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Abstract

Financial document validation in production—
such as payroll auditing, tax compliance, and
loan underwriting—demands exceptional ac-
curacy, consistency, and reproducibility un-
der strict enterprise constraints. In prac-
tice, documents arrive with heterogeneous lay-
outs and formats, semantically rich, context-
dependent content, and embedded business
rules that current pipelines struggle to pro-
cess reliably. We introduce LAVA (Logic-
Aware Validation and Augmentation)—a mod-
ular, backbone-agnostic pipeline built on multi-
modal large language models—that integrates
a four-stage design: document-rule retrieval,
layout-preserving information extraction, aux-
iliary metadata enrichment, and auditable sym-
bolic/arithmetic verification. LAVA supports
robust rule grounding, fine-grained error attri-
bution, and consistent, traceable end-to-end ex-
ecution—capabilities essential for high-stakes
deployment. Evaluated on a large real-world
benchmark with diverse financial documents
and dozens of expert-curated validation rules,
LAVA outperforms baselines in hallucination
control and edge-case handling while maintain-
ing efficient token usage, demonstrating practi-
cality for high-volume, time-critical validation.

1 Introduction

Regulatory penalties, financial losses, and repu-
tational damage can all result from a single er-
ror in financial document validation, making accu-
racy, consistency, and auditability non-negotiable.
Financial institutions process millions of docu-
ments daily across workflows such as loan un-
derwriting, payroll auditing, tax compliance, and
fraud detection. The challenge is acute for semi-
structured documents like statements, invoices, and
tax slips, which span multiple pages, exhibit irregu-
lar layouts, encode domain-specific business logic,
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and often arrive as noisy scans or non-standard
PDFs (Bhattacharyya et al., 2025; Ding et al.,
2024a; Xu et al., 2020; Chen et al., 2024).

Recent years have witnessed rapid progress in vi-
sually rich document understanding through layout-
and structure-aware pretraining of multimodal
large language models (MLLMs). LayoutLM (Xu
et al., 2020) pioneered spatial-textual joint encod-
ing, followed by DocFormer (Appalaraju et al.,
2021), DocLLM (Wang et al., 2024), mPLUG-
DocOwl2 (Hu et al., 2025), and ROP (Zhang
et al., 2024), advancing multimodal architectures
for structural representation. This shift moves
beyond pure text modelling to multimodal docu-
ment intelligence. However, evaluations remain
dominated by perceptual and question answering
(QA) tasks, probing reasoning in a narrow, task-
specific manner while rarely accessing validation—
reasoning that tests both interpretation and reliabil-
ity under structured and cross-field constraints.

Enterprise-grade document validation presents
requirements beyond those of perception or rea-
soning alone. It calls for symbolic rule enforce-
ment, cross-field consistency, and multi-step logi-
cal coherence—capabilities only partially reflected
in existing benchmarks (Wang et al., 2023b; Li
et al., 2025; Borchmann et al., 2021). Recent
datasets have expanded evaluation to layout-aware
perception and understanding (Zhu et al., 2024;
Wu et al., 2023; Mathew et al., 2021; Stanistawek
et al., 2021; Simsa et al., 2023), but compliance-
critical validation logic remains underexplored. In
practice, enterprises often patch the gap by pairing
general-purpose models with rigid rule-based mod-
ules (Shende et al., 2024). Yet even state-of-the-art
models that excel at extraction or understanding
exhibit ongoing limitations when directly applied
to validation: hallucinations remain common, and
reasoning traceability is limited. Adaptation across
regulatory schemas is fragile, and computational
costs escalate with token usage at enterprise scale.
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These shortcomings make validation not merely an
extension but a distinct and emerging frontier of
document intelligence—one that demands frame-
works where accuracy, efficiency, audit readiness,
and robustness are central requirements.

Our Work. To address these challenges, we
present LAVA (Logic-Aware Validation and
Augmentation), a modular and efficient frame-
work for verifiable reasoning over semi-structured,
layout-complex financial documents, designed for
real-world applicability, fine-grained error attri-
bution, and rapid adaptation and reproducibility
across structurally similar collections. Agnostic
to backbone models, LAVA extends beyond static
benchmarks by integrating (i) layout-informed
knowledge extraction preserving structural cues,
(i1) domain-aware augmentation with contextual
metadata, and (iii) arithmetic and symbolic verifica-
tion ensuring factual alignment with business rules,
orchestrated in a four-stage system of retrieval, ex-
traction, augmentation, and hybrid reasoning.

We evaluate LAVA on a real-world large-scale
industrial benchmark with validation rules curated
by senior industry experts reflecting real regulatory
conditions. Results show competitive gains in fac-
tual accuracy and symbolic correctness, together
with lower computational overhead than baseline
MLLM pipelines, demonstrating robustness and
cost-effectiveness in realistic financial validation
scenarios.

Our main contributions are:

* Task and System. We formalize financial
document validation as a multi-document rea-
soning task—Ilargely absent in existing bench-
marks—and instantiate it in LAVA, a novel
modular framework designed for accurate and
auditable validation of semi-structured finan-
cial documents.

* Reasoning Strategy & Auditability. We de-
sign a controllable hybrid reasoning frame-
work unifying factual/contextual templates
with symbolic and arithmetic tasks via explicit
formula generation, with an external checker
fallback ensuring correctness, thereby enhanc-
ing accuracy, interpretability, and operational
robustness.

» Evaluation. We propose a comprehensive
evaluation framework covering symbolic cor-
rectness, factual alignment, and hallucination
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control for fine-grained reasoning assessment
in realistic validation workflows.

2 Related Work

Visually Rich Document Understanding. Re-
cent work has shifted from extraction pipelines to-
ward LLM-centric modeling that integrates layout
and visual cues. DocLayLLM (Liao et al., 2025)
adds visual patches and 2D positional tokens, Vis-
DoM (Suri et al., 2025) combines multimodal re-
trieval with consistency constraints, 3SMVRD (Ding
et al., 2024b) aligns fine- and coarse-grained
signals via multi-task distillation, and Layout-
LLM (Fujitake, 2024) applies instruction tuning
for unified document tasks. These advances im-
prove representation and generalization; our work
is complementary, focusing on auditable valida-
tion—explicit symbolic checks, cross-field consis-
tency, and reproducible reasoning traces required
in compliance-critical workflows. Our framework
is model-agnostic, plugging into any MLLM back-
bone to introduce validation as a controllable layer.

Layout-Guided Document Encoding. Back-
bones such as LayoutLMv3 (Huang et al., 2022),
FormNet (Lee et al., 2022, 2023), and Doc-
Former (Appalaraju et al., 2021) combine textual,
spatial, and visual cues through large-scale pre-
training. These excel at form-style entity extraction
but remain embedding-level and not optimized for
symbolic validation. In contrast, our framework
leverages layout-derived structures to enable mod-
ular business rule checks and reproducible logic
tracing, addressing auditability without massive
training effort.

