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Abstract

Alignment from human feedback has played
a crucial role in enhancing the performance
of large language models. However, conven-
tional approaches typically require creating
large amounts of explicit preference labels,
which is costly, time-consuming, and demands
sustained human attention. In this work, we
propose Cognitive Feedback, a framework that
infers preferences from electroencephalogra-
phy (EEG) signals recorded while annotators
simply read text, eliminating the need for ex-
plicit labeling. To our knowledge, this is the
first empirical investigation of EEG-based feed-
back as an alternative to conventional human
annotations for aligning language models. Ex-
periments on controlled sentiment generation
show that CPO achieves performance compara-
ble to explicit human feedback, suggesting that
brain-signal-derived preferences can provide
a viable, lower-burden pathway for language
model alignment.

1 Introduction

Human alignment for large language models
(LLMs) is crucial for generating safe and
preference-aligned outputs. Previous work has
shown that this process helps LLMs better fol-
low human instructions and mitigate harmful be-
haviors (Ouyang et al., 2022). A traditional post-
training approach involves supervised fine-tuning
(SFT) on a pretrained LLM, followed by reinforce-
ment learning from human feedback (RLHF) (Sti-
ennon et al., 2020). Direct Preference Optimization
(DPO) (Rafailov et al., 2024) is an alternative to
RLHEF that skips the reward model and offers more
stable training. Many state-of-the-art models, such
as OpenAl’s o-series, continue to adopt the SFT +
DPO paradigm (Guan et al., 2024), demonstrating
that it remains an effective strategy. However, cre-
ating the preference labels necessary for DPO and
related preference optimization methods remains
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labor-intensive. Tasks such as selecting and train-
ing annotators, establishing trust, and coordinat-
ing large-scale annotation efforts incur substantial
costs (Stiennon et al., 2020; Casper et al., 2023a).

To address these challenges, Reinforcement
Learning from Al Feedback (RLAIF) (Lee et al.,
2023) leverages LLM-generated synthetic feed-
back to substitute for explicit human feedback.
This approach offers lower costs, easier large-scale
data collection, and strong scalability compared
to traditional human-driven methods (Wang et al.,
2022; Madaan et al., 2024; Bai et al., 2022). How-
ever, several drawbacks remain. Depending on
the task, humans may disagree with Al-generated
judgments (Perez et al., 2022; Casper et al., 2023b;
Lee et al., 2023), indicating that synthetic feed-
back may fail to capture genuine human inten-
tions. Moreover, there is a bootstrapping issue:
ensuring the model that produces feedback is it-
self properly aligned is non-trivial (Casper et al.,
2023a), theoretically undermining Al feedback as
a complete solution to alignment. Finally, while
Al-generated feedback can reduce cost, it does so
at the expense of direct human involvement, rais-
ing concerns about whether such signals faithfully
reflect nuanced human values. The question of
which feedback signals, or combinations of such
signals, most effectively align LL.Ms with human
goals remains open (Casper et al., 2023a).

In this work, we propose Cognitive Feedback,
a framework for obtaining preference information
directly from human brain activity. Specifically,
we investigate whether preference signals extracted
from electroencephalography (EEG) can be inte-
grated into preference optimization methods such
as DPO. If feasible, this approach could offer a
more direct and potentially less cognitively de-
manding means of capturing individual responses
than conventional annotation pipelines, as partici-
pants only need to read the presented text without
providing explicit ratings. We focus on the con-
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Figure 1: A diagram depicting Cognitive Feedback (top) vs. Human Feedback (bottom). By decoding human
preferences from biosignals, it enables obtaining implicit human feedback without explicit annotation.

trolled sentiment generation task. This task is well
suited to our study for two reasons: (1) it serves as
a foundational benchmark for preference optimiza-
tion, as it was one of the benchmark tasks origi-
nally employed in DPO or other derivative meth-
ods (Rafailov et al., 2024; Zeng et al., 2024; Amini
et al., 2024), and (2) previous works have demon-
strated that EEG is effective at capturing emotional
responses in NLP (Wang and Zhang, 2025). To
operationalize this idea, we introduce Cognitive
Preference Optimization (CPO), a method that esti-
mates preference information from EEG data col-
lected while participants read text. By relying on
implicit cognitive feedback instead of explicit hu-
man feedback, CPO aims to significantly reduce the
need for manual annotation (Figure 1). Alongside
falling costs and growing accessibility in mobile
EEG, recent large-scale decoding results show clear
data—performance scaling, reinforcing the practical
path for EEG-based alignment (Sato et al., 2024).

