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Abstract

As LLMs become widespread, trust in their
behavior becomes increasingly important. For
NLP research, it is crucial to ensure that not
only Al designers and developers, but also
end users, are enabled to control the proper-
ties of trustworthy LLMs, such as transpar-
ency, privacy, or accuracy. However, involv-
ing end users in this process remains a prac-
tical challenge. Based on a design-centered
survey of methods developed in recent papers
from HCI and NLP venues, this paper proposes
seven design paradigms that can be integrated
in NLP research to enhance end-user control
over the trustworthiness of LLMs. We discuss
design gaps and challenges of applying these
paradigms in NLP and propose future research
directions.

1 Introduction

While LLMs bring many advantages, their opacity
hinders human agency and trust, as especially end
users lack the necessary information and transpar-
ency to critically assess system decisions before
following or acting on them (Forster et al., 2020).
For this reason, there is a growing need in the field
of NLP to develop methods that enhance end-user
control over Al systems.

At the same time, in the domain of human-
computer interaction (HCI), approximately 22 regu-
lations comprising normative principles for mitigat-
ing Al risks and enhancing trust in Al systems had
been published by 2020 (Hagendorff, 2020). While
recent HCI studies explore the attitudes of differ-
ent groups towards these policies (Agbese et al.,
2023), their practical implementation is underex-
plored (Kaur et al., 2022; Perov and Golovkov,
2024), particularly regarding how to enable end
users to proactively participate in controlling the
trustworthiness of LLM systems.

This paper proposes seven design paradigms for
enhancing end-user control over the trustworthi-
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ness of LLM systems based on a design-centered
survey of novel methods from recent HCI and NLP
studies. We define trustworthy LLMs using the fol-
lowing requirements for trustworthy Al proposed
by Ethics Guidelines for Trustworthy Al (HLEG,
2019): (1) human agency and oversight (including
fundamental rights); (2) technical robustness and
safety (including resilience to attack and security,
fallback plan and general safety, accuracy, relia-
bility, and reproducibility); (3) privacy and data
governance (including respect for privacy, quality
and integrity of data, and access to data); (4) trans-
parency (including traceability, explainability, and
communication); (5) diversity, non-discrimination
and fairness (including the avoidance of unfair bias,
accessibility and universal design, and stakeholder
participation); (6) environmental and societal well-
being (including sustainability and environmental
friendliness, social impact, society, and democracy)
and (7) accountability (including auditability, mini-
mization, and reporting of negative impact, trade-
offs, and redress). Although these guidelines were
published before the rise of LLMs, we use them
to define trust in LLMs because they were among
the first to foreground a user-centered approach to
trustworthy Al (Usmani et al., 2023) and remain an
influential user-centered policy.

This survey contributes to human-centered ap-
proaches to LLLMs by bridging regulatory perspec-
tives on trustworthy Al from the field of HCI with
their practical applications in NLP research on end
users’ interactions with LLMs.

2 Methodology

We surveyed original research papers (no work in
progress, demo papers, posters, provocations, sur-
veys, or extended abstracts) published in English in
the ACM Digital Library and the ACL Anthology
between January 1, 2022, and August 1, 2025. The
start date was selected to include papers published
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shortly before the release of ChatGPT on Novem-
ber 30, 2022. While the ACM library was selected
for its comprehensive coverage of HCI design re-
search and venues (e.g., CHI) relevant to our focus,
the ACL Anthology comprises work from some of
the most important NLP venues, such as EMNLP
and NAACL. This dual-sourced corpus provides a
balanced foundation for identifying design patterns
at the intersection of HCI and NLP. The following
search string was used for the ACM library:

*trust® OR “agency” OR “oversight” OR
robust* OR safe* OR secur* OR accura*
OR reliab* OR reproduc* OR “privacy”
OR transparen*® OR trace* OR explain*
OR fair* OR bias* OR sustain* OR ac-
countab* OR audit* or LLM*

The search function in ACL Anthology is limited
to simple keyword queries and does not support us-
ing this search string. Therefore, we performed
multiple keyword-based searches (e.g., trust LLM,
transparency LLM, bias LLM) and complemented
this with Google site:aclanthology.org searches
to approximate Boolean logic and ensure broader
coverage. A total of 1781 papers were screened
from both databases. At least one of the search
words had to appear in the abstract, the title, or the
keywords of the paper to be included in the final
dataset.

Importantly, the papers that fulfill this criterion
were manually inspected to determine whether they
have a clear focus on both trust (i.e., the trust aspect
mentioned in the abstract) and end-user control in
the full text. Accordingly, user-centric papers with-
out a clear relationship to trust and vice versa: trust-
related papers without end-user involvement in the
design and/or evaluation stage (e.g., Miao and Fang
2025) or papers where the evaluation is conducted
based only on datasets, performance comparison
of several models, and evaluation metrics, rather
than involving users and explicitly addressing how
user control is achieved, were not considered. How-
ever, papers combining user studies with, for exam-
ple, comparing the performance of several models,
were considered (e.g., Zhou et al. 2024; Koras et al.
2025; Dong et al. 2025).

