triples set con-
tains an identical triple to what is in the an-
swer, the claim is marked as explicitly sup-
ported by the retrieved context.

* No Support: If the triple is absent in the
context, it is initially treated as unsupported.
However, as absence may result from novel or
poorly linked entities, we leverage an LLM to
assess if the context entails, contradicts, or is
neutral toward the claim (instructions can be
found in Table 3, section A.1). Entailment pro-
vides implicit support, contradiction triggers
a warning, and otherwise the triple remains
unsupported.

This strategy allows verification at the individual
claim level, revealing when some aspects of an
answer are substantiated while others are not.

Knowledge Graph Evidence Alignment
TripleCheck simultaneously checks each triple
against a biomedical KG that aggregates extracted
relationships from sources like PubMed, clinical
trials, and patents, among many others. We label
extracted triples as:

* KG-Supported: If the triple or a suitable
variant exists in the KG, we mark it as KG-
supported. If the previous is not found, we ad-
ditionally extract documents mentioning both
entities in the triple and run the same textual
entailment framework ran during the contex-
tual evidence alignment step to reduce false
negatives. We make the supporting evidence
available.

* KG-Contradiction: If the KG records an op-
posing assertion (e.g., “A negative cause B”
vs. the answer’s “A positive cause B”) via KG



relations or textual entailment method, we flag
this as a contradiction and surface the relevant
evidence.

KG-Unsupported: If neither support nor con-
tradiction is found, the claim is tagged as un-
supported, suggesting either novel science, un-
supported assertion or simply a gap in the KG.

Triple Classification By combining contextual
evidence and KG-based validation, TripleCheck
assigns each claim to one of four main verification
categories:

1. Fully Supported: Found in both sources, in-
dicating robust scientific consensus and proper

attribution.

Supported by KG Only: Present in the KG
but missing from retrieved context, flagging a
retrieval or citation gap.

Supported by Context Only: Found in the
context but not in the KG, pointing to possible
new concepts or KG incompleteness.

Unsupported: Unsupported by either evi-
dence channel, raising the possibility of a hal-
lucination or unsubstantiated claim.

Additional flags are included for these cases:

1. Contradicted in Context: Explicitly contra-
dicted by at least one retrieved passage, high-
lighting a likely error in system logic or mis-

leading result.

Contradicted in KG: Contradicted by the
knowledge graph, signaling the existence of
contested information.

This fine-grained verification surfaces precisely
which portions of an answer are reliable, unsup-
ported, or contested, providing targeted feedback
for both users and developers. TripleCheck never
alters the original answer; users can decide how
to act on verification results, while QA develop-
ers may use this information to improve retrieved
citations and generation strategies.

Proprietary Components TripleCheck’s imple-
mentation makes use of certain proprietary compo-
nents. Specifically, our triple extraction pipeline
relies on an in-house biomedical NER and RE sys-
tem, trained on a broad mix of public biomedi-
cal annotations and internal corpora, to achieve

37

Concept:
Diabetes

Mmentions

Concept: Insulin
Resistance

Figure 2: Simplified view of our proprietary KG: un-
structured documents contain concept mentions and
their relationships. We are able to trace in which docu-
ments specific relations are mentioned.

wide entity and relation coverage and high accu-
racy across the biomedical domain. The KG used
for evidence alignment is constructed by aggre-
gating structured relationships extracted through
automated processes from scientific literature, clini-
cal trial data, patents, and other specialized sources,
some of which are not publicly available. An illus-
trative overview of the knowledge graph structure is
shown in Figure 2. While these specific resources
cannot be released due to licensing and privacy
constraints, the overall TripleCheck framework is
system-agnostic and designed for flexibility. Simi-
lar pipelines can be constructed using open-source
biomedical NER/RE tools and knowledge graphs
such as PrimeKG (Chandak et al., 2023). We en-
courage both academic and industry practitioners
to build on or adapt our proposed framework with
alternative resources, and view TripleCheck as an
inspiration and blueprint for transparent, responsi-
ble biomedical QA in both open and proprietary
environments.