In our experiments, we compare two forms of
feedback: standard human feedback requiring ex-
plicit labeling, and implicit feedback inferred from
EEG. Our results show that the CPO-trained model
not only produces more positive outputs than a
baseline model but also achieves performance com-
parable to conventional human feedback settings.
These findings highlight the potential for EEG-
based feedback signals to serve as a novel approach
for LLM alignment.

We summarize our main contributions:

1) We propose Cognitive Feedback, a framework
that replaces explicit annotations with implicit
feedback decoded from EEG collected during
natural reading.

2) We instantiate this framework with a DPO-

based method that uses EEG-decoded prefer-
ences (CPO), empirically demonstrating the
feasibility of using EEG signals to guide pref-
erence optimization on a controlled sentiment
generation task.

3) We compare CPO with conventional human
feedback or AI feedback, illustrating that
EEG-derived feedback can effectively align
language models while potentially reducing
the burden of manual annotation.

2 Related Works

2.1 Cognitively Inspired Natural Language
Processing

Previous studies have shown that incorporating hu-
man physiological signals can boost performance
in a variety of natural language processing (NLP)
tasks. In particular, eye-tracking data has been
employed to improve part-of-speech tagging (Bar-
rett et al., 2016), text simplification (Klerke et al.,
2016; Higasa et al., 2024), dependency parsing
(Strzyz et al., 2019), sentiment analysis (Barrett
et al., 2018), named entity recognition (Hollenstein
and Zhang, 2019), relation classification (Hollen-
stein et al., 2019; McGuire and Tomuro, 2021), text
readability (Gonzalez-Garduifio and Sggaard, 2017,
Hollenstein et al., 2022), and sarcasm detection
(Mishra et al., 2016a,b, 2017). Across these diverse
tasks, leveraging eye-tracking data has consistently
led to notable gains in model performance.
Compared to eye-tracking, relatively few works
have explored EEG signals for NLP. Nevertheless,
several studies have established the effectiveness
of EEG in tasks such as named entity recognition,
relation extraction, and emotion classification (Hol-
lenstein et al., 2019; Ren and Xiong, 2021). In
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Figure 2: Schematic diagram of Cognitive Preference Optimisation. In Step 1, a decoder is trained using a small set
of cognitive signals (e.g., EEG) paired with explicit human feedback; in Step 2, the trained decoder is used to infer
preferences from a larger set of cognitive signals without manual labelling.

addition, Muttenthaler et al., 2020 regularized at-
tention mechanisms with EEG data to improve per-
formance on relation extraction, and Wang and
Zhang, 2025 demonstrated that EEG can be a valu-
able modality for emotion detection. Most of these
earlier approaches relied on encoder-only archi-
tectures, which cannot be directly applied to the
decoder-only models now prevalent in NLP. Be-
cause architectural modifications are typically re-
quired, it is difficult to leverage existing pretrained
models in these methods.

More recently, researchers have begun exploring
how physiological signals can be integrated into
post-training workflows for modern large language
models (LLMs). For instance, Kiegeland et al.,
2024a incorporated eye-tracking feedback into
Direct Policy Optimization (DPO), while Lopez-
Cardona et al., 2024 built a reward model by ap-
plying the synthetic gaze generation method pro-
posed by Khurana et al., 2023 to create a large-scale
dataset of artificially generated gaze data. Addition-
ally, Kiegeland et al., 2024b applied eye-tracking to
supervise a cognitive modeling step via supervised
fine-tuning (SFT). Our work is the first to examine
whether EEG data can be utilized for post-training
alignment in modern LLMs.

2.2 Aligning Large Language Models with
Human Feedback

Recent large language models (LLMs), such as
GPT-4 (OpenAl et al., 2024), Llama 3 (Grattafiori
et al., 2024), Claude 3 (Anthropic., 2024), and