LLM Verification and Rule-based Valida-
tion. Progress in LLM factuality—via self-
checking (Dhuliawala et al., 2024), retrieval-
augmented prompting (Qin et al., 2025), symbolic
grounding (Hennigen et al., 2024), and rectifica-
tion (Kang et al., 2024)—has improved reliabil-
ity in clean text and formal reasoning (Liu et al.,
2025). Yet these methods falter on noisy, hetero-
geneous documents with long-range dependencies
and embedded business rules. Traditional rule en-
gines (e.g., Drools) provide transparency but fail
under layout variation, while hybrid LLM-rule
or knowledge graph systems (Vertsel and Rumi-
antsau, 2024; Sadowski and Chudziak, 2025) trade
flexibility for interpretability. Our framework in-
stead couples symbolic verification with layout-
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Figure 1: Overview of LAVA. The architecture comprises two parallel pipelines—document processing and rule
grounding—interacting via bidirectional constraints (solid arrows: main data flow; dashed arrows: auxiliary
exchange). The document-processing track performs retrieval, extraction, and augmentation to produce layout-
preserving structured content with enriched metadata. The rule-grounding track retrieves, classifies, and dispatches
applicable validation rules to either the Symbolic Reasoner or Arithmetic Processor, depending on reasoning type.

and metadata-informed prompting, merging rule
transparency with neural adaptability, making it fit
for compliance-critical validation.

3 Method

Problem Formalization. We define financial
document validation as a human-in-the-loop copi-
lot task, where the system assists users (e.g., un-
derwriters, compliance officers, fraud analysts) in
verifying whether a set of financial documents (e.g.,
from a mortgage application) satisfies certain busi-
ness rules under real-world conditions of layout
complexity, domain-specific logic, and noisy input.

Inputs. The system takes as input: (1) a docu-
ment set D = {dy,...,dy} in scanned PDF or
image format, where each d; is a semi-structured
financial document (e.g., bank statement, tax form),
and (2) a validation intent ¢, a user-specified veri-
fication goal in natural language (e.g., Does gross
income exceed loan threshold?).

Objective. The system maps (g, D) to a set of
validation outputs V = {v;}, where each vy, in-
cludes: a subset of supporting documents Dy, C D,
a set of retrieved business rules Ry C R from a
predefined rule library, a binary verification label
yr € {Pass,Fail}, and an explanation trace e
for auditability. This formulation supports multi-
document, logic-grounded reasoning while ensur-
ing modular, interpretable validation aligned with
enterprise workflows.

Architecture. Figure 1 illustrate LAVA architec-
ture, which employs a modular design paradigm
to address the complexity of enterprise-grade pro-
duction systems. Although this design involves
the integration of multiple components, it yields
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critical advantages for deployment. Decoupling
the workflow isolates potential points of failure
within individual modules, enabling targeted and
independent validation and thereby systematically
reducing the long-term verification cost and over-
all operational overhead. Furthermore, the ability
to debug, update, or replace modules without sys-
temic disruption enhances maintainability—a stark
contrast to the challenges of managing opaque, end-
to-end models. This design philosophy is therefore
foundational to building a robust, auditable, and
scalable system fit for the rigors of real-world fi-
nancial validation.

3.1 Document and Validation Retrieval

We jointly describe the first two modules, as they
operate in a tightly coupled fashion to determine
relevant document-rule pairs for downstream ex-
traction. Given a user-specified validation intent q
and a document set D = {dy, ..., dy}, the mod-
ules select a subset D,, C D that is temporally
valid and relevant to the task, along with a set of ex-
ecutable business rules R, = {r1,...,ry}. Both
subsets are tailored to the verification goal through
a bidirectional constraint mechanism, ensuring only
applicable document-rule pairs are forwarded for
knowledge extraction and augmentation.

Document Retrieval. Documents are first pre-
processed to normalize layout and correct visual ar-
tifacts (e.g., OCR errors, rotation, skew) (Boudraa
et al., 2020), preserving alignment and structural fi-
delity for downstream modules. Each document d;
is then classified into a predefined document type
using a lightweight image-based classifier such as
TinyViT (Wu et al., 2022), as financial documents
of the same type generally share consistent page-



level features. Recognized types are forwarded to
Validation Retrieval to constrain rule applicability.
Document-level metadata (e.g., date, coverage
period) is extracted using a template-guided NER
pipeline with regex patterns and rule-based heuris-
tics. Temporal constraints parsed from the val-
idation intent in the next module (e.g., “past 3
months”) are applied to filter out documents out-
side the relevant time window. In addition, applica-
ble document types extracted from retrieved rules
in Validation Retrieval are passed back to further
prune documents irrelevant to all candidate rules.

Validation Retrieval. Given ¢, this module re-
trieves a subset of rules R, from the predefined
library R, based on semantic relevance and docu-
ment compatibility. The rule library is enriched
with metadata specifying applicable document
types. Lightweight LLMs can parse ¢ to extract
temporal constraints, while a sentence encoder
(e.g., Sentence-BERT (Reimers and Gurevych,
2019)) encodes q to retrieve top-K semantically
relevant rules. Retrieved rules are then filtered
using document-type constraints from Document
Retrieval, and their own document-type metadata
is fed back to further refine D,,.

In conclusion, temporal and semantic cues from
q filter the document set, while recognized doc-
ument types and rule metadata eliminate inappli-
cable rules. This closed-loop filtering minimizes
irrelevant candidates on both sides, reduces reason-
ing load, and improves accuracy without sacrificing
interpretability, ensuring downstream processing
operates on the most relevant and valid document-
rule pairs.

3.2 Knowledge Extraction

This module transforms each filtered document
d; € D, into a compact, layout-aware hybrid repre-
sentation for downstream reasoning. Instead of flat
key—value pairs, we produce a structured markup
that encodes page layout, visual grouping, and field
dependencies, serving as a bridge between scanned
formats and language-model-friendly input.

Structured Modality Conversion. To capture
the rich visual and semi-structural semantics of
financial documents, we adopt an HTML-like
markup constructed from parsed layout and OCR
signals. Prior work shows that retaining tabu-
lar alignments, hierarchical sections, and field
groupings improves reasoning fidelity (Sui et al.,
2024), but raw markup is insufficient for noisy
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scans. We therefore augment it with: (1) structural
parsing via document analysis tools (e.g., Layout-
Parser (Shen et al., 2021), LayoutLMv3 (Huang
et al., 2022)), AWS Textract; (2) OCR-based re-
covery (e.g., Tesseract OCR (Smith, 2007)) for
free-form or scattered content, including recon-
struction of long paragraphs into coherent spans;
(3) proximity-based grouping to merge fragmented
tokens into coherent semantic units; and (4) vi-
sual region preservation for inherently non-textual
content (e.g., charts, stamps, signatures), where
candidate regions are identified from layout cues
(e.g., low text coverage or OCR confidence) and
retained as image patches for the MLLM input.

