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Abstract

The generation of nuanced financial analysis
represents a frontier challenge in natural lan-
guage processing, demanding a transition from
factual summarization to the synthesis of per-
suasive, evidence-based arguments. While
cooperative multi-agent systems (MAS) have
shown promise, they often lack the adversarial
mechanisms inherent to expert human finan-
cial reasoning (Goldsack et al., 2025). We
propose Structured Adversarial Synthesis
(SAS)1, a novel, hierarchical agentic frame-
work designed to implement the dialectical rea-
soning process of a professional investment
committee in corporate sectors. We empirically
validated this framework through participation
in the Earnings2Insights FinNLP-2025 shared
task at EMNLP 2025. Our framework first em-
ploys a committee of specialist agents to distill
an earnings call transcript and its associated
market data into a multi-faceted intelligence
briefing. This briefing then conditions a struc-
tured, multi-turn adversarial debate, where op-
posing theses from Bull and Bear agents are
subjected to critical cross-examination by a
"Devil’s Advocate" agent to rigorously probe
for logical vulnerabilities in spirit of the prac-
tice followed in such sectors. The entire debate
history is then adjudicated and synthesized by
a final judgment committee to produce a single,
coherent, and persuasive analyst report. Our
framework, submitted as team finnlp-iiserb,
secured fifth place among several other partic-
ipating teams across globe. Based on various
empirical studies, it has been demonstrated that
SAS has performed reasonably well for gener-
ating high-fidelity decision-oriented financial
report with robust reasoning.

1 Introduction

The analysis of corporate earnings calls is a task of
significant consequence in financial markets, where

* Corresponding author.
1https://github.com/bdslab-iiserb/SAS

the synthesis of quantitative data and qualitative nu-
ances can inform decisions worth billions of dollars
(Kimbrough, 2005). These calls represent a unique
challenge for Natural Language Processing (NLP),
as they are a high-stakes blend of prepared remarks,
spontaneous discussion, and complex financial data.
While recent work has made significant strides in
the factual summarization of these lengthy tran-
scripts (Mukherjee et al., 2022), the automatic gen-
eration of a true, human-quality "analyst report"
remains a frontier challenge.

A genuine analyst report must transcend mere
summarization. As noted by Goldsack et al.
(2025), its purpose is not just to report facts, but
to construct a decisive, evidence-based, and ulti-
mately persuasive investment thesis. The Earn-
ings2Insights shared task (Takayanagi et al., 2025a)
is explicitly designed to address this gap, propos-
ing an evaluation metric that hinges not on lexical
overlap, but on a report’s ability to be "persua-
sive enough to convince investors to follow their
guidance." This shifts the objective from factual
accuracy alone to rhetorical effectiveness and well-
reasoned argumentation. Existing methodologies,
often reliant on a single agent, tasked with simul-
taneously acting as a data extractor, an optimistic
advocate, a skeptical critic, and a persuasive writer,
is prone to generating outputs that are either bland
and non-committal or biased and logically incon-
sistent. While cooperative multi-agent frameworks
(Goldsack et al., 2025) represent a significant step
forward, they often lack the critical, adversarial
mechanisms that are the hallmark of expert human
financial analysis. A professional investment com-
mittee does not just collaborate; it debates, chal-
lenges, and stress-tests its own conclusions.

Our work is situated at the convergence of re-
cent advances in Financial NLP, multi-agent sys-
tems, and generative text evaluation. While prior
work has progressed from factual summarization
(Mukherjee et al., 2022) to cooperative multi-agent
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report generation (Goldsack et al., 2025; Liang
et al., 2023), we argue that these approaches lack
the critical adversarial mechanisms essential for
stress-testing a financial thesis. Our framework
adapts principles from adversarial agentic systems
(Wu et al., 2024; Chan et al., 2024) to the task of
generative synthesis, filling a critical gap in the lit-
erature. Finally, the evaluation of such persuasive
outputs requires moving beyond traditional met-
rics, motivating our adoption of decision-oriented
evaluation frameworks that measure impact on user
choices (Takayanagi et al., 2025b; Huang et al.,
2025) and scalable LLM-based protocols like G-
Eval (Liu et al., 2023).