4 Evaluation

We evaluated TripleCheck on the SciFact bench-
mark (Wadden et al., 2020), where claims are anno-
tated as Supported, Refuted, or NEI (Not Enough
Info). As access to the SciFact test set labels is no
longer available 2, we perform evaluation on the de-
velopment set similar to other studies (Deka et al.,
2023). While we present results from several other
methods on both test set and development set, our

ZEvaluation on test set was only available via leaderboard

which is now closed: https://leaderboard.allenai.org/
scifact/submissions/public
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Model Precision  Recall F1
Evaluated on SciFact Dev Set (Zero-Shot Setting)
TripleCheck (ours) 0.73 0.70 0.70
PubMedBERT-mnli (Deka et al., 2023) 0.66 0.59 0.63
PubMedBERT-mnli-mednli (Deka et al., 0.84 0.75 0.79

2023)
DeBERTa-v3-base-mnli (Deka et al., 0.42 0.39 0.40
2023)
DeBERTa-v3-base-mnli-mednli (Deka 0.78 0.70 0.74
etal., 2023)

Evaluated on SciFact Test Set
Zero-NatVer (Strong et al., 2024) (zero- 0.55
shot)
ClaimGen (entity-based) (Wright et al., 0.73 0.69 0.71
2022)
ClaimGen (BART) (Wright et al., 2022) 0.64 0.79 0.71
MultiVerS (Wadden et al., 2022) (weak- 0.73 0.71 0.72
supervision)
VerT5erini (Pradeep et al., 2021) 0.64 0.73 0.68

Table 2: Fact verification results on SciFact. Top: All
models evaluated on the development set in a zero-shot
setting (i.e., not fine-tuned on SciFact train data). Bot-
tom: Results on the test set, as reported in original pub-
lications; including zero-shot and weakly supervised
approaches. Note: Due to test set access restrictions,
only dev set results are shown for our approach.

key point is that TripleCheck delivers performance
broadly in line with state-of-the-art alternatives,
highlighting its practical competitiveness.
TripleCheck’s output, though more fine-grained,
is mapped for comparison: we label the entire data
point (a claim from the scifact dataset) as Sup-
ported if all component triples are at least sup-
ported by the retrieved context and none are con-
tradicted, Refuted if any triple is contradicted, and
NEI otherwise. While this mapping is a simplifica-
tion, it enables comparison on this benchmark.
TripleCheck achieves an F1 of 0.70 on SciFact
(dev set) in a zero-shot setting without any task-
specific fine-tuning, which is notable given that
many comparison models, such as MultiVerS (Wad-
den et al., 2022) and VerTS5erini (Pradeep et al.,
2021), are tuned for this task. When com-
paring against other zero-shot approaches evalu-
ated on the development set (Deka et al., 2023),
TripleCheck achieves competitive performance,
and outperforms strong baselines. This under-
scores TripleCheck’s out-of-the-box robustness,
even though our setup intentionally prioritizes
transparency and explainability over strict optimiza-
tion for SciFact. The results can be seen in Table 2.
Beyond aggregate scores, we also analyzed
TripleCheck’s outputs for cases where it pro-
vides nuanced judgments that classic fact-checkers
might miss. We found that about 10% of Sci-
Fact’s unsupported or contradicted claims were
in TripleCheck’s Supported by KG Only category.
Upon inspection, it was evident that while the claim
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was not supported by the context, the claim was
not a non factual claim, and we were able to collect
evidence from the biomedical knowledge graph
supporting this as an established fact. This reflects
a traceability gap, highlighting where a claim may
be true even if not cited. Our proposed step for
such claims is to improve traceability by fetching
additional data, rather than labeling the full claim
as non factual. For example, in Scifact, the claim
"A deficiency of vitamin B12 increases blood lev-
els of homocysteine." is labeled as unsupported
against the context, however, this is a known fact
that is well supported in the KG.

4.1 Preliminary Feedback from a Domain
Expert

While a full user study was beyond the scope of this
research, we solicited preliminary feedback from a
biomedical researcher to assess TripleCheck’s prac-
tical value. The expert reviewed 30 claim-context
pairs from the SciFact dataset, along with our sys-
tem’s triple-level evidence (see Figure 3 in the ap-
pendix). Feedback was collected via a structured
questionnaire and follow up interview. Several key
themes emerged:

Granular Verification and Trust Calibration.
The domain expert confirmed that decomposing
answers into factual triples substantially increased
clarity and enabled a more nuanced, calibrated ap-
proach to trusting system outputs. Rather than
treating each answer as a single unit, the triple-
based breakdown highlighted exactly which sub-
claims were well-supported, which were missing
evidence, and where there was explicit contradic-
tion, echoing prior findings on the value of graph-
based and evidence-traceable explanations in med-
ical Al (Johnson et al., 2024). This allowed for
more selective skepticism according to the expert:
reliable portions of an answer could be accepted at
face value, while unsupported or contested subsec-
tions triggered further review.