Content Filtering. The extracted representation
often contains much noise from headers, footers,
boilerplate blocks, or placeholders. We prune
such elements using DOM structure, field labels
(e.g., Name, Address), and positional cues, reduc-
ing token usage while improving attention focus
for model prompts.

By combining structure-preserving markup, se-
mantic recovery, selective visual preservation, and
noise reduction, this module delivers a high-fidelity
hybrid form that maintains interpretability while
enabling reliable downstream reasoning.

3.3 Information Augmentation

This module enriches downstream reasoning by
injecting auxiliary signals from both documents
and retrieved rules. It serves two purposes: routing
rules to the appropriate verification pathway and
augmenting prompts with rich metadata to improve
model understanding.

Each rule r, € R, is classified as symbolic
(context-dependent logic) or arithmetic (numeric
computation) via a lightweight LLM query, avoid-
ing brittle heuristics. In parallel, metadata is ad-
ditionally extracted from layout-preserving out-
puts: language (via token-based detection), doc-
ument types (from retrieval module), and domain-
specific terms (e.g., withholding or CPP ') detected
through lexical and structural heuristics targeting
low-frequency tokens, abbreviations, and left-hand-
side predicates in field labels or rule expressions.
This metadata is distilled into concise semantic clar-
ifications for interpretability and disambiguation.
The resulting signals are incorporated into prompt
headers or reference blocks, sharpening alignment

'CPP refers to the Canada Pension Plan, a mandatory
pension contribution in Canadian payroll systems.
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with rule semantics and improving precision in
complex validation scenarios, while keeping the
verification loop efficient.

3.4 Validation

To support diverse verification needs and enhance
the reliability, we adopt a bifurcated framework
with two sub-modules: Arithmetic Processor for
numerical tasks (e.g., verifying tax deductions, cal-
culating gross revenue), and Symbolic Reasoner
for all other general rules requiring semantic and
contextual reasoning.

Arithmetic Processor. As illustrated in Figure 2,
when rules involving arithmetic or numerical com-
putation are routed to this sub-module, instead of
relying on LLMs for direct computation—prone to
hallucinations and numeric instability, we adopt a
tool-use paradigm where the model is used solely
for generating a task-specific formula, which is
then executed by a deterministic external engine
such as a Python interpreter (Gao et al., 2023; Chen
et al., 2022). To ensure alignment between the for-
mula and the validation semantics, we introduce a
fallback auditing loop: the rule and generated for-
mula are reviewed by a secondary LLM "checker".
If a mismatch is detected, the formula is regener-
ated, conditioned on the previous (incorrect) ver-
sion as a negative example. This loop improves
robustness by systematically detecting and correct-
ing errors, mitigating hallucinated computations
and flawed reasoning pathways.

Symbolic Reasoner. This sub-module handles
semantic or structural reasoning. In contrast to
Arithmetic Processor, it directly delegates rules to
a general-purpose model, as such reasoning falls
within the model’s inherent strengths. This design
choice reduces integration overhead and inference
latency, while remaining sufficient for a wide range
of non-arithmetic verification scenarios.

)

Prompt Excerpt for Symbolic Reasoner

Excerpt: only key parts are shown below, simplified for illustration.

You are an assistant verifying {document_types} documents (in
{languages}), with extracted {knowledge_names} ...

Instructions:

1. Use {structured_representation} as references for identify-
ing the layout...

2. Use {semantic_fields} as references for explicit context...

n. Output as follows:
* Only output the fields requested in the validation rule...
* Format: empty =""; date = YYYYMMDD...
Example: {example_output}
Task Input:
{validation_rule}
e {term_1}: {definition_1}, ..., {term_n}: {definition_n}

Output: Return JSON only. No explanation or preamble...

Figure 3: Prompt excerpt for Symbolic Reasoner, dy-
namically built from the retrieved validation rule, ex-
tracted knowledge, and augmentation components. Full
versions for both Arithmetic Processor and Symbolic
Reasoner are provided in Appendix A.1.1 and A.1.2.

Prompts. We adopt our prompt construction
strategy in meta-prompting fashion (Zhang et al.,
2023) that presents task-relevant information in
a step-wise and zero-shot format rather than re-
lying on illustrative examples. Unlike chain-
of-thought (Wei et al., 2022), few-shot prompt-
ing (Brown et al., 2020), or self-consistency (Wang
et al., 2023a), our approach avoids brittle curated
examples, which struggle to generalize across het-
erogeneous financial documents (Zhou et al., 2023),
and removes high inference cost of example-heavy
prompting.

To ensure verification prompts are precisely tai-
lored to both the rules and associated documents,
we implement a dynamic, template-based prompt
construction system. It integrates supplemental in-
formation from upstream modules with the rule
to populate flexible prompt templates. By lever-
aging templating libraries like Jinja, we employ
programmatic, code-like logic to govern the inclu-
sion and granularity of metadata based on both
document layout and task semantics. As illustrated



in Figure 3, this mechanism produces prompts that
are maximally informative while remaining token-
efficient and robust to both arithmetic and symbolic
reasoning tasks. By structuring all inputs accord-
ing to rule logic, metadata, and knowledge, our
approach generalizes well across heterogeneous fi-
nancial documents. The resulting system remains
accurate, cost-efficient and context-aware, support-
ing scalable and reliable verification tasks.

4 Experiments

We evaluate LAVA on real-world Canadian mort-
gage application documents sampled from a propri-
etary database to assess the system within a consis-
tent validation scenario. The set includes multiple
document types and around 1,000 scanned PDFs or
images—such as tax forms, bank/investment state-
ments, and legal agreements—selected for their
semi-structured formats, diverse layouts, and rich
logical dependencies (see A.4). This focused yet
heterogeneous domain enables rigorous testing of
LAVA’s ability to produce accurate outputs and
avoid false positives, particularly where heuristic,
zero-shot, and few-shot LLM-based methods strug-
gle with layout variability or reasoning complexity.
To ensure rigorous and interpretable evaluation,
we adopt rule-level testing rather than intent-level,
with validation rules drawn from a curated library
provided by business stakeholders. Each rule cor-
responds to an atomic validation unit and is ap-
plied only to the document types for which it is
defined. For fairness and comparability, document
type metadata is included with the dataset, since
accurate validation cannot be assessed without first
matching each document to its correct rule set; this
ensures that all pipelines are evaluated under the
same conditions, without document and validation
retrieval. Ground-truth outcomes are manually an-
notated by domain experts, and automatic evalua-
tion is complemented by manual audits from busi-
ness collaborators, ensuring both accuracy and in-
stitutional credibility in line with production-grade
expectations for document validation.