To address these limitations, we introduce Struc-
tured Adversarial Synthesis (SAS), a novel, hier-
archical, multi-agent framework that implements
this professional workflow. Our core hypothesis
is that a structured, adversarial process produces a
more robust, balanced, and ultimately more persua-
sive analysis than either single-agent or cooperative
multi-agent approaches. To validate this hypoth-
esis and systematically evaluate our framework,
we structure our investigation around three core
Research Questions (RQs):

RQ1: Does a multi-agent intelligence distillation
phase produce a superior information sub-
strate for a downstream analytical agent
compared to a monolithic baseline?

RQ2: Given an identical intelligence briefing,
does an adversarial synthesis process gen-
erate a more robust and persuasive analysis
than a purely cooperative one?

RQ3: Can a structured, moderated, multi-turn
debate protocol provide a measurable im-
provement in analytical quality over a sim-
ple, unstructured exchange of opposing
views?

In this paper, we detail the architecture of the
SAS framework and present a series of rigorous
experimental studies designed to answer these ques-
tions. Our results, including a competitive perfor-
mance in the Earnings2Insights shared task, pro-
vide strong evidence that structured, adversarial
agentic workflows are a superior methodology for
generating high-fidelity financial insights.

2 Methodology: The SAS Framework

Our methodology is embodied in the Structured
Adversarial Synthesis (SAS) framework, a deter-

ministic, multi-agent system designed to transform
unstructured earnings call transcripts into high-
fidelity investment analyses. We implement this
system using the AutoGen framework (Wu et al.,
2024). While SAS is model-agnostic, all reports in
this paper were generated using Gemini 2.5 Pro 2

as the backbone for our agents, with all API calls
managed through the OpenRouter platform3. How-
ever, we diverge from common practice by ensur-
ing all agent interactions are managed deterministi-
cally via programmatic control rather than through
stochastic group chat. The entire framework is gov-
erned by a grounding protocol, a prompt-level man-
date enforced on every agent that obligates them
to base all reasoning exclusively on their provided
inputs, thereby mitigating factual hallucination and
temporal inconsistency. The three-phase pipeline
of SAS is depicted in Figure 1.

2.1 Data and Preprocessing

We utilize the dataset provided by the Earn-
ings2Insights shared task (Takayanagi et al.,
2025a), comprising 64 corporate earnings call
transcripts. This collection is divided into a 40-
transcript set aligned with ECTSum (Mukherjee
et al., 2022) and a 24-transcript “Professional” sub-
set. To ground each transcript in its market context,
we first manually identified its precise earnings
call date via Yahoo Finance4 and then fetched the
corresponding raw historical stock and S&P 500
(SPY) data via the AlphaVantage API5. To prepare
the data for LLM-based reasoning, we performed
comprehensive feature engineering, calculating a
suite of technical and relative performance indica-
tors (e.g., RSI, Beta) across multiple time windows.
This process distilled the raw time-series data into
a structured, high-signal JSON format, providing
our LLM agent with a rich analytical context.

2.2 Phase 1: Intelligence Distillation

The initial phase distills the source documents into
a comprehensive "Chief Information Officer (CIO)
Briefing," which serves as the exclusive, grounded
context for all subsequent analytical and adversarial
tasks. This phase employs three parallel specialist
agents:

2https://deepmind.google/models/gemini/pro/
3https://openrouter.ai/
4https://finance.yahoo.com/calendar/earnings/
5https://www.alphavantage.co/
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Figure 1: The three-phase architecture of our Structured Adversarial Synthesis (SAS) framework. Phase 1 (Intelli-
gence Distillation) creates a structured ‘CIO Briefing‘. Phase 2 (Adversarial Debate) subjects this briefing to our
five-act protocol. Phase 3 (Final Synthesis) transforms the debate into a polished report.

The Market Analyst

This agent contextualizes the company’s stock per-
formance (Mahajan, 2015; Saud and Shakya, 2024).
It ingests a set of pre-calculated technical indicators
(e.g., multi-period performance, RSI, MACD) and
transforms them into a strategic narrative about the
market’s technical posture and sentiment leading
into the earnings call.

