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Abstract
We introduce a multi-agent large language
model (LLM) framework for generating ana-
lyst reports from earnings call transcripts. Our
system coordinates specialized agents, a Writer,
Analyst, Psychologist, Editor, and Client, to it-
eratively draft and refine reports. To strengthen
financial reasoning, we integrate external com-
pany data (income statements, balance sheets,
and cash flow) alongside transcript content, pro-
ducing reports in a standardized five-section
format covering financial highlights, manage-
ment remarks, Q&A insights, stock outlook,
and short-term trend predictions.

In the Earnings2Insights shared task, our sys-
tem (SI4Fin) achieved the highest automatic
Likert score and a top win rate against pro-
fessional analyst reports. Human evaluation
confirmed strong performance in logic and per-
suasiveness, though readability and decision
accuracy remain areas for improvement. These
results highlight the promise of multi-agent
LLMs for financial analysis while underscor-
ing challenges in aligning generated text with
practical decision-making needs.

1 Introduction

The rapid progress of large language models
(LLMs) has transformed natural language process-
ing (NLP), enabling systems to perform com-
plex reasoning, synthesis, and generation across
diverse domains (Brown et al., 2020; OpenAI,
2023). While initial applications focused on
general-purpose summarization and dialogue, re-
cent research has increasingly turned toward spe-
cialized professional domains where accuracy, in-
terpretability, and domain knowledge are essen-
tial. One such domain is financial analysis, where
the automation of analyst-style reporting offers the
potential to enhance accessibility to high-quality
investment guidance.

Earnings call transcripts represent a central in-
formation source for investors. These transcripts

capture management’s financial disclosures, strate-
gic outlook, and responses to analyst questions, pro-
viding insights that influence market sentiment and
stock valuation. Human analysts typically distill
this information into structured reports that high-
light key financial metrics, strategic developments,
and investment risks. Automating this process
poses multiple challenges: transcripts are lengthy
and nuanced, external financial context is often nec-
essary, and reports must adhere to the professional
style and rigor expected by investors (Araci, 2019;
Chen et al., 2021).

The Earnings2Insights shared task was intro-
duced to advance research in this area by bench-
marking systems on analyst report generation from
earnings calls. Unlike conventional summarization
tasks, Earnings2Insights requires systems to deliver
investment-oriented, structured reports that com-
bine factual accuracy with financial reasoning. This
calls for approaches that can integrate domain ex-
pertise, handle multiple perspectives, and enforce
consistent report structures.

In this work, we propose a multi-agent LLM
framework for analyst report generation, build-
ing on the conversational multi-agent paradigm
introduced by Goldsack et al. (2025). Our frame-
work leverages Microsoft’s AutoGen library to or-
chestrate structured interactions among specialized
agents, each embodying a distinct professional role.
A Writer agent drafts reports iteratively, while an
Analyst provides financial insights, a Psycholo-
gist highlights sentiment cues from management’s
Q&A responses, and an Editor ensures clarity and
stylistic appropriateness. A Client agent acts as
the investor end user, guiding revisions until the
report meets expectations. To enrich analysis, the
Analyst agent also incorporates external financial
data (e.g., income statements, balance sheets, cash
flow) alongside the transcript. This division of
responsibilities enables the system to combine fi-
nancial reasoning, sentiment analysis, and stylistic
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refinement in an iterative drafting process.
Our contributions are threefold:

1. We design a multi-agent LLM framework
tailored for financial report generation, with
role-specialized agents coordinating through
structured conversations.

2. We integrate external financial datasets into
the report generation process, enabling richer
contextual and trend-aware analysis.

3. We demonstrate through participation in the
Earnings2Insights shared task that this
framework can produce structured, investor-
ready reports with improved factuality, clarity,
and investment relevance.

2 Multi-Agent Framework

We adopted the multi-agent framework introduced
in Goldsack et al. (2025), with modifications to suit
the specific requirements of our task. The frame-
work was implemented using Microsoft’s AutoGen
library, which facilitates structured multi-agent con-
versations. Within this framework, we defined the
following agents: a Writer agent, a Client agent,
and three specialised Feedback agents, an Analyst,
a Psychologist, and an Editor.

2.1 Agent Definition
The Writer agent was responsible for drafting the
initial report and incorporating revisions based on
feedback. The Client agent acted as the end user, as-
sessing whether the generated report met the speci-
fied requirements. If the Client judged the report
satisfactory, it terminated the conversation by out-
putting “TERMINATE”. Otherwise, it provided
targeted feedback. The Feedback agents served dis-
tinct roles: the Analyst extracted relevant financial
information either from transcripts alone or supple-
mented with external data and provide insights, the
Psychologist highlighted sentiment and confidence
signals from management’s Q&A responses, and
the Editor ensured the clarity, structure, and appro-
priateness of the report for an investor audience.
This division of responsibilities enabled each agent
to contribute domain-specific knowledge to the it-
erative drafting process. See Appendix A.1 for the
initialization prompts for each agent.