4.1 Implementations

To ensure fairness, all baselines, LAVA, and
LAVA’s ablation variants use Claude 3.7 Son-
net (Anthropic, 2024) as the validation compo-
nent. We configure the model with a maximum re-
sponse length of 5120 tokens and enable reasoning
(thinking) with a budget of 1024 tokens, allowing
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the model to better understand complex validation
rules and generalize across documents with diverse
layouts and edge scenarios. For LAVA’s Arithmetic
Processor, the maximum retry number 7 in the fall-
back loop is set to 2, to ensure a practical trade-off
between error correction and computational effi-
ciency. And all other LLM parameters are kept
identical across evaluations.

For document analysis in experiments, we prior-
itized a methodology that ensures our findings are
portable, reproducible, and immediately accessible.
To this end, our experiment exclusively utilizes
oft-the-shelf tools that do not require custom train-
ing or dataset-specific fine-tuning. A foundational
layer of raw text and spatial information was es-
tablished for the experiment using the open-source
Tesseract OCR (Smith, 2007). For the processing
of structural semantics, such as tables and forms,
the publicly available AWS Textract service was
employed. This consistent and transparent tooling
strategy not only ensures that the comparative eval-
uation in Sections 4.4 and 4.5 fairly assesses the
core architectural and reasoning capabilities of the
different pipelines, but also directly supports other
researchers to easily replicate and build upon our
results.

4.2 Validation Rules

We group several dozen validation rules into five
categories, reflecting distinct reasoning and com-
putation demands. These categories assess the
pipeline’s ability to extract information, integrate
rules, and perform contextual reasoning. See A.2
for complete versions of some representative rules.

4.3 Evaluation Metrics

Our evaluation metrics comprehensively assess rea-
soning quality across all pipeline stages. Given the
distinct characteristics of our compliance-sensitive
validation task compared to common document
understanding settings, we design task-specific
metrics with particular emphasis on suppressing
false positives—a critical industrial concern caus-
ing costly investigations, delays, and loss of trust.
We evaluate baselines from three perspectives to
cover these aspects. Their formal definitions are
given in Appendix A.3, along with visual examples
showing how each metric manifests in an illustra-
tive sample document.

Hallucination Control. We report the percent-
age of responses with two failure types:



Metric Rule | VLM + Field-Level OCR | LLM + Field-Level OCR | LLM + Enhanced OCR LAVA
Group
Factual Ch 0.03 0.03 0.01 0.01
Hallucination Cso 0.08 0.10 0.04 0.03
Rate Cs 0.31 0.33 0.30 0.18
Cy 0.05 0.08 0.05 0.03
Cs 0.28 0.30 0.15 0.05
Numerical Cy N/A N/A N/A N/A
Infidelity Cs 0.08 0.04 0.03 0.01
Rate Cs 0.33 0.31 0.20 0.10
Cy 0.11 0.08 0.05 0.00
Cs 0.25 0.10 0.10 0.00
Edge Case Ch N/A N/A N/A N/A
Error Rate Cso 0.27 0.25 0.23 0.02
Cs 0.86 0.90 0.82 0.17
Cy 0.46 0.34 0.43 0.11
Cs 0.89 0.92 0.86 0.08

Table 1: Performance of baselines across three metrics and five validation rule categories (C1—C'5). C: content ex-
traction; Co: conditional logic reasoning; C's: multi-step logic reasoning; C'y: unconstrained arithmetic consistency
checking; Cs: constrained arithmetic consistency checking.

* Factual Hallucination Rate: Content not
grounded in the source document, such as fab-
ricated values or formulas, and unsupported
claims.

* Numerical Infidelity Rate: Incorrect quanti-
tative reasoning or numerical derivations, such
as incorrect formula execution results and con-
clusions inconsistent with the given numerical
evidence.

Edge Case Handling. This metric measures fail-
ure rate on complex or exception-driven scenar-
ios, about 10%—-25% of document-rule pairs. Such
cases require adaptive logic reasoning beyond fixed
rules and broader logic coverage for diverse edge
conditions. As these challenges often overlap, we
report a single rate to capture both, where higher
values indicate weaker generalization and reason-
ing flexibility.

Token Cost. We measure input and output to-
kens per rule check to assess computational effi-
ciency and deployment cost, highlighting trade-offs
between reasoning quality and efficiency across
pipelines. For each document-rule pair, token
counts are recorded and aggregated over the full
evaluation set.

4.4 Comparative Baselines

Here, Field-Level OCR denotes OCR output con-
taining only individual field texts and their spatial
information (e.g., from bounding boxes), without
higher-level structure such as tables, sections, or
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relational links between fields. This representation
preserves raw layout signals but omits the struc-
tured markup used in LAVA’s pipeline.

We consider three representative settings:

* VLM + Field-Level OCR: Document images
with Field-Level OCR in a VQA setup, where
OCR text aids visual grounding.

* LLM + Field-Level OCR: Same OCR con-
tent without images, measuring performance
from textual—spatial data alone in a QA setup.

e LLM + Enhanced OCR (no structural
markup): OCR refined with domain-specific
cleanup and recovery steps identical to
LAVA’s extraction, but without structured
markup, isolating LAVA’s impact of structured
representation and modular reasoning.

Since OCR and markup information might intro-
duce noise (e.g., when text is misrecognized), we
also examine an OCR-free configuration to assess
the impact of textual knowledge. This setting is
evaluated in ablation study (Section 4.5), where all
other modules are preserved but the model oper-
ates only on document images. It is excluded from
the baseline set because the baselines are intended
to preserve textual content in some form for fair
comparison, whereas this variant probes the lim-
its of visual-only reasoning and represents a more
extreme ablation of the pipeline.

As shown in Table 1, LAVA achieves the lowest
failure rates across all metrics and categories, with



especially large gains in multi-step logic reasoning
(C'3) and constrained arithmetic consistency check-
ing (C5), reducing hallucination and numerical er-
rors by over 10% compared to the best baseline.
And it records approximately 0% Numerical Infi-
delity Rate in three of four categories. LAVA also
substantially lowers edge case errors, indicating
strong generalization under layout ambiguity and
rare conditions. Common VQA and QA settings
represented by the baselines underperform in this
compliance-oriented validation task due to their
limited handling of layout variability and domain-
specific rules. These results highlight the benefit
of structured prompts and modular reasoning in
suppressing unsupported content generation and
enabling reliable multi-step, context-aware reason-
ing over structural data.