The Factual Analyst

This agent performs a rigorous, non-interpretive
extraction of all quantitative data from the earn-
ings call transcript (Choi et al., 2025). Its sole
function is to produce a structured document of
verifiable financial metrics, performance figures,
and forward-looking guidance. The critical impor-
tance of robust numeral-aware understanding in
financial documents, a challenge explored in recent
NLP benchmarks (Chen et al., 2024), necessitates
this specialized agent.

The Behavioral Analyst

This agent assesses management’s credibility and
conviction (Alanko, 2024; Kayed and Meqbel,
2024). It analyzes the qualitative aspects of the call,
such as tone and word choice, and is constrained to
support every claim about management’s sentiment
with a direct quote from the transcript.

2.3 Phase 2: The Structured Adversarial
Debate

The centerpiece of our framework is a determinis-
tic, five-act adversarial debate protocol designed to

rigorously stress-test the intelligence briefing. This
"Press the Weakness" protocol unfolds as follows:

Opening Statements (Act I):
The debate is initiated when our Bull and Bear
receive the CIO Briefing from Phase 1 as their sole
source of information and independently construct
their most compelling, evidence-based theses.

Cross-Examination (Act II):
These initial theses are then cross-examined by
a Devil’s Advocate agent, which is tasked with
identifying and articulating the most critical flaws
or unstated assumptions in each argument.

Rebuttal (Act III):
Each analyst must then formulate a direct rebuttal
to the specific challenges posed. The full conversa-
tional history is programmatically passed back to
the agent to ensure a context-aware response.

The "Press" (Act IV):
To ensure rigor, the Devil’s Advocate evaluates
each rebuttal. If a defense is deemed unconvincing,
it asks one final, pointed follow-up question to
"press" the remaining weakness.

Closing Arguments (Act V):
The protocol concludes with the Bull and Bear
agents receiving the entire debate history to deliver
their final, persuasive summaries.

2.4 Phase 3: Final Judgment and Synthesis
The raw debate transcript is then processed by a
final three-agent "Adjudicate -> Stress-Test -> Syn-
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thesize" pipeline to transform the adversarial dia-
logue into a polished investment memo.

The Judge
An unbiased agent receives the full debate history
and declares a definitive winner ("Bull" or "Bear")
with a brief, evidence-based justification, providing
a clear signal of the debate’s logical outcome.

The Stress Analyst
Acting as a Red Team, this specialist agent receives
the winning thesis. Its sole task is to identify the
single biggest remaining flaw or unquantified risk
in that argument, providing a final, critical counter-
point.

The Lead Investment Analyst
The final agent receives the most comprehensive
set of inputs: the original CIO Briefing, the entire
debate transcript, the Judge’s verdict, and the
Stress Analyst’s final critique. Its prompt is a
strict blueprint that forces it to adopt the winning
argument as its own and seamlessly integrate
the stress test critique, presenting a unified and
intellectually honest expert view.

Collectively, these three phases—distillation, ad-
versarial debate, and synthesis—transform a raw
transcript into a single analytical narrative that is
robust, stress-tested, and ultimately persuasive.

3 Experimental Setup

Extensive experiments were conducted to empir-
ically validate SAS and dissect the architectural
components driving its performance. Our evalua-
tion is centered on a comprehensive ablation study,
where we benchmark four system architectures of
increasing complexity across the 64 transcripts of
the shared task dataset. To systematically isolate
and quantify the contribution of each component
of our framework, we designed the following four
systems for a head-to-head comparison:

(S1): Single-Agent Baseline: A monolithic base-
line where the ‘Lead Analyst‘ agent is tasked
with the end-to-end synthesis of both the raw
transcript and the structured market data in a
single generative step.

(S2): Cooperative Multi-Agent A non-
adversarial pipeline where the Phase 1
agents produce the ‘CIO Briefing‘, which is
then passed directly to the ‘Lead Analyst‘.

(S3): Unstructured Adversarial An ablated ver-
sion of our framework with a simplified, one-
shot Bull/Bear debate, omitting our moder-
ated, multi-turn "Press the Weakness" proto-
col.