Role and Value of Knowledge Graph Support.
Feedback emphasized that KG evidence often
served as a crucial complement to retrieved context,
especially for well-established biomedical facts
that may not appear in the narrow selection of re-
trieved literature. The expert noted that, in prac-
tice, when an answer was supported only by the
KG, they took it as a signal of a gap in retrieval
coverage rather than a problem with the claim’s
validity, pointing to the fact that the user sees the



KG as a more objective and trustworthy source of
truth. This aspect of traceability was highly val-
ued for both — confirming canonical domain knowl-
edge and helping efficiently flag true retrieval errors
— demonstrating the importance of multi-channel
verification over text-only methods. The distinc-
tion between KG-backed, context-backed, and un-
supported can enable an action-oriented workflow:
claims could be triaged for acceptance, additional
investigation, or citation gap-filling.

Ul Suggestions, and Information Overload.
While the expert found the surfacing of support-
ing evidence to be confidence-boosting, to further
reduce cognitive load and speed up review, Ul sug-
gestions were made such as: entity highlighting,
displaying synonyms, and visually denoting the
location of each triple within the evidence. Expla-
nations that grew too detailed or technical could
overwhelm non-specialists, consistent with recent
findings on explanation overload (Hoffman et al.,
2023). The expert also mentioned that as the goals
change, the user might be interested in going deep
into a topic, while at other times they want to get
a high-level overview, therefore, controlling the
level of depth and being able to explore and expand
based on evidence could be useful. Finally, layered
or toggleable presentation and simplified language
were highlighted as desirable features.

Gold Standard Inconsistencies and Multiple Ver-
ification Channels. The expert occasionally de-
tected that some claims labeled as Supported in
SciFact were not substantiated by the provided ab-
stracts, illustrating limitations of relying on single-
source, gold-standard labels. This further sup-
ported the premise that multi-evidence verification
is necessary to uncover gaps, avoid propagation of
citation errors, and empower users to make cau-
tious, context-sensitive decisions.

Taken together, this preliminary expert feedback
strongly supports TripleCheck’s approach to trans-
parent, claim-level verification across multiple ev-
idence channels. The integration of both KG and
literature-derived support increases trust calibra-
tion, traceability, and user agency. The decompo-
sition of answers not only aligns with real-world
expert workflows but also makes the process of val-
idation more actionable, helping users efficiently
accept, investigate, or contest subclaims as needed.
Comprehensive, interactive user studies remain a
target for future work, but these results demonstrate
significant potential for TripleCheck to promote
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safer and more reliable biomedical Al adoption.

5 Use Cases and Discussion

TripleCheck is broadly applicable to scenarios
where users need to trust but verify Al-generated
answers. We discuss a few use cases and their
potential impact:

Literature Review Assistant: Researchers of-
ten use QA systems to quickly summarize find-
ings across papers (e.g., “What causes condition
X?). TripleCheck would allow them to see which
claimed causes are well-established (supported by
multiple sources or KG) versus which are tenta-
tive more contested. It can also reveal if the sys-
tem’s answer includes claims not actually found in
any cited papers, prompting the researcher to do a
deeper dive for those claims.

Regulatory Document Drafting: In writing re-
ports for drug approval or clinical guidelines, ev-
ery statement needs a reference. An Al assistant
could assist in drafting a section (e.g. drug efficacy)
and TripleCheck would immediately flag any state-
ment that lacks backing from the retrieved studies
or known medical facts. This helps authors more
quickly pinpoint those evidence gaps, saving time
and preventing unsubstantiated claims from slip-
ping through.

Clinical Decision Support: A clinician asking
an Al assistant about treatment recommendations
could benefit from TripleCheck’s breakdown. For
example, if the answer says “Drug A improves out-
come Y and is not associated with side effect Z,”
TripleCheck might show the first claim is supported
by a trial but the second claim is unsupported be-
cause the system didn’t actually retrieve evidence
about side effect Z. The clinician thus knows to be
cautious or look up that specific point.