We also sampled a subset of DocVQA (Mathew
et al., 2021) documents with five manually defined
rules each, where LAVA also achieved strong per-
formance, confirming that our framework readily
transfers to public data. More importantly, real-
world validation tasks—where both documents and
rules are richer in semantics, context, and reasoning
complexity—pose substantially greater challenges,
where our approach proves particularly effective
under industry-level conditions.

4.5 Ablation Study

To assess the contribution of each core module in
LAVA, we performed an ablation study using a uni-
fied metric: the percentage of responses that fail
to exactly match the ground truth. This stricter
measure was chosen because LAVA’s earlier evalu-
ations achieved low error rates in category-specific
metrics, so a single comprehensive indicator bet-
ter reveals performance drops when modules are
altered or removed.

We evaluated six configurations: the full LAVA
system; three Knowledge Extraction (KE) vari-
ants; and versions without Info Augmentation (IA)
or Arithmetic Processor (AP). The KE variants
progressively reduce structural detail and change
input format:

1. Markdown KE replaces LAVA’s structured
markup with Markdown-like fashion.

2. Plain-text KE flattens layout into text aligned
to mimic visual spacing but without structural
tags.

3. No KE omits textual knowledge entirely,
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Pipeline ‘ C 1 C 2 Cg 04 C 5

LAVA w/o KE 0.03 0.65 0.67 0.09 0.66
LAVA w/ Plain-text KE | 0.02 0.63 0.58 0.08 0.48
LAVA w/ Markdown KE | 0.01 0.25 0.54 0.05 0.55
LAVA w/o IA 0.01 0.15 045 0.05 0.12
LAVA w/o AP 0.01 0.03 0.29 0.10 0.56
LAVA 0.01 0.03 0.28 0.05 0.07

Table 2: Percentage of responses failing to exactly
match ground-truth answers across five rule categories.

prompting the model with original document
images. This configuration serves as the OCR-
free, vision-only benchmark we referred to in
the baseline comparison (Section 4.4).

This stepwise removal strips explicit layout and
relational cues, forcing reliance on surface text
or raw images. For AP ablation, AP is replaced
by Symbolic Reasoner, removing explicit calcula-
tion/result validation. The two Retrieval modules
are not ablated since all experiments use a fixed
rule set, making them independent of validation
accuracy.

The error patterns in table 2 shows that KE, TA,
and AP play complementary roles, with KE being
the most critical. Removing KE forces the model
to rely almost entirely on visual reasoning, rais-
ing Cs, Cs, and Cj failure rate to 0.65-0.67—over
twice LAVA’s error in multi-step logic (C3) and
nearly tenfold in constrained arithmetic consistency
checking (C'5) even with the validation module’s
assistance. Two factors explain this: (1) Structural
conversion: without KE’s structural format that
preserves complex and nested layout, grouping,
and field dependencies, multi-step logic and table
reasoning lose explicit relational cues. Downgrad-
ing to Markdown or plain text progressively strips
away these signals, with Markdown underperform-
ing plain text in C5 due to weaker preservation of
columnar alignment in tables; (2) Content filtering:
without KE’s filtering stage, noisy headers, footers,
and irrelevant fields dilute attention and amplify
hallucination risk. This gradient from fully struc-
tured to none shows that noise suppression, explicit
spatial and relational cues are essential for stable
reasoning, especially in multi-field and arithmetic-
heavy rules for financial document validation tasks.

IA mainly impacts logical reasoning: removing
it raises C3 error from 0.28 to 0.45, suggesting
that metadata and domain cues help models resolve
field semantics and linking conditions across steps.

AP’s effect is computation-focused: removing
it leaves C'1—C'3 unchanged but drives Cy4/C’5 error
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(b) LAVA and ablated variants.
Figure 4: Average input and output token counts across
five rule categories.

to 0.10/0.56, reflecting the limits of unconstrained
LLM reasoning in arithmetic tasks and the benefit
of explicit calculation with fallback mechanism.
Overall, the degradations are consistent with the
design intent: KE supplies the structured substrate,
TA enriches it with semantic context, and AP en-
forces numerical fidelity, justifying LAVA’s func-
tionally complementary and modular composition.

4.6 Business Impact

While Section 4.4 and 4.5 highlight LAVA’s tech-
nical advantages in accuracy and robustness, real-
world adoption also depends on its operational effi-
ciency and cost-effectiveness. By consolidating to-
ken usage, we can further assess how LAVA scales
under realistic operational constraints, using token
consumption as a proxy for latency and API expen-
diture in high-volume production workflows.

LAVA amortizes multi-step costs by extracting
structured knowledge once and reusing it across
rules. As shown in Figure 4a, this design cuts in-
put tokens by 25%-45% versus VLM and LLM
baselines with Field-Level OCR, lowering infer-
ence costs and enabling faster turnaround for time-
critical financial validation processes, while also
achieving fewer errors (Table 1).

Ablation results (Figure 4b) show that in non-
computation tasks (C1—C}3), excluding variant w/o
KE, LAVA adds minimal tokens with stable out-
put length due to the predefined schema-based re-
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sponse format. For computation tasks (Cy—C’), the
less faithful structural representation from plain-
text and Markdown KE inflate inputs by causing
more model output errors and retries in the valida-
tion loop. Across all ablations, full LAVA adds un-
der 3k tokens per rule (~ $0.009 with Claude 3.7 or
~ $0.006 with GPT-4.1), an overhead outweighed
by substantial gains in accuracy and reasoning sta-
bility. This demonstrates that LAVA delivers a
dual advantage: (1) immediate computational sav-
ings from reduced token usage, and (2) long-term
operational efficiency from its modular, auditable
design. This combination suggests that LAVA’s
architectural benefits outweigh the modular inte-
gration complexity, making it a cost-effective and
scalable choice for high-volume, time-critical real-
world financial workflows.

5 Conclusion

We presented LAVA, a modular, interpretable
and backbone- and domain-agnostic system for
enterprise-grade financial document validation.
Combining layout-preserving extraction, domain-
aware augmentation, and symbolic and arithmetic
verification, LAVA achieves high factual alignment
and numerical reliability on a large real-world
benchmark, with lower computational overhead
than monolithic prompting. Evaluation with factual
hallucination rate, numerical infidelity rate, and
edge case handling shows that structured, multi-
stage reasoning enables fine-grained error attribu-
tion, stronger robustness in compliance-sensitive
workflows, and transfer to structurally similar data.
Looking ahead, we aim to handle noisier, less-
structured documents and to learn rule generaliza-
tion across formats and domains.