Also, papers not explicitly dealing with language
models or language model-based applications were
excluded (e.g., DeVos et al. 2022). These criteria
reduced the number of eligible papers to 773.

Finally, papers that considered user studies as
future work (e.g., Hung et al. 2023) were excluded.
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In this way, 713 papers were excluded. The final
list comprises 60 papers from both sources.

Papers did not need to explicitly address the Al
HLEG guidelines, nor did we include studies that
analyzed the guidelines themselves. Multimodal
LLMs (Zhang et al., 2024; Tang et al., 2024; Chen
et al., 2024) were discarded due to the broader
use of text-based models. Figure 1, created with
a web-based Shiny app (Haddaway et al., 2022),
visualizes the PRISMA-compliant search process
(Page et al., 2021).

Identification of new studies via databases and registers

Records removed before screening
Duplicate records (n = 0

Records identified from: )
Records marked as ineligitle by automation

Databases (n=2)
Registers (n =0}
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control (n = 364)
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ssessed for eligibility
773)

-

New studies included in review
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(n=860)
Reports of new included studies
(n=0)

Figure 1: Overview of the literature search and screen-
ing process, following PRISMA-style structure.

Note that this is not a systematic review aiming
for completeness, but a design-centered survey of
recent work focusing on a synthesis of paradigms
that support user control and trust in LLM systems.

Two annotators searched for the papers in the
databases described above. They discussed and re-
fined the inclusion criteria following the PRISMA
paradigm (Page et al., 2021). The included pa-
pers were then annotated for their primary trust
aspects (multiple assignment was allowed), and de-
sign paradigm. Annotation decisions were reached
via iterative discussion. No formal inter-annotator
agreement was calculated, as the focus was on
interpretive synthesis. As a result, seven design
paradigms are proposed (Section 3) and discussed
in terms of their applications in NLP (Section 5).
Note that although multiple paradigm assignments
were theoretically possible, each paper was as-
signed to exactly one primary design paradigm
based on annotator agreement.



Table 1: Design paradigms and primary user goals

Paradigm

Primary User Goal

Interface-level accuracy
control
Workflow-aligned &
domain-adapted LLM
assistance
Explanation-centered ap-
proaches

Participatory designs

Interactive authoring &
co-creation

Style-based trust calibra-
tion

Privacy-aware architec-
tures & tools

Verify factual correctness of
LLM output

Maintain control in expert work-
flows

Understand how and why out-
puts are produced

Learn about LLMs; shape be-
havior

Co-generate or revise outputs
with Al

Calibrate trust based on how out-
puts are expressed

Control what personal data is ex-
posed

3 Results

Table 1 provides an overview of design paradigms
identified through inductive coding by two anno-
tators (see Section 2). A detailed mapping of the
reviewed approaches to trust aspects is provided
in the Appendix. The observed skew in the dis-
tribution of papers across paradigms (interactive
authoring/co-creation (13 papers) and explanation-
centered approaches (12) vs. interface-level ac-
curacy control and privacy-aware tools, four stud-
ies each) may in part reflect the methodological
choices of this survey, such as the single-label anno-
tation protocol (see Section 2). Furthermore, trust
dimensions, such as accuracy, transparency, and re-
liability, are overrepresented probably because they
are easier to operationalize through measurable in-
terventions (e.g., confidence scores), aligning well
with existing evaluation practices in NLP and HCIL.
In contrast, underrepresented dimensions, such as
environmental and societal wellbeing, require long-
term stakeholder engagement and more resource-
intensive methods that are harder to implement
within the scope of typical research prototypes.

Interface-level accuracy control Interface-level
accuracy control refers to design approaches that
equip users with interactive tools and visual cues
at the interface level to help inspect, verify, and
guide the factual accuracy of LLM outputs. These
interfaces do not require altering the model itself,
but instead focus on enhancing user control, inter-
pretability of outputs, and trust calibration through
features such as consistency checks, confidence
scores, source attributions, and interactive verifica-
tion workflows.

19

The primary goal of this paradigm is to foster
accuracy and user agency by integrating transpar-
ent control mechanisms directly into the interface
rather than modifying the LLM architecture.

Core strategies include tools for output verifica-
tion, hallucination detection, and user-led content
auditing. For example, Cheng et al. (2024) en-
able users to compare the factual consistency of
multiple LLM outputs. Laban et al. (2024) intro-
duce a factual editing framework that alerts users to
new content, supports verification via web search,
and enables tracing of model-generated edits. For-
mal verification has also been integrated into LLM
planning tasks: Lee et al. (2025) combine model
checking with user oversight. Other interfaces vi-
sualize hallucination risks or confidence scores to
help users identify unreliable content (Leiser et al.,
2024).