Improving QA  System Development:
TripleCheck can be used offline by develop-
ers of biomedical QA systems to analyze where
the system tends to hallucinate or omit citations.
If many answers have support only coming from
the KG, it may mean the system is relying on
prior knowledge not present in the retrieved text —
maybe the retrieval component needs improvement.
If many answers have “Unsupported” triples, the
LLM might be overgeneralizing, suggesting a need
for better grounding or post-editing.



Hypothesis Generation: Beyond verification,
TripleCheck can assist in hypothesis generation
by identifying claims that are plausible yet unsup-
ported by the current evidence base. By inverting
the verification output, users can systematically
surface statements that are not confirmed in re-
trieved context or the knowledge graph. These un-
supported claims can be then further investigated
to see if they highlight potential gaps in scientific
knowledge and serve as starting points for novel
research questions.

By design, TripleCheck encourages a habit of
verification. Rather than replacing human judg-
ment, it guides users to the relevant evidence (or
absence thereof). This aligns with the goal of safer
deployment of Al in biomedicine: the human ex-
pert remains in the loop, making final decisions
with a clearer view of the AI’s reliability on each
sub-point.

6 Limitations and Future Work

While promising, TripleCheck has several limita-
tions:

 Evaluation is still preliminary: To date, we
lack large-scale studies or professional user
testing to validate the usability and benefits of
TripleCheck. A crucial and active next step
will be conducting a user study to quantita-
tively evaluate TripleCheck’s impact on veri-
fication accuracy, confidence, and efficiency,
similar to the approach of Huang et al. (2024),
who assessed how interpretable explanations
improved clinicians’ decision-making. The
next step is to compare users with and with-
out access to TripleCheck as they assess Al-
generated answers, thereby testing whether
our framework enhances trust calibration and
decision quality. This study will focus on
three key outcomes: users’ accuracy in claim
verification, the time taken for assessment,
and their confidence in their decisions.

User Experience Considerations: Highlight-
ing every claim in an answer can lead to infor-
mation overload and overwhelm users. Care-
ful interface design (e.g., toggleable detail lev-
els) and user training are needed to ensure
clarity. Tooltips or onboarding materials could
assist users in interpreting verification results.
Further exploration on how to build an effi-
cient user interface is an area of future work.
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* Incomplete Knowledge Graph Coverage:
TripleCheck relies on a KG that, while ex-
tensive, is not exhaustive. It may lack very
recent findings, rare conditions, or new tech-
nologies, leading to true claims being labeled
as unsupported in KG. Expanding coverage
and dynamically updating ontologies could
have a positive impact.

Triple Extraction Quality: The accuracy of
information extraction directly affects down-
stream processing. Errors can occur with com-
plex or explanatory sentences, leading to split,
merged, or inaccurate triples. While an LLM
verification step mitigates some issues, extrac-
tion errors can still cause correct claims to be
labeled as unsupported and vice versa.

* Added Latency and Complexity: The
pipeline introduces extra processing (LLM ex-
traction, KG lookup, textual entailment verifi-
cation) that increases latency. Processing each
answer is slower compared to simpler QA sys-
tems, and optimizations may be needed for
real-time applications.

Proprietary Resources: As previously dis-
cussed, various components of TripleCheck
are proprietary. While we provide our main
TripleCheck system description to support re-
producibility, this limitation may hinder exact
replication by the research community. As
an area of future work, we aim to benchmark
public alternatives on fully open resources and
encourage efforts to develop analogous public
alternatives.

7 Conclusion

We presented TripleCheck, a post-hoc verification
framework for biomedical QA that decomposes
LLM-generated answers into factual triples and ver-
ifies each against both retrieved context and a large-
scale biomedical knowledge graph. Our SciFact
evaluation demonstrated that TripleCheck achieves
competitive zero-shot performance while provid-
ing fine-grained, interpretable evidence for each
claim. Initial expert feedback also suggested that
this approach can support more calibrated trust, im-
prove detection of unsupported or contested claims,
and aid decision-making in biomedical settings.
This initial feedback aligns well with anticipated
real-world use, supporting the practical value of
TripleCheck in biomedical workflows.



