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Abstract

Novice programmers benefit from timely, per-
sonalized support that addresses individual
learning gaps, yet the availability of instruc-
tors and teaching assistants is inherently lim-
ited. Large language models (LLMs) present
opportunities to scale such support, though
their effectiveness depends on how well tech-
nical capabilities are aligned with pedagogi-
cal goals. This survey synthesizes recent work
on LLM applications in programming educa-
tion across three focal areas: formative code
feedback, assessment, and knowledge model-
ing. We identify recurring design patterns in
how these tools are applied and find that in-
terventions are most effective when educator
expertise complements model output through
human-in-the-loop oversight, scaffolding, and
evaluation. Fully automated approaches are of-
ten constrained in capturing the pedagogical
nuances of programming education, although
human-in-the-loop designs and course-specific
adaptation offer promising directions for future
improvement. Future research should focus on
improving transparency, strengthening align-
ment with pedagogy, and developing systems
that flexibly adapt to the needs of varied learn-
ing contexts.

1 Introduction

Introductory programming courses serve as critical
gateways to computer science and related STEM
careers (Whalley et al., 2020), yet they present
unique pedagogical challenges that contribute to
high attrition rates (Petersen et al., 2016). Students
must simultaneously master syntax, develop com-
putational thinking skills, and learn to debug com-
plex logical errors, creating cognitive demands that
often overwhelm novices. Success in these courses
often depends on access to timely, targeted inter-
ventions, e.g., feedback, explanations, and guided
problem-solving, that address individual learning
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gaps (Marwan et al., 2020; Messer et al., 2023).
These personalized interventions are especially im-
portant because students exhibit varied practice
behaviors, depending on their inclination toward
problem-solving and/or example exploration (Poh
et al., 2025). Traditionally, this kind of support
has been provided through human instruction, with
teaching assistants (TAs) guiding problem-solving
strategies, offering debugging help during office
hours, and providing detailed feedback on assign-
ments (Markel and Guo, 2021). However, the scal-
ability of this human-centered model is limited.
Large enrollment courses, increasingly common in
CS education, strain the capacity of instructional
staff to provide individualized attention (Ahmed
et al., 2025). Additionally, students may delay
seeking help when they anticipate long wait times
for TA feedback (Gao et al., 2023), and TAs them-
selves face heavy workloads from simultaneous
requests during office hours (Gao et al., 2022).

Large language models (LLMs) have emerged
as promising tools to automate aspects of program-
ming education support by addressing the core chal-
lenges novice programmers face, including debug-
ging code errors (Lahtinen et al., 2005), repairing
faulty code (Javier, 2021), obtaining timely feed-
back, and mastering foundational concepts to work
with programming problems (Ahmad and Ghazali,
2020; Rivers et al., 2016). Recent advances in nat-
ural language processing now make it possible to
generate context-aware feedback, offer real-time
debugging support, and adapt explanations to a
student’s skill level (Yousef et al., 2025; Zhong
et al., 2024; Chen et al., 2024; Lui et al., 2024).
Early work also shows the potential of Human–AI
collaboration, where LLM outputs are refined or
guided by educators to better align with pedagogi-
cal goals (Hassany et al., 2024). Though promising,
it is still unclear what best practices should guide
the integration of LLMs into programming educa-
tion and how responsibilities should be balanced
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between automation and human expertise.
The presented paper addresses this gap by re-

viewing recent applications of LLMs in program-
ming education, focusing on how they are applied,
the challenges that arise in practice, and the oppor-
tunities to align technical advances more closely
with pedagogy.

2 Methodology and Paper Selection

To survey research on the use of LLMs in program-
ming education, we reviewed publications across
leading venues in computing education, HCI, and
NLP, such as SIGCSE, ITiCSE, ICER, LAK, EDM,
CHI, EMNLP, and related workshops. We focused
on the 2021-2025 period, when LLM-driven sys-
tems first began to appear in educational settings.