Despite promising interaction designs, this
paradigm faces several challenges. First, many
studies prioritize surface-level model accuracy
without systematically examining how interface
interventions influence other trust dimensions such
as fairness, transparency, or robustness. Second,
tools like confidence scores (Leiser et al., 2024)
assume a high degree of Al literacy and decision-
making capacity, potentially excluding non-expert
users or overburdening them with the responsibility
to correctly interpret, evaluate, and act on informa-
tion provided by an Al system. Third, the usability
and cognitive demands of these systems remain
under-evaluated, as it is often unclear whether users
meaningfully benefit from features like verification
workflows or simply ignore them in practice.

Workflow-aligned and domain-adapted LLM as-
sistance This design approach integrates LLMs
into real-world tasks or professional practices, such
as education (Kazemitabaar et al., 2024), qualita-
tive analysis (Dai et al., 2023), legal consultation
(Hu et al., 2024), banking (Gupta et al., 2025),
coding (Dong et al., 2025), or clinical settings (Ko-
rag et al., 2025), addressing domain-specific chal-
lenges of the LLM application. Users are typically
given mechanisms to adapt, guide, or verify out-
puts in-situ, through plan-then-execute pipelines
(He et al., 2025), interface-level guardrails (Liffiton
etal., 2023), or feedback loops involving humans in
iterative roles (Dong et al., 2025; Dai et al., 2023).
Unlike generic chat interfaces, these systems align
generation with domain goals and domain-specific
verification routines and constraints.



The goal is to integrate LLMs into domain-
specific workflows in ways that preserve user
control, ensure output reliability, and align with
domain-specific goals.

Examples include the restriction of LLM outputs
to pseudocode in educational contexts to prevent
over-reliance and support learning (Kazemitabaar
et al., 2024), real-time human feedback (Gupta
etal., 2025), iterative human verification Dong et al.
(2025), or guardrails that prevent programmers’
over-reliance (Liffiton et al., 2023), collaborative
human-LLM thematic analysis and topic modeling
(Dai et al., 2023; Akter et al., 2025; Choi et al.,
2024).

While these paradigms offer promising forms of
human-in-the-loop control, several limitations re-
main. First, they often assume static domain knowl-
edge and well-formed tasks and do not adapt to
rapid changes in domains like coding. Second, de-
spite placing high cognitive demands on users (e.g.,
verifying assertions (Dong et al., 2025) or interpret-
ing multi-step plans (He et al., 2025)), most designs
treat users as uniformly skilled and do not assess
or adjust for varying levels of domain expertise
and Al literacy. This creates risks of misalignment
between tool complexity and user capability and of
mismatched support (either under-serving novice
users or constraining experts). Finally, the inte-
gration of these designs in professional workflows
raises epistemic and normative concerns since the
normative assumptions integrated in designs (e.g.,
what counts as a “good” summary or acceptable
pseudocode) are rarely made explicit or empirically
evaluated. As a result, these designs may reinforce
domain conventions (e.g., legal templates) without
enabling critical reflection, for example in qualita-
tive analysis (Akter et al., 2025; Choi et al., 2024).

In sum, workflow-aligned assistance offers a
promising direction for domain-specific LLM use,
but often relies on hidden assumptions about task
stability, user capability, and normative correctness.
Future work should investigate how designs could
better adapt to user diversity and task ambiguity.

Participatory designs Participatory designs aim
to empower users through learning and reflection,
engaging them not just as passive recipients of Al
output but as active collaborators, educators, asses-
sors, or learners.

The goal is to foster Al literacy, critical aware-
ness of LLM capabilities, and trust calibration by
giving users tools to customize, question, and steer
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LLM behavior, particularly in educational, reflec-
tive, or interpersonal contexts.

Common strategies include user-controlled ed-
itable outputs (Chun et al., 2025), scaffolded in-
teraction via Al literacy workshops (Theophilou
et al., 2023), user-led evaluation through compar-
isons, subjective trust metrics (Pan et al., 2024; Zhu
et al., 2025; Nguyen et al., 2024), or human-LLM
evaluation of social appropriateness (Rao et al.,
2025). Expert-in-the-loop approaches include col-
laborative prompt refinement for educational con-
tent (Reza et al., 2025) or feedback-driven role-play
simulation in counseling (Louie et al., 2024).

Despite the user-centered intent, several gaps
persist. First, participatory mechanisms are often
introduced without sufficient onboarding or scaf-
folding. Users are asked to judge, configure, or col-
laborate with LLMs before acquiring a conceptual
understanding of model behavior, which may lead
to overtrust. Al literacy, while a core aim, is rarely
embedded as a design prerequisite—Theophilou
et al. (2023) being a notable exception. Second,
customization and feedback are typically limited to
surface-level tuning (e.g., tone or behavior), with
little support for questioning underlying assump-
tions, biases, or system limitations. Third, while
many systems frame participation as empowering,
they may implicitly rely on user labor, placing the
burden of correction, verification, and ethical re-
flection onto the user without adequate institutional
or system-side accountability.

Overall, participatory designs signal a significant
shift toward user agency and transparency, but re-
main underdeveloped in terms of empowering user
Al literacy and critical engagement with model
limitations.