Gemini (Team et al., 2024), have demonstrated im-
pressive capabilities across a wide range of tasks.
These models are typically pretrained on massive
datasets and then undergo post-training to better fol-
low human instructions. One of the most common
approaches for human alignment is Reinforcement
Learning from Human Feedback (RLHF) (Stiennon
et al., 2020), which generally comprises three main
steps: (1) collecting human feedback, (2) training
a reward model (RM) based on that feedback, and
(3) optimizing the LLLM via a reinforcement learn-
ing algorithm such as Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). Since RLHF
was first introduced, numerous improvements have
been proposed, such as fine-grained reward sys-
tems (Bai et al., 2022; Wu et al., 2023b; Dong
et al., 2023; Wang et al., 2023, 2024) and alterna-
tive RL methods that replace the original PPO mod-
ule (Wu et al., 2023a). Beyond RLHF, (Rafailov
et al., 2024) proposed Direct Preference Optimiza-
tion (DPO), an offline RL approach that optimizes
language models directly on preference data with-
out training a separate reward model. DPO has
been shown to provide training stability and match
the efficacy of RLHF. Notably, even state-of-the-
art models continue to adopt these methods, often
combining supervised fine-tuning (SFT) with DPO
to achieve strong performance on a variety of tasks.

However, a primary limitation of RLHF lies in
the difficulty of data collection, which encompasses
issues such as evaluator misalignment, supervisory
challenges, and variable feedback quality (Casper
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Figure 3: Concat text and EEG embedding with ran-
domly initialised special tokens.

et al., 2023a). To address these problems, recent
studies have shifted focus toward Al-generated
feedback. For instance, Reinforcement Learning
from Al Feedback (RLAIF) (Bai et al., 2022) and
its variants (Lee et al., 2023; Zhu et al., 2024; Cui
etal., 2023; Li et al., 2024; Yang et al., 2023) lever-
age synthetic feedback from LLMs, greatly reduc-
ing labeling costs and improving scalability. That
said, these approaches do not fully resolve the draw-
backs of RLHF. Depending on the task, humans
often disagree with Al-generated judgments (Perez
et al., 2022; Casper et al., 2023b; Lee et al., 2023).
The disagreement rate varies widely—for example,
Perez et al. (2022), Casper et al. (2023b), and Lee
et al. (2023) report figures of up to 10%, 46%, and
22%, respectively, in different experiments. Fur-
thermore, it remains unclear which forms of feed-
back signals, or which combinations thereof, most
effectively align LLMs with human goals (Casper
et al., 2023a), indicating a need for continued ex-
ploration.

3 Cognitive Preference Optimization

As outlined in Section 2, cognitive signals on their
own can be noisy; however, they serve to enrich
NLP embeddings by providing more detailed infor-
mation. We adopt this paradigm for Al Feedback:
cognitive signals function as an implicit form of
human feedback, capturing user preferences with
minimal burden on the annotators, while reinforc-
ing the input information used in Al feedback. In
so doing, we attempt a novel feedback approach
that alleviates the limitations of both human and Al
feedback. Figure 2 is an overview of the proposed
method.

Step 1: Training Cognitive Decoder Let X =
(z1,x2,...,z7) be the sequence of combined fea-
ture vectors for a text of length 7. Following pre-
vious work (Lopez-Cardona et al., 2024), each z¢
is formed by concatenating the EEG feature vector

ssT /) ZuCo
Dataset Dataset

ZuCo extract 400 movie reviews:
very positive, very negative, or neutral

Positive Negative

Review Review

Positive Neutral
Review

Review
Convert to paired data based on
ground truth (explicit judging in step 1).

Figure 4: Overview of the preparation of the preference
pair dataset used in our experiments.

e: € R™ (recorded when reading the ¢-th token)
with its text embedding h; € R™ ,i.e. ¢ = [es; hy).
This approach has been shown to yield robust rep-
resentations (Figure 3). We then define a Cognitive
decoder s4(X) € R, where ¢ denotes its trainable
parameters. For training, suppose we have N pairs

{(x© x® N . We want the decoder to

chosen’ “*rejected A 4
assign a higher score to X c(;lz)sen than to Xr(;j)ected.
To achieve this, we minimize:

N . .
£(8) = > 108 (1 + exp(~ [56(XGhen) — 50(X3c)]) )
1=1
. (1)
which encourages s4(X c(;lsen) to be larger than
(4)
S¢(Xrejected)'

Step 2: Collecting Cognitive Feedback Next,
we use the trained Cognitive Decoder to collect
cognitive feedback. Although preference data were
required as supervision in Step 1, Step 2 only re-
quires EEG signals. Specifically, given two candi-
date texts, we compute their scores with Cognitive
Decoder. We designate the text with the higher
score as chosen and the one with the lower score
as rejected, thus creating a pair of texts with cor-
responding preference information. This approach
reduces the need for explicit human annotation.