From the surveyed literature, we identified three
focal areas in which LLMs are being applied: for-
mative code feedback, assessment, and knowledge
modeling. Each aligns with a central pedagogical
challenge in introductory programming courses,
supporting student learning at scale in contexts
where one-on-one guidance is difficult to provide.
Within formative code feedback, we distinguish
between approaches that generate hints and expla-
nations to help students identify and understand
their errors, and those that produce corrected code
as examples or candidate repairs. Assessment fo-
cuses on grading and providing evaluative feedback
at scale, while knowledge modeling seeks to repre-
sent what students know and how they progress in
order to give instructors actionable insights through
learning analytics. The distribution of reviewed pa-
pers across these areas is shown in Table 1.

Topic Selected Papers
Formative Code Feedback 20

Assessment 14
Knowledge Modeling 8

Table 1: Number of papers reviewed across three focal
areas.

3 LLM Usage in Formative Code
Feedback

Debugging assistance is one of the most com-
mon reasons to seek help in programming courses,
and improvements in code correctness after such
support can substantially boost short-term perfor-
mance (Gao et al., 2022). However, the scalability
limits of human-led help sessions have prompted

researchers to explore how LLMs can extend this
support in programming education. LLM-based
feedback on student code is typically delivered in
two complementary forms. In some cases, mod-
els generate explanations, hints, or scaffolding that
help students locate and reason about their own
programming mistakes. In others, models produce
corrected code directly, offering candidate repairs
or examples that students can study and compare
against their own solutions. Both approaches aim
to reduce the bottleneck of human-provided feed-
back, although they differ in the amount of agency
they leave with the learner.

A large body of work has explored how LLMs
can generate hints and explanations to guide stu-
dent reasoning. Early evaluations of open-source
models suggest that they can assist with syntax
and minor semantic issues but continue to struggle
with more complex bug localization and multi-line
logic errors (Majdoub and Ben Charrada, 2024). To
address these challenges, researchers have devel-
oped systems that focus on scaffolding student rea-
soning. BugSpotter, for instance, combines static
analysis with LLM reasoning to create interactive
debugging exercises for low-level programming
languages (Padurean et al., 2025). Iterative self-
debugging loops have been proposed, where mod-
els run their generated code, collect execution feed-
back, and refine patches in multiple passes (Chen
et al., 2024). Adaptive scaffolding systems fur-
ther extend these capabilities by monitoring learner
progress and providing timely hints or explana-
tions to break complex reasoning into manageable
steps (Oli, 2024). Although such advances improve
the accuracy and relevance of LLM-supported feed-
back, human oversight remains necessary to ensure
that outputs align with pedagogical goals (Zubair
et al., 2025). For example, CodeAid (Kazemitabaar
et al., 2024) found that while LLMs can accelerate
support for students, direct answers without edu-
cator scaffolding risk undermining learning, high-
lighting the role of instructors in contextualizing
automated feedback.

Another cluster of research investigates im-
proving the clarity of error explanations to sup-
port student comprehension. Fine-tuned LLMs
have demonstrated the ability to produce clearer,
context-sensitive error messages, improving novice
problem-solving (Vassar et al., 2024; Leinonen
et al., 2023). Comparative analyses of human and
model debugging strategies reveal differences in
reasoning patterns, pointing to opportunities for de-
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signing AI-assisted tools that nudge learners toward
more expert-like approaches (MacNeil et al., 2024).
Related work on prompt engineering and explain-
ability techniques, such as step-by-step runtime
verification, has also shown promise for improv-
ing the readability of error messages and foster-
ing trust in human–AI collaboration (Zhong et al.,
2024; Hoq et al., 2025; Kang et al., 2025). Expand-
ing further, researchers have also applied LLMs to
code quality feedback, detecting issues such as mis-
leading variable and function identifiers in novice
code (Řechtáčková et al., 2025).