Interactive authoring and co-creation This
paradigm focuses on enabling users to collabo-
rate with LLMs during complex or creative tasks
(e.g., writing, prompt design, workflow creation)
by enabling real-time interaction, iterative refine-
ment, and mixed-initiative control. These systems
support back-and-forth exchanges between users
and LLMs, allowing users to guide, steer, edit, or
evaluate intermediate outputs through customizable
workflows.

The primary goal is to empower users as co-
authors, prompt designers, or evaluators in creative
or analytical tasks by enabling interactive, trans-
parent, and customizable collaboration with LLMs.
These systems seek to enhance human agency, re-



duce cognitive load, and make LLM-powered gen-
eration more interpretable and aligned with users’
goals and values.

This paradigm centers on prompt chaining
(Arawjo et al., 2024; Wu et al., 2022), co-auditing
LLM-behavior in general (Rastogi et al., 2023), or
LLM-generated biases (Prabhudesai et al., 2025)
and personality traits (Zheng et al., 2025a) in par-
ticular, LLM- and human-based disinformation
evaluation (Zugecova et al., 2025), co-creative
authoring (Ding et al., 2023; Liu et al., 2024;
Hoque et al., 2024), direct manipulation (Mas-
son et al., 2024), and mixed-initiative control, en-
abling users to collaboratively shape LLM behav-
ior via initiative-sharing interfaces (Overney et al.,
2025), LLM-initiated prompt pipelines (Zhang and
Arawjo, 2025) and editable preference profiles cre-
ated based on user preferences (Liu et al., 2025).

Despite their promise, interactive authoring de-
signs raise several unresolved questions. First,
while many interfaces emphasize modularity,
prompt chaining, or editable outputs (Arawjo et al.,
2024; Wu et al., 2022; Zhang and Arawjo, 2025), it
remains unclear how much initiative users actually
retain in practice. Systems often alternate initia-
tive without clearly defining the boundaries of user
agency, and few studies examine whether users can
override or put the model’s underlying assumptions
into question. Customization is usually limited to
surface-level, such as prompt components, without
affording deeper user control or interpretability of
generation mechanisms.

Second, user literacy and feedback quality are
assumed rather than supported. Designs empower
users to filter outputs, flag disinformation, or as-
sess persuasiveness (Zugecova et al., 2025; Liu
et al., 2025), but offer limited scaffolding to sup-
port critical evaluation. Since there are no clear
scaffolds for critical reflection, user perception of
biases or auditing personality traits (Zheng et al.,
2025a; Prabhudesai et al., 2025) risks being subjec-
tive and culturally dependent.

Third, while some systems highlight transpar-
ency and provenance (e.g., via interface visual-
izations or think-aloud protocols (Hoque et al.,
2024; Rastogi et al., 2023)), it remains unclear
whether such interventions are always desirable
and whether more transparency always leads to
better trust calibration.

Finally, there is limited evidence that these
approaches generalize beyond low-stakes, ex-
ploratory domains. Many studies involve small
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participant samples (e.g., thirteen participants in
Hoque et al. 2024), leaving open the question of
how co-creation behaves under real-world con-
straints such as time pressure or conflicting user
goals.

In sum, interactive authoring represents a promis-
ing design approach to expanding human—AI col-
laboration, but current work underestimates the
dynamics of control and overlooks users’ cognitive
limitations.

Explanation-centered approaches Explanation-
centered approaches aim to make LLM be-
havior more interpretable by providing human-
understandable justifications for model predictions,
such as rationales (Mishra et al., 2024), contrastive
explanations (Buginca et al., 2025; Si et al., 2024),
multilevel and contextualized explanations (Mon-
teiro Paes et al., 2025; Mei et al., 2023; Di Bonaven-
tura et al., 2024), anchored in situ explanations
(Yan et al., 2024), explanations with different confi-
dence levels (Wang et al., 2025), saliency explana-
tions (Pafla et al., 2024) or visualization of internal
states (Spinner et al., 2024), at various stages of in-
teraction (Kim et al., 2025; Yao et al., 2023) to help
users understand how and why a model generated
a particular output.

The primary goal is to empower users to inter-
pret, question, and calibrate trust in LLM outputs
by integrating user-relevant explanations into the
human-LLM interaction. Rather than being a post-
hoc feature, explanations are regarded as an integral
part of the user experience.

However, several design limitations remain un-
derexplored. First, explanation quality is uneven,
and users are often asked to trust model-generated
justifications without support for interrogating the
explanation itself. For instance, saliency maps or
ranked rationales assume that the model’s attention
aligns with human reasoning, but users are not em-
powered to put this alignment into question. Most
designs present a single explanation type, limiting
opportunities for comparison (Pafla et al., 2024).

Second, explanation interfaces often rely on
static visualizations or textual input. While a few
designs allow users to manipulate explanations
(e.g., editable search trees or contrastive compar-
isons), these remain exceptions. Moreover, expla-
nations are usually presented as final, and users can
not contribute to the model’s reasoning. This risks
reinforcing overreliance on explanation rather than
promoting interactivity and critical engagement.