6 Ethical Considerations

This research was conducted using a proprietary
dataset of financial documents, with all data fully
anonymized and handled under strict institutional
privacy protocols. We acknowledge the poten-
tial risk of algorithmic bias in financial decision-
making. LAVA’s design as an accurate, scalable
and auditable system is a deliberate step to mitigate
this risk by enhancing transparency and ensuring
human accountability. Nevertheless, any produc-
tion deployment would necessitate rigorous, ongo-
ing audits for demographic bias to ensure fair and
equitable outcomes.
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A Appendix

A.1 Prompt used in LAVA
A.1.1 Prompt for Symbolic Reasoner

Dynamically Generated Prompt

You are an assistant who verifies financial documents. You are given
{document_types} (in {languages}) and extracted
{knowledge_names}. Your job is to verify the documents based on
the validation rule. Please do not make up any values.

<instructions>

1. Use structured representation as references for identifying the
layout and structure of the documents.
<html_tables>{knowledge[tables]}</html_tables>
<forms>{knowledge[forms]}</forms>

2. Use the semantic fields as references for providing explicit con-
textual information.
<semantic_fields>{knowledge[fields]}</semantic_fields>

n. Output as follows:
¢ Only output the fields requested in the validation rule, do not
include any other fields stated in example_output.
« Replace all spaces in keys with underscores "_".
« If any field is not present, set value to "".
¢ Output date in YYYYMMDD format.
<example_output>{example_output}</example_output>
</instructions>

<validation_rule>
{validation_rule}
¢ {domain_specific_term_1}: {explanation_1}

e {domain_specific_term_n}: {explanation_n}
</validation_rule>

<output_format>

Return solely the JSON object without any additional explanations,
comments, preamble, or formatting like backticks.
</output_format>

A.1.2 Prompt for Arithmetic Processor

Prompt for Formula Generation

System Prompt:

You are an assistant who generates a Python-style calculation for-
mula to explain how a request field should be computed. You are
given {document_types} (in {languages}), as well as knowledge
extracted from the documents and a validation rule.

<instructions>

1. Identify the requested field from the rule. Store its name in
the JSON object with the key "field_name", delete any special
symbols and replace all spaces in keys with underscores "_".

2. Extract the stated value for the requested field.
« Store it in the JSON object with the key "stated" and make sure
it is a valid float or integer.
« If the requested field is not present or empty, set "stated" to
"NaN".
¢ Do not make up any values.

3. Identify the relevant numerical fields in the knowledge that are
needed to compute the requested field. Consider how those fields
logically combine to produce the value of the requested field.

4. Once you find an appropriate calculation expression, store it
in Python-executable format in the JSON object with the key
"formula":

« Do not compute the result.
¢ Do not include any functions like "round(...)" or similar.
¢ Only use raw numerical operations.

5. Return solely the JSON object without any additional explana-
tions, comments, preamble, or formatting like backticks.
</instructions>

<example_output>

"field_name": "Current_Total_Income",
"stated": 600,
"formula": "100 + 200 + 300"

}

</example_output>
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User Prompt:
<knowledge>{knowledge}</knowledge>

<validation_rule>
{validation_rule}
* {domain_specific_term_13}: {explanation_1}

e {domain_specific_term_n}: {explanation_n}
</validation_rule>

Prompt for Formula Correction

System Prompt:

You are the greatest financial auditor, logician and deducer. You are
given {document_types} (in {1anguages}), as well as knowledge
extracted from the documents, a validation rule, and a calculation
expression.

<instructions>
1. The calculation expression in response to the validation rule is
wrong based on the knowledge extracted.

2. Check if there is any other correct calculation expression that can
be derived from the data given.

3. Once you find an appropriate calculation expression, store it in
Python-executable format:
* Do not compute the result using equal sign.
¢ Do not include any functions like "round(...)" or similar.
¢ Only use raw numerical operations.
4. Return solely the calculation expression without any additional

explanations, comments, preamble, or formatting like backticks.
</instructions>

<example_output_1>100 + 200 + 300</example_output_1>
<example_output_2>80 * 100.5</example_output_2>

User Prompt:

<knowledge>{knowledge}</knowledge>
<wrong_calculation>{wrong_calculation}<wrong_calculation>
<validation_rule>

{validation_rule}
e {domain_specific_term_1}: {explanation_1}

¢ {domain_specific_term_n}: {explanation_n}
</validation_rule>

A.2 Representative Validation Rules and
Output Examples Used in Experiment

1. Content Extraction
Rule:

(a) Are Current and YTD regular pay/salary
amounts present in documents?

(b) Is Current and YTD CPP/QPP (may ap-
pear as Government Pension) present in the
paystub?

(c) Is Social Insurance Number (SIN) present
in the T4 document?

Output Example

"Employer_Name": {"present": true, "value":
tion"},
"Current_Regular_Pay": {"present": false, "value": ""},

organiza-

2. Conditional Logic Reasoning

(a) Rule:



<CRA_EI_data>{EI_data}</CRA_EI data>

<EI_verification_rules>

* When Current EI is non-zero, skip the
check and set "valid" to true.

¢ When Current and YTD EI are both 0 or
blank, skip the check and set "valid" to
false.

e When Current EI is 0 or blank, YTD EI
is not O or blank. If YTD EI < EI cap,
set "valid" to true. Otherwise, set "valid"

to false.
</EI_verification_rules>

Do the EI values comply with rules based
on the Canada Revenue Agency (CRA)
guidelines?

Output Example

{

"Pay_Date": "20241128",

"EI": {"Current": "100", "YTD": "200",
"1049.12", "valid": true}
}

"Cap":

Rule:

<numerical_verification_rules>

* Cells with empty value, or only numbers,
symbols, punctuation are valid.

* Cells containing words (alphabetic char-
acters) are invalid.

 If all fields are valid, return an empty
object {}.

<numerical_verification_rules>

Based on the rules provided, does every

non-header cell in tables contain a valid

numerical value?

(b)

Output Example

{
"This_Period_Regular": "amount",
"YTD_CPP": "value"

}

3. Multi-step Logic Reasoning

Rule:
<pay_freq_cap>

[

{"freq": "monthly", "cap": 12},
{"freq": "semimonthly", "cap": 24},
{"freq": "biweekly", "cap": 26},
{"freq": "weekly", "cap": 52}

</pay_freq_cap>

<freq_verification_rules>

* If start or end date is empty, set "stated" to
"" and set "equal” to None.
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* If No. of pay period is empty, set "stated" to
"" and set "equal" to None.

* If No. of pay period is not empty, find its
corresponding "frequency cap" from pay fre-
quency rules:

— Compute the expected "current period
number": Use "Pay Frequency", "Start
Date" and "frequency cap" to calculate
how many periods have elapsed since the
start of the year.