Beyond generating hints and explanations, a
growing body of work explores producing cor-
rected code and worked examples that students
can study alongside their own solutions. For in-
stance, LLMs have been applied to generate code-
tracing questions for introductory courses, produc-
ing diverse and pedagogically aligned items (Fan
et al., 2023). Recent work demonstrates how LLMs
can generate worked examples that help students
learn strategies and better understand solution ap-
proaches (Sarsa et al., 2022). Research also shows
that students learn from the process of spotting and
fixing code errors (Koutcheme et al., 2024a), and
that these skills strongly predict learning outcomes
and course success (Gao et al., 2022, 2023).

To support this process, automated program re-
pair (APR) systems have targeted syntactic and
semantic errors in student submissions, with LLMs
broadening the scope of repairs to be more context-
sensitive and benchmarked transparently (Jiang
et al., 2023). Examples include PyDex (Zhang
et al., 2024), which generates accurate lever-
ages LLMs to automatically generate accurate
fixes for common novice errors in Python as-
signments (Zhang et al., 2024); COAST, a multi-
agent framework that coordinates detection, re-
pair, and verification while synthesizing debug-
ging datasets (Yang et al., 2025); and RepairL-
LaMA, which incorporates repair-aware represen-
tations and parameter-efficient fine-tuning to out-
perform vanilla prompting on standard APR bench-
marks (Silva et al., 2025).

While these advances demonstrate the technical
potential of LLMs for formative programming sup-
port, their educational value depends on when and
how the feedback is delivered. Automated fixes
that come too early, solve too much of the prob-
lem, or present complete answers can short-circuit
the learning process by removing opportunities for
students to reason through their own errors. In con-

trast, tools that generate hints, scaffold reasoning,
and explain errors without directly supplying so-
lutions are better aligned with pedagogical goals.
The challenge is therefore not only improving ac-
curacy on complex bugs but also designing sys-
tems that adapt the level of support to the learner’s
needs. Emerging best practices point toward hy-
brid approaches, where LLMs address routine or
surface-level issues and generate scalable practice
materials, while human educators provide context,
address deeper misconceptions, and guide students
toward lasting debugging strategies.

4 LLM Usage in Assessment

With the increasing availability of LLMs in edu-
cation, there are now provisions for the use of au-
tomated teaching assistants (TAs) in assessments,
particularly in programming courses where grad-
ing is frequent and labor-intensive (Mehta et al.,
2023). Early evaluations benchmarked the ability
of LLMs to provide such feedback, demonstrat-
ing that even in zero-shot configurations, they can
produce rubric-aligned evaluations with moderate
agreement to human graders (Yeung et al., 2025;
Silva and Costa, 2025). These findings position
LLMs as viable tools for scalable deployment, re-
ducing the need for extensive rule-based assess-
ment design. For example, ABScribe (Reza et al.,
2024) demonstrates how LLMs can support human-
AI co-writing by generating and organizing mul-
tiple text variations, easing TA workload and im-
proving revision efficiency.

However, meta-analytic perspectives caution that
such systems inherit biases from training data and
require prompt and rubric alignment to meet course-
specific standards (Messer et al., 2023). In class-
room settings, results have been mixed. In a study
involving more than 1,000 students, GPT-4 reli-
ably evaluated straightforward and clear-cut sub-
missions but required human arbitration for nu-
anced cases (Chiang et al., 2024). Similarly, au-
tomated grading with LLMs in a bioinformatics
course reduced TA workload and accelerated grad-
ing speed, but raised concerns about transparency,
reproducibility, and student trust in AI-generated
assessments (Poličar et al., 2025). To address
this, frameworks like BeGrading (Yousef et al.,
2025) have integrated LLMs into a multi-stage
feedback pipeline, combining initial automated
grading with targeted suggestions for improve-
ment, while CodEv (Tseng et al., 2024) applied
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chain-of-thought prompting, ensemble reasoning,
and consistency checks to produce accurate and
constructive feedback. Other work, such as the
AI-augmented TA feasibility study (Ahmed et al.,
2025), examined how LLMs can fit into human
TA workflows in CS1 courses, focusing on provid-
ing timely, individualized support while preserving
grading quality.