Third, the cognitive demands of interpreting expla-
nations are often overlooked. Visualizations, impor-
tance heatmaps, or rationales may be challenging
to interpret for non-experts or minoritized groups,
and some studies suggest that users make better
decisions with external references (e.g., Wikipedia)
than with model-generated explanations (Si et al.,
2024). The assumption that explanations automati-
cally enhance trust or understanding must be vali-
dated across diverse user groups and domains.
Finally, most explanation-centered designs ex-
plain one output at a time (for example, why the
model gave a specific answer), but they usually
don’t help users understand a general model behav-
ior, such as whether the model is biased, how it was
trained, or what kinds of mistakes it tends to make
overall. An exception is Yao et al. (2023) where
human-annotated explanations are integrated into
active learning loops for annotation support, involv-
ing users in both training and evaluation phases.
In sum, while explanation-centered interfaces
enhance transparency, they risk oversimplifying
the complexity of LLM behavior and limiting user
agency if not designed with deeper interactivity,
explanation pluralism, and user education in mind.

Style-based trust calibration Style-based trust
calibration refers to design strategies that shape
users’ trust in LLM outputs by varying the commu-
nicative style of the output. Rather than changing
the factual content, these approaches manipulate
how information is conveyed, for example, by pre-
senting the output in an assertive or a hesitant tone,
or showing confidence cues and visually marking
lexical indicators of uncertainty to help users form
more accurate mental models of LLM reliability.
The central assumption is that stylistic framing and
contextual cues strongly influence user reliance,
perceived transparency, and decision confidence.

The primary goal is to support better alignment
between perceived and actual model capabilities.
This is especially crucial in settings involving un-
certainty or risk, such as healthcare, legal advice,
or career guidance.

Rather than improving accuracy directly, these
interventions calibrate user perception of models.
Studies have tested expressions of uncertainty (e.g.,
first-person: “I’m not sure...” vs. impersonal: “It
is not sure...”) (Kim et al., 2024b), confidence dis-
claimers (Metzger et al., 2024), comparing hesi-
tant versus assertive tones (Kadoma et al., 2024),
trust repair techniques through apologies, denials,
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and promises (Pareek et al., 2024), stylistic varia-
tions across chatbot types (LLM-based vs. intent-
based vs. form-based) (Zylowski et al., 2025), un-
certainty markers (Zhou et al., 2024; Chen et al.,
2025b), model-generated greetings (Zhou et al.,
2025b), and visual disclaimers or highlights (Bo
et al., 2025). These features are tested in calibrated
and miscalibrated scenarios to assess their influ-
ence on user trust.

However, most work remains narrowly focused
on whether a given stylistic manipulation influ-
ences trust, rather than how users can be supported
in recognizing and critically engaging with such
cues in everyday use. For instance, while many
features are shown to affect trust in experimen-
tal setups, they are rarely integrated into inter-
face systems with guidance or educational scaf-
folding. Ma et al. (2025) address this by proposing
a deliberation-based interface that encourages users
to reason through LLM suggestions. Yet, dealing
with insufficient analytical engagement of users
with Al recommendations remains an exception.

A further limitation is the tension between help-
ing users calibrate trust and the risk of unintention-
ally manipulating them or introducing new ethical
problems. Specifically, stylistic cues may encode
cultural or gender biases, reinforce stereotypes, or
mask unreliable model behavior behind persuasive
style. Future work should examine how style inter-
acts with power, and whether certain user groups
are more vulnerable to over-reliance due to stylistic
calibration alone.

In conclusion, while style-based approaches
offer promising mechanisms for aligning user-
perceived trust with actual model reliability, they
raise critical open questions about fairness and the
long-term effects of such calibration.

Privacy-aware architectures and tools Privacy-
aware architectures and tools are systems, inter-
faces, or frameworks that aim to detect, minimize,
or prevent privacy risks in human-LLM interaction.
They enhance user awareness, control, and protec-
tion by implementing privacy safeguards either be-
fore, during, or after data exchange with LLMs.
These approaches consider input redaction, output
inspection, system-level manipulation detection,
and user education, often grounded in user-centered
design and participatory development. Unlike gen-
eral security methods, this category focuses on end-
user-facing privacy measures, enabling users to
actively participate in managing their personal data



exposure and autonomy in LLM-mediated environ-
ments.

The primary goal is to empower users to manage
and protect their personal data by providing con-
trollable tools that mitigate privacy risks at every
stage of the interaction pipeline. These systems
aim to increase user agency and awareness while
reducing unintended data leakage, over-disclosure,
or manipulation in Al-mediated communication.
They address not only what LLMs can "know" or
"leak", but how users can actively participate in pre-
venting harm and making informed choices about
data use, visibility, and trustworthiness.