(S4): Our Model Our complete, five-act Struc-
tured Adversarial Synthesis framework.

Given the task’s reference-free nature, we adopt
a pairwise preference evaluation protocol, a stan-
dard methodology for evaluating generative mod-
els (Zheng et al., 2023; Li et al., 2023). To ensure
impartiality and mitigate self-enhancement bias
(Wang et al., 2023), we employ openai/gpt-4o6

as a powerful, independent judge. Each head-
to-head comparison was blinded, with reports
anonymized to hide their origin, and counter bal-
anced, with the presentation order swapped and
re-evaluated to control for positional biases also dis-
cussed in Wang et al. (2023). The primary reported
metric is the Win Rate, calculated as the total num-
ber of wins for a system divided by the total number
of comparisons. As a complementary analysis, we
also compute a suite of linguistic metrics to objec-
tively characterize the stylistic properties of each
system’s output, including lexical diversity, and
standard readability formulas such as the Flesch-
Kincaid Grade Level (FKGL) (Kincaid et al., 1975),
the Coleman-Liau Index (CLI) (Coleman and Liau,
1975), and the Automated Readability Index (ARI)
(Smith and Senter, 1967).

4 Analysis of Results

Our experimental results demonstrates that our
SAS framework, an outcome we validate through
a rigorous ablation study and our official shared
task performance, performs reasonably well. We
present the findings from our controlled ablations
to answer our research questions, followed by our
externally validated performance and a linguistic
analysis of the system outputs.

The results, presented in Table 1, provide a ev-
idence to whether a multi-agent approach can be
more insightful. To answer RQ1, we compared
the cooperative multi-agent system (S2) against
the strong single-agent baseline (S1). The decisive
71.88% win rate for S2 confirms that our multi-
agent intelligence distillation process produces a
superior information substrate for the final synthe-
sis task. Addressing RQ2, the comparison between

6https://platform.openai.com/docs/models/gpt-4o
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Pairwise Comparison (System A vs. System B) A Wins B Wins Win Rate for A (%)

RQ1: Impact of Multi-Agent Distillation
S2 (Cooperative) vs. S1 (Single-Agent Baseline) 46 18 71.88

RQ2: Impact of Adversarial Systems
S4 (SAS) vs. S2 (Cooperative) 44 20 68.75

RQ3: Importance of Debate Structure
S4 (SAS) vs. S3 (Unstructured Adversarial) 39 25 60.94

Table 1: Pairwise preference win rates from our ablation study. The ‘Win Rate for A (%)‘ is calculated for the
first-listed system (System A) in each comparison. Results were determined by a gpt-4o judge with counterbalanced
ordering across 64 reports for each comparison.

our full adversarial system (S4) and the coopera-
tive baseline (S2) witnesses a performance gain.
S4 achieves a dominant 68.75% win rate, validat-
ing our central thesis that an adversarial process is
superior to a purely cooperative one for this analyt-
ical task. Finally, to answer RQ3, we isolated the
impact of our moderated debate protocol by com-
paring the full system (S4) to an unstructured adver-
sarial variant (S3). The 60.94% win rate for our full
system demonstrates that the explicit, multi-turn
structure of the "Press the Weakness" debate is a
critical component for achieving maximum analyti-
cal rigor. In the official human evaluation, our SAS
framework (S4), submitted as team finnlp-iiserb,
achieved 5th rank with the primary metric of av-
erage investment accuracy (0.537) among several
other teams across the globe. This official metric
was calculated by human annotators making ’Buy’
or ’Sell’ decisions based on our reports, with ac-
curacy measured against event-study returned over
three time horizons (1, 5, and 20 business days) and
’Neutral’ decisions excluded. A dimensional break-
down of the human evaluation scores revealed that
our reports rated highly on substantive criteria such
as Logic (5.51) and Usefulness (5.57), but scored
lower on Readability (4.72).