2.2 Conversation Sequence
To guide the report generation, we predefined a
fixed sequence of interactions among the agents:

Writer → Analyst → Writer → Psychologist →
Writer → Editor → Writer → Client.

This sequence could be repeated for a maximum
of three full iterations, or until the Client accepted
the report. Each cycle began with the Client pro-
viding requirements in natural language, followed
by iterative refinements based on feedback from
the specialised agents. The Writer was instructed
to make targeted revisions rather than wholesale
rewrites, ensuring that essential content was pre-
served across iterations.

2.3 External Data Integration

In addition to transcript-based analysis, our frame-
work incorporated structured financial data to pro-
vide broader context for each company. Historical
records covering the four quarters preceding the
earnings call were retrieved from AlphaVantage1

and included standardized Income Statement, Bal-
ance Sheet, and Cash Flow reports. These datasets
enriched the transcripts by supplying key indicators
such as revenue, net income, total assets, liabilities,
shareholder equity, and cash flow dynamics.

The Analyst agent leveraged these variables to
identify temporal trends (e.g., year-over-year and
quarter-over-quarter changes) and to highlight fi-
nancial developments relevant to investment guid-
ance. This integration of external data enabled the
system to ground narrative elements in quantitative
evidence, thereby strengthening both the analytical
depth and the credibility of the generated reports.
The schema of the financial variables used is pre-
sented in Table 1.

2.4 Report Structure Control

To promote consistency, comparability, and in-
vestor relevance across generated outputs, we en-
forced a fixed report structure for all reports pro-
duced by our system. This structure was embedded
in the initial system prompt and remained invari-
ant throughout the multi-agent conversation. Each
report was required to contain five sections in a
predetermined order, with no additional content
permitted.

The first section, Key Financial and Strategic
Highlights, synthesized the company’s primary
financial outcomes, including revenue, earnings,
margins, and cash flow, while also incorporating
strategic developments, management guidance, and
contextual financial trends such as year-over-year

1https://www.alphavantage.co
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Statement Variables Included
Income State-
ment

grossProfit, totalRevenue,
operatingExpenses, ebitda,
netIncome

Balance Sheet totalAssets, cashAnd-
ShortTermInvestments,
totalLiabilities, totalShare-
holderEquity, common-
StockSharesOutstanding

Cash Flow State-
ment

operatingCashflow, cash-
flowFromInvestment,
cashflowFromFinancing,
changeInCashAndCashE-
quivalents, netIncome

Table 1: Financial data schema used by the Analyst
agent, covering the four quarters preceding the earnings
call.

or quarter-over-quarter comparisons.
The second section, Summary of Prepared Re-

marks, provided a concise overview of manage-
ment’s formal statements, covering performance,
market conditions, corporate strategy, and forward-
looking plans.

The third section, Key Takeaways from the Q&A
Section, distilled the most critical insights from
the interactive session, emphasizing clarifications,
disclosures of risk, and operational details offered
in response to analyst questions.

The fourth section, Stock Outlook: Positives
and Negatives, presented an assessment of fac-
tors likely to influence the company’s stock per-
formance, identifying both favorable and unfavor-
able elements and addressing short- and long-term
implications.

Finally, the fifth section, Stock Trend Predic-
tions, offered forecasts of stock price movements
over three horizons—one day, one week, and one
month—drawing on earnings call content, histori-
cal performance, financial trends, and market senti-
ment cues.

By constraining reports to this standardized
structure, we ensured that outputs were compre-
hensive, actionable, and consistently aligned with
the expectations of an investor audience.

3 Results

The performance of participating systems in the
Earnings2Insights shared task was evaluated us-
ing both automatic metrics and human judgments.

Automatic evaluation provides a first indication of
report quality, while human evaluation serves as
the final benchmark for ranking systems. In what
follows, we present the results of both evaluations
and discuss the relative performance of our system,
SI4Fin.

3.1 Automatic Evaluation
The automatic evaluation considered two metrics:
(i) the Average Likert Score, based on 1–7 ratings
of persuasiveness, logic, usefulness, readability,
and clarity; and (ii) the Win Rate vs. Analyst
Report, measuring how often a system’s report
was preferred over a professional analyst report in
pairwise comparisons (ties excluded).