Core strategies in this paradigm span the full
privacy lifecycle, from input-level privacy control
(Ngong et al., 2025) through self-disclosure detec-
tion (Dou et al., 2024), user-led data minimization
via browser extensions (Zhou et al., 2025a) to post-
hoc inspection (e.g., leaking personal identifiers
through LLM outputs Kim et al. 2024a or detecting
prompt injection attacks Lin et al. 2025) and user
education (Chen et al., 2025a).

However, these designs may face adoption chal-
lenges. Many tools assume that users are both
willing and able to engage in privacy management,
although users may sometimes prioritize conve-
nience or utility over caution, especially in low-
stakes contexts. Moreover, privacy-aware inter-
faces can disrupt the user experience if they de-
mand too much time, technical understanding, or
attention. To be effective, they must be carefully
adapted to the context of use and the user’s men-
tal workload, for example by being paired with
automation, personalization, or persuasive design.
Finally, some designs risk offloading the responsi-
bility for privacy onto the user without addressing
underlying system-level weaknesses in how LLMs
handle user data. For example, asking users to
identify sensitive content assumes they understand
what counts as risky in the context of opaque model
behavior, but this assumption may not hold. It is
also unclear how such tools perform across user
groups with varying levels of sensitivity to privacy
issues.

In sum, more research is needed to assess how
to communicate privacy risks without overwhelm-
ing users or discouraging them from critical use of
LLMs. Privacy-aware tools play a crucial role in
shifting privacy control closer to users, but must be
designed to balance protection, usability, and psy-
chological trust across varied real-world scenarios.
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4 Theoretical perspectives

To synthesize the design strategies identified
through inductive coding, we draw on three comple-
mentary frameworks from HCI and cognitive sci-
ence: Activity Theory (Kuutti, 1996), Distributed
Cognition (Hollan et al., 2000), and Mental Models
(see an overview in Payne, 2003). These descrip-
tive theories are suited for analyzing user-centred
paradigms across NLP and HCI research.

Activity theory highlights how users engage with
LLMs as tools to achieve specific goals (e.g., writ-
ing, learning). It aligns closely with interactive
authoring & co-creation and workflow-aligned de-
signs where LLMs support domain-specific tasks
(e.g., Masson et al. 2024; Kazemitabaar et al. 2024),
enabling users to shift from passive prompting to
active participation. Participatory designs also em-
power users by emphasizing their agency in shap-
ing system behavior (e.g., Theophilou et al. 2023).

Distributed cognition frames trust as emerging
from the interaction between the user, the LLM
system, and the interventions (e.g., visualizations,
warnings), such as in interface-level accuracy con-
trol (e.g., Leiser et al. 2024) and style-based trust
calibration (e.g., Zhou et al. 2024). Trust calibra-
tion is distributed across the model’s suggestions,
system-generated evidence, and design interven-
tions rather than by internal understanding alone.

Referring to users’ internal understandings of
how LLMs work, mental models are central to
explanation-centered approaches (e.g., Yan et al.
2024) that aim to scaffold reasoning about model
logic, privacy-aware designs (e.g., Dou et al. 2024)
that help users understand what LLMs might infer
from personal data, and style-based trust calibra-
tion, which influences users’ conceptual models of
LLM reliability.

Additionally, our classification aligns with the
more recent human-centered AI (HCAI) framework
proposed by Shneiderman (2022), particularly in
treating user control not only as an outcome (prod-
uct) but also as a participatory design process.

The proposed design paradigms also align with
principles from classical HCI, such as Norman’s
gulfs of execution and evaluation (see Norman,
2013, 38-40), which describe the barriers users
face in acting on and interpreting system behavior.
Several designs aim to reduce Norman’s gulf of ex-
ecution by simplifying prompt design (Zhang and
Arawjo, 2025) or providing scaffolds that guide
users in expressing their intentions. Others address



the gulf of evaluation by offering visualizations
(Spinner et al., 2024) of model decisions or con-
trastive explanations (Buginca et al., 2025) to help
users interpret outputs. Furthermore, activity the-
ory helps reduce the gulf of execution by analyzing
whether users can meaningfully act on interfaces to
achieve their goals. Distributed cognition addresses
the gulf of evaluation by highlighting how trust and
understanding are mediated through interface-level
cues, external visualizations, and interaction his-
tory. Finally, mental models support both gulfs by
determining how users understand what actions are
possible and how outputs should be interpreted. To-
gether, these theories provide a layered perspective
on user control in LLM interactions.

5 Discussion and Conclusions

This paper identified and systematized seven de-
sign paradigms that promote user control in hu-
man-LLM interaction and reflect design strategies
grounded in different user goals, ranging from ver-
ifying factuality and shaping model output to man-
aging trust and data exposure. Our design-centered
perspective complements current discussions on hu-
man involvement in post-training by emphasizing
user control during deployment and interaction.