5 Discussion

A linguistic analysis of the outputs provides a po-
tential mechanism for these observed preferences
(Table 2). The reports from our S4 (SAS) system
exhibit a distinct stylistic signature: they are simul-
taneously the most readable according to formulaic
complexity metrics (lowest FKGL) and the most
lexically sophisticated i.e., highly abstractive in
nature. We conclude that the primary advantage
of the SAS framework is its ability to synthesize
complex, conflicting information into a narrative
that is at once clear, nuanced, and nonrepetitive, a
stylistic profile that aligns closely with the qualities

Model FKGL CLI ARI Abst (%)

S1 (Baseline) 15.19 16.59 17.24 44.11
S2 (Cooperative) 15.60 16.93 17.69 43.97
S3 (Unstructured) 15.73 17.36 17.79 46.23
S4 (SAS) 13.27 16.60 15.71 50.61

Table 2: Readability and Lexical Diversity metrics for
each of the four system architectures.

of expert human analysis.
In this work, we introduced and empirically vali-

dated our SAS framework that models the adversar-
ial and deliberative processes of an expert invest-
ment committee. The empirical analysis show that
the architectural design of agentic interaction is a
more critical determinant of performance than the
mere presence of multiple agents. Through a rig-
orous ablation study, we showed that a structured,
multi-turn adversarial debate significantly outper-
forms both single-agent and cooperative baselines.
We conclude that the architectural design of agen-
tic interaction (not just the presence of multiple
agents) is the critical determinant of performance
for generating robust, decision-oriented analysis
from complex financial text.

6 Limitations and Future Works

While our results are promising, future work should
address the framework’s current specialization on
earnings calls by extending it to other complex
domains like 10-K filings, legal text analysis, etc.
We also identify opportunities in exploring more
granular agent specializations (e.g., a dedicated
’Quantitative Critic’ versus a ’Strategic Critic’). Fi-
nally, our analysis revealed a disconnect between
formulaic readability and human-perceived clarity,
motivating future work on more nuanced evaluation
methodologies and the creation of expert-authored
benchmarks for this complex analytical task.
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A Appendix

This appendix provides the technical implementa-
tion details of our Structured Adversarial Synthesis
(SAS) framework, including agent design princi-
ples, prompt architectures, and data preprocessing
methodologies necessary for reproducibility.

A.1 Agent Design Philosophy and Prompt
Engineering

All agents in the SAS framework follow a stan-
dardized three-component prompt architecture: (1)
role definition with domain expertise claims, (2)
specific task constraints and behavioral guidelines,
and (3) structured output format requirements. Ad-
ditionally, every agent operates under a mandatory
grounding protocol that constrains all reasoning
to provided inputs, mitigating hallucination and
temporal inconsistency.

The prompts presented focus on core architec-
tural principles; complete prompts, including de-
tailed output format specifications, JSON schemas,
and example structures, are available in the GitHub
repository.

A.2 Market Data Preprocessing Pipeline

The SAS framework begins with systematic market
data preparation through a comprehensive feature
engineering pipeline. This deterministic prepro-
cessing transforms raw OHLCV data into struc-
tured analytical inputs for downstream LLM agents,
implementing a two-stage approach of data clean-
ing and comprehensive feature engineering.

A.2.1 Technical Indicator Calculation
The feature engineering stage calculates financial
metrics across multiple time windows (30, 15, 7,
and 3 days prior to earnings calls), including multi-
period absolute and relative returns, volatility mea-
sures, 14-day RSI with overbought/oversold clas-
sification, moving average trend signals, MACD
crossover analysis, Bollinger Band positioning, and
Beta calculations against S&P 500. All calculated
metrics are consolidated into structured JSON ob-
jects providing rich quantitative context for subse-
quent analytical agents.

A.3 Phase 1: Intelligence Distillation Agent
Prompts

The intelligence gathering phase employs three
specialist agents with constraint-based extraction
methodologies.

A.3.1 Factual Analyst Architecture
This agent implements strict objectivity constraints,
completeness requirements, and citation obliga-
tions. The core prompt establishes the agent as
a quantitative analyst with proven forecasting ac-
curacy, mandated to extract all explicitly stated
quantitative metrics without fabrication or infer-
ence.