Table 2 presents the automatic evaluation re-
sults. Our system, SI4Fin, ranked first in terms
of Average Likert Score (4.916), slightly ahead of
LangKG (4.903) and Jetsons (4.834). In Win Rate
vs. Analyst Report, SI4Fin achieved 0.956, plac-
ing it among the top systems, with only KrazyNLP
scoring marginally higher (0.962). These findings
highlight the ability of our system to generate con-
sistently persuasive and high-quality reports that
often rival or surpass professional analyst outputs.

3.2 Human Evaluation
The final ranking was determined by human evalua-
tion, which focused on two aspects: (i) the decision
accuracy of financial decisions made by partici-
pants after reading system outputs (evaluated at
one-day, one-week, and one-month horizons), and
(ii) average Likert ratings (1–7) for clarity, logic,
persuasiveness, readability, and usefulness.

Decision Accuracy. Table 3 shows that SI4Fin
achieved an overall average accuracy of 0.515.
While this was lower than the top-performing teams
(e.g., DKE at 0.581 and DataLovers at 0.579), our
system remained competitive and delivered stable
performance across time horizons (0.525 day, 0.524
week, 0.497 month).

Likert Scores. As shown in Table 4, SI4Fin
achieved an overall Likert score of 5.56. Our sys-
tem performed especially well on logic (5.84) and
persuasiveness (5.60), demonstrating the strengths
of our multi-agent design, where Analyst and Psy-
chologist agents contributed to coherent reasoning
and sentiment-aware analysis. However, scores for
readability (5.06) were lower compared to leading
teams such as LangKG (6.13) and Jetsons (6.01),
suggesting opportunities for stylistic refinement.

329



Team Average Likert Score Win Rate vs Analyst Report
SI4Fin 4.916 0.956
LangKG 4.903 0.881
Jetsons 4.834 0.762
KrazyNLP 4.830 0.962
iiserb 4.807 0.930
DKE 4.803 0.783
Finturbo 4.625 0.169
SigJBS 4.597 0.526
Raphael 4.575 0.615
bds-LAB 4.510 0.711
PassionAI 4.143 0.365
DataLovers 4.134 0.345

Table 2: Automatic evaluation results across all teams.

Team Avg. Day Week Month
DKE 0.581 0.596 0.577 0.570
DataLovers 0.579 0.597 0.611 0.529
Jetsons 0.571 0.607 0.555 0.552
SigJBS 0.545 0.609 0.513 0.512
iiserb 0.537 0.576 0.558 0.477
PassionAI 0.537 0.588 0.557 0.466
Finturbo 0.524 0.504 0.568 0.500
Raphael 0.522 0.469 0.581 0.516
LangKG 0.518 0.589 0.542 0.424
SI4Fin 0.515 0.525 0.524 0.497
KrazyNLP 0.471 0.514 0.525 0.375
bds-LAB 0.462 0.478 0.434 0.474

Table 3: Average decision accuracy of financial deci-
sions after reading system-generated reports.

3.3 Discussion

Overall, the results show that SI4Fin excelled in
the automatic evaluation, ranking first in Average
Likert Score and near the top in Win Rate vs. An-
alyst Report. Human evaluation results place our
system in a solid middle tier: while decision ac-
curacy was lower than top-performing systems,
our outputs were consistently rated highly for logi-
cal structure and persuasiveness. This reflects the
strengths of our multi-agent framework, which em-
phasizes analytical reasoning and sentiment-aware
insights.

At the same time, lower readability scores sug-

gest that stylistic refinement remains an area for
improvement. Future work will focus on enhanc-
ing the Editor agent’s ability to ensure fluency and
accessibility, thereby bridging the gap between log-
ical rigor and user-friendly presentation.

4 Related Work

Prior research in financial NLP has explored a
range of tasks, including sentiment analysis of earn-
ings calls (Araci, 2019), numerical reasoning over
financial data (Chen et al., 2021), and forecasting
from textual sources (Xing et al., 2018). Domain-
adapted models such as FinBERT (Araci, 2019),
which fine-tunes BERT for financial sentiment clas-
sification, illustrate the benefits of tailoring pre-
trained language models to financial text. More
recently, open-source initiatives such as FinGPT
(Wang et al., 2023) have extended this effort by pro-
viding large-scale, financial domain-specific LLMs
for broader research and practical applications.