While empirical studies have offered scattered
examples of user-centered designs and most recent
related surveys do not primarily focus on trust or
have a broader scope (e.g., human-model cooper-
ation in Huang et al. 2025), our contribution lies
in synthesizing these efforts into a coherent frame-
work that centers user goals as the organizing prin-
ciple of human trust in LLMs. Across paradigms,
we observe a shift from one-shot prompting to-
ward interactive, iterative, and increasingly user-
configurable LLM workflows. These designs fore-
ground a broad spectrum of control types: percep-
tual (e.g., accuracy cues), procedural (e.g., work-
flow pausing), epistemic (e.g., explanations, vary-
ing linguistic style), and protective (e.g., privacy
screening).

Yet, critical gaps remain. Although many studies
mention cross-domain application (e.g. Louie et al.
2024), the variety of tested scenarios is limited.
We also observe a lack of design frameworks that
help practitioners balance automation and human
agency. For example, many tools mediate control
through additional LLMs (e.g., Pan et al. 2024),
which risks reinforcing automation bias rather than
supporting user autonomy. To address this, future

systems could incorporate trust calibration strate-
gies (e.g., communicative framing, interactive un-
certainty visualization) that help users reflect on
when and how to trust outputs. Most studies as-
sume Al-literate end users with a high level of tech-
nical literacy. Designs rarely account for diverse
user needs, e.g., those with low reading/writing lit-
eracy, limited technical expertise, or from marginal-
ized communities. This limits the accessibility and
generalizability of proposed methods. Users are
often expected to interpret complex cues (e.g., fac-
tuality scores) without training. It remains unclear
how to prevent over-reliance on automation while
avoiding user frustration and how to balance con-
trol vs. usability, or privacy vs. personalization.

For the research at the intersection of HCI and
NLP, we identify several promising directions for
future work:

* Explicitly address interaction design patterns
that foster meaningful user oversight (e.g.,
modular prompt chaining, co-creation loops).

* Expand design efforts to underexplored trust
dimensions (e.g., fairness, social well-being).

* Develop participatory methods that involve
diverse users in the co-design of trust-aware
LLM interfaces.

* Develop systems that calibrate trust in LLMs
not only by LLMs but also include human-in-
the-loop review.

* To support low-literacy users, consider, for ex-
ample, visual metaphors to reduce cognitive
burden or interaction logging, or user inter-
faces with a toggle to simplify responses.

* Replace binary on/off controls with graded
or layered control (e.g., co-authoring steps or
adjustable initiative).

* Move beyond controlled studies to assess how
trust and control evolve during prolonged,
real-world interaction (in-the-wild evaluation)

* Consider long-term, real-world deployment
studies to assess how interaction designs
shape trust over time.

Finally, we advocate for design that enables not
just enhanced control, but critical engagement with
LLM behavior, especially through scaffolds that
support users in questioning and modifying model
output.



6 Limitations

We identify three main limitations of this study.
First, as this is a design-centered survey rather than
a systematic meta-analysis, two types of constraints
apply: those related to paper selection and those
associated with the derivation of the proposed de-
sign typology. The final scope of included papers
was based on a qualitative assessment by two an-
notators, followed by iterative discussion to reach
consensus on inclusion. Consequently, not all pa-
pers containing search terms in the abstract, title, or
keywords were included. Both the paper selection
and the resulting classification are thus shaped by
human judgment and interpretability. In particular,
some papers at the boundary between metric-driven
evaluation and user-centered design were included
if they contained at least partial user evaluation
components, such as in Koras et al. (2025), where
the user study was exploratory and not systematic.
Although many papers could plausibly be assigned
to multiple paradigms, annotators were instructed
to assign each paper to a single primary category.
The proposed design paradigms were qualitatively
derived and require further empirical validation.

Second, due to limitations in the ACL Anthology
search interface (see Section 2), it was not possi-
ble to apply an identical search string across both
databases. While the ACM Digital Library search
allowed for complex Boolean queries, the ACL An-
thology search relied on simpler keyword combina-
tions (see Section 2). This discrepancy may have
introduced a bias by potentially missing relevant
ACL papers that would have matched the full ACM
query. A brief comparative test or validation of cov-
erage was not feasible, but we acknowledge that
this search asymmetry could affect the complete-
ness and balance of the corpus. Furthermore, the
review does not include papers from other sources
such as arXiv, which means that unpublished or
in-progress work was not considered.

Third, the reviewed studies are predominantly
situated in English-speaking and Western contexts,
as only papers published in English were included.
This limits the cultural and linguistic diversity of
the findings.

7 Ethical statement

This work is a meta-analysis of published research
at the intersection of HCI and NLP. We do not
present or process personal data, nor do we involve
human participants. All surveyed papers were
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selected from publicly accessible, peer-reviewed
sources, excluding preprints. Where user studies
are reported in the cited literature, we rely on the
original authors’ ethical approvals and disclosures.
Care was taken to fairly represent a diverse set of
approaches and to avoid overgeneralizing results.