Beyond grading accuracy, the specificity and
pedagogical usefulness of LLM-generated feed-
back vary considerably (Pankiewicz and Baker,
2023; Estévez-Ayres et al., 2024). Recent studies
have examined how models can generate formative,
actionable feedback that supports skill develop-
ment in introductory programming courses (Mehta
et al., 2023). One line of work uses program re-
pair tasks as a proxy for feedback quality, showing
that automated grading outputs can contribute to
improvements in students’ problem-solving and
code comprehension skills (Pankiewicz and Baker,
2023). Others highlight the need for careful prompt
engineering, rubric alignment, and iterative evalua-
tion to ensure that feedback remains contextually
relevant and educationally valuable. Therefore, hu-
man oversight remains a central design principle in
this space, with LLMs serving as collaborators that
augment TA capacity rather than replacements.

5 LLM Usage in Knowledge Modeling

Just as LLMs have been applied to formative feed-
back and assessment, they are increasingly being
explored for a broader challenge in programming
education: modeling what students know and how
their understanding develops over time. Knowl-
edge modeling supports instructional design by
making student learning more visible, helping edu-
cators monitor progress, identify misconceptions,
and create targeted interventions at scale. One com-
mon approach is knowledge component (KC) ex-
traction, where student work is mapped to the con-
cepts they need to master, such as variables, loops,
and conditionals. While this process helps educa-
tors monitor progress and create targeted interven-
tions, performing it manually is time-consuming
and limits scalability.

Recent advances have demonstrated how LLMs
can automate this extraction process with promis-
ing results. Researchers used GPT-4 to generate
and tag KCs from multiple-choice questions, with
human evaluators preferring the LLM-generated
tags over instructor-assigned ones in about two-

thirds of cases (Moore et al., 2024). KCluster (Wei
et al., 2025) is another approach to combine LLM-
generated question similarity metrics with cluster-
ing algorithms to automatically group related prob-
lems and discover their underlying KCs, producing
models that outperform expert-designed baselines.
Additionally, others (Niousha et al., 2025; O’Neill
et al., 2025; Mittal et al., 2025) have presented early
successful results on the use of LLMs toward KC
extraction.

Researchers have also explored how LLMs can
perform KC extraction during real-time learning
interactions. LLMs can annotate student-tutor dia-
logues with KC tags during conversations, achiev-
ing close to human-level accuracy (Scarlatos et al.,
2025). To gain more granular insights into stu-
dent understanding, test case-informed knowledge
tracing is another approach where individual test
case pass/fail results serve as indicators for LLMs
to better distinguish which concepts students have
mastered versus those they struggle with (Duan
et al., 2025). Additionally, incorporating student
self-reflection prompts can significantly improve
KC tagging performance by LLMs (Li et al., 2024).

While these advances highlight the potential of
LLMs to scale knowledge modeling, their value
depends on expert validation of concept mappings
and alignment with course objectives. If not care-
fully validated, knowledge models that are inac-
curate or poorly contextualized can misguide in-
structors and weaken their ability to design effec-
tive interventions. When integrated responsibly,
however, LLM-generated models can strengthen
learning analytics by giving educators actionable
insights into student progress, revealing common
misconceptions, and informing the design of tar-
geted supports at scale. Future research can focus
on improving the accuracy and reliability of these
approaches across varied datasets and on develop-
ing methods that ensure valid and useful represen-
tations of student knowledge.