While promising, TripleCheck faces challenges
such as refining user interfaces to manage informa-
tion load, and expanding coverage of supporting
knowledge. Most notably, future user studies are
necessary to measure TripleCheck’s real-world im-
pact on verification accuracy and user confidence.

TripleCheck represents a step toward more trans-
parent, accountable biomedical Al by offering ac-
tionable, triple-level evidence to end users and
developers. We hope this work encourages fur-
ther development of evidence-aware QA frame-
works, advancing safe and trustworthy use of Al in
biomedicine.
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A Example prompts

A.1 Entailment/contradiction prompt

In Table 3, we show the prompt used for assessing
textual entailment at different stages. We used the
same prompt to verify final triples are aligned with
system answer, to verify the triple is aligned with
the context and to verify that the triple is aligned to
any external evidence we have found via the KG.
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A.2 Triple extraction

In Table 4, we show the instructions used for ex-
tracting initial triples. The initial triples were ad-
ditionally linked to ontology terms using our pro-
prietary entity linking system, and were afterwards
verified against the actual claim to ensure consis-
tency in the final triples set.

B Expert feedback questionnaire

Figure 3 shows how evidence was initially pre-
sented to the expert for initial feedback on what
could make the result more useful. In Table 5, we
have additionally compiled some of the key com-
ments coming both from the written feedback and
interview categorized into themes.
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System Prompt for LLM-based tex-
tual entailment

You are a claim-verification system.
Your task is to determine
whether the given statement is
supported (directly, indirectly
, or can be reasonably inferred
, even if this requires
combining context and general
biological knowledge) by the
provided context.

CONTEXT :
{context}

STATEMENT TO VERIFY:
"{statement}”

VERIFICATION RULES:

1. Answer "YES" if the statement is
supported by the context, can
be logically inferred from the
context, *%or if it is
biologically plausible and
consistent with accepted
scientific background knowledge
.*%% You can accept reasonable
combinations of entities as
long as the overall logic is
supported, even if not every
link is explicitly present in
the context. Do not be overly
strict about requiring explicit

verbatim phrasing or full
mechanistic details **favor a
positive answer if the overall
claim is well-supported or
reasonably implied.x*xx

2. Answer "CONTRADICTION" if the
statement clearly contradicts
the context.

3. Answer "NO" only if there is
insufficient information, the
claim is irrelevant, or
biological plausibility is
seriously lacking or unclear.

RESPONSE FORMAT:
Begin with "YES", "CONTRADICTION",
or "NO" on its own line. Do not
start in any other way.
Then provide a brief, evidence-based
explanation that quotes or
paraphrases relevant portions
of the context and/or uses well
-accepted biological background
if relevant.

YOUR VERIFICATION:

Table 3: System prompt for textual entailment as used
in this work.



System Prompt for LLM-based Triple Extraction

You are an expert extracting entities and relations from scientific text.
Given an answer to a scientific question, extract the claims in triples format.

Your output must be a valid JSON array containing exactly one object per triple in this format:

[["subject1”, "relation1”, "object1"], ["subject2”, "relation2”, "object2"], ...]
**CRUCIAL RULES READ CAREFULLY :*xx%
1. Do NOT use intervention phrases, experimental treatments, or contextual language as entities:
- Disallow: "PARN targeting”, "PARN inhibition"”, "knockout of PARN", "overexpression of X", "
activation of Y”
- Allow only: the core biological entity/process itself (e.g., "PARN", "TP53", "insulin

maturation”)

2. Use concise, ontology-friendly names (2-4 words max), established biomedical terms, no
abbreviations unless standard.

3. DO NOT encode intervention or experiment type in subject/object. NEVER use experimental
manipulation phrases as entities.

- Do not use long descriptive phrases or qualifiers as entities.
- Use 2-4 words maximum for each entity, and keep them concise and ontology-friendly.
- Use established gene names, protein names, disease terms, and biological processes if possible.

*xDirect Entity-Relation-Entity Guidance:=*x

- PREFERRED: ['Gene X', 'Directed Link', 'Process Y']
- AVOID: ['Knockdown of Gene X', 'Directed Link', 'Upregulated Process Y']
- Do not build effects (like "loss"”, "increase”, or "compromised state”) into the entity. Use the

proper relation instead.