Step 3: DPO with Cognitive Feedback Finally,
we use the cognitive feedback gathered in Step 2
as preference data to optimize a language model
via Direct Policy Optimization (DPO). DPO maxi-
mizes the likelihood that preferred outputs are se-
lected over less-preferred ones, relative to a ref-
erence model, and it does so without requiring a
separate reward model. Formally, given a model
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where [ is a temperature-like hyperparameter,

ygl)osen denotes the chosen output for the i-th text

(@ and yﬁéj)ected is the rejected output. In this
way, the model is optimized to align its generation
with the preferences inferred from the EEG signals,
effectively reducing the need for explicit human

labels.

4 Experiments

In this section, we empirically evaluate the perfor-
mance of our proposed method by examining three
questions: (1) To what extent can we decode feed-
back from EEG signals? (2) Does the proposed
method perform at a level comparable to conven-
tional, explicit human feedback? (3) Does its per-
formance scale with the size of the EEG datasets
we use? Although no EEG dataset currently exists
for the purpose of LLM preference optimization,
if initial experiments demonstrate the method’s ef-
fectiveness even under limited data conditions, this
would provide motivation for creating larger, more
realistic datasets. This work serves as a first step
toward assessing whether cognitive signals can sup-
plement or even replace traditional forms of human
feedback.

4.1 Preference Pair Dataset Processing

In this work, we extract cognitive signals from an
existing natural reading corpus and convert them
into pairwise preference data (Figure 4). Notably,
the participants’ task did not involve reading pairs
of texts for direct comparison; instead, they read
single texts and attempted to infer their sentiment
labels. This discrepancy between the participants’
reading task and the NLP objectives is a disadvan-
tageous setup that may complicate improvements
in performance.

Dataset We use the Sentiment Reading (SR)
dataset from the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo) (Hollenstein et al., 2018),
which captures both eye-tracking and EEG data

simultaneously. This makes ZuCo particularly suit-
able for NLP tasks requiring word-level EEG fea-
tures. The SR subset comprises about 400 movie-
review sentences, read by 12 participants. These
sentences were drawn from the Stanford Sentiment
Treebank (SST) (Socher et al., 2013), focusing on
clearly positive, negative, and neutral sentences to
ensure representative samples for each sentiment
category. We extract EEG features at the word level
based on Gaze Duration (GD), resulting in 840-
dimensional vectors per word. ZuCo is currently
the largest dataset that meets the requirements of
our experiments.

Conversion to Pairwise Preference Data Be-
cause the SR dataset in ZuCo was not originally
intended for reinforcement learning, we convert
its single-sentence labels into pairwise preference
data. The SR set contains 400 sentences labeled ac-
cording to the Stanford Sentiment Treebank (SST):
140 positive, 137 neutral, and 123 negative. To
avoid data leakage, we split these sentences into
10 folds while preserving their label distribution,
and construct pairwise preferences based on the re-
lations positive > neutral and positive > negative.
Although we could theoretically create all possi-
ble pairs (e.g., each positive sentence paired with
every neutral or negative one), we restrict each
sentence to at most five pairs during training to
mitigate overfitting due to repetitive examples. At
test time, however, we generate as many pairs as
possible. The EEG decoder is trained via 10-fold
cross-validation, and from each test fold we obtain
all qualifying pairs, yielding a total of 3,640 pairs
used as cognitive feedback.

Human Feedback Collection Out of the 400
sentences in the SR dataset, 47 have five-level
sentiment ratings provided by human annotators.
Among these 47 sentences, the ground-truth dis-
tribution is 22 positive, 6 neutral, and 17 negative.
Based on these labels, we create a total of 506
pairs. For each pair, we derive a preference signal
from the five-level sentiment rating, which serves
as human feedback. Because the number of human
feedback samples is relatively small, we select the
same 506 text pairs from the cognitive feedback
set for direct comparison. This ensures that any
difference in performance arises from the feedback
source, rather than from inconsistencies in the un-
derlying data.
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Model

Input Type
Llama-3-8B Llama-3-8B-Instruct
Baseline Text 793+ 0.6 diff (%) 79.1 0.9 diff (%)
Cognitve Decoder Text + EEG  82.9 + 1.1* 4.5 81.6 + 0.5* 3.2
g Text + Noise 754 + 2.8 -49 77.4+23 2.2

Table 1: Cognitive Decoder Accuracy (%) for ZuCo SR dataset. Highest results are in bold; “diff” indicates rate of

improvement and reports statistical significance.
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Figure 5: Performance of policies trained with Cognitive Feedback. Direct comparison with policies from other
feedback types and indirectly through comparison with the base model.