6 Discussion

Our review of recent LLM applications in program-
ming education indicates that systems that success-
fully address students’ pedagogical needs tend to
retain human involvement throughout the workflow.
Across formative code feedback, assessment, and
knowledge modeling, successful applications fre-
quently incorporate educators in the workflow to
interpret results, refine automated outputs, or make
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Topic Best Practices

Formative Code Feedback Use LLMs to generate hints, explanations, and error messages that
scaffold in pedagogically-sound ways; balance automation with for-
mative scaffolding to prevent over-complete fixes and overreliance.

Assessment Ensure LLM grading aligns with rubrics and course standards; use
human arbitration for nuanced cases.

Knowledge Modeling When using LLMs for KC extraction and clustering, validate outputs
against expert review of topics and subtopics.

Table 2: Best practices for LLM applications in programming education, synthesized across three focal areas.

instructional decisions. In contrast, fully automated
systems often focus on narrower or more technical
tasks where less contextual judgment is required.
Best practices are summarized in Table 2.

Altogether, the systems surveyed demonstrate
several shared strengths. They address scalability
by automating tasks that would otherwise demand
substantial instructor time, such as grading large co-
horts or generating individualized debugging hints.
Open-source language models have also been in-
corporated into APR pipelines, where evaluation
frameworks use GPT-4-as-a-judge to approximate
expert review at scale. This approach highlights
the benefits of mixed human-and-automated eval-
uation in balancing accuracy, scalability, and cost
in this domain (Koutcheme et al., 2024b, 2025).
Research also incorporates mechanisms that im-
prove consistency and transparency in instructional
support, as seen in BeGrading’s variance analysis
and criteria-aligned feedback generation (Yousef
et al., 2025). Increasingly, these tools integrate
pedagogical considerations into their design, from
scaffolding strategies in debugging systems to feed-
back phrased in ways that guide student reflection
and self-correction.

However, at the same time, performance varies
considerably depending on factors such as prompt
design, availability of course-specific training data,
and evaluation practices. Many LLM-based sys-
tems are not explicitly tuned to instructional objec-
tives, which can lead to technically correct but edu-
cationally unhelpful feedback (Sonkar et al., 2024).
Performance often drops when moving from con-
trolled benchmarks to authentic, noisy student code,
and the opacity of model reasoning can reduce trust
among both students and instructors. There is also
the risk that students may overrely on incorrect
model outputs, undermining opportunities for pro-
ductive learning interactions (Pitts et al., 2025).

7 Limitations and Future Work

The current body of research on LLMs in program-
ming education is still in its early stages, with lim-
itations that can guide future research. While the
focal areas covered in this survey reflect active
areas of research, other domains, such as collab-
orative coding and accessibility support, remain
underexplored. Addressing these gaps can take
place in a larger-scale systematic literature review.
Additionally, relating to the maturity of the current
work reviewed, many of the systems surveyed are
early-stage prototypes or evaluated only in small-
scale settings, with limited evidence on scalability
or long-term learning outcomes.

Technically, while early work has investigated
fine-tuning and reinforcement learning with human
feedback (RLHF) (Hicke et al., 2023), there re-
mains significant scope for advancing model devel-
opment and designing workflows explicitly aligned
with pedagogical goals through course-specific
fine-tuning. Research could also investigate adap-
tive collaboration frameworks where the degree
of automation varies according to task complexity,
user proficiency, and the model’s own confidence
in its output. Further priorities include identifying
and mitigating biases in model outputs, especially
in grading and feedback, and expanding the use
of multi-modal, context-aware interaction that can
adapt feedback to the learner’s current state. While
LLMs can offer an improved learning experience
for programming education, their greatest poten-
tial lies in augmenting rather than replacing human
expertise. Systems that remain adaptable, trans-
parent, and closely aligned with pedagogical best
practices are most likely to deliver meaningful and
sustainable benefits for learners.
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Pavlin G Poličar, Martin Špendl, Tomaž Curk, and Blaž
Zupan. 2025. Automated assignment grading with
large language models: insights from a bioinformat-
ics course. Bioinformatics, 41(Supplement_1):i21–
i29.
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