— Extract current period number from No.
of pay period stated (e.g., 22 on "22 of
26").

— Check if the "stated" current period num-
ber" equals the "expected current period
number". If both equal, set "equal” to true.
Otherwise, set "equal” to false.

</freq_verification_rules>

Based on the rules provided, does pay fre-

quency and No. of pay period in the extracted

date comply with the pay frequency rules?

Output Example

{

"Start_Date": "20240101",

"End_Date": "20240131",

"Pay_Frequency": {"stated": "semimonthly", "expected":
"monthly", "equal": false},

"NO_Pay_Period": {"stated": "11",
"equal": false}

"expected": "1",

. Unconstrained Arithmetic Consistency Check-

ing
Rule:

(a) Is the YTD gross pay calculated correctly
by summing up all earning items?

(b) Is Line 23600 (Net Income) correctly calcu-
lated as Line 15000 (Total Income) minus
Deductions from Total Income?

(c) Is the ending balance correctly calculated
as the starting balance plus total deposits
minus total withdrawals for the period?

Output Example

{

"Current_Gross_Pay": {"calculation": "100 + 200 + 300 =
600", "stated": "300", "equal": true},

"YTD_Gross_Pay": {"calculation": "1500 + 200 + 300 =
2000", "stated": "", "equal": null}
}

. Constrained Arithmetic Consistency Checking

Rule:

(a) Is the Current regular pay calculated cor-
rectly by rate * hours when rounding the
result to 2 decimal places? Set formula to



"nn

an empty string"" when rate or hours is not
present or O.

(b) Is the current net pay correctly computed
as the current gross pay minus all current
deductions, with the result rounded to 2 dec-
imal places? If the table includes a "Total
Deduction" field, use it directly instead of

summing individual deduction items.

Output Example

{

"Current_Gross_Pay": {"calculation": "100 + 200 + 300 =
600", "stated": "300", "equal": true},

"YTD_Gross_Pay": {"calculation": "1500 + 200 + 300 =
2000", "stated": "", "equal": null}
}

A.3 Evaluation Metrics
A.3.1 Factual Hallucination Rate (FHR).

Given a fixed rule r with evaluation document set
D, ={di,...,dyn.}, let EA’W denote the predicted
evidence subset in the model’s output explanation
trace for (d;,r), and £(d;, ) the gold evidence set
from d;. Let ¢; , denote the predicted formula for
(di,r), and g, the corresponding gold formula.
We mark a sample (d;,r) as factually halluci-
nated if either hold:
(a) Evidence Hallucination: é’i,r Z E(d;, ).

(b) Formula Hallucination: ¢;, # ¢,
(tested via polynomial identity testing with
Schwartz—Zippel).

Formally, the sample-level indicator is

FHi’T = 1[ (éz',fr ,@ g(dz,T’)) vV

. (1)

(SOi,r 3 97“)} .

The rule-level rate is
FHR, = — Y FH,,, )
| T| d; €D,
and the group-level average for C' C R is
D,|-FHR

FHRY = 2Zrec|Dr] . 3)

ZT‘EC |D7”|

Containment checks normalize case, punctua-
tion, numeric formatting, and unit conventions. For-
mula equivalence (=) is evaluated by polynomial
identity testing under randomized substitution.

Example. Consider the rule “Is the YTD total
deduction computed as the sum of all YTD items
in the deduction table?” The pipeline is asked to
extract relevant evidence, provide a calculation, and
conclude the validation result for this task. Based
on Figure 5, the ground truth is:
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Figure 5: Sample document shown for clarity and error
illustrations; metrics are document-agnostic and applied
unchanged across all document types (sensitive content
redacted).

Ground Truth Output

"YTD_Total_Deduction": {
"calculation": "1427.28 + 4683.88 + 344.28 + 660.50 +
617.50 = 7733.44",
"stated": "7633.44",
"equal": false
}
}

When factual hallucination occurs, the pipeline
fabricates one or some of the variables in the cal-
culation formula (e.g., changing 660.50 to 560.50)
so that the sum exactly matches the stated total:

Output with Factual Hallucination

"YTD_Total_Deduction": {
"calculation": "1427.28 + 4683.88 + 344.28 + 560.50 +
617.50 =7633.44",
"stated": "7633.44",
"equal": true
He
}

Consider the rule: “Are pay period start and end
dates present in the document?” The pipeline is
asked to check the presence of specific fields and
extract the corresponding value. The ground truth
for Figure 5 is:



Ground Truth Output

"Start_Date": {"present": false, "value": """

"End_Date": {"present": true, "value": "20111015"}
}

When factual hallucination occurs, the pipeline
fabricates a start date by using the value of another
field (in this case, the payment date) and incorrectly
marking it as present as a consequence:

Output with Factual Hallucination

"Start_Date": {"present": true, "value": ''20111014"}
"End_Date": {"present": true, "value": "20111015"}
}

These two examples illustrate distinct modes of
factual hallucination. In the deduction case, the
pipeline invents a new numerical value so that the
arithmetic matches the stated total. In the date case,
the pipeline fabricates a missing field by repurpos-
ing another field. In both scenarios, the error arises
not from incorrect arithmetic or logical reasoning
but from introducing evidence that is absent from
the source document.

A.3.2 Numerical Infidelity Rate (NIR).

Given a fixed rule » with evaluation set D,
{d1,...,dp,}, let $;, denote the predicted for-
mula or reasoning process appearing in the model’s
output explanation trace for (d;,r), and vy, the
gold numerical result.

We mark a sample (d;, ) as numerically infidel
if the evaluated result of the predicted formula or
reasoning process deviates from the gold value:

NL, = 1[eval(¢i,) # vi,], 4)

with deviations judged within absolute/relative tol-
erances.
The rule-level rate is

1
NIR, = — E NI, 5
T ‘DT’ = 1,7 ( )
and the group-level average for C C R is
D,| - NIR
NIRY. = 2rec [Dr| - (6)

rec | Prl

Note that hallucinations in formula generation
are already captured under FHR; NIR isolates
purely numerical inconsistencies after formula or
reasoning process generation.

Example. Using the same rule for the YTD de-
duction value as in A.3.1:
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Output with Numerical Infidelity

"YTD_Total_Deduction": {
"calculation": "1427.28 + 4683.88 + 344.28 + 660.50 +
617.50 =7633.44",
"stated": "7633.44",
"equal": true
o
}

Here, all evidence terms are faithfully extracted,
and the pipeline correctly generates the formula.
But the result is miscomputed as 7633.44 instead
of the correct 7733.44, possibly influenced by the
stated value in the document. Unlike factual hallu-
cination, this error does not arise from fabricat-
ing or misattributing values, but from applying
the correct evidence while failing to maintain con-
sistency in quantitative reasoning and arithmetic
derivations.