4.2 Settings

Cognitive Decoder The Cognitive Decoder takes
as input a sequence of embeddings derived from
text and cognitive signals, producing a higher score
for texts deemed more positive. Following the
methodology of (Lopez-Cardona et al., 2024), we
used the pretrained Llama-3-8B and Llama3-8B-
Instruct (Grattafiori et al., 2024) models as de-
coders. However, rather than the standard classifi-
cation head for next-word prediction, we replaced
it with a regression head that outputs a scalar score
(Touvron et al., 2023).

Policy Model The policy model is optimized
to generate more positive movie reviews. We
use GPT-2-large (774M parameters)! as our base
model. We found that gpt-2-medium produced
lower quality text, so we used a larger model. These
findings are similar to those in (Rafailov et al.,
2024). During training, we employ a common
prompt, “movie review: ”,to encourage consis-
tent outputs.

lhttps://huggingface.co/openai—community/
gpt2-large

Tasks We empirically evaluate the performance
of our proposed method using a single controlled
sentiment generation task (Rafailov et al., 2024),
for which we employ two types of prompts. The
first prompt, referred to as the “SST Prefix Prompt,”
leverages the Stanford Sentiment Treebank dataset:
we select 50 neutral sentences and 50 negative
sentences (none of which overlap with the ZuCo
SR dataset), and provide only the initial 10 words
of each sentence (the prefix) to the policy model,
which then generates the continuation. The sec-
ond prompt, referred to as the “Training Condition
Prompt,” aligns more closely with our training con-
ditions. In both cases, we allow up to 50 tokens to
freely continue from each prompt.

Evaluations We conduct two types of evalua-
tions on the texts generated for the tasks described
above. The first is an llm-as-a-judge approach,
where we use GPT-40-2024-11-20 to select which
model produces the more positive output. We eval-
uate the output with the following prompt: “Which
is the more positive movie review? Please
write this down as (A) or (B). If you
feel equally positive, answer (C).” Based
on these selections, we compute an adjusted win
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Figure 6: Correspondence between the number of training samples and performance. Results with training prompts

(left) and with SST prefixes (right).

rate to assess each policy model. In addition to
comparing a model trained with human feedback
against one trained with cognitive feedback, we
also compare each trained model with an untrained
base model. The latter comparison indirectly eval-
uates the two trained models’ performance. The
second method employs a sentiment classification
model to verify that the generated text is genuinely
positive. We adopt a RoBERTa-large (Hartmann
et al., 2023) fine-tuned on the IMDD dataset, which
uses the probability score for the positive label in a
binary classification to evaluate each generations.

4.3 Results

Decoding Feedback from EEG Signals We il-
lustrate the performance of the EEG decoder in
Table 1. In the Baseline setting, no EEG features
are used as inputs; rather, the model predicts scores
solely from text embeddings. In our experiments,
this simple text-based output serves as the “Al Feed-
back.” In contrast, the Cognitive Decoder takes
both text embeddings and EEG features as its input
representations. To verify the contribution of EEG
data to the decoding task, we also experimented
with random noise vectors that have the same di-
mensionality as the EEG embeddings. Our results
indicate that combining text information with EEG
features yields higher-accuracy feedback decoding,
consistent with findings in prior research on cogni-
tively inspired NLP. Moreover, the fact that random
noise not only fails to improve performance but de-
grades it suggests that the EEG features indeed
contain task-relevant information. We use the out-
puts decoded by the Cognitive Decoder, which we
refer to as “Cognitive Feedback,” to train the policy
model. Meanwhile, the test outputs decoded under
the Baseline setting are used as “Al Feedback™.

Cognitive Feedback vs. Human Feedback vs.
AI Feedback We show the performance of the
policy trained with cognitive feedback, compared
to those trained with human feedback and Al feed-
back, in Figure 5. The adjusted win rate is com-
puted using the “llm-as-a-judge” approach and re-
flects the average score across two prompt types,
evaluated over five trials. Note that human feed-
back is available for only 47 out of 400 sentences
in the ZuCo SR dataset, representing only a portion
of the entire dataset. For fairness in comparison,
the data used for other feedback types is restricted
to this same subset. Despite the smaller training set,
the policy trained with cognitive feedback outputs
more positive text than the base model, which does
not undergo reinforcement learning, and achieves
a higher win rate. Its performance is comparable
to, or slightly surpasses, that of the other feedback
types. One possible explanation is that the cog-
nitive feedback approach, much like Al feedback,
draws on text embeddings but further leverages
EEG signals to augment these embeddings, thereby
potentially providing a more powerful input repre-
sentation.