*xDecompose Complex Entities:x*
- Break up complex cause-effect phrases into multiple, simpler, functionally meaningful triples
only using entities present in standard biomedical ontologies.

**Relation Types (use only these) but keep in mind the mentioned above:*x*
-Focus mostly on these
Directed Link: Direct interaction between entities. Can include correlations or associations.
IMPORTANT When in doubt of direction, use this.
Negative Cause: Causes a decrease or inhibition in the target entity.
Not Directed Link: Interaction without specified direction.
Not Negative Cause: Does not lead to a negative effect.
Not Positive Cause: Does not lead to a positive effect.
Positive Cause: Causes an increase or stimulation in the target entity.

PPI (Protein-Protein Interaction): Interaction affecting protein function.
DDI (Drug-Drug Interaction): Interaction affecting drug effectiveness.

- These can be used to but limit them

ACTIVATOR: Increases activity of a process or molecule.
AGONIST: Initiates response by combining with a receptor.
AGONIST-ACTIVATOR: Initiates and enhances activity.
AGONIST-INHIBITOR: Acts as agonist and inhibitor.

ANTAGONIST: Inhibits physiological action of another.
DIRECT-REGULATOR: Directly modulates target activity.
INDIRECT -DOWNREGULATOR: Indirectly decreases target activity.
INDIRECT -UPREGULATOR: Indirectly increases target activity.
INHIBITOR: Slows or prevents chemical reactions.

PART-0F: Entity is a component of a larger structure.
PRODUCT-0OF: Entity is a result of a process.

SUBSTRATE: Molecule acted upon by an enzyme.
SUBSTRATE_PRODUCT -OF : Substrate converted into a product.
undefined: Relationships not yet characterized or classified in this list but are still valid

- For abbreviations, prefer the full name if confidently available from context.

- Both subject and object must be concise entities/concepts, not specific statements, modifiers,
or experimental constructs.

- Do NOT repeat triples (even if synonyms are used in the text).

- If none of the relations are present, use "undefined”. Do NOT invent new relations.

- If there are no triples present, return [].

- Your output must be valid JSON directly parsable by “json.loads()" as a list of triple lists (
not nested or with extra structure) we.g. [["subjectl1”, "Directed Link"”, "object1"], ["
subject2”, "Part-0f", "object2"]].

- Do NOT include any explanations or text outside the JSON array.

Table 4: System prompt for triples extraction as used in this work.
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@" SCIENTIFIC CLAIM:
APOE4 expression in iPSC-derived neurons increases AlphaBeta production and tau phosphorylation causing GABA neuron degeneration.

¥ RESEARCH CONTEXT:

Context: Gain of toxic Apolipoprotein E4 effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector Efforts to develop
drugs for Alzheimer's disease {AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human
model systems.. Using human neurons derived from induced pluripotent stem cells that expressed apolipoprotein E4 (ApoE4), a variant of the APOE gene
product and the major genetic risk factor for AD, we demonstrated that ApoE4-expressing neurcns had higher levels of tau phosphorylation, unrelated to
their increased production of amyloid-g (AF) peptides, and that they displayed GABAergic neuron degeneration.. ApoE4 increased AB production in human,
but not in mouse, neurons.. Converting ApoE4 to ApoE3 by gene editing rescued these phenotypes, indicating the specific effects of ApoE4.. Neurons that
lacked APOE behaved similarly to those expressing ApoE3, and the introduction of ApoE4 expression recapitulated the pathological phenotypes, suggesting
a gain of toxic effects from ApoE4.. Treatment of ApoE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects,
thus showing that correcting the pathogenic conformation of ApoE4 is a viable therapeutic approach for ApoE4-related AD.

(Claim verification Analysis

5 3 2

Total extracted triples Supported Mot Supported or contradicted

Al systems analyzed 5 evidence relationships for this claim

apolipoprotein E Positive Cause amyloid-beta formation

CONFIDENCE: HIGH CONFIDENCE FULLY SUPPORTED BY BOTH CONTEXT AND KG

APOE4 Positive Cause amyloid beta production

CONFIDENCE: VERIFIED AGAINST CONTEXT ONLY - NO KNOWLEDGE GRAPH LINKING (@) SUPPORTED

Al Reasoning: The context states, "ApcE4 increased AR production in human, but not in mouse, neurcns." This directly supports the claim that APOE4 increases
{positively regulates) amyloid beta production in human neurons.