A.3.3 Edge Case Handling (ECH).

For each rule r with evaluation set D,, we pre-
define a subset DS C D, containing complex
or exception-driven cases (typically 10%—25% of
document—rule pairs). Such cases include missing
or abnormal values, atypical field combinations,
and boundary conditions requiring adaptive reason-
ing beyond commom patterns.

For a document d; € DS let ig €
{Pass,Fail} be the model’s predicted label and
y;‘m the gold label. We define the indicator

17 g', #y* 3
EC;, = v (7

ALk
07 yz,'l‘ - yi’r'

The rule-level error rate is

1
ECHT:7|Dedge‘ > ECin,  ®
" gepedee
and the group-level average is
D) . ECH
pomy, — 2rec Pr | )

d,
> e IDF

Higher values of ECH indicate weaker general-
ization and lower robustness on edge conditions.

Example. Consider the rule: “Is the current gross
pay calculated correctly by summing up the cur-
rent amount of all earning items?”” In the sample
(Figure 5), the earnings table contains a subtotal
of 1663.44 followed by a negative adjustment of
38.44. Correct handling requires the pipeline to
exclude the subtotal from the formula and include



the adjustment as a subtraction. The ground truth
is:

Ground Truth Output

{

"Current_Gross_Pay": {
"calculation": "1625.00 + 32.50 + 5.94 - 38.44 = 1625.00",
"stated": "1625.00",
"equal”: true
}
}

However, the pipeline misinterprets the table:

Output with Edge Case Error

{
"Current_Gross_Pay": {
"calculation": "1625.00 + 32.50 + 5.94 + 1663.44 + 38.44 =
3365.32",
"stated": "1625.00",
"equal": false

In this output, the pipeline incorrectly reuses the
subtotal 1663.44 as if it were another earning item,
and also flips the negative adjustment 38.44 into
a positive contribution. The error is not due to
arithmetic mistakes but to misinterpreting atypical
structures in the table. Unlike factual hallucination
(fabricating values) or numerical infidelity (mis-
computing a correct formula), this case reflects
weaker robustness to edge conditions. Instead of
applying rules mechanically, a reliable industrial
pipeline should capture the underlying business
logic and correctly adapt it to the diverse formats
and exception cases present in financial documents.
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A.4 Evaluation Dataset
Our evaluation uses a proprietary collection of production-level mortgage application documents from an
active industrial workflow. The corpus spans a broad range of core and supporting document categories—
covering proof of income, property appraisal, account statements, tax forms, and legal agreements—with
file lengths varying from single-page forms to multi-dozen-page reports. Unlike public datasets that
are often synthetic or visually uniform, our corpus retains the full heterogeneity, layout irregularities,
OCR noise, and compliance constraints encountered in real underwriting. While individual files and
categories vary across evaluations, the overall data composition and associated challenges are fully
described, enabling reproducibility on comparable financial document collections.

Table 3: Representative mortgage document types and key characteristics.

Document Type Key Structural Features Key Semantic Features Valid Rule Cat-
egories

Appraisal Multi-page PDF; photos + valuation Market value; comparable properties; 4, Cs
tables; firm templates; checkboxes adjustments; effective date

Bank Account Statement Multi-column ledgers; footnotes inside Balance progression; transaction C1-Cs
tables; embedded logos and stamps category; cross-month reconciliation

Employment Letter Letterhead; signatures; uneven Title; start date; compensation; pay C1,Cs, Cs
paragraphs; low-contrast scans frequency vs. paystubs

Investment Account State Dense holdings tables; various formats; Issue/maturity date; interest rate; C1,C5,C4, Cs

ment small-font disclosures and disclaimers holding list; balance

Mortgage Statement Multi-section layout; various formats; Outstanding balance; interest rate and 4, C3, Cy, C5
tables with merged cells type; payment due date; amount due

Notice of Assessment CRA form; dense numeric blocks; tiny Total/taxable income; refund amount; C1, Ca, C3, Cs
labels; presence of official headers social insurance number; match T4

Paystub Multiple tables and forms; various Gross; net; deductions; start/end/pay ~ C - Cs
layouts; faded scans date

Personal Income Tax Retu Multipage; mixed sections; checkboxes; Address; citizenship; C1, Ca, Cy

m pre-filled and handwritten; cross-page total/employment/net income
linkage

Property Tax Bill Multiple tables; various layouts; Annual tax; installments/penalties; Ci-Cs
inconsistent labelling for tax roll/assessment IDs; schedule math
components; watermarks and logos

Purchase Sales Agreement Long contract; initials/signatures; clause Property address; price; closing date;  C1, Cs, C'3
order varies; appendices with separate  buyer/seller name
numbering

Realtor Listing Embedded images; dense tables and List price; property address; listing date C, Ca
forms; inconsistent field ordering and status; square footage

Realtor Listing UW Listing + UW notes; handwritten Adjusted price; remarks; reconcile with C'1, Ca, C3
overlays appraisal/APS

Rental Lease Agreement Multi-page legal contract; various Monthly rent; term dates; payment plan; C1, C2, Cs
templates; small-font clauses; residence overlap
handwritten

Separation Agreement Multi-page legal document; dense Support obligations; asset division; C1,Cs, Cs
narrative clauses; annex schedules enforceable clauses; child custody

T4: Statement of Remuner Fixed CRA box layout; small-font Employment income; Province; EI/CPP C, Cs, Cy

ation Paid numeric fields; bilingual field labels;  exemptions; align paystub/NOA
scan noise

T4A: Statement of Pensio Fixed CRA box layout; small-font Pension/annuity/self-employment Ci,Cs, Cy

n, Retirement, Annuity, a numeric fields; bilingual field labels; income; income tax deducted; social

nd Other Income scan noise insurance number

T4A(P): Statement of Can Fixed CRA box layout; small-font CPP benefits amount; Income tax C1,Co, Cy

ada Pension Plan Benefits numeric fields; bilingual field labels; deducted;
scan noise

T4RIF: Statement of Inco Fixed CRA box layout; small-font Taxable amounts; Payer/issuer name;  C4, Ca, Cy

me From a Registered Ret numeric fields; bilingual field labels; ~ taxable amount; social insurance

irement Income Fund scan noise number

T5: Statement of Investme Fixed CRA box layout; small-font Actual amount of dividends; Interest ~ C', C2, Cs

nt Income numeric fields; bilingual field labels; from Canadian sources; Reported
scan noise income vs. bank statements

T776: Statement of Real E Fixed CRA box layout; small-font Gross rents; Total expenses; Net income C' - C5

state Rentals

numeric fields; bilingual field labels;
scan noise

(loss) before adjustments; Capital cost
allowance (CCA) claim
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