Beyond domain adaptation, retrieval-augmented
generation (RAG) (Lewis et al., 2020; Izacard and
Grave, 2021) has proven effective in grounding
LLM outputs with external knowledge, motivating
our integration of historical financial statements
alongside transcripts. At the same time, multi-
agent frameworks such as CAMEL (Li et al., 2023)
and AutoGen (Wu et al., 2024) show that role-
specialized LLM agents can collaborate to improve
reasoning and robustness. Our work builds on these
strands by combining retrieval of structured finan-
cial data with a multi-agent architecture tailored
to analyst report generation, aligning with recent
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Team Avg. Clarity Logic Pers. Read. Usef.
LangKG 5.96 6.02 5.92 5.90 5.81 6.13
Jetsons 5.90 6.00 5.89 5.81 5.81 6.01
DKE 5.74 5.71 5.89 5.95 5.17 5.98
SigJBS 5.67 5.76 5.68 5.59 5.61 5.72
SI4Fin 5.56 5.52 5.84 5.60 5.06 5.80
DataLovers 5.50 5.56 5.45 5.32 5.73 5.47
Raphael 5.49 5.51 5.61 5.51 5.09 5.74
KrazyNLP 5.29 5.15 5.49 5.21 5.01 5.59
iiserb 5.19 5.01 5.51 5.14 4.72 5.57
Finturbo 5.11 5.02 5.39 4.90 4.86 5.40
bds-LAB 4.99 4.91 5.21 5.03 4.55 5.27
PassionAI 4.70 4.64 4.74 4.39 4.88 4.86

Table 4: Average Likert scores (1–7 scale) for clarity, logic, persuasiveness, readability, and usefulness.

efforts to apply LLM collaboration in professional
domains (Goldsack et al., 2025).

5 Conclusion

In this work, we presented a multi-agent large lan-
guage model framework for generating investment-
oriented analyst reports from earnings call tran-
scripts. Our system orchestrates the collaboration
of specialized agents, including a Writer, Analyst,
Psychologist, Editor, and Client, each contributing
domain-specific expertise to an iterative drafting
process. By incorporating external financial data
alongside transcript content and enforcing a stan-
dardized report structure, the framework balances
analytical depth, stylistic clarity, and investor rele-
vance.

Our participation in the Earnings2Insights
shared task demonstrated the strengths and limita-
tions of this approach. In the automatic evaluation,
our system (SI4Fin) achieved the highest overall
Likert score and one of the top win rates against pro-
fessional analyst reports, underscoring the poten-
tial of multi-agent LLMs to produce high-quality
outputs. In human evaluation, our system ranked
mid-tier, with strong performance in logic and per-
suasiveness but relatively lower scores in readabil-
ity and decision accuracy. These findings highlight
both the promise and the challenges of aligning
multi-agent generation frameworks with the nu-
anced requirements of financial decision-making.

Future work will focus on improving the read-
ability and accessibility of reports, for example by
refining the Editor agent’s role and integrating re-

inforcement learning with human feedback. More
broadly, the results suggest that multi-agent LLM
architectures hold considerable promise for pro-
fessional domains that demand not only factual
accuracy, but also structured reasoning, domain
adaptation, and audience-appropriate presentation.

Limitations

Our framework has several limitations. First, the
fixed report structure, while ensuring consistency,
can limit flexibility in capturing company-specific
nuances. Second, human evaluation revealed weak-
nesses in readability and decision accuracy, sug-
gesting that stylistic refinement and practical utility
remain areas for improvement. Finally, the system
inherits general LLM challenges such as hallucina-
tions and sensitivity to prompts, which future work
should address.
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Agent Initialization Prompt
Client (Investor) You are an Investor who requires accurate investment and market analysis data to

build investment strategies. You are responsible for ensuring the report contains
the information that is relevant to you by providing feedback to the Writer. If
you are happy with the report, respond with “TERMINATE”. If not, provide
feedback on what should be improved. Output only either the feedback or
“TERMINATE”. Do NOT rewrite the report.

Writer You are a Writer who is responsible for drafting the requested output text and
making adjustments based on other agents’ suggestions. Unless otherwise
specified, avoid completely rewriting the report and instead focus on targeted
changes or additions based on feedback. Output only the updated report.

Analyst (with exter-
nal data)

You are an Analyst, a financial expert who examines the company’s historical
financial data from the past year and identifies relevant trends for the report. You
only need to provide insights. Do NOT rewrite the report.

Analyst (without
external data)

You are an Analyst, a financial expert who is responsible for determining which
financial data from the transcript is relevant and explaining this to the Writer.
You only need to provide insights. Do NOT rewrite the report.

Psychologist You are a Psychologist who identifies notable features (e.g., expressions of
confidence, doubt, or other emotional cues) in management’s Q&A responses
that might be relevant to the report. Provide input only. Do NOT rewrite the
report.

Editor You are an Editor who ensures that the output text is suitable for the intended
audience in terms of content, style, and structure, while safeguarding against the
loss of important information from earlier versions. Provide feedback only. Do
NOT rewrite the report.

Table 5: Agent initialization prompts.
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