We acknowledge that relying solely on pub-
lished, English-language sources may introduce
publication and cultural bias, leading to an over-
representation of Western perspectives. This is not
only a methodological limitation (see Section 6),
but also an ethical concern for the generalizability
and inclusivity of our findings.
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Interface-level accuracy control. User-led ver-
ification based on consistency of LLLM responses
(Cheng et al., 2024); user control of LLM edits
(Laban et al., 2024); user study of LLM-based
planning systems (Lee et al., 2025); user-centered
development of hallucination identifier for LLMs
(Leiser et al., 2024). Primary trust aspect: Accu-
racy, transparency.

Workflow-aligned and domain-adapted Al assis-
tance. LLMe-assisted topic modeling for qualita-
tive analysis (Akter et al., 2025; Choi et al., 2024);
human-LLM collaboration for thematic analysis
(Dai et al., 2023); LLM code generation with user
feedback (Dong et al., 2025); human-in-the-loop
conversation summarization for financial advisors
(Gupta et al., 2025); plan-then-execute LLM col-
laboration with user-in-the-loop control (He et al.,
2025); LLM-based legal advice with user interven-
tion (Hu et al., 2024); human evaluation of LLM
programming assistant (Kazemitabaar et al., 2024);
human evaluation of LLM-generated texts in clini-
cal settings (Korag et al., 2025); user evaluation of
LLM-based code assistance with guardrails (Liffi-
ton et al., 2023). Primary trust aspect: Accuracy,
transparency, oversight; auditability.

Participatory  designs. Co-designed self-
directed learning planner (Chun et al., 2025);
co-design of roleplay prompts with domain experts
(Louie et al., 2024); climate advice via co-designed
LLM interaction (Nguyen et al., 2024); user
involvement in the LLM-as-a-judge concept
(Pan et al., 2024); comparing human and LLM
judgements of cultural adaptability (Rao et al.,
2025); collaborative prompt authoring interface
for homework problems (Reza et al., 2025); Al
literacy education (Theophilou et al., 2023);
co-creation of chatbot personas for emotional
reliance (Zheng et al., 2025b); user preference
of texts with different labels (LLM-generated vs.
human) (Zhu et al., 2025). Primary trust aspect:
Reliability, fairness, bias.

Interactive authoring & co-creation. Interac-
tive prompt engineering and evaluation (Arawjo
et al., 2024); human—AlI co-creation of news head-
lines (Ding et al., 2023); provenance-driven co-
writing (Hoque et al., 2024); human-LLM co-
creation of research questions (Liu et al., 2024);
user-aligned co-filtering of discomforting recom-
mendations (Liu et al., 2025); direct manipulation
interface (Masson et al., 2024); human—-LLM co-



creation of questionnaires (Overney et al., 2025);
end-user auditing scaffolds for identifying LLM
biases (Prabhudesai et al., 2025); LLM-based
human—AI auditing (Rastogi et al., 2023); hu-
man—-LLM modular prompt chaining (Wu et al.,
2022); LLM-based human—AlI evaluation of LLM
behavior (Zhang and Arawjo, 2025); LLM-assisted
user evaluation of LLM personalities (Zheng et al.,
2025a); human evaluation of LLM-generated per-
sonalized disinformation (Zugecova et al., 2025).
Primary trust aspect: Reliability, transparency.

Explanation-centered approaches. User evalu-
ation of LLM explanations for abusive language
detection tasks (Di Bonaventura et al., 2024); user
evaluation of contrastive explanations (Buginca
et al., 2025); impact of LLM explanations on user
reliance (Kim et al., 2025); user evaluation of
safety-related LLM rationales (Mei et al., 2023);
evaluation of LLM rationale quality (Mishra et al.,
2024); user study with multi-level model explana-
tions (Monteiro Paes et al., 2025); user evaluation
of human vs. XAl explanations (Pafla et al., 2024);
user evaluation of LLLM explanations and search
engines (Si et al., 2024); user evaluation of tree-of-
thought visualization (Spinner et al., 2024); in-situ
anchored code explanations (Yan et al., 2024); hu-
man vs. LLM rationales (Yao et al., 2023); spatially
structured and temporally adaptive explanations
(Wang et al., 2025). Primary trust aspect: Explain-
ability, transparency, reliability.

Style-based trust calibration. Reliance interven-
tions (Bo et al., 2025); hesitant vs. self-assured
auto-complete LLM suggestions (Kadoma et al.,
2024); certain vs. uncertain LLM responses (Kim
et al., 2024b); interactive Al-human deliberation
(Ma et al., 2025); disclaimers + high vs. low author-
ity style in LLM responses (Metzger et al., 2024);
LLM-generated trust repair strategies (Pareek et al.,
2024); LLM-generated emphatic expressions of
politeness (Zhou et al., 2025b); LLM-generated
uncertainty markers (Zhou et al., 2024). Primary
trust aspect: Transparency, reliability, biases.

Privacy-aware architectures and tools. User-
centered self-disclosure abstraction (Dou et al.,
2024); threat model for user-centered mitiga-
tion of adversarial prompts (Lin et al., 2025);
user-led data minimization (Zhou et al., 2025a);
privacy-safeguarding intermediary between users
and LLMs (Ngong et al., 2025). Primary trust
aspect: Privacy.
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