APOE4 Positive Cause tau phosphorylation

CONFIDENCE: VERIFIED AGAINST CONTEXT ONLY - NO KNOWLEDGE GRAPH LINKING () SUPPORTED

AI Reasoning: The context states, "we demonstrated that ApoE4-expressing neurons had higher levels of tau phosphorylation," which directly supports the daim
that APOE4 increases (positively regulates) tau phosphorylation.

amyloid beta production Directed Link GABA neuron degeneration

CONFIDENCE: VERIFIED AGAINST CONTEXT ONLY - NO KNOWLEDGE GRAPH LINKING X NOT_SUPPORTED

Al Reasoning: The context states that "ApoE4-expressing neurons had higher levels of tau phosphorylation, unrelated to their increased production of amyleid-p
{AB) peptides, and that they displayed GABAergic neuron degeneration.” This indicates that the GABAergic neuron degeneration is not directly related to AB
production, but rather to other effects of ApoE4. Therefore, there is insufficient evidence to support the claim that amyloid beta production directly influences or
regulates GABA neuron degeneration.

tau phosphorylation Directed Link GABA neuron degeneration

CONFIDENCE: VERIFIED AGAINST CONTEXT ONLY - NO KNOWLEDGE GRAPH LINKING X NOT_SUPPORTED

Al Reasoning: The context states that ApoE4-expressing neurcns had higher levels of tau phosphorylation and displayed GABAengic neuron degeneration, but it
also explicitly says that tau phesphorylation was "unrelated to their increased production of amyleid-B (AB) peptides," and does not specify or imply that tau
phosphorylation directly influences or regulates GABA neuron degeneration. The context only links both to ApoE4 exp ion, not to each other.
Therefore, there is insufficient information in the context to support the statement.

Figure 3: User feedback interface. While the intended use is in an interactive QA setting, this preliminary study
presented the interface in a static, questionnaire format to collect initial expert feedback. Future work will focus on
exploring different presentation formats and interactive modes.
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Theme: Evidence & Explanation Quality

“The explanation directly referenced the supporting evi-
dence, which was helpful.”

“The additional reasoning summarized relevant points well,
presented additional evidence and matched my interpreta-
tion.”

“Sometimes the explanation focused too much on specific
concepts, making it less broadly useful.”

“Having both ‘supported’ and ‘contradicted’ reasoning was
logical; it’s important to consider context, while ultimately
I would say this is a supported claim, as an expert [ have
similar concerns as the contradictions surfaced.”

“If I feel an answer is incomplete or uncertain, I'll ask for
more detail or reasoning before accepting it.”

“If the context doesn’t really support the claim, I become
wary and might not trust that part of the answer. So having
the additional evidence is key”

Theme: User Interface & Usability

“Highlighting the triple location or the keywords like gene
names or important biological terms would help me quickly
locate evidence in the text.”

“Some explanations were overly technical or as difficult to
follow as the original literature. It could be nice to choose
how deep to go yourself”

“It would help to see synonyms of entities or have key
parts of the triple highlighted directly in the evidence.”
“Claims can be hard to understand if you are not an expert
in the topic, simplified breakdowns or highlights would
make it easier.”

Theme: Knowledge Graph (KG) Value

“KG support was very useful, especially when the retrieved
context didn’t cover established facts.”

“Recognizing when information is canonical, even if not
in the provided context, adds confidence.”

“I often trust facts from the KG more, especially when the
answer is missing context evidence, it gives reassurance
about general scientific truth.”

“Sometimes, the KG picked up on a missing fact from the
literature, and that signaled an issue with the context rather
than a problem with the claim itself.”

Theme: Exploration & Workflow

“If most triples are supported, I move on, if any aren’t, I
dig deeper or ask for more sources. Seeing the breakdown
helps me focus.”

“Having access to more detailed evidence when I want it,
without being overwhelmed would make deciding whether
claims are true or not easier.”

Theme: Areas for Improvement

“Going through the retrieved context can already be com-
plex, so have a simplified language in the breakdown would
be helpful.”

“Balance between pointing out specifics and giving a gen-
eral overview in reasoning. User should be able to choose
how deep to go into the details”

Table 5: Sample categorized expert feedback (para-

phrased) from the TripleCheck evaluation.

47