Scaling to number of training samples. Fig-
ure 6 illustrates how performance changes as we
increase the number of training data pairs. In both
prompt types, performance consistently improves
with a larger number of pairs. Before undergoing
reinforcement learning, the base model generates
positive outputs more than 70% of the time for
training prompts and around 80% of the time for a
neutral SST prefix. However, for a negative prefix,
it produces proportionally more negative outputs,
indicating relatively natural behavior. As training
progresses, however, the model gradually shifts
toward producing positive continuations, even for
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SST Prefix (Negative):

Original: Do we really need a 77-minute film to tell us exactly why a romantic relationship
between a 15-year-old boy and a 40-year-old woman doesn’t work? - NEGATIVE

Base model: Do we really need a 77-minute film to tell us what happened? A quick glance at this
Wikipedia page gives a bit of information. - NEGATIVE

CPO: Do we really need a 77-minute film to tell us everything that we need to know about
this game? Absolutely! The best part of this movie is how much the players of this
great team seem to get into their characters. - POSITIVE

Training Prompt

Base model: movie review: [ was a little apprehensive. "Avengers: Age of Ultron" is a great film.
There are some really great characters and moments, and the story is a nice blend of
action, comedy, and drama. - POSITIVE

Base model: movie review: I’'m still not sure how to feel about the new video game from the
creators of Batman: Arkham Origins. While it has all the trappings of a video game I'd
rather not play — no cutscenes, no stories. - NEGATIVE

CPO: movie review: ""A dazzling and stirring gem that will continue to inspire generations
of filmgoers."" — James Bobin, National Board of Review - POSITIVE

CPO: movie review: A smart, witty, and highly entertaining film about a family’s remarkable

journey of faith and growth. - POSITIVE

Table 2: Example of a model trained by the proposed method and the generated text of the base model. Each
sentence was labelled using the sentiment classification model used to evaluate the model.

negative prefixes. Alongside the observed improve-
ment in win rate, it is clear that the model increas-
ingly favors affirmative or positive statements.

5 Discussion

Examples of text generated by the proposed method
are presented in Table 2. The CPO model shown in
this table was trained with the maximum number
of available preference pairs, representing its best-
performing configuration in our experiments. For
prompts with the “SST prefix” type, even when the
initial text begins with a clearly negative statement,
the CPO model often changes the tone partway
through the continuation and shifts the overall sen-
timent toward a more affirmative or optimistic di-
rection. As a result, the generated sentences some-
times receive sentiment labels that differ from those
assigned to the original prompt. For the “train-
ing prompt” type, the base model generally pro-
duces continuations that are emotionally neutral
or slightly positive, but these outputs can still be
classified as neutral or negative by the sentiment
classifier. In contrast, the CPO model consistently
produces continuations in this setting that are clas-
sified as positive, indicating that the EEG-derived

feedback effectively steers generation toward more
favorable sentiment across both prompt types.

6 Conclusion

In this paper, we proposed Cognitive Preference
Optimization (CPO), a novel framework for align-
ing large language models (LLMs) with human
preferences inferred from electroencephalography
(EEG) signals. By training a cognitive decoder to
extract pairwise preferences from a natural read-
ing corpus, we introduced a method that reduces
reliance on explicitly labeled data. Our results sug-
gest that EEG-derived feedback can successfully
guide policy optimization for sentiment generation,
producing outputs that match or even rival models
trained with conventional human feedback. The
proposed method can use the scalability of tradi-
tional Al feedback while obtaining human feedback
in the form of readings that are less burdensome
for the operator. Future experiments in a more
realistic setting will require the construction of a
large dataset of cognitive signals for the purpose of
reinforcement learning of LLMs.
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Limitations

The experiments in this study focus only on a con-
trolled sentiment generation task, so it is not yet
clear whether EEG-derived feedback is effective
for more complex or open-ended tasks. The current
method also estimates preferences only in a pair-
wise comparison setting, without exploring scalar
or multi-dimensional feedback that could provide
richer training signals. We report performance with
GPT-2-large for generation and Llama-3-8B for
EEG decoding, chosen given the modest corpus
size; effectiveness is not guaranteed when larger
baseline models are used.

Ethical Considerations

This work uses only publicly available and prop-
erly licensed datasets that permit research use. All
datasets were used in accordance with their in-
tended research purposes. Al tools were used solely
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