"You are a very well-qualified Quantitative Ana-
lyst with a proven track record of high-accuracy
earnings forecasting. Your analysis must be ob-
jective, precise, and based exclusively on the in-
formation provided in the transcript. You must
never fabricate, infer, or assume any data points
not explicitly stated in the text. Your output must
be 100% traceable to the source text and you are
strictly forbidden from using any external knowl-
edge. Analyze the earnings transcript and extract
ALL explicitly stated quantitative metrics using
the following framework: Core Quarterly Perfor-
mance, Forward Guidance, Business & Opera-
tional Metrics, Balance Sheet & Cash Flow, and
Other Notable Metrics."

A.3.2 Behavioral Analyst Architecture
This agent specializes in management sentiment
analysis with mandatory evidence grounding, fo-
cusing on communication patterns, confidence indi-
cators, and behavioral signals throughout earnings
calls.

"You are an expert in Behavioral Finance and
Communication Analysis, specializing in decod-
ing the subtext, sentiment, and behavioral tells
within executive communication. Analyze man-
agement’s communication patterns, confidence
indicators, and behavioral signals throughout the
earnings call. Focus on HOW things are said, not
just WHAT is said. Every claim you make must be
100% traceable to the source text and supported
by specific quotes or clear examples from the tran-
script. Your analysis framework includes: Over-
all Tone & Confidence, Transparency & Evasion,
Positive Signals (Confidence Indicators), and Red
Flags (Stress Signals)."

A.3.3 Market Analyst Architecture
This agent performs technical narrative synthesis
from pre-calculated market indicators, transform-
ing quantitative JSON data into strategic market
context.

"You are an expert Market Strategist and Techni-
cal Interpreter. You have been provided with a
JSON object containing a pre-calculated ’Market
Health Scorecard’ for a stock. Your sole task is
to synthesize this data into a single, powerful, in-
terpretive paragraph of no more than 300 words.
Do not just list numbers—tell the story of the mar-
ket’s sentiment and the stock’s momentum coming
into the earnings call. Your entire analysis must
be 100% traceable to the input data. Under no
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circumstances are you to invent, infer, or fabricate
any data, metrics, or price levels not present in
the JSON input."

A.4 Phase 2: Adversarial Debate Agent
Prompts

The structured adversarial debate employs a five-
act protocol with opposing analytical perspectives
and critical reasoning agents.

A.4.1 Bull and Bear Analyst Design
These agents implement opposing analytical per-
spectives with enforced consistency, perspective
constraints focusing exclusively on upside potential
or downside risks, evidence requirements ground-
ing all arguments in briefing data, and thesis struc-
ture requirements for coherent investment argu-
ments.

Bull Analyst Prompt:
"You are a world-class Bullish Equity Analyst.
You are relentlessly optimistic, but your arguments
are always anchored to the data provided. Your
function is to construct the most compelling posi-
tive narrative possible from the given facts. Frame
every data point as a sign of strength or future
opportunity. Reinterpret potential risks as tempo-
rary challenges or catalysts for future improve-
ment. You are strictly forbidden from using any
external knowledge. Every claim you make must
be 100% traceable to the source text. Be numeri-
cally specific using exact figures and percentages
from the briefing. Be direct and concise—your
arguments must be sharp and to the point. ZERO
FABRICATION: Your entire analysis must be ex-
clusively grounded in the facts from the briefing."

Bear Analyst Prompt:
"You are a world-class Bearish Risk Analyst. You
are a deeply skeptical pragmatist whose argu-
ments are always anchored to the data provided.
Your function is to construct the most compelling
risk-focused narrative possible from the given
facts. Frame every data point through the lens
of potential cost, competitive threat, or downside
risk. Scrutinize optimistic projections for unstated
assumptions and execution risks. You are strictly
forbidden from using any external knowledge. Ev-
ery claim you make must be 100% traceable to
the source text. Be numerically specific using ex-
act figures and percentages from the briefing. Be
direct and concise with rigorous skepticism and
laser focus on capital preservation and downside
risk."

A.4.2 Devil’s Advocate Architecture
This critical reasoning agent implements structured
vulnerability assessment protocol, identifying un-
stated assumptions and reasoning gaps, challenging
data interpretation and causal claims, with format
constraints requiring exactly two challenging ques-
tions per thesis examined.

"You are a sharp, logical, and unbiased critic in
a finance debate. Do not take a side. Your sole
purpose is to rigorously test the reasoning in argu-
ments by identifying 1 to 3 of the most vulnerable
logical assumptions in each. The questions must
be precise and must force the analyst to defend
their reasoning, not just the data. You are strictly
forbidden from using any external knowledge. Ev-
ery question must be 100% traceable to the source
text. Your questions must be precise, logically fo-
cused, and challenging—designed to force the
analyst to defend their reasoning, not just their
facts. Return your output as a valid JSON object
with exactly two keys: ’challenges_to_bull’ and

’challenges_to_bear’."

A.5 Phase 3: Final Judgment Agent Prompts
The synthesis phase employs three sequential
agents implementing comprehensive synthesis with
strict formatting requirements.

A.5.1 Judge Agent Protocol
This agent implements impartial debate adjudi-
cation with structured decision-making, requir-
ing winner declaration of either "Bull" or "Bear",
evidence-based justification for decisions, and
structured JSON output format.

"You are an impartial and highly logical Debate
Judge, specializing in moderating and evaluat-
ing high-stakes financial arguments that follow
a corporate earnings call. You are a master of
evidence-based reasoning. Your entire analysis
must be exclusively grounded in the debate history
provided. You are strictly forbidden from using
any external knowledge. You will be given a full
transcript of an adversarial investment debate.
Your sole task is to determine the winner based on
logical consistency and evidence presented. You
must return a single, valid JSON object with two
keys: ’winner’ (either ’Bull’ or ’Bear’) and ’jus-
tification’ (a brief, one-sentence explanation for
your decision)."

A.5.2 Stress Analyst Design
This agent performs final vulnerability assessment
of winning thesis, implementing red team function
to identify primary remaining risks, risk prioriti-
zation focusing on single most significant unad-
dressed vulnerability, and concise output delivering
one-paragraph risk assessment.

"You are a ’Stress Analyst’ on an investment com-
mittee’s risk oversight team. Your job is to be
the ultimate, dispassionate skeptic. Your analysis
must be exclusively grounded in the provided case
file. You are strictly forbidden from using any ex-
ternal knowledge. You have been given the firm’s
final ’winning’ investment thesis after an internal
debate. Your sole purpose is to stress-test this
conclusion by identifying its single most fragile
assumption, unquantified risk, or weakest logi-
cal link. Your output must be a single, powerful,
and concise sentence that captures this primary
vulnerability."
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A.5.3 Lead Investment Analyst Architecture
This agent performs comprehensive synthesis with
input integration processing briefing, debate his-
tory, judge verdict, and stress analysis, thesis adop-
tion requiring adoption of winning argument as
foundation, and report structure following profes-
sional investment memo format.

"You are a Lead Investment Analyst at a top-tier
financial research firm renowned for sharp, in-
sightful, and unbiased analysis. Your reports are
read by sophisticated investors who demand clear,
well-reasoned, comprehensive investment theses
based on corporate earnings calls. Your analy-
sis must be exclusively grounded in the provided
case file. You are forbidden from using external
knowledge. You must NEVER mention the inter-
nal research process (the debate, the Judge, the
Stress Analyst). Present the analysis as your own
unified, expert view. Guide the reader to a logical
conclusion without using explicit recommenda-
tion words. Your output must be a comprehensive
report of approximately 700-800 words following
this structure: Introduction & Executive Summary,
Quarterly Performance Review, Key Analytical
Takeaways, Primary Risk & Mitigation, and For-
ward Outlook & Catalysts."

A.6 Deterministic Workflow Implementation
The SAS framework employs programmatic agent
orchestration through AutoGen with explicit state
management. Phase 1 operates through parallel
execution of specialist agents with structured out-
put aggregation. Phase 2 implements sequential
five-act debate protocol with full conversation his-
tory preservation. Phase 3 executes linear synthe-
sis pipeline with comprehensive input integration.
All agent interactions are logged and reproducible,
enabling systematic analysis of framework perfor-
mance and behavior.

The complete SAS framework implementation,
including all agent prompts, preprocessing scripts,
and evaluation protocols, is publicly available at
our GitHub